net: convert print_mac to %pM
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / s2io.c
blob66c1a80c2680390be053e1a0ef96f621e181db1a
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/init.h>
68 #include <linux/delay.h>
69 #include <linux/stddef.h>
70 #include <linux/ioctl.h>
71 #include <linux/timex.h>
72 #include <linux/ethtool.h>
73 #include <linux/workqueue.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ip.h>
76 #include <linux/tcp.h>
77 #include <net/tcp.h>
79 #include <asm/system.h>
80 #include <asm/uaccess.h>
81 #include <asm/io.h>
82 #include <asm/div64.h>
83 #include <asm/irq.h>
85 /* local include */
86 #include "s2io.h"
87 #include "s2io-regs.h"
89 #define DRV_VERSION "2.0.26.25"
91 /* S2io Driver name & version. */
92 static char s2io_driver_name[] = "Neterion";
93 static char s2io_driver_version[] = DRV_VERSION;
95 static int rxd_size[2] = {32,48};
96 static int rxd_count[2] = {127,85};
98 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
100 int ret;
102 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
103 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
105 return ret;
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
113 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
118 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
121 static inline int is_s2io_card_up(const struct s2io_nic * sp)
123 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
135 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
136 {"tmac_frms"},
137 {"tmac_data_octets"},
138 {"tmac_drop_frms"},
139 {"tmac_mcst_frms"},
140 {"tmac_bcst_frms"},
141 {"tmac_pause_ctrl_frms"},
142 {"tmac_ttl_octets"},
143 {"tmac_ucst_frms"},
144 {"tmac_nucst_frms"},
145 {"tmac_any_err_frms"},
146 {"tmac_ttl_less_fb_octets"},
147 {"tmac_vld_ip_octets"},
148 {"tmac_vld_ip"},
149 {"tmac_drop_ip"},
150 {"tmac_icmp"},
151 {"tmac_rst_tcp"},
152 {"tmac_tcp"},
153 {"tmac_udp"},
154 {"rmac_vld_frms"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
157 {"rmac_drop_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
161 {"rmac_out_rng_len_err_frms"},
162 {"rmac_long_frms"},
163 {"rmac_pause_ctrl_frms"},
164 {"rmac_unsup_ctrl_frms"},
165 {"rmac_ttl_octets"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
168 {"rmac_discarded_frms"},
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
171 {"rmac_ttl_frms"},
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
174 {"rmac_frag_frms"},
175 {"rmac_jabber_frms"},
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
182 {"rmac_ip"},
183 {"rmac_ip_octets"},
184 {"rmac_hdr_err_ip"},
185 {"rmac_drop_ip"},
186 {"rmac_icmp"},
187 {"rmac_tcp"},
188 {"rmac_udp"},
189 {"rmac_err_drp_udp"},
190 {"rmac_xgmii_err_sym"},
191 {"rmac_frms_q0"},
192 {"rmac_frms_q1"},
193 {"rmac_frms_q2"},
194 {"rmac_frms_q3"},
195 {"rmac_frms_q4"},
196 {"rmac_frms_q5"},
197 {"rmac_frms_q6"},
198 {"rmac_frms_q7"},
199 {"rmac_full_q0"},
200 {"rmac_full_q1"},
201 {"rmac_full_q2"},
202 {"rmac_full_q3"},
203 {"rmac_full_q4"},
204 {"rmac_full_q5"},
205 {"rmac_full_q6"},
206 {"rmac_full_q7"},
207 {"rmac_pause_cnt"},
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
210 {"rmac_accepted_ip"},
211 {"rmac_err_tcp"},
212 {"rd_req_cnt"},
213 {"new_rd_req_cnt"},
214 {"new_rd_req_rtry_cnt"},
215 {"rd_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
217 {"wr_req_cnt"},
218 {"new_wr_req_cnt"},
219 {"new_wr_req_rtry_cnt"},
220 {"wr_rtry_cnt"},
221 {"wr_disc_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
223 {"txp_wr_cnt"},
224 {"txd_rd_cnt"},
225 {"txd_wr_cnt"},
226 {"rxd_rd_cnt"},
227 {"rxd_wr_cnt"},
228 {"txf_rd_cnt"},
229 {"rxf_wr_cnt"}
232 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
233 {"rmac_ttl_1519_4095_frms"},
234 {"rmac_ttl_4096_8191_frms"},
235 {"rmac_ttl_8192_max_frms"},
236 {"rmac_ttl_gt_max_frms"},
237 {"rmac_osized_alt_frms"},
238 {"rmac_jabber_alt_frms"},
239 {"rmac_gt_max_alt_frms"},
240 {"rmac_vlan_frms"},
241 {"rmac_len_discard"},
242 {"rmac_fcs_discard"},
243 {"rmac_pf_discard"},
244 {"rmac_da_discard"},
245 {"rmac_red_discard"},
246 {"rmac_rts_discard"},
247 {"rmac_ingm_full_discard"},
248 {"link_fault_cnt"}
251 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
252 {"\n DRIVER STATISTICS"},
253 {"single_bit_ecc_errs"},
254 {"double_bit_ecc_errs"},
255 {"parity_err_cnt"},
256 {"serious_err_cnt"},
257 {"soft_reset_cnt"},
258 {"fifo_full_cnt"},
259 {"ring_0_full_cnt"},
260 {"ring_1_full_cnt"},
261 {"ring_2_full_cnt"},
262 {"ring_3_full_cnt"},
263 {"ring_4_full_cnt"},
264 {"ring_5_full_cnt"},
265 {"ring_6_full_cnt"},
266 {"ring_7_full_cnt"},
267 {"alarm_transceiver_temp_high"},
268 {"alarm_transceiver_temp_low"},
269 {"alarm_laser_bias_current_high"},
270 {"alarm_laser_bias_current_low"},
271 {"alarm_laser_output_power_high"},
272 {"alarm_laser_output_power_low"},
273 {"warn_transceiver_temp_high"},
274 {"warn_transceiver_temp_low"},
275 {"warn_laser_bias_current_high"},
276 {"warn_laser_bias_current_low"},
277 {"warn_laser_output_power_high"},
278 {"warn_laser_output_power_low"},
279 {"lro_aggregated_pkts"},
280 {"lro_flush_both_count"},
281 {"lro_out_of_sequence_pkts"},
282 {"lro_flush_due_to_max_pkts"},
283 {"lro_avg_aggr_pkts"},
284 {"mem_alloc_fail_cnt"},
285 {"pci_map_fail_cnt"},
286 {"watchdog_timer_cnt"},
287 {"mem_allocated"},
288 {"mem_freed"},
289 {"link_up_cnt"},
290 {"link_down_cnt"},
291 {"link_up_time"},
292 {"link_down_time"},
293 {"tx_tcode_buf_abort_cnt"},
294 {"tx_tcode_desc_abort_cnt"},
295 {"tx_tcode_parity_err_cnt"},
296 {"tx_tcode_link_loss_cnt"},
297 {"tx_tcode_list_proc_err_cnt"},
298 {"rx_tcode_parity_err_cnt"},
299 {"rx_tcode_abort_cnt"},
300 {"rx_tcode_parity_abort_cnt"},
301 {"rx_tcode_rda_fail_cnt"},
302 {"rx_tcode_unkn_prot_cnt"},
303 {"rx_tcode_fcs_err_cnt"},
304 {"rx_tcode_buf_size_err_cnt"},
305 {"rx_tcode_rxd_corrupt_cnt"},
306 {"rx_tcode_unkn_err_cnt"},
307 {"tda_err_cnt"},
308 {"pfc_err_cnt"},
309 {"pcc_err_cnt"},
310 {"tti_err_cnt"},
311 {"tpa_err_cnt"},
312 {"sm_err_cnt"},
313 {"lso_err_cnt"},
314 {"mac_tmac_err_cnt"},
315 {"mac_rmac_err_cnt"},
316 {"xgxs_txgxs_err_cnt"},
317 {"xgxs_rxgxs_err_cnt"},
318 {"rc_err_cnt"},
319 {"prc_pcix_err_cnt"},
320 {"rpa_err_cnt"},
321 {"rda_err_cnt"},
322 {"rti_err_cnt"},
323 {"mc_err_cnt"}
326 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
327 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
328 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
330 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
331 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
333 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
334 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
336 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
337 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
339 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
340 init_timer(&timer); \
341 timer.function = handle; \
342 timer.data = (unsigned long) arg; \
343 mod_timer(&timer, (jiffies + exp)) \
345 /* copy mac addr to def_mac_addr array */
346 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
348 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
349 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
350 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
351 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
352 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
353 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
355 /* Add the vlan */
356 static void s2io_vlan_rx_register(struct net_device *dev,
357 struct vlan_group *grp)
359 int i;
360 struct s2io_nic *nic = dev->priv;
361 unsigned long flags[MAX_TX_FIFOS];
362 struct mac_info *mac_control = &nic->mac_control;
363 struct config_param *config = &nic->config;
365 for (i = 0; i < config->tx_fifo_num; i++)
366 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
368 nic->vlgrp = grp;
369 for (i = config->tx_fifo_num - 1; i >= 0; i--)
370 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
371 flags[i]);
374 /* Unregister the vlan */
375 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
377 int i;
378 struct s2io_nic *nic = dev->priv;
379 unsigned long flags[MAX_TX_FIFOS];
380 struct mac_info *mac_control = &nic->mac_control;
381 struct config_param *config = &nic->config;
383 for (i = 0; i < config->tx_fifo_num; i++)
384 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
386 if (nic->vlgrp)
387 vlan_group_set_device(nic->vlgrp, vid, NULL);
389 for (i = config->tx_fifo_num - 1; i >= 0; i--)
390 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
391 flags[i]);
395 * Constants to be programmed into the Xena's registers, to configure
396 * the XAUI.
399 #define END_SIGN 0x0
400 static const u64 herc_act_dtx_cfg[] = {
401 /* Set address */
402 0x8000051536750000ULL, 0x80000515367500E0ULL,
403 /* Write data */
404 0x8000051536750004ULL, 0x80000515367500E4ULL,
405 /* Set address */
406 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
407 /* Write data */
408 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
409 /* Set address */
410 0x801205150D440000ULL, 0x801205150D4400E0ULL,
411 /* Write data */
412 0x801205150D440004ULL, 0x801205150D4400E4ULL,
413 /* Set address */
414 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
415 /* Write data */
416 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
417 /* Done */
418 END_SIGN
421 static const u64 xena_dtx_cfg[] = {
422 /* Set address */
423 0x8000051500000000ULL, 0x80000515000000E0ULL,
424 /* Write data */
425 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
426 /* Set address */
427 0x8001051500000000ULL, 0x80010515000000E0ULL,
428 /* Write data */
429 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
430 /* Set address */
431 0x8002051500000000ULL, 0x80020515000000E0ULL,
432 /* Write data */
433 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
434 END_SIGN
438 * Constants for Fixing the MacAddress problem seen mostly on
439 * Alpha machines.
441 static const u64 fix_mac[] = {
442 0x0060000000000000ULL, 0x0060600000000000ULL,
443 0x0040600000000000ULL, 0x0000600000000000ULL,
444 0x0020600000000000ULL, 0x0060600000000000ULL,
445 0x0020600000000000ULL, 0x0060600000000000ULL,
446 0x0020600000000000ULL, 0x0060600000000000ULL,
447 0x0020600000000000ULL, 0x0060600000000000ULL,
448 0x0020600000000000ULL, 0x0060600000000000ULL,
449 0x0020600000000000ULL, 0x0060600000000000ULL,
450 0x0020600000000000ULL, 0x0060600000000000ULL,
451 0x0020600000000000ULL, 0x0060600000000000ULL,
452 0x0020600000000000ULL, 0x0060600000000000ULL,
453 0x0020600000000000ULL, 0x0060600000000000ULL,
454 0x0020600000000000ULL, 0x0000600000000000ULL,
455 0x0040600000000000ULL, 0x0060600000000000ULL,
456 END_SIGN
459 MODULE_LICENSE("GPL");
460 MODULE_VERSION(DRV_VERSION);
463 /* Module Loadable parameters. */
464 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
465 S2IO_PARM_INT(rx_ring_num, 1);
466 S2IO_PARM_INT(multiq, 0);
467 S2IO_PARM_INT(rx_ring_mode, 1);
468 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
469 S2IO_PARM_INT(rmac_pause_time, 0x100);
470 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
471 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
472 S2IO_PARM_INT(shared_splits, 0);
473 S2IO_PARM_INT(tmac_util_period, 5);
474 S2IO_PARM_INT(rmac_util_period, 5);
475 S2IO_PARM_INT(l3l4hdr_size, 128);
476 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
477 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
478 /* Frequency of Rx desc syncs expressed as power of 2 */
479 S2IO_PARM_INT(rxsync_frequency, 3);
480 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
481 S2IO_PARM_INT(intr_type, 2);
482 /* Large receive offload feature */
483 static unsigned int lro_enable;
484 module_param_named(lro, lro_enable, uint, 0);
486 /* Max pkts to be aggregated by LRO at one time. If not specified,
487 * aggregation happens until we hit max IP pkt size(64K)
489 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
490 S2IO_PARM_INT(indicate_max_pkts, 0);
492 S2IO_PARM_INT(napi, 1);
493 S2IO_PARM_INT(ufo, 0);
494 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
496 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
497 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
498 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
499 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
500 static unsigned int rts_frm_len[MAX_RX_RINGS] =
501 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
503 module_param_array(tx_fifo_len, uint, NULL, 0);
504 module_param_array(rx_ring_sz, uint, NULL, 0);
505 module_param_array(rts_frm_len, uint, NULL, 0);
508 * S2IO device table.
509 * This table lists all the devices that this driver supports.
511 static struct pci_device_id s2io_tbl[] __devinitdata = {
512 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
513 PCI_ANY_ID, PCI_ANY_ID},
514 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
515 PCI_ANY_ID, PCI_ANY_ID},
516 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
517 PCI_ANY_ID, PCI_ANY_ID},
518 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
519 PCI_ANY_ID, PCI_ANY_ID},
520 {0,}
523 MODULE_DEVICE_TABLE(pci, s2io_tbl);
525 static struct pci_error_handlers s2io_err_handler = {
526 .error_detected = s2io_io_error_detected,
527 .slot_reset = s2io_io_slot_reset,
528 .resume = s2io_io_resume,
531 static struct pci_driver s2io_driver = {
532 .name = "S2IO",
533 .id_table = s2io_tbl,
534 .probe = s2io_init_nic,
535 .remove = __devexit_p(s2io_rem_nic),
536 .err_handler = &s2io_err_handler,
539 /* A simplifier macro used both by init and free shared_mem Fns(). */
540 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
542 /* netqueue manipulation helper functions */
543 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
545 if (!sp->config.multiq) {
546 int i;
548 for (i = 0; i < sp->config.tx_fifo_num; i++)
549 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
551 netif_tx_stop_all_queues(sp->dev);
554 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
556 if (!sp->config.multiq)
557 sp->mac_control.fifos[fifo_no].queue_state =
558 FIFO_QUEUE_STOP;
560 netif_tx_stop_all_queues(sp->dev);
563 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
565 if (!sp->config.multiq) {
566 int i;
568 for (i = 0; i < sp->config.tx_fifo_num; i++)
569 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
571 netif_tx_start_all_queues(sp->dev);
574 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
576 if (!sp->config.multiq)
577 sp->mac_control.fifos[fifo_no].queue_state =
578 FIFO_QUEUE_START;
580 netif_tx_start_all_queues(sp->dev);
583 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
585 if (!sp->config.multiq) {
586 int i;
588 for (i = 0; i < sp->config.tx_fifo_num; i++)
589 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
591 netif_tx_wake_all_queues(sp->dev);
594 static inline void s2io_wake_tx_queue(
595 struct fifo_info *fifo, int cnt, u8 multiq)
598 if (multiq) {
599 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
600 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
601 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
602 if (netif_queue_stopped(fifo->dev)) {
603 fifo->queue_state = FIFO_QUEUE_START;
604 netif_wake_queue(fifo->dev);
610 * init_shared_mem - Allocation and Initialization of Memory
611 * @nic: Device private variable.
612 * Description: The function allocates all the memory areas shared
613 * between the NIC and the driver. This includes Tx descriptors,
614 * Rx descriptors and the statistics block.
617 static int init_shared_mem(struct s2io_nic *nic)
619 u32 size;
620 void *tmp_v_addr, *tmp_v_addr_next;
621 dma_addr_t tmp_p_addr, tmp_p_addr_next;
622 struct RxD_block *pre_rxd_blk = NULL;
623 int i, j, blk_cnt;
624 int lst_size, lst_per_page;
625 struct net_device *dev = nic->dev;
626 unsigned long tmp;
627 struct buffAdd *ba;
629 struct mac_info *mac_control;
630 struct config_param *config;
631 unsigned long long mem_allocated = 0;
633 mac_control = &nic->mac_control;
634 config = &nic->config;
637 /* Allocation and initialization of TXDLs in FIOFs */
638 size = 0;
639 for (i = 0; i < config->tx_fifo_num; i++) {
640 size += config->tx_cfg[i].fifo_len;
642 if (size > MAX_AVAILABLE_TXDS) {
643 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
644 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
645 return -EINVAL;
648 size = 0;
649 for (i = 0; i < config->tx_fifo_num; i++) {
650 size = config->tx_cfg[i].fifo_len;
652 * Legal values are from 2 to 8192
654 if (size < 2) {
655 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
656 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
657 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
658 "are 2 to 8192\n");
659 return -EINVAL;
663 lst_size = (sizeof(struct TxD) * config->max_txds);
664 lst_per_page = PAGE_SIZE / lst_size;
666 for (i = 0; i < config->tx_fifo_num; i++) {
667 int fifo_len = config->tx_cfg[i].fifo_len;
668 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
669 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
670 GFP_KERNEL);
671 if (!mac_control->fifos[i].list_info) {
672 DBG_PRINT(INFO_DBG,
673 "Malloc failed for list_info\n");
674 return -ENOMEM;
676 mem_allocated += list_holder_size;
678 for (i = 0; i < config->tx_fifo_num; i++) {
679 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
680 lst_per_page);
681 mac_control->fifos[i].tx_curr_put_info.offset = 0;
682 mac_control->fifos[i].tx_curr_put_info.fifo_len =
683 config->tx_cfg[i].fifo_len - 1;
684 mac_control->fifos[i].tx_curr_get_info.offset = 0;
685 mac_control->fifos[i].tx_curr_get_info.fifo_len =
686 config->tx_cfg[i].fifo_len - 1;
687 mac_control->fifos[i].fifo_no = i;
688 mac_control->fifos[i].nic = nic;
689 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
690 mac_control->fifos[i].dev = dev;
692 for (j = 0; j < page_num; j++) {
693 int k = 0;
694 dma_addr_t tmp_p;
695 void *tmp_v;
696 tmp_v = pci_alloc_consistent(nic->pdev,
697 PAGE_SIZE, &tmp_p);
698 if (!tmp_v) {
699 DBG_PRINT(INFO_DBG,
700 "pci_alloc_consistent ");
701 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
702 return -ENOMEM;
704 /* If we got a zero DMA address(can happen on
705 * certain platforms like PPC), reallocate.
706 * Store virtual address of page we don't want,
707 * to be freed later.
709 if (!tmp_p) {
710 mac_control->zerodma_virt_addr = tmp_v;
711 DBG_PRINT(INIT_DBG,
712 "%s: Zero DMA address for TxDL. ", dev->name);
713 DBG_PRINT(INIT_DBG,
714 "Virtual address %p\n", tmp_v);
715 tmp_v = pci_alloc_consistent(nic->pdev,
716 PAGE_SIZE, &tmp_p);
717 if (!tmp_v) {
718 DBG_PRINT(INFO_DBG,
719 "pci_alloc_consistent ");
720 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
721 return -ENOMEM;
723 mem_allocated += PAGE_SIZE;
725 while (k < lst_per_page) {
726 int l = (j * lst_per_page) + k;
727 if (l == config->tx_cfg[i].fifo_len)
728 break;
729 mac_control->fifos[i].list_info[l].list_virt_addr =
730 tmp_v + (k * lst_size);
731 mac_control->fifos[i].list_info[l].list_phy_addr =
732 tmp_p + (k * lst_size);
733 k++;
738 for (i = 0; i < config->tx_fifo_num; i++) {
739 size = config->tx_cfg[i].fifo_len;
740 mac_control->fifos[i].ufo_in_band_v
741 = kcalloc(size, sizeof(u64), GFP_KERNEL);
742 if (!mac_control->fifos[i].ufo_in_band_v)
743 return -ENOMEM;
744 mem_allocated += (size * sizeof(u64));
747 /* Allocation and initialization of RXDs in Rings */
748 size = 0;
749 for (i = 0; i < config->rx_ring_num; i++) {
750 if (config->rx_cfg[i].num_rxd %
751 (rxd_count[nic->rxd_mode] + 1)) {
752 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
753 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
755 DBG_PRINT(ERR_DBG, "RxDs per Block");
756 return FAILURE;
758 size += config->rx_cfg[i].num_rxd;
759 mac_control->rings[i].block_count =
760 config->rx_cfg[i].num_rxd /
761 (rxd_count[nic->rxd_mode] + 1 );
762 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
763 mac_control->rings[i].block_count;
765 if (nic->rxd_mode == RXD_MODE_1)
766 size = (size * (sizeof(struct RxD1)));
767 else
768 size = (size * (sizeof(struct RxD3)));
770 for (i = 0; i < config->rx_ring_num; i++) {
771 mac_control->rings[i].rx_curr_get_info.block_index = 0;
772 mac_control->rings[i].rx_curr_get_info.offset = 0;
773 mac_control->rings[i].rx_curr_get_info.ring_len =
774 config->rx_cfg[i].num_rxd - 1;
775 mac_control->rings[i].rx_curr_put_info.block_index = 0;
776 mac_control->rings[i].rx_curr_put_info.offset = 0;
777 mac_control->rings[i].rx_curr_put_info.ring_len =
778 config->rx_cfg[i].num_rxd - 1;
779 mac_control->rings[i].nic = nic;
780 mac_control->rings[i].ring_no = i;
781 mac_control->rings[i].lro = lro_enable;
783 blk_cnt = config->rx_cfg[i].num_rxd /
784 (rxd_count[nic->rxd_mode] + 1);
785 /* Allocating all the Rx blocks */
786 for (j = 0; j < blk_cnt; j++) {
787 struct rx_block_info *rx_blocks;
788 int l;
790 rx_blocks = &mac_control->rings[i].rx_blocks[j];
791 size = SIZE_OF_BLOCK; //size is always page size
792 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
793 &tmp_p_addr);
794 if (tmp_v_addr == NULL) {
796 * In case of failure, free_shared_mem()
797 * is called, which should free any
798 * memory that was alloced till the
799 * failure happened.
801 rx_blocks->block_virt_addr = tmp_v_addr;
802 return -ENOMEM;
804 mem_allocated += size;
805 memset(tmp_v_addr, 0, size);
806 rx_blocks->block_virt_addr = tmp_v_addr;
807 rx_blocks->block_dma_addr = tmp_p_addr;
808 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
809 rxd_count[nic->rxd_mode],
810 GFP_KERNEL);
811 if (!rx_blocks->rxds)
812 return -ENOMEM;
813 mem_allocated +=
814 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
815 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
816 rx_blocks->rxds[l].virt_addr =
817 rx_blocks->block_virt_addr +
818 (rxd_size[nic->rxd_mode] * l);
819 rx_blocks->rxds[l].dma_addr =
820 rx_blocks->block_dma_addr +
821 (rxd_size[nic->rxd_mode] * l);
824 /* Interlinking all Rx Blocks */
825 for (j = 0; j < blk_cnt; j++) {
826 tmp_v_addr =
827 mac_control->rings[i].rx_blocks[j].block_virt_addr;
828 tmp_v_addr_next =
829 mac_control->rings[i].rx_blocks[(j + 1) %
830 blk_cnt].block_virt_addr;
831 tmp_p_addr =
832 mac_control->rings[i].rx_blocks[j].block_dma_addr;
833 tmp_p_addr_next =
834 mac_control->rings[i].rx_blocks[(j + 1) %
835 blk_cnt].block_dma_addr;
837 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
838 pre_rxd_blk->reserved_2_pNext_RxD_block =
839 (unsigned long) tmp_v_addr_next;
840 pre_rxd_blk->pNext_RxD_Blk_physical =
841 (u64) tmp_p_addr_next;
844 if (nic->rxd_mode == RXD_MODE_3B) {
846 * Allocation of Storages for buffer addresses in 2BUFF mode
847 * and the buffers as well.
849 for (i = 0; i < config->rx_ring_num; i++) {
850 blk_cnt = config->rx_cfg[i].num_rxd /
851 (rxd_count[nic->rxd_mode]+ 1);
852 mac_control->rings[i].ba =
853 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
854 GFP_KERNEL);
855 if (!mac_control->rings[i].ba)
856 return -ENOMEM;
857 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
858 for (j = 0; j < blk_cnt; j++) {
859 int k = 0;
860 mac_control->rings[i].ba[j] =
861 kmalloc((sizeof(struct buffAdd) *
862 (rxd_count[nic->rxd_mode] + 1)),
863 GFP_KERNEL);
864 if (!mac_control->rings[i].ba[j])
865 return -ENOMEM;
866 mem_allocated += (sizeof(struct buffAdd) * \
867 (rxd_count[nic->rxd_mode] + 1));
868 while (k != rxd_count[nic->rxd_mode]) {
869 ba = &mac_control->rings[i].ba[j][k];
871 ba->ba_0_org = (void *) kmalloc
872 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
873 if (!ba->ba_0_org)
874 return -ENOMEM;
875 mem_allocated +=
876 (BUF0_LEN + ALIGN_SIZE);
877 tmp = (unsigned long)ba->ba_0_org;
878 tmp += ALIGN_SIZE;
879 tmp &= ~((unsigned long) ALIGN_SIZE);
880 ba->ba_0 = (void *) tmp;
882 ba->ba_1_org = (void *) kmalloc
883 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
884 if (!ba->ba_1_org)
885 return -ENOMEM;
886 mem_allocated
887 += (BUF1_LEN + ALIGN_SIZE);
888 tmp = (unsigned long) ba->ba_1_org;
889 tmp += ALIGN_SIZE;
890 tmp &= ~((unsigned long) ALIGN_SIZE);
891 ba->ba_1 = (void *) tmp;
892 k++;
898 /* Allocation and initialization of Statistics block */
899 size = sizeof(struct stat_block);
900 mac_control->stats_mem = pci_alloc_consistent
901 (nic->pdev, size, &mac_control->stats_mem_phy);
903 if (!mac_control->stats_mem) {
905 * In case of failure, free_shared_mem() is called, which
906 * should free any memory that was alloced till the
907 * failure happened.
909 return -ENOMEM;
911 mem_allocated += size;
912 mac_control->stats_mem_sz = size;
914 tmp_v_addr = mac_control->stats_mem;
915 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
916 memset(tmp_v_addr, 0, size);
917 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
918 (unsigned long long) tmp_p_addr);
919 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
920 return SUCCESS;
924 * free_shared_mem - Free the allocated Memory
925 * @nic: Device private variable.
926 * Description: This function is to free all memory locations allocated by
927 * the init_shared_mem() function and return it to the kernel.
930 static void free_shared_mem(struct s2io_nic *nic)
932 int i, j, blk_cnt, size;
933 void *tmp_v_addr;
934 dma_addr_t tmp_p_addr;
935 struct mac_info *mac_control;
936 struct config_param *config;
937 int lst_size, lst_per_page;
938 struct net_device *dev;
939 int page_num = 0;
941 if (!nic)
942 return;
944 dev = nic->dev;
946 mac_control = &nic->mac_control;
947 config = &nic->config;
949 lst_size = (sizeof(struct TxD) * config->max_txds);
950 lst_per_page = PAGE_SIZE / lst_size;
952 for (i = 0; i < config->tx_fifo_num; i++) {
953 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
954 lst_per_page);
955 for (j = 0; j < page_num; j++) {
956 int mem_blks = (j * lst_per_page);
957 if (!mac_control->fifos[i].list_info)
958 return;
959 if (!mac_control->fifos[i].list_info[mem_blks].
960 list_virt_addr)
961 break;
962 pci_free_consistent(nic->pdev, PAGE_SIZE,
963 mac_control->fifos[i].
964 list_info[mem_blks].
965 list_virt_addr,
966 mac_control->fifos[i].
967 list_info[mem_blks].
968 list_phy_addr);
969 nic->mac_control.stats_info->sw_stat.mem_freed
970 += PAGE_SIZE;
972 /* If we got a zero DMA address during allocation,
973 * free the page now
975 if (mac_control->zerodma_virt_addr) {
976 pci_free_consistent(nic->pdev, PAGE_SIZE,
977 mac_control->zerodma_virt_addr,
978 (dma_addr_t)0);
979 DBG_PRINT(INIT_DBG,
980 "%s: Freeing TxDL with zero DMA addr. ",
981 dev->name);
982 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
983 mac_control->zerodma_virt_addr);
984 nic->mac_control.stats_info->sw_stat.mem_freed
985 += PAGE_SIZE;
987 kfree(mac_control->fifos[i].list_info);
988 nic->mac_control.stats_info->sw_stat.mem_freed +=
989 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
992 size = SIZE_OF_BLOCK;
993 for (i = 0; i < config->rx_ring_num; i++) {
994 blk_cnt = mac_control->rings[i].block_count;
995 for (j = 0; j < blk_cnt; j++) {
996 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
997 block_virt_addr;
998 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
999 block_dma_addr;
1000 if (tmp_v_addr == NULL)
1001 break;
1002 pci_free_consistent(nic->pdev, size,
1003 tmp_v_addr, tmp_p_addr);
1004 nic->mac_control.stats_info->sw_stat.mem_freed += size;
1005 kfree(mac_control->rings[i].rx_blocks[j].rxds);
1006 nic->mac_control.stats_info->sw_stat.mem_freed +=
1007 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1011 if (nic->rxd_mode == RXD_MODE_3B) {
1012 /* Freeing buffer storage addresses in 2BUFF mode. */
1013 for (i = 0; i < config->rx_ring_num; i++) {
1014 blk_cnt = config->rx_cfg[i].num_rxd /
1015 (rxd_count[nic->rxd_mode] + 1);
1016 for (j = 0; j < blk_cnt; j++) {
1017 int k = 0;
1018 if (!mac_control->rings[i].ba[j])
1019 continue;
1020 while (k != rxd_count[nic->rxd_mode]) {
1021 struct buffAdd *ba =
1022 &mac_control->rings[i].ba[j][k];
1023 kfree(ba->ba_0_org);
1024 nic->mac_control.stats_info->sw_stat.\
1025 mem_freed += (BUF0_LEN + ALIGN_SIZE);
1026 kfree(ba->ba_1_org);
1027 nic->mac_control.stats_info->sw_stat.\
1028 mem_freed += (BUF1_LEN + ALIGN_SIZE);
1029 k++;
1031 kfree(mac_control->rings[i].ba[j]);
1032 nic->mac_control.stats_info->sw_stat.mem_freed +=
1033 (sizeof(struct buffAdd) *
1034 (rxd_count[nic->rxd_mode] + 1));
1036 kfree(mac_control->rings[i].ba);
1037 nic->mac_control.stats_info->sw_stat.mem_freed +=
1038 (sizeof(struct buffAdd *) * blk_cnt);
1042 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1043 if (mac_control->fifos[i].ufo_in_band_v) {
1044 nic->mac_control.stats_info->sw_stat.mem_freed
1045 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1046 kfree(mac_control->fifos[i].ufo_in_band_v);
1050 if (mac_control->stats_mem) {
1051 nic->mac_control.stats_info->sw_stat.mem_freed +=
1052 mac_control->stats_mem_sz;
1053 pci_free_consistent(nic->pdev,
1054 mac_control->stats_mem_sz,
1055 mac_control->stats_mem,
1056 mac_control->stats_mem_phy);
1061 * s2io_verify_pci_mode -
1064 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1066 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1067 register u64 val64 = 0;
1068 int mode;
1070 val64 = readq(&bar0->pci_mode);
1071 mode = (u8)GET_PCI_MODE(val64);
1073 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1074 return -1; /* Unknown PCI mode */
1075 return mode;
1078 #define NEC_VENID 0x1033
1079 #define NEC_DEVID 0x0125
1080 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1082 struct pci_dev *tdev = NULL;
1083 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1084 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1085 if (tdev->bus == s2io_pdev->bus->parent) {
1086 pci_dev_put(tdev);
1087 return 1;
1091 return 0;
1094 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1096 * s2io_print_pci_mode -
1098 static int s2io_print_pci_mode(struct s2io_nic *nic)
1100 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1101 register u64 val64 = 0;
1102 int mode;
1103 struct config_param *config = &nic->config;
1105 val64 = readq(&bar0->pci_mode);
1106 mode = (u8)GET_PCI_MODE(val64);
1108 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1109 return -1; /* Unknown PCI mode */
1111 config->bus_speed = bus_speed[mode];
1113 if (s2io_on_nec_bridge(nic->pdev)) {
1114 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1115 nic->dev->name);
1116 return mode;
1119 if (val64 & PCI_MODE_32_BITS) {
1120 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1121 } else {
1122 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1125 switch(mode) {
1126 case PCI_MODE_PCI_33:
1127 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1128 break;
1129 case PCI_MODE_PCI_66:
1130 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1131 break;
1132 case PCI_MODE_PCIX_M1_66:
1133 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1134 break;
1135 case PCI_MODE_PCIX_M1_100:
1136 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1137 break;
1138 case PCI_MODE_PCIX_M1_133:
1139 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1140 break;
1141 case PCI_MODE_PCIX_M2_66:
1142 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1143 break;
1144 case PCI_MODE_PCIX_M2_100:
1145 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1146 break;
1147 case PCI_MODE_PCIX_M2_133:
1148 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1149 break;
1150 default:
1151 return -1; /* Unsupported bus speed */
1154 return mode;
1158 * init_tti - Initialization transmit traffic interrupt scheme
1159 * @nic: device private variable
1160 * @link: link status (UP/DOWN) used to enable/disable continuous
1161 * transmit interrupts
1162 * Description: The function configures transmit traffic interrupts
1163 * Return Value: SUCCESS on success and
1164 * '-1' on failure
1167 static int init_tti(struct s2io_nic *nic, int link)
1169 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1170 register u64 val64 = 0;
1171 int i;
1172 struct config_param *config;
1174 config = &nic->config;
1176 for (i = 0; i < config->tx_fifo_num; i++) {
1178 * TTI Initialization. Default Tx timer gets us about
1179 * 250 interrupts per sec. Continuous interrupts are enabled
1180 * by default.
1182 if (nic->device_type == XFRAME_II_DEVICE) {
1183 int count = (nic->config.bus_speed * 125)/2;
1184 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1185 } else
1186 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1188 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1189 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1190 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1191 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1192 if (i == 0)
1193 if (use_continuous_tx_intrs && (link == LINK_UP))
1194 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1195 writeq(val64, &bar0->tti_data1_mem);
1197 if (nic->config.intr_type == MSI_X) {
1198 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1199 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1200 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1201 TTI_DATA2_MEM_TX_UFC_D(0x300);
1202 } else {
1203 if ((nic->config.tx_steering_type ==
1204 TX_DEFAULT_STEERING) &&
1205 (config->tx_fifo_num > 1) &&
1206 (i >= nic->udp_fifo_idx) &&
1207 (i < (nic->udp_fifo_idx +
1208 nic->total_udp_fifos)))
1209 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1210 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1211 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1212 TTI_DATA2_MEM_TX_UFC_D(0x120);
1213 else
1214 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1215 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1216 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1217 TTI_DATA2_MEM_TX_UFC_D(0x80);
1220 writeq(val64, &bar0->tti_data2_mem);
1222 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1223 TTI_CMD_MEM_OFFSET(i);
1224 writeq(val64, &bar0->tti_command_mem);
1226 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1227 TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1228 return FAILURE;
1231 return SUCCESS;
1235 * init_nic - Initialization of hardware
1236 * @nic: device private variable
1237 * Description: The function sequentially configures every block
1238 * of the H/W from their reset values.
1239 * Return Value: SUCCESS on success and
1240 * '-1' on failure (endian settings incorrect).
1243 static int init_nic(struct s2io_nic *nic)
1245 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1246 struct net_device *dev = nic->dev;
1247 register u64 val64 = 0;
1248 void __iomem *add;
1249 u32 time;
1250 int i, j;
1251 struct mac_info *mac_control;
1252 struct config_param *config;
1253 int dtx_cnt = 0;
1254 unsigned long long mem_share;
1255 int mem_size;
1257 mac_control = &nic->mac_control;
1258 config = &nic->config;
1260 /* to set the swapper controle on the card */
1261 if(s2io_set_swapper(nic)) {
1262 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1263 return -EIO;
1267 * Herc requires EOI to be removed from reset before XGXS, so..
1269 if (nic->device_type & XFRAME_II_DEVICE) {
1270 val64 = 0xA500000000ULL;
1271 writeq(val64, &bar0->sw_reset);
1272 msleep(500);
1273 val64 = readq(&bar0->sw_reset);
1276 /* Remove XGXS from reset state */
1277 val64 = 0;
1278 writeq(val64, &bar0->sw_reset);
1279 msleep(500);
1280 val64 = readq(&bar0->sw_reset);
1282 /* Ensure that it's safe to access registers by checking
1283 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1285 if (nic->device_type == XFRAME_II_DEVICE) {
1286 for (i = 0; i < 50; i++) {
1287 val64 = readq(&bar0->adapter_status);
1288 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1289 break;
1290 msleep(10);
1292 if (i == 50)
1293 return -ENODEV;
1296 /* Enable Receiving broadcasts */
1297 add = &bar0->mac_cfg;
1298 val64 = readq(&bar0->mac_cfg);
1299 val64 |= MAC_RMAC_BCAST_ENABLE;
1300 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1301 writel((u32) val64, add);
1302 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1303 writel((u32) (val64 >> 32), (add + 4));
1305 /* Read registers in all blocks */
1306 val64 = readq(&bar0->mac_int_mask);
1307 val64 = readq(&bar0->mc_int_mask);
1308 val64 = readq(&bar0->xgxs_int_mask);
1310 /* Set MTU */
1311 val64 = dev->mtu;
1312 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1314 if (nic->device_type & XFRAME_II_DEVICE) {
1315 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1316 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1317 &bar0->dtx_control, UF);
1318 if (dtx_cnt & 0x1)
1319 msleep(1); /* Necessary!! */
1320 dtx_cnt++;
1322 } else {
1323 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1324 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1325 &bar0->dtx_control, UF);
1326 val64 = readq(&bar0->dtx_control);
1327 dtx_cnt++;
1331 /* Tx DMA Initialization */
1332 val64 = 0;
1333 writeq(val64, &bar0->tx_fifo_partition_0);
1334 writeq(val64, &bar0->tx_fifo_partition_1);
1335 writeq(val64, &bar0->tx_fifo_partition_2);
1336 writeq(val64, &bar0->tx_fifo_partition_3);
1339 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1340 val64 |=
1341 vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1342 13) | vBIT(config->tx_cfg[i].fifo_priority,
1343 ((j * 32) + 5), 3);
1345 if (i == (config->tx_fifo_num - 1)) {
1346 if (i % 2 == 0)
1347 i++;
1350 switch (i) {
1351 case 1:
1352 writeq(val64, &bar0->tx_fifo_partition_0);
1353 val64 = 0;
1354 j = 0;
1355 break;
1356 case 3:
1357 writeq(val64, &bar0->tx_fifo_partition_1);
1358 val64 = 0;
1359 j = 0;
1360 break;
1361 case 5:
1362 writeq(val64, &bar0->tx_fifo_partition_2);
1363 val64 = 0;
1364 j = 0;
1365 break;
1366 case 7:
1367 writeq(val64, &bar0->tx_fifo_partition_3);
1368 val64 = 0;
1369 j = 0;
1370 break;
1371 default:
1372 j++;
1373 break;
1378 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1379 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1381 if ((nic->device_type == XFRAME_I_DEVICE) &&
1382 (nic->pdev->revision < 4))
1383 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1385 val64 = readq(&bar0->tx_fifo_partition_0);
1386 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1387 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1390 * Initialization of Tx_PA_CONFIG register to ignore packet
1391 * integrity checking.
1393 val64 = readq(&bar0->tx_pa_cfg);
1394 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1395 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1396 writeq(val64, &bar0->tx_pa_cfg);
1398 /* Rx DMA intialization. */
1399 val64 = 0;
1400 for (i = 0; i < config->rx_ring_num; i++) {
1401 val64 |=
1402 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1405 writeq(val64, &bar0->rx_queue_priority);
1408 * Allocating equal share of memory to all the
1409 * configured Rings.
1411 val64 = 0;
1412 if (nic->device_type & XFRAME_II_DEVICE)
1413 mem_size = 32;
1414 else
1415 mem_size = 64;
1417 for (i = 0; i < config->rx_ring_num; i++) {
1418 switch (i) {
1419 case 0:
1420 mem_share = (mem_size / config->rx_ring_num +
1421 mem_size % config->rx_ring_num);
1422 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1423 continue;
1424 case 1:
1425 mem_share = (mem_size / config->rx_ring_num);
1426 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1427 continue;
1428 case 2:
1429 mem_share = (mem_size / config->rx_ring_num);
1430 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1431 continue;
1432 case 3:
1433 mem_share = (mem_size / config->rx_ring_num);
1434 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1435 continue;
1436 case 4:
1437 mem_share = (mem_size / config->rx_ring_num);
1438 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1439 continue;
1440 case 5:
1441 mem_share = (mem_size / config->rx_ring_num);
1442 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1443 continue;
1444 case 6:
1445 mem_share = (mem_size / config->rx_ring_num);
1446 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1447 continue;
1448 case 7:
1449 mem_share = (mem_size / config->rx_ring_num);
1450 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1451 continue;
1454 writeq(val64, &bar0->rx_queue_cfg);
1457 * Filling Tx round robin registers
1458 * as per the number of FIFOs for equal scheduling priority
1460 switch (config->tx_fifo_num) {
1461 case 1:
1462 val64 = 0x0;
1463 writeq(val64, &bar0->tx_w_round_robin_0);
1464 writeq(val64, &bar0->tx_w_round_robin_1);
1465 writeq(val64, &bar0->tx_w_round_robin_2);
1466 writeq(val64, &bar0->tx_w_round_robin_3);
1467 writeq(val64, &bar0->tx_w_round_robin_4);
1468 break;
1469 case 2:
1470 val64 = 0x0001000100010001ULL;
1471 writeq(val64, &bar0->tx_w_round_robin_0);
1472 writeq(val64, &bar0->tx_w_round_robin_1);
1473 writeq(val64, &bar0->tx_w_round_robin_2);
1474 writeq(val64, &bar0->tx_w_round_robin_3);
1475 val64 = 0x0001000100000000ULL;
1476 writeq(val64, &bar0->tx_w_round_robin_4);
1477 break;
1478 case 3:
1479 val64 = 0x0001020001020001ULL;
1480 writeq(val64, &bar0->tx_w_round_robin_0);
1481 val64 = 0x0200010200010200ULL;
1482 writeq(val64, &bar0->tx_w_round_robin_1);
1483 val64 = 0x0102000102000102ULL;
1484 writeq(val64, &bar0->tx_w_round_robin_2);
1485 val64 = 0x0001020001020001ULL;
1486 writeq(val64, &bar0->tx_w_round_robin_3);
1487 val64 = 0x0200010200000000ULL;
1488 writeq(val64, &bar0->tx_w_round_robin_4);
1489 break;
1490 case 4:
1491 val64 = 0x0001020300010203ULL;
1492 writeq(val64, &bar0->tx_w_round_robin_0);
1493 writeq(val64, &bar0->tx_w_round_robin_1);
1494 writeq(val64, &bar0->tx_w_round_robin_2);
1495 writeq(val64, &bar0->tx_w_round_robin_3);
1496 val64 = 0x0001020300000000ULL;
1497 writeq(val64, &bar0->tx_w_round_robin_4);
1498 break;
1499 case 5:
1500 val64 = 0x0001020304000102ULL;
1501 writeq(val64, &bar0->tx_w_round_robin_0);
1502 val64 = 0x0304000102030400ULL;
1503 writeq(val64, &bar0->tx_w_round_robin_1);
1504 val64 = 0x0102030400010203ULL;
1505 writeq(val64, &bar0->tx_w_round_robin_2);
1506 val64 = 0x0400010203040001ULL;
1507 writeq(val64, &bar0->tx_w_round_robin_3);
1508 val64 = 0x0203040000000000ULL;
1509 writeq(val64, &bar0->tx_w_round_robin_4);
1510 break;
1511 case 6:
1512 val64 = 0x0001020304050001ULL;
1513 writeq(val64, &bar0->tx_w_round_robin_0);
1514 val64 = 0x0203040500010203ULL;
1515 writeq(val64, &bar0->tx_w_round_robin_1);
1516 val64 = 0x0405000102030405ULL;
1517 writeq(val64, &bar0->tx_w_round_robin_2);
1518 val64 = 0x0001020304050001ULL;
1519 writeq(val64, &bar0->tx_w_round_robin_3);
1520 val64 = 0x0203040500000000ULL;
1521 writeq(val64, &bar0->tx_w_round_robin_4);
1522 break;
1523 case 7:
1524 val64 = 0x0001020304050600ULL;
1525 writeq(val64, &bar0->tx_w_round_robin_0);
1526 val64 = 0x0102030405060001ULL;
1527 writeq(val64, &bar0->tx_w_round_robin_1);
1528 val64 = 0x0203040506000102ULL;
1529 writeq(val64, &bar0->tx_w_round_robin_2);
1530 val64 = 0x0304050600010203ULL;
1531 writeq(val64, &bar0->tx_w_round_robin_3);
1532 val64 = 0x0405060000000000ULL;
1533 writeq(val64, &bar0->tx_w_round_robin_4);
1534 break;
1535 case 8:
1536 val64 = 0x0001020304050607ULL;
1537 writeq(val64, &bar0->tx_w_round_robin_0);
1538 writeq(val64, &bar0->tx_w_round_robin_1);
1539 writeq(val64, &bar0->tx_w_round_robin_2);
1540 writeq(val64, &bar0->tx_w_round_robin_3);
1541 val64 = 0x0001020300000000ULL;
1542 writeq(val64, &bar0->tx_w_round_robin_4);
1543 break;
1546 /* Enable all configured Tx FIFO partitions */
1547 val64 = readq(&bar0->tx_fifo_partition_0);
1548 val64 |= (TX_FIFO_PARTITION_EN);
1549 writeq(val64, &bar0->tx_fifo_partition_0);
1551 /* Filling the Rx round robin registers as per the
1552 * number of Rings and steering based on QoS with
1553 * equal priority.
1555 switch (config->rx_ring_num) {
1556 case 1:
1557 val64 = 0x0;
1558 writeq(val64, &bar0->rx_w_round_robin_0);
1559 writeq(val64, &bar0->rx_w_round_robin_1);
1560 writeq(val64, &bar0->rx_w_round_robin_2);
1561 writeq(val64, &bar0->rx_w_round_robin_3);
1562 writeq(val64, &bar0->rx_w_round_robin_4);
1564 val64 = 0x8080808080808080ULL;
1565 writeq(val64, &bar0->rts_qos_steering);
1566 break;
1567 case 2:
1568 val64 = 0x0001000100010001ULL;
1569 writeq(val64, &bar0->rx_w_round_robin_0);
1570 writeq(val64, &bar0->rx_w_round_robin_1);
1571 writeq(val64, &bar0->rx_w_round_robin_2);
1572 writeq(val64, &bar0->rx_w_round_robin_3);
1573 val64 = 0x0001000100000000ULL;
1574 writeq(val64, &bar0->rx_w_round_robin_4);
1576 val64 = 0x8080808040404040ULL;
1577 writeq(val64, &bar0->rts_qos_steering);
1578 break;
1579 case 3:
1580 val64 = 0x0001020001020001ULL;
1581 writeq(val64, &bar0->rx_w_round_robin_0);
1582 val64 = 0x0200010200010200ULL;
1583 writeq(val64, &bar0->rx_w_round_robin_1);
1584 val64 = 0x0102000102000102ULL;
1585 writeq(val64, &bar0->rx_w_round_robin_2);
1586 val64 = 0x0001020001020001ULL;
1587 writeq(val64, &bar0->rx_w_round_robin_3);
1588 val64 = 0x0200010200000000ULL;
1589 writeq(val64, &bar0->rx_w_round_robin_4);
1591 val64 = 0x8080804040402020ULL;
1592 writeq(val64, &bar0->rts_qos_steering);
1593 break;
1594 case 4:
1595 val64 = 0x0001020300010203ULL;
1596 writeq(val64, &bar0->rx_w_round_robin_0);
1597 writeq(val64, &bar0->rx_w_round_robin_1);
1598 writeq(val64, &bar0->rx_w_round_robin_2);
1599 writeq(val64, &bar0->rx_w_round_robin_3);
1600 val64 = 0x0001020300000000ULL;
1601 writeq(val64, &bar0->rx_w_round_robin_4);
1603 val64 = 0x8080404020201010ULL;
1604 writeq(val64, &bar0->rts_qos_steering);
1605 break;
1606 case 5:
1607 val64 = 0x0001020304000102ULL;
1608 writeq(val64, &bar0->rx_w_round_robin_0);
1609 val64 = 0x0304000102030400ULL;
1610 writeq(val64, &bar0->rx_w_round_robin_1);
1611 val64 = 0x0102030400010203ULL;
1612 writeq(val64, &bar0->rx_w_round_robin_2);
1613 val64 = 0x0400010203040001ULL;
1614 writeq(val64, &bar0->rx_w_round_robin_3);
1615 val64 = 0x0203040000000000ULL;
1616 writeq(val64, &bar0->rx_w_round_robin_4);
1618 val64 = 0x8080404020201008ULL;
1619 writeq(val64, &bar0->rts_qos_steering);
1620 break;
1621 case 6:
1622 val64 = 0x0001020304050001ULL;
1623 writeq(val64, &bar0->rx_w_round_robin_0);
1624 val64 = 0x0203040500010203ULL;
1625 writeq(val64, &bar0->rx_w_round_robin_1);
1626 val64 = 0x0405000102030405ULL;
1627 writeq(val64, &bar0->rx_w_round_robin_2);
1628 val64 = 0x0001020304050001ULL;
1629 writeq(val64, &bar0->rx_w_round_robin_3);
1630 val64 = 0x0203040500000000ULL;
1631 writeq(val64, &bar0->rx_w_round_robin_4);
1633 val64 = 0x8080404020100804ULL;
1634 writeq(val64, &bar0->rts_qos_steering);
1635 break;
1636 case 7:
1637 val64 = 0x0001020304050600ULL;
1638 writeq(val64, &bar0->rx_w_round_robin_0);
1639 val64 = 0x0102030405060001ULL;
1640 writeq(val64, &bar0->rx_w_round_robin_1);
1641 val64 = 0x0203040506000102ULL;
1642 writeq(val64, &bar0->rx_w_round_robin_2);
1643 val64 = 0x0304050600010203ULL;
1644 writeq(val64, &bar0->rx_w_round_robin_3);
1645 val64 = 0x0405060000000000ULL;
1646 writeq(val64, &bar0->rx_w_round_robin_4);
1648 val64 = 0x8080402010080402ULL;
1649 writeq(val64, &bar0->rts_qos_steering);
1650 break;
1651 case 8:
1652 val64 = 0x0001020304050607ULL;
1653 writeq(val64, &bar0->rx_w_round_robin_0);
1654 writeq(val64, &bar0->rx_w_round_robin_1);
1655 writeq(val64, &bar0->rx_w_round_robin_2);
1656 writeq(val64, &bar0->rx_w_round_robin_3);
1657 val64 = 0x0001020300000000ULL;
1658 writeq(val64, &bar0->rx_w_round_robin_4);
1660 val64 = 0x8040201008040201ULL;
1661 writeq(val64, &bar0->rts_qos_steering);
1662 break;
1665 /* UDP Fix */
1666 val64 = 0;
1667 for (i = 0; i < 8; i++)
1668 writeq(val64, &bar0->rts_frm_len_n[i]);
1670 /* Set the default rts frame length for the rings configured */
1671 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1672 for (i = 0 ; i < config->rx_ring_num ; i++)
1673 writeq(val64, &bar0->rts_frm_len_n[i]);
1675 /* Set the frame length for the configured rings
1676 * desired by the user
1678 for (i = 0; i < config->rx_ring_num; i++) {
1679 /* If rts_frm_len[i] == 0 then it is assumed that user not
1680 * specified frame length steering.
1681 * If the user provides the frame length then program
1682 * the rts_frm_len register for those values or else
1683 * leave it as it is.
1685 if (rts_frm_len[i] != 0) {
1686 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1687 &bar0->rts_frm_len_n[i]);
1691 /* Disable differentiated services steering logic */
1692 for (i = 0; i < 64; i++) {
1693 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1694 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1695 dev->name);
1696 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1697 return -ENODEV;
1701 /* Program statistics memory */
1702 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1704 if (nic->device_type == XFRAME_II_DEVICE) {
1705 val64 = STAT_BC(0x320);
1706 writeq(val64, &bar0->stat_byte_cnt);
1710 * Initializing the sampling rate for the device to calculate the
1711 * bandwidth utilization.
1713 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1714 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1715 writeq(val64, &bar0->mac_link_util);
1718 * Initializing the Transmit and Receive Traffic Interrupt
1719 * Scheme.
1722 /* Initialize TTI */
1723 if (SUCCESS != init_tti(nic, nic->last_link_state))
1724 return -ENODEV;
1726 /* RTI Initialization */
1727 if (nic->device_type == XFRAME_II_DEVICE) {
1729 * Programmed to generate Apprx 500 Intrs per
1730 * second
1732 int count = (nic->config.bus_speed * 125)/4;
1733 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1734 } else
1735 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1736 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1737 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1738 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1740 writeq(val64, &bar0->rti_data1_mem);
1742 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1743 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1744 if (nic->config.intr_type == MSI_X)
1745 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1746 RTI_DATA2_MEM_RX_UFC_D(0x40));
1747 else
1748 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1749 RTI_DATA2_MEM_RX_UFC_D(0x80));
1750 writeq(val64, &bar0->rti_data2_mem);
1752 for (i = 0; i < config->rx_ring_num; i++) {
1753 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1754 | RTI_CMD_MEM_OFFSET(i);
1755 writeq(val64, &bar0->rti_command_mem);
1758 * Once the operation completes, the Strobe bit of the
1759 * command register will be reset. We poll for this
1760 * particular condition. We wait for a maximum of 500ms
1761 * for the operation to complete, if it's not complete
1762 * by then we return error.
1764 time = 0;
1765 while (TRUE) {
1766 val64 = readq(&bar0->rti_command_mem);
1767 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1768 break;
1770 if (time > 10) {
1771 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1772 dev->name);
1773 return -ENODEV;
1775 time++;
1776 msleep(50);
1781 * Initializing proper values as Pause threshold into all
1782 * the 8 Queues on Rx side.
1784 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1785 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1787 /* Disable RMAC PAD STRIPPING */
1788 add = &bar0->mac_cfg;
1789 val64 = readq(&bar0->mac_cfg);
1790 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1791 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1792 writel((u32) (val64), add);
1793 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1794 writel((u32) (val64 >> 32), (add + 4));
1795 val64 = readq(&bar0->mac_cfg);
1797 /* Enable FCS stripping by adapter */
1798 add = &bar0->mac_cfg;
1799 val64 = readq(&bar0->mac_cfg);
1800 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1801 if (nic->device_type == XFRAME_II_DEVICE)
1802 writeq(val64, &bar0->mac_cfg);
1803 else {
1804 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1805 writel((u32) (val64), add);
1806 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1807 writel((u32) (val64 >> 32), (add + 4));
1811 * Set the time value to be inserted in the pause frame
1812 * generated by xena.
1814 val64 = readq(&bar0->rmac_pause_cfg);
1815 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1816 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1817 writeq(val64, &bar0->rmac_pause_cfg);
1820 * Set the Threshold Limit for Generating the pause frame
1821 * If the amount of data in any Queue exceeds ratio of
1822 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1823 * pause frame is generated
1825 val64 = 0;
1826 for (i = 0; i < 4; i++) {
1827 val64 |=
1828 (((u64) 0xFF00 | nic->mac_control.
1829 mc_pause_threshold_q0q3)
1830 << (i * 2 * 8));
1832 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1834 val64 = 0;
1835 for (i = 0; i < 4; i++) {
1836 val64 |=
1837 (((u64) 0xFF00 | nic->mac_control.
1838 mc_pause_threshold_q4q7)
1839 << (i * 2 * 8));
1841 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1844 * TxDMA will stop Read request if the number of read split has
1845 * exceeded the limit pointed by shared_splits
1847 val64 = readq(&bar0->pic_control);
1848 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1849 writeq(val64, &bar0->pic_control);
1851 if (nic->config.bus_speed == 266) {
1852 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1853 writeq(0x0, &bar0->read_retry_delay);
1854 writeq(0x0, &bar0->write_retry_delay);
1858 * Programming the Herc to split every write transaction
1859 * that does not start on an ADB to reduce disconnects.
1861 if (nic->device_type == XFRAME_II_DEVICE) {
1862 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1863 MISC_LINK_STABILITY_PRD(3);
1864 writeq(val64, &bar0->misc_control);
1865 val64 = readq(&bar0->pic_control2);
1866 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1867 writeq(val64, &bar0->pic_control2);
1869 if (strstr(nic->product_name, "CX4")) {
1870 val64 = TMAC_AVG_IPG(0x17);
1871 writeq(val64, &bar0->tmac_avg_ipg);
1874 return SUCCESS;
1876 #define LINK_UP_DOWN_INTERRUPT 1
1877 #define MAC_RMAC_ERR_TIMER 2
1879 static int s2io_link_fault_indication(struct s2io_nic *nic)
1881 if (nic->device_type == XFRAME_II_DEVICE)
1882 return LINK_UP_DOWN_INTERRUPT;
1883 else
1884 return MAC_RMAC_ERR_TIMER;
1888 * do_s2io_write_bits - update alarm bits in alarm register
1889 * @value: alarm bits
1890 * @flag: interrupt status
1891 * @addr: address value
1892 * Description: update alarm bits in alarm register
1893 * Return Value:
1894 * NONE.
1896 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1898 u64 temp64;
1900 temp64 = readq(addr);
1902 if(flag == ENABLE_INTRS)
1903 temp64 &= ~((u64) value);
1904 else
1905 temp64 |= ((u64) value);
1906 writeq(temp64, addr);
1909 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1911 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1912 register u64 gen_int_mask = 0;
1913 u64 interruptible;
1915 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1916 if (mask & TX_DMA_INTR) {
1918 gen_int_mask |= TXDMA_INT_M;
1920 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1921 TXDMA_PCC_INT | TXDMA_TTI_INT |
1922 TXDMA_LSO_INT | TXDMA_TPA_INT |
1923 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1925 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1926 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1927 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1928 &bar0->pfc_err_mask);
1930 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1931 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1932 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1934 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1935 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1936 PCC_N_SERR | PCC_6_COF_OV_ERR |
1937 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1938 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1939 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1941 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1942 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1944 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1945 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1946 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1947 flag, &bar0->lso_err_mask);
1949 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1950 flag, &bar0->tpa_err_mask);
1952 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1956 if (mask & TX_MAC_INTR) {
1957 gen_int_mask |= TXMAC_INT_M;
1958 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1959 &bar0->mac_int_mask);
1960 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1961 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1962 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1963 flag, &bar0->mac_tmac_err_mask);
1966 if (mask & TX_XGXS_INTR) {
1967 gen_int_mask |= TXXGXS_INT_M;
1968 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1969 &bar0->xgxs_int_mask);
1970 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1971 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1972 flag, &bar0->xgxs_txgxs_err_mask);
1975 if (mask & RX_DMA_INTR) {
1976 gen_int_mask |= RXDMA_INT_M;
1977 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1978 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1979 flag, &bar0->rxdma_int_mask);
1980 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1981 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1982 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1983 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1984 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1985 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1986 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1987 &bar0->prc_pcix_err_mask);
1988 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1989 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1990 &bar0->rpa_err_mask);
1991 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1992 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1993 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1994 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1995 flag, &bar0->rda_err_mask);
1996 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1997 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1998 flag, &bar0->rti_err_mask);
2001 if (mask & RX_MAC_INTR) {
2002 gen_int_mask |= RXMAC_INT_M;
2003 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2004 &bar0->mac_int_mask);
2005 interruptible = RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2006 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2007 RMAC_DOUBLE_ECC_ERR;
2008 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2009 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2010 do_s2io_write_bits(interruptible,
2011 flag, &bar0->mac_rmac_err_mask);
2014 if (mask & RX_XGXS_INTR)
2016 gen_int_mask |= RXXGXS_INT_M;
2017 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2018 &bar0->xgxs_int_mask);
2019 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2020 &bar0->xgxs_rxgxs_err_mask);
2023 if (mask & MC_INTR) {
2024 gen_int_mask |= MC_INT_M;
2025 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2026 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2027 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2028 &bar0->mc_err_mask);
2030 nic->general_int_mask = gen_int_mask;
2032 /* Remove this line when alarm interrupts are enabled */
2033 nic->general_int_mask = 0;
2036 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2037 * @nic: device private variable,
2038 * @mask: A mask indicating which Intr block must be modified and,
2039 * @flag: A flag indicating whether to enable or disable the Intrs.
2040 * Description: This function will either disable or enable the interrupts
2041 * depending on the flag argument. The mask argument can be used to
2042 * enable/disable any Intr block.
2043 * Return Value: NONE.
2046 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2048 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2049 register u64 temp64 = 0, intr_mask = 0;
2051 intr_mask = nic->general_int_mask;
2053 /* Top level interrupt classification */
2054 /* PIC Interrupts */
2055 if (mask & TX_PIC_INTR) {
2056 /* Enable PIC Intrs in the general intr mask register */
2057 intr_mask |= TXPIC_INT_M;
2058 if (flag == ENABLE_INTRS) {
2060 * If Hercules adapter enable GPIO otherwise
2061 * disable all PCIX, Flash, MDIO, IIC and GPIO
2062 * interrupts for now.
2063 * TODO
2065 if (s2io_link_fault_indication(nic) ==
2066 LINK_UP_DOWN_INTERRUPT ) {
2067 do_s2io_write_bits(PIC_INT_GPIO, flag,
2068 &bar0->pic_int_mask);
2069 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2070 &bar0->gpio_int_mask);
2071 } else
2072 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2073 } else if (flag == DISABLE_INTRS) {
2075 * Disable PIC Intrs in the general
2076 * intr mask register
2078 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2082 /* Tx traffic interrupts */
2083 if (mask & TX_TRAFFIC_INTR) {
2084 intr_mask |= TXTRAFFIC_INT_M;
2085 if (flag == ENABLE_INTRS) {
2087 * Enable all the Tx side interrupts
2088 * writing 0 Enables all 64 TX interrupt levels
2090 writeq(0x0, &bar0->tx_traffic_mask);
2091 } else if (flag == DISABLE_INTRS) {
2093 * Disable Tx Traffic Intrs in the general intr mask
2094 * register.
2096 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2100 /* Rx traffic interrupts */
2101 if (mask & RX_TRAFFIC_INTR) {
2102 intr_mask |= RXTRAFFIC_INT_M;
2103 if (flag == ENABLE_INTRS) {
2104 /* writing 0 Enables all 8 RX interrupt levels */
2105 writeq(0x0, &bar0->rx_traffic_mask);
2106 } else if (flag == DISABLE_INTRS) {
2108 * Disable Rx Traffic Intrs in the general intr mask
2109 * register.
2111 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2115 temp64 = readq(&bar0->general_int_mask);
2116 if (flag == ENABLE_INTRS)
2117 temp64 &= ~((u64) intr_mask);
2118 else
2119 temp64 = DISABLE_ALL_INTRS;
2120 writeq(temp64, &bar0->general_int_mask);
2122 nic->general_int_mask = readq(&bar0->general_int_mask);
2126 * verify_pcc_quiescent- Checks for PCC quiescent state
2127 * Return: 1 If PCC is quiescence
2128 * 0 If PCC is not quiescence
2130 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2132 int ret = 0, herc;
2133 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2134 u64 val64 = readq(&bar0->adapter_status);
2136 herc = (sp->device_type == XFRAME_II_DEVICE);
2138 if (flag == FALSE) {
2139 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2140 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2141 ret = 1;
2142 } else {
2143 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2144 ret = 1;
2146 } else {
2147 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2148 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2149 ADAPTER_STATUS_RMAC_PCC_IDLE))
2150 ret = 1;
2151 } else {
2152 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2153 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2154 ret = 1;
2158 return ret;
2161 * verify_xena_quiescence - Checks whether the H/W is ready
2162 * Description: Returns whether the H/W is ready to go or not. Depending
2163 * on whether adapter enable bit was written or not the comparison
2164 * differs and the calling function passes the input argument flag to
2165 * indicate this.
2166 * Return: 1 If xena is quiescence
2167 * 0 If Xena is not quiescence
2170 static int verify_xena_quiescence(struct s2io_nic *sp)
2172 int mode;
2173 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2174 u64 val64 = readq(&bar0->adapter_status);
2175 mode = s2io_verify_pci_mode(sp);
2177 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2178 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2179 return 0;
2181 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2182 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2183 return 0;
2185 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2186 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2187 return 0;
2189 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2190 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2191 return 0;
2193 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2194 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2195 return 0;
2197 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2198 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2199 return 0;
2201 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2202 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2203 return 0;
2205 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2206 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2207 return 0;
2211 * In PCI 33 mode, the P_PLL is not used, and therefore,
2212 * the the P_PLL_LOCK bit in the adapter_status register will
2213 * not be asserted.
2215 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2216 sp->device_type == XFRAME_II_DEVICE && mode !=
2217 PCI_MODE_PCI_33) {
2218 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2219 return 0;
2221 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2222 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2223 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2224 return 0;
2226 return 1;
2230 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2231 * @sp: Pointer to device specifc structure
2232 * Description :
2233 * New procedure to clear mac address reading problems on Alpha platforms
2237 static void fix_mac_address(struct s2io_nic * sp)
2239 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2240 u64 val64;
2241 int i = 0;
2243 while (fix_mac[i] != END_SIGN) {
2244 writeq(fix_mac[i++], &bar0->gpio_control);
2245 udelay(10);
2246 val64 = readq(&bar0->gpio_control);
2251 * start_nic - Turns the device on
2252 * @nic : device private variable.
2253 * Description:
2254 * This function actually turns the device on. Before this function is
2255 * called,all Registers are configured from their reset states
2256 * and shared memory is allocated but the NIC is still quiescent. On
2257 * calling this function, the device interrupts are cleared and the NIC is
2258 * literally switched on by writing into the adapter control register.
2259 * Return Value:
2260 * SUCCESS on success and -1 on failure.
2263 static int start_nic(struct s2io_nic *nic)
2265 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2266 struct net_device *dev = nic->dev;
2267 register u64 val64 = 0;
2268 u16 subid, i;
2269 struct mac_info *mac_control;
2270 struct config_param *config;
2272 mac_control = &nic->mac_control;
2273 config = &nic->config;
2275 /* PRC Initialization and configuration */
2276 for (i = 0; i < config->rx_ring_num; i++) {
2277 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2278 &bar0->prc_rxd0_n[i]);
2280 val64 = readq(&bar0->prc_ctrl_n[i]);
2281 if (nic->rxd_mode == RXD_MODE_1)
2282 val64 |= PRC_CTRL_RC_ENABLED;
2283 else
2284 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2285 if (nic->device_type == XFRAME_II_DEVICE)
2286 val64 |= PRC_CTRL_GROUP_READS;
2287 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2288 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2289 writeq(val64, &bar0->prc_ctrl_n[i]);
2292 if (nic->rxd_mode == RXD_MODE_3B) {
2293 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2294 val64 = readq(&bar0->rx_pa_cfg);
2295 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2296 writeq(val64, &bar0->rx_pa_cfg);
2299 if (vlan_tag_strip == 0) {
2300 val64 = readq(&bar0->rx_pa_cfg);
2301 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2302 writeq(val64, &bar0->rx_pa_cfg);
2303 nic->vlan_strip_flag = 0;
2307 * Enabling MC-RLDRAM. After enabling the device, we timeout
2308 * for around 100ms, which is approximately the time required
2309 * for the device to be ready for operation.
2311 val64 = readq(&bar0->mc_rldram_mrs);
2312 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2313 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2314 val64 = readq(&bar0->mc_rldram_mrs);
2316 msleep(100); /* Delay by around 100 ms. */
2318 /* Enabling ECC Protection. */
2319 val64 = readq(&bar0->adapter_control);
2320 val64 &= ~ADAPTER_ECC_EN;
2321 writeq(val64, &bar0->adapter_control);
2324 * Verify if the device is ready to be enabled, if so enable
2325 * it.
2327 val64 = readq(&bar0->adapter_status);
2328 if (!verify_xena_quiescence(nic)) {
2329 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2330 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2331 (unsigned long long) val64);
2332 return FAILURE;
2336 * With some switches, link might be already up at this point.
2337 * Because of this weird behavior, when we enable laser,
2338 * we may not get link. We need to handle this. We cannot
2339 * figure out which switch is misbehaving. So we are forced to
2340 * make a global change.
2343 /* Enabling Laser. */
2344 val64 = readq(&bar0->adapter_control);
2345 val64 |= ADAPTER_EOI_TX_ON;
2346 writeq(val64, &bar0->adapter_control);
2348 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2350 * Dont see link state interrupts initally on some switches,
2351 * so directly scheduling the link state task here.
2353 schedule_work(&nic->set_link_task);
2355 /* SXE-002: Initialize link and activity LED */
2356 subid = nic->pdev->subsystem_device;
2357 if (((subid & 0xFF) >= 0x07) &&
2358 (nic->device_type == XFRAME_I_DEVICE)) {
2359 val64 = readq(&bar0->gpio_control);
2360 val64 |= 0x0000800000000000ULL;
2361 writeq(val64, &bar0->gpio_control);
2362 val64 = 0x0411040400000000ULL;
2363 writeq(val64, (void __iomem *)bar0 + 0x2700);
2366 return SUCCESS;
2369 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2371 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2372 TxD *txdlp, int get_off)
2374 struct s2io_nic *nic = fifo_data->nic;
2375 struct sk_buff *skb;
2376 struct TxD *txds;
2377 u16 j, frg_cnt;
2379 txds = txdlp;
2380 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2381 pci_unmap_single(nic->pdev, (dma_addr_t)
2382 txds->Buffer_Pointer, sizeof(u64),
2383 PCI_DMA_TODEVICE);
2384 txds++;
2387 skb = (struct sk_buff *) ((unsigned long)
2388 txds->Host_Control);
2389 if (!skb) {
2390 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2391 return NULL;
2393 pci_unmap_single(nic->pdev, (dma_addr_t)
2394 txds->Buffer_Pointer,
2395 skb->len - skb->data_len,
2396 PCI_DMA_TODEVICE);
2397 frg_cnt = skb_shinfo(skb)->nr_frags;
2398 if (frg_cnt) {
2399 txds++;
2400 for (j = 0; j < frg_cnt; j++, txds++) {
2401 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2402 if (!txds->Buffer_Pointer)
2403 break;
2404 pci_unmap_page(nic->pdev, (dma_addr_t)
2405 txds->Buffer_Pointer,
2406 frag->size, PCI_DMA_TODEVICE);
2409 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2410 return(skb);
2414 * free_tx_buffers - Free all queued Tx buffers
2415 * @nic : device private variable.
2416 * Description:
2417 * Free all queued Tx buffers.
2418 * Return Value: void
2421 static void free_tx_buffers(struct s2io_nic *nic)
2423 struct net_device *dev = nic->dev;
2424 struct sk_buff *skb;
2425 struct TxD *txdp;
2426 int i, j;
2427 struct mac_info *mac_control;
2428 struct config_param *config;
2429 int cnt = 0;
2431 mac_control = &nic->mac_control;
2432 config = &nic->config;
2434 for (i = 0; i < config->tx_fifo_num; i++) {
2435 unsigned long flags;
2436 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
2437 for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
2438 txdp = (struct TxD *) \
2439 mac_control->fifos[i].list_info[j].list_virt_addr;
2440 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2441 if (skb) {
2442 nic->mac_control.stats_info->sw_stat.mem_freed
2443 += skb->truesize;
2444 dev_kfree_skb(skb);
2445 cnt++;
2448 DBG_PRINT(INTR_DBG,
2449 "%s:forcibly freeing %d skbs on FIFO%d\n",
2450 dev->name, cnt, i);
2451 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2452 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2453 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
2458 * stop_nic - To stop the nic
2459 * @nic ; device private variable.
2460 * Description:
2461 * This function does exactly the opposite of what the start_nic()
2462 * function does. This function is called to stop the device.
2463 * Return Value:
2464 * void.
2467 static void stop_nic(struct s2io_nic *nic)
2469 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2470 register u64 val64 = 0;
2471 u16 interruptible;
2472 struct mac_info *mac_control;
2473 struct config_param *config;
2475 mac_control = &nic->mac_control;
2476 config = &nic->config;
2478 /* Disable all interrupts */
2479 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2480 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2481 interruptible |= TX_PIC_INTR;
2482 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2484 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2485 val64 = readq(&bar0->adapter_control);
2486 val64 &= ~(ADAPTER_CNTL_EN);
2487 writeq(val64, &bar0->adapter_control);
2491 * fill_rx_buffers - Allocates the Rx side skbs
2492 * @ring_info: per ring structure
2493 * @from_card_up: If this is true, we will map the buffer to get
2494 * the dma address for buf0 and buf1 to give it to the card.
2495 * Else we will sync the already mapped buffer to give it to the card.
2496 * Description:
2497 * The function allocates Rx side skbs and puts the physical
2498 * address of these buffers into the RxD buffer pointers, so that the NIC
2499 * can DMA the received frame into these locations.
2500 * The NIC supports 3 receive modes, viz
2501 * 1. single buffer,
2502 * 2. three buffer and
2503 * 3. Five buffer modes.
2504 * Each mode defines how many fragments the received frame will be split
2505 * up into by the NIC. The frame is split into L3 header, L4 Header,
2506 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2507 * is split into 3 fragments. As of now only single buffer mode is
2508 * supported.
2509 * Return Value:
2510 * SUCCESS on success or an appropriate -ve value on failure.
2512 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2513 int from_card_up)
2515 struct sk_buff *skb;
2516 struct RxD_t *rxdp;
2517 int off, size, block_no, block_no1;
2518 u32 alloc_tab = 0;
2519 u32 alloc_cnt;
2520 u64 tmp;
2521 struct buffAdd *ba;
2522 struct RxD_t *first_rxdp = NULL;
2523 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2524 int rxd_index = 0;
2525 struct RxD1 *rxdp1;
2526 struct RxD3 *rxdp3;
2527 struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
2529 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2531 block_no1 = ring->rx_curr_get_info.block_index;
2532 while (alloc_tab < alloc_cnt) {
2533 block_no = ring->rx_curr_put_info.block_index;
2535 off = ring->rx_curr_put_info.offset;
2537 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2539 rxd_index = off + 1;
2540 if (block_no)
2541 rxd_index += (block_no * ring->rxd_count);
2543 if ((block_no == block_no1) &&
2544 (off == ring->rx_curr_get_info.offset) &&
2545 (rxdp->Host_Control)) {
2546 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2547 ring->dev->name);
2548 DBG_PRINT(INTR_DBG, " info equated\n");
2549 goto end;
2551 if (off && (off == ring->rxd_count)) {
2552 ring->rx_curr_put_info.block_index++;
2553 if (ring->rx_curr_put_info.block_index ==
2554 ring->block_count)
2555 ring->rx_curr_put_info.block_index = 0;
2556 block_no = ring->rx_curr_put_info.block_index;
2557 off = 0;
2558 ring->rx_curr_put_info.offset = off;
2559 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2560 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2561 ring->dev->name, rxdp);
2565 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2566 ((ring->rxd_mode == RXD_MODE_3B) &&
2567 (rxdp->Control_2 & s2BIT(0)))) {
2568 ring->rx_curr_put_info.offset = off;
2569 goto end;
2571 /* calculate size of skb based on ring mode */
2572 size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2573 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2574 if (ring->rxd_mode == RXD_MODE_1)
2575 size += NET_IP_ALIGN;
2576 else
2577 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2579 /* allocate skb */
2580 skb = dev_alloc_skb(size);
2581 if(!skb) {
2582 DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
2583 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2584 if (first_rxdp) {
2585 wmb();
2586 first_rxdp->Control_1 |= RXD_OWN_XENA;
2588 stats->mem_alloc_fail_cnt++;
2590 return -ENOMEM ;
2592 stats->mem_allocated += skb->truesize;
2594 if (ring->rxd_mode == RXD_MODE_1) {
2595 /* 1 buffer mode - normal operation mode */
2596 rxdp1 = (struct RxD1*)rxdp;
2597 memset(rxdp, 0, sizeof(struct RxD1));
2598 skb_reserve(skb, NET_IP_ALIGN);
2599 rxdp1->Buffer0_ptr = pci_map_single
2600 (ring->pdev, skb->data, size - NET_IP_ALIGN,
2601 PCI_DMA_FROMDEVICE);
2602 if (pci_dma_mapping_error(nic->pdev,
2603 rxdp1->Buffer0_ptr))
2604 goto pci_map_failed;
2606 rxdp->Control_2 =
2607 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2608 rxdp->Host_Control = (unsigned long) (skb);
2609 } else if (ring->rxd_mode == RXD_MODE_3B) {
2611 * 2 buffer mode -
2612 * 2 buffer mode provides 128
2613 * byte aligned receive buffers.
2616 rxdp3 = (struct RxD3*)rxdp;
2617 /* save buffer pointers to avoid frequent dma mapping */
2618 Buffer0_ptr = rxdp3->Buffer0_ptr;
2619 Buffer1_ptr = rxdp3->Buffer1_ptr;
2620 memset(rxdp, 0, sizeof(struct RxD3));
2621 /* restore the buffer pointers for dma sync*/
2622 rxdp3->Buffer0_ptr = Buffer0_ptr;
2623 rxdp3->Buffer1_ptr = Buffer1_ptr;
2625 ba = &ring->ba[block_no][off];
2626 skb_reserve(skb, BUF0_LEN);
2627 tmp = (u64)(unsigned long) skb->data;
2628 tmp += ALIGN_SIZE;
2629 tmp &= ~ALIGN_SIZE;
2630 skb->data = (void *) (unsigned long)tmp;
2631 skb_reset_tail_pointer(skb);
2633 if (from_card_up) {
2634 rxdp3->Buffer0_ptr =
2635 pci_map_single(ring->pdev, ba->ba_0,
2636 BUF0_LEN, PCI_DMA_FROMDEVICE);
2637 if (pci_dma_mapping_error(nic->pdev,
2638 rxdp3->Buffer0_ptr))
2639 goto pci_map_failed;
2640 } else
2641 pci_dma_sync_single_for_device(ring->pdev,
2642 (dma_addr_t) rxdp3->Buffer0_ptr,
2643 BUF0_LEN, PCI_DMA_FROMDEVICE);
2645 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2646 if (ring->rxd_mode == RXD_MODE_3B) {
2647 /* Two buffer mode */
2650 * Buffer2 will have L3/L4 header plus
2651 * L4 payload
2653 rxdp3->Buffer2_ptr = pci_map_single
2654 (ring->pdev, skb->data, ring->mtu + 4,
2655 PCI_DMA_FROMDEVICE);
2657 if (pci_dma_mapping_error(nic->pdev,
2658 rxdp3->Buffer2_ptr))
2659 goto pci_map_failed;
2661 if (from_card_up) {
2662 rxdp3->Buffer1_ptr =
2663 pci_map_single(ring->pdev,
2664 ba->ba_1, BUF1_LEN,
2665 PCI_DMA_FROMDEVICE);
2667 if (pci_dma_mapping_error(nic->pdev,
2668 rxdp3->Buffer1_ptr)) {
2669 pci_unmap_single
2670 (ring->pdev,
2671 (dma_addr_t)(unsigned long)
2672 skb->data,
2673 ring->mtu + 4,
2674 PCI_DMA_FROMDEVICE);
2675 goto pci_map_failed;
2678 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2679 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2680 (ring->mtu + 4);
2682 rxdp->Control_2 |= s2BIT(0);
2683 rxdp->Host_Control = (unsigned long) (skb);
2685 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2686 rxdp->Control_1 |= RXD_OWN_XENA;
2687 off++;
2688 if (off == (ring->rxd_count + 1))
2689 off = 0;
2690 ring->rx_curr_put_info.offset = off;
2692 rxdp->Control_2 |= SET_RXD_MARKER;
2693 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2694 if (first_rxdp) {
2695 wmb();
2696 first_rxdp->Control_1 |= RXD_OWN_XENA;
2698 first_rxdp = rxdp;
2700 ring->rx_bufs_left += 1;
2701 alloc_tab++;
2704 end:
2705 /* Transfer ownership of first descriptor to adapter just before
2706 * exiting. Before that, use memory barrier so that ownership
2707 * and other fields are seen by adapter correctly.
2709 if (first_rxdp) {
2710 wmb();
2711 first_rxdp->Control_1 |= RXD_OWN_XENA;
2714 return SUCCESS;
2715 pci_map_failed:
2716 stats->pci_map_fail_cnt++;
2717 stats->mem_freed += skb->truesize;
2718 dev_kfree_skb_irq(skb);
2719 return -ENOMEM;
2722 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2724 struct net_device *dev = sp->dev;
2725 int j;
2726 struct sk_buff *skb;
2727 struct RxD_t *rxdp;
2728 struct mac_info *mac_control;
2729 struct buffAdd *ba;
2730 struct RxD1 *rxdp1;
2731 struct RxD3 *rxdp3;
2733 mac_control = &sp->mac_control;
2734 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2735 rxdp = mac_control->rings[ring_no].
2736 rx_blocks[blk].rxds[j].virt_addr;
2737 skb = (struct sk_buff *)
2738 ((unsigned long) rxdp->Host_Control);
2739 if (!skb) {
2740 continue;
2742 if (sp->rxd_mode == RXD_MODE_1) {
2743 rxdp1 = (struct RxD1*)rxdp;
2744 pci_unmap_single(sp->pdev, (dma_addr_t)
2745 rxdp1->Buffer0_ptr,
2746 dev->mtu +
2747 HEADER_ETHERNET_II_802_3_SIZE
2748 + HEADER_802_2_SIZE +
2749 HEADER_SNAP_SIZE,
2750 PCI_DMA_FROMDEVICE);
2751 memset(rxdp, 0, sizeof(struct RxD1));
2752 } else if(sp->rxd_mode == RXD_MODE_3B) {
2753 rxdp3 = (struct RxD3*)rxdp;
2754 ba = &mac_control->rings[ring_no].
2755 ba[blk][j];
2756 pci_unmap_single(sp->pdev, (dma_addr_t)
2757 rxdp3->Buffer0_ptr,
2758 BUF0_LEN,
2759 PCI_DMA_FROMDEVICE);
2760 pci_unmap_single(sp->pdev, (dma_addr_t)
2761 rxdp3->Buffer1_ptr,
2762 BUF1_LEN,
2763 PCI_DMA_FROMDEVICE);
2764 pci_unmap_single(sp->pdev, (dma_addr_t)
2765 rxdp3->Buffer2_ptr,
2766 dev->mtu + 4,
2767 PCI_DMA_FROMDEVICE);
2768 memset(rxdp, 0, sizeof(struct RxD3));
2770 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2771 dev_kfree_skb(skb);
2772 mac_control->rings[ring_no].rx_bufs_left -= 1;
2777 * free_rx_buffers - Frees all Rx buffers
2778 * @sp: device private variable.
2779 * Description:
2780 * This function will free all Rx buffers allocated by host.
2781 * Return Value:
2782 * NONE.
2785 static void free_rx_buffers(struct s2io_nic *sp)
2787 struct net_device *dev = sp->dev;
2788 int i, blk = 0, buf_cnt = 0;
2789 struct mac_info *mac_control;
2790 struct config_param *config;
2792 mac_control = &sp->mac_control;
2793 config = &sp->config;
2795 for (i = 0; i < config->rx_ring_num; i++) {
2796 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2797 free_rxd_blk(sp,i,blk);
2799 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2800 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2801 mac_control->rings[i].rx_curr_put_info.offset = 0;
2802 mac_control->rings[i].rx_curr_get_info.offset = 0;
2803 mac_control->rings[i].rx_bufs_left = 0;
2804 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2805 dev->name, buf_cnt, i);
2809 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2811 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2812 DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
2813 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
2815 return 0;
2819 * s2io_poll - Rx interrupt handler for NAPI support
2820 * @napi : pointer to the napi structure.
2821 * @budget : The number of packets that were budgeted to be processed
2822 * during one pass through the 'Poll" function.
2823 * Description:
2824 * Comes into picture only if NAPI support has been incorporated. It does
2825 * the same thing that rx_intr_handler does, but not in a interrupt context
2826 * also It will process only a given number of packets.
2827 * Return value:
2828 * 0 on success and 1 if there are No Rx packets to be processed.
2831 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2833 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2834 struct net_device *dev = ring->dev;
2835 struct config_param *config;
2836 struct mac_info *mac_control;
2837 int pkts_processed = 0;
2838 u8 __iomem *addr = NULL;
2839 u8 val8 = 0;
2840 struct s2io_nic *nic = dev->priv;
2841 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2842 int budget_org = budget;
2844 config = &nic->config;
2845 mac_control = &nic->mac_control;
2847 if (unlikely(!is_s2io_card_up(nic)))
2848 return 0;
2850 pkts_processed = rx_intr_handler(ring, budget);
2851 s2io_chk_rx_buffers(nic, ring);
2853 if (pkts_processed < budget_org) {
2854 netif_rx_complete(dev, napi);
2855 /*Re Enable MSI-Rx Vector*/
2856 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2857 addr += 7 - ring->ring_no;
2858 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2859 writeb(val8, addr);
2860 val8 = readb(addr);
2862 return pkts_processed;
2864 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2866 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2867 struct ring_info *ring;
2868 struct net_device *dev = nic->dev;
2869 struct config_param *config;
2870 struct mac_info *mac_control;
2871 int pkts_processed = 0;
2872 int ring_pkts_processed, i;
2873 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2874 int budget_org = budget;
2876 config = &nic->config;
2877 mac_control = &nic->mac_control;
2879 if (unlikely(!is_s2io_card_up(nic)))
2880 return 0;
2882 for (i = 0; i < config->rx_ring_num; i++) {
2883 ring = &mac_control->rings[i];
2884 ring_pkts_processed = rx_intr_handler(ring, budget);
2885 s2io_chk_rx_buffers(nic, ring);
2886 pkts_processed += ring_pkts_processed;
2887 budget -= ring_pkts_processed;
2888 if (budget <= 0)
2889 break;
2891 if (pkts_processed < budget_org) {
2892 netif_rx_complete(dev, napi);
2893 /* Re enable the Rx interrupts for the ring */
2894 writeq(0, &bar0->rx_traffic_mask);
2895 readl(&bar0->rx_traffic_mask);
2897 return pkts_processed;
2900 #ifdef CONFIG_NET_POLL_CONTROLLER
2902 * s2io_netpoll - netpoll event handler entry point
2903 * @dev : pointer to the device structure.
2904 * Description:
2905 * This function will be called by upper layer to check for events on the
2906 * interface in situations where interrupts are disabled. It is used for
2907 * specific in-kernel networking tasks, such as remote consoles and kernel
2908 * debugging over the network (example netdump in RedHat).
2910 static void s2io_netpoll(struct net_device *dev)
2912 struct s2io_nic *nic = dev->priv;
2913 struct mac_info *mac_control;
2914 struct config_param *config;
2915 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2916 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2917 int i;
2919 if (pci_channel_offline(nic->pdev))
2920 return;
2922 disable_irq(dev->irq);
2924 mac_control = &nic->mac_control;
2925 config = &nic->config;
2927 writeq(val64, &bar0->rx_traffic_int);
2928 writeq(val64, &bar0->tx_traffic_int);
2930 /* we need to free up the transmitted skbufs or else netpoll will
2931 * run out of skbs and will fail and eventually netpoll application such
2932 * as netdump will fail.
2934 for (i = 0; i < config->tx_fifo_num; i++)
2935 tx_intr_handler(&mac_control->fifos[i]);
2937 /* check for received packet and indicate up to network */
2938 for (i = 0; i < config->rx_ring_num; i++)
2939 rx_intr_handler(&mac_control->rings[i], 0);
2941 for (i = 0; i < config->rx_ring_num; i++) {
2942 if (fill_rx_buffers(nic, &mac_control->rings[i], 0) ==
2943 -ENOMEM) {
2944 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2945 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2946 break;
2949 enable_irq(dev->irq);
2950 return;
2952 #endif
2955 * rx_intr_handler - Rx interrupt handler
2956 * @ring_info: per ring structure.
2957 * @budget: budget for napi processing.
2958 * Description:
2959 * If the interrupt is because of a received frame or if the
2960 * receive ring contains fresh as yet un-processed frames,this function is
2961 * called. It picks out the RxD at which place the last Rx processing had
2962 * stopped and sends the skb to the OSM's Rx handler and then increments
2963 * the offset.
2964 * Return Value:
2965 * No. of napi packets processed.
2967 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2969 int get_block, put_block;
2970 struct rx_curr_get_info get_info, put_info;
2971 struct RxD_t *rxdp;
2972 struct sk_buff *skb;
2973 int pkt_cnt = 0, napi_pkts = 0;
2974 int i;
2975 struct RxD1* rxdp1;
2976 struct RxD3* rxdp3;
2978 get_info = ring_data->rx_curr_get_info;
2979 get_block = get_info.block_index;
2980 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2981 put_block = put_info.block_index;
2982 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2984 while (RXD_IS_UP2DT(rxdp)) {
2986 * If your are next to put index then it's
2987 * FIFO full condition
2989 if ((get_block == put_block) &&
2990 (get_info.offset + 1) == put_info.offset) {
2991 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2992 ring_data->dev->name);
2993 break;
2995 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2996 if (skb == NULL) {
2997 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2998 ring_data->dev->name);
2999 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
3000 return 0;
3002 if (ring_data->rxd_mode == RXD_MODE_1) {
3003 rxdp1 = (struct RxD1*)rxdp;
3004 pci_unmap_single(ring_data->pdev, (dma_addr_t)
3005 rxdp1->Buffer0_ptr,
3006 ring_data->mtu +
3007 HEADER_ETHERNET_II_802_3_SIZE +
3008 HEADER_802_2_SIZE +
3009 HEADER_SNAP_SIZE,
3010 PCI_DMA_FROMDEVICE);
3011 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3012 rxdp3 = (struct RxD3*)rxdp;
3013 pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)
3014 rxdp3->Buffer0_ptr,
3015 BUF0_LEN, PCI_DMA_FROMDEVICE);
3016 pci_unmap_single(ring_data->pdev, (dma_addr_t)
3017 rxdp3->Buffer2_ptr,
3018 ring_data->mtu + 4,
3019 PCI_DMA_FROMDEVICE);
3021 prefetch(skb->data);
3022 rx_osm_handler(ring_data, rxdp);
3023 get_info.offset++;
3024 ring_data->rx_curr_get_info.offset = get_info.offset;
3025 rxdp = ring_data->rx_blocks[get_block].
3026 rxds[get_info.offset].virt_addr;
3027 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3028 get_info.offset = 0;
3029 ring_data->rx_curr_get_info.offset = get_info.offset;
3030 get_block++;
3031 if (get_block == ring_data->block_count)
3032 get_block = 0;
3033 ring_data->rx_curr_get_info.block_index = get_block;
3034 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3037 if (ring_data->nic->config.napi) {
3038 budget--;
3039 napi_pkts++;
3040 if (!budget)
3041 break;
3043 pkt_cnt++;
3044 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3045 break;
3047 if (ring_data->lro) {
3048 /* Clear all LRO sessions before exiting */
3049 for (i=0; i<MAX_LRO_SESSIONS; i++) {
3050 struct lro *lro = &ring_data->lro0_n[i];
3051 if (lro->in_use) {
3052 update_L3L4_header(ring_data->nic, lro);
3053 queue_rx_frame(lro->parent, lro->vlan_tag);
3054 clear_lro_session(lro);
3058 return(napi_pkts);
3062 * tx_intr_handler - Transmit interrupt handler
3063 * @nic : device private variable
3064 * Description:
3065 * If an interrupt was raised to indicate DMA complete of the
3066 * Tx packet, this function is called. It identifies the last TxD
3067 * whose buffer was freed and frees all skbs whose data have already
3068 * DMA'ed into the NICs internal memory.
3069 * Return Value:
3070 * NONE
3073 static void tx_intr_handler(struct fifo_info *fifo_data)
3075 struct s2io_nic *nic = fifo_data->nic;
3076 struct tx_curr_get_info get_info, put_info;
3077 struct sk_buff *skb = NULL;
3078 struct TxD *txdlp;
3079 int pkt_cnt = 0;
3080 unsigned long flags = 0;
3081 u8 err_mask;
3083 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3084 return;
3086 get_info = fifo_data->tx_curr_get_info;
3087 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3088 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
3089 list_virt_addr;
3090 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3091 (get_info.offset != put_info.offset) &&
3092 (txdlp->Host_Control)) {
3093 /* Check for TxD errors */
3094 if (txdlp->Control_1 & TXD_T_CODE) {
3095 unsigned long long err;
3096 err = txdlp->Control_1 & TXD_T_CODE;
3097 if (err & 0x1) {
3098 nic->mac_control.stats_info->sw_stat.
3099 parity_err_cnt++;
3102 /* update t_code statistics */
3103 err_mask = err >> 48;
3104 switch(err_mask) {
3105 case 2:
3106 nic->mac_control.stats_info->sw_stat.
3107 tx_buf_abort_cnt++;
3108 break;
3110 case 3:
3111 nic->mac_control.stats_info->sw_stat.
3112 tx_desc_abort_cnt++;
3113 break;
3115 case 7:
3116 nic->mac_control.stats_info->sw_stat.
3117 tx_parity_err_cnt++;
3118 break;
3120 case 10:
3121 nic->mac_control.stats_info->sw_stat.
3122 tx_link_loss_cnt++;
3123 break;
3125 case 15:
3126 nic->mac_control.stats_info->sw_stat.
3127 tx_list_proc_err_cnt++;
3128 break;
3132 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3133 if (skb == NULL) {
3134 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3135 DBG_PRINT(ERR_DBG, "%s: Null skb ",
3136 __func__);
3137 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3138 return;
3140 pkt_cnt++;
3142 /* Updating the statistics block */
3143 nic->dev->stats.tx_bytes += skb->len;
3144 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3145 dev_kfree_skb_irq(skb);
3147 get_info.offset++;
3148 if (get_info.offset == get_info.fifo_len + 1)
3149 get_info.offset = 0;
3150 txdlp = (struct TxD *) fifo_data->list_info
3151 [get_info.offset].list_virt_addr;
3152 fifo_data->tx_curr_get_info.offset =
3153 get_info.offset;
3156 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3158 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3162 * s2io_mdio_write - Function to write in to MDIO registers
3163 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3164 * @addr : address value
3165 * @value : data value
3166 * @dev : pointer to net_device structure
3167 * Description:
3168 * This function is used to write values to the MDIO registers
3169 * NONE
3171 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3173 u64 val64 = 0x0;
3174 struct s2io_nic *sp = dev->priv;
3175 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3177 //address transaction
3178 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3179 | MDIO_MMD_DEV_ADDR(mmd_type)
3180 | MDIO_MMS_PRT_ADDR(0x0);
3181 writeq(val64, &bar0->mdio_control);
3182 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3183 writeq(val64, &bar0->mdio_control);
3184 udelay(100);
3186 //Data transaction
3187 val64 = 0x0;
3188 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3189 | MDIO_MMD_DEV_ADDR(mmd_type)
3190 | MDIO_MMS_PRT_ADDR(0x0)
3191 | MDIO_MDIO_DATA(value)
3192 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3193 writeq(val64, &bar0->mdio_control);
3194 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3195 writeq(val64, &bar0->mdio_control);
3196 udelay(100);
3198 val64 = 0x0;
3199 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3200 | MDIO_MMD_DEV_ADDR(mmd_type)
3201 | MDIO_MMS_PRT_ADDR(0x0)
3202 | MDIO_OP(MDIO_OP_READ_TRANS);
3203 writeq(val64, &bar0->mdio_control);
3204 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3205 writeq(val64, &bar0->mdio_control);
3206 udelay(100);
3211 * s2io_mdio_read - Function to write in to MDIO registers
3212 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3213 * @addr : address value
3214 * @dev : pointer to net_device structure
3215 * Description:
3216 * This function is used to read values to the MDIO registers
3217 * NONE
3219 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3221 u64 val64 = 0x0;
3222 u64 rval64 = 0x0;
3223 struct s2io_nic *sp = dev->priv;
3224 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3226 /* address transaction */
3227 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3228 | MDIO_MMD_DEV_ADDR(mmd_type)
3229 | MDIO_MMS_PRT_ADDR(0x0);
3230 writeq(val64, &bar0->mdio_control);
3231 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3232 writeq(val64, &bar0->mdio_control);
3233 udelay(100);
3235 /* Data transaction */
3236 val64 = 0x0;
3237 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3238 | MDIO_MMD_DEV_ADDR(mmd_type)
3239 | MDIO_MMS_PRT_ADDR(0x0)
3240 | MDIO_OP(MDIO_OP_READ_TRANS);
3241 writeq(val64, &bar0->mdio_control);
3242 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3243 writeq(val64, &bar0->mdio_control);
3244 udelay(100);
3246 /* Read the value from regs */
3247 rval64 = readq(&bar0->mdio_control);
3248 rval64 = rval64 & 0xFFFF0000;
3249 rval64 = rval64 >> 16;
3250 return rval64;
3253 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3254 * @counter : couter value to be updated
3255 * @flag : flag to indicate the status
3256 * @type : counter type
3257 * Description:
3258 * This function is to check the status of the xpak counters value
3259 * NONE
3262 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3264 u64 mask = 0x3;
3265 u64 val64;
3266 int i;
3267 for(i = 0; i <index; i++)
3268 mask = mask << 0x2;
3270 if(flag > 0)
3272 *counter = *counter + 1;
3273 val64 = *regs_stat & mask;
3274 val64 = val64 >> (index * 0x2);
3275 val64 = val64 + 1;
3276 if(val64 == 3)
3278 switch(type)
3280 case 1:
3281 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3282 "service. Excessive temperatures may "
3283 "result in premature transceiver "
3284 "failure \n");
3285 break;
3286 case 2:
3287 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3288 "service Excessive bias currents may "
3289 "indicate imminent laser diode "
3290 "failure \n");
3291 break;
3292 case 3:
3293 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3294 "service Excessive laser output "
3295 "power may saturate far-end "
3296 "receiver\n");
3297 break;
3298 default:
3299 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3300 "type \n");
3302 val64 = 0x0;
3304 val64 = val64 << (index * 0x2);
3305 *regs_stat = (*regs_stat & (~mask)) | (val64);
3307 } else {
3308 *regs_stat = *regs_stat & (~mask);
3313 * s2io_updt_xpak_counter - Function to update the xpak counters
3314 * @dev : pointer to net_device struct
3315 * Description:
3316 * This function is to upate the status of the xpak counters value
3317 * NONE
3319 static void s2io_updt_xpak_counter(struct net_device *dev)
3321 u16 flag = 0x0;
3322 u16 type = 0x0;
3323 u16 val16 = 0x0;
3324 u64 val64 = 0x0;
3325 u64 addr = 0x0;
3327 struct s2io_nic *sp = dev->priv;
3328 struct stat_block *stat_info = sp->mac_control.stats_info;
3330 /* Check the communication with the MDIO slave */
3331 addr = 0x0000;
3332 val64 = 0x0;
3333 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3334 if((val64 == 0xFFFF) || (val64 == 0x0000))
3336 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3337 "Returned %llx\n", (unsigned long long)val64);
3338 return;
3341 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3342 if(val64 != 0x2040)
3344 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3345 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3346 (unsigned long long)val64);
3347 return;
3350 /* Loading the DOM register to MDIO register */
3351 addr = 0xA100;
3352 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3353 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3355 /* Reading the Alarm flags */
3356 addr = 0xA070;
3357 val64 = 0x0;
3358 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3360 flag = CHECKBIT(val64, 0x7);
3361 type = 1;
3362 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3363 &stat_info->xpak_stat.xpak_regs_stat,
3364 0x0, flag, type);
3366 if(CHECKBIT(val64, 0x6))
3367 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3369 flag = CHECKBIT(val64, 0x3);
3370 type = 2;
3371 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3372 &stat_info->xpak_stat.xpak_regs_stat,
3373 0x2, flag, type);
3375 if(CHECKBIT(val64, 0x2))
3376 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3378 flag = CHECKBIT(val64, 0x1);
3379 type = 3;
3380 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3381 &stat_info->xpak_stat.xpak_regs_stat,
3382 0x4, flag, type);
3384 if(CHECKBIT(val64, 0x0))
3385 stat_info->xpak_stat.alarm_laser_output_power_low++;
3387 /* Reading the Warning flags */
3388 addr = 0xA074;
3389 val64 = 0x0;
3390 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3392 if(CHECKBIT(val64, 0x7))
3393 stat_info->xpak_stat.warn_transceiver_temp_high++;
3395 if(CHECKBIT(val64, 0x6))
3396 stat_info->xpak_stat.warn_transceiver_temp_low++;
3398 if(CHECKBIT(val64, 0x3))
3399 stat_info->xpak_stat.warn_laser_bias_current_high++;
3401 if(CHECKBIT(val64, 0x2))
3402 stat_info->xpak_stat.warn_laser_bias_current_low++;
3404 if(CHECKBIT(val64, 0x1))
3405 stat_info->xpak_stat.warn_laser_output_power_high++;
3407 if(CHECKBIT(val64, 0x0))
3408 stat_info->xpak_stat.warn_laser_output_power_low++;
3412 * wait_for_cmd_complete - waits for a command to complete.
3413 * @sp : private member of the device structure, which is a pointer to the
3414 * s2io_nic structure.
3415 * Description: Function that waits for a command to Write into RMAC
3416 * ADDR DATA registers to be completed and returns either success or
3417 * error depending on whether the command was complete or not.
3418 * Return value:
3419 * SUCCESS on success and FAILURE on failure.
3422 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3423 int bit_state)
3425 int ret = FAILURE, cnt = 0, delay = 1;
3426 u64 val64;
3428 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3429 return FAILURE;
3431 do {
3432 val64 = readq(addr);
3433 if (bit_state == S2IO_BIT_RESET) {
3434 if (!(val64 & busy_bit)) {
3435 ret = SUCCESS;
3436 break;
3438 } else {
3439 if (!(val64 & busy_bit)) {
3440 ret = SUCCESS;
3441 break;
3445 if(in_interrupt())
3446 mdelay(delay);
3447 else
3448 msleep(delay);
3450 if (++cnt >= 10)
3451 delay = 50;
3452 } while (cnt < 20);
3453 return ret;
3456 * check_pci_device_id - Checks if the device id is supported
3457 * @id : device id
3458 * Description: Function to check if the pci device id is supported by driver.
3459 * Return value: Actual device id if supported else PCI_ANY_ID
3461 static u16 check_pci_device_id(u16 id)
3463 switch (id) {
3464 case PCI_DEVICE_ID_HERC_WIN:
3465 case PCI_DEVICE_ID_HERC_UNI:
3466 return XFRAME_II_DEVICE;
3467 case PCI_DEVICE_ID_S2IO_UNI:
3468 case PCI_DEVICE_ID_S2IO_WIN:
3469 return XFRAME_I_DEVICE;
3470 default:
3471 return PCI_ANY_ID;
3476 * s2io_reset - Resets the card.
3477 * @sp : private member of the device structure.
3478 * Description: Function to Reset the card. This function then also
3479 * restores the previously saved PCI configuration space registers as
3480 * the card reset also resets the configuration space.
3481 * Return value:
3482 * void.
3485 static void s2io_reset(struct s2io_nic * sp)
3487 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3488 u64 val64;
3489 u16 subid, pci_cmd;
3490 int i;
3491 u16 val16;
3492 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3493 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3495 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3496 __func__, sp->dev->name);
3498 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3499 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3501 val64 = SW_RESET_ALL;
3502 writeq(val64, &bar0->sw_reset);
3503 if (strstr(sp->product_name, "CX4")) {
3504 msleep(750);
3506 msleep(250);
3507 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3509 /* Restore the PCI state saved during initialization. */
3510 pci_restore_state(sp->pdev);
3511 pci_read_config_word(sp->pdev, 0x2, &val16);
3512 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3513 break;
3514 msleep(200);
3517 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3518 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __func__);
3521 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3523 s2io_init_pci(sp);
3525 /* Set swapper to enable I/O register access */
3526 s2io_set_swapper(sp);
3528 /* restore mac_addr entries */
3529 do_s2io_restore_unicast_mc(sp);
3531 /* Restore the MSIX table entries from local variables */
3532 restore_xmsi_data(sp);
3534 /* Clear certain PCI/PCI-X fields after reset */
3535 if (sp->device_type == XFRAME_II_DEVICE) {
3536 /* Clear "detected parity error" bit */
3537 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3539 /* Clearing PCIX Ecc status register */
3540 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3542 /* Clearing PCI_STATUS error reflected here */
3543 writeq(s2BIT(62), &bar0->txpic_int_reg);
3546 /* Reset device statistics maintained by OS */
3547 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3549 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3550 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3551 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3552 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3553 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3554 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3555 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3556 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3557 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3558 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3559 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3560 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3561 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3562 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3563 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3564 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3565 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3566 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3567 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3569 /* SXE-002: Configure link and activity LED to turn it off */
3570 subid = sp->pdev->subsystem_device;
3571 if (((subid & 0xFF) >= 0x07) &&
3572 (sp->device_type == XFRAME_I_DEVICE)) {
3573 val64 = readq(&bar0->gpio_control);
3574 val64 |= 0x0000800000000000ULL;
3575 writeq(val64, &bar0->gpio_control);
3576 val64 = 0x0411040400000000ULL;
3577 writeq(val64, (void __iomem *)bar0 + 0x2700);
3581 * Clear spurious ECC interrupts that would have occured on
3582 * XFRAME II cards after reset.
3584 if (sp->device_type == XFRAME_II_DEVICE) {
3585 val64 = readq(&bar0->pcc_err_reg);
3586 writeq(val64, &bar0->pcc_err_reg);
3589 sp->device_enabled_once = FALSE;
3593 * s2io_set_swapper - to set the swapper controle on the card
3594 * @sp : private member of the device structure,
3595 * pointer to the s2io_nic structure.
3596 * Description: Function to set the swapper control on the card
3597 * correctly depending on the 'endianness' of the system.
3598 * Return value:
3599 * SUCCESS on success and FAILURE on failure.
3602 static int s2io_set_swapper(struct s2io_nic * sp)
3604 struct net_device *dev = sp->dev;
3605 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3606 u64 val64, valt, valr;
3609 * Set proper endian settings and verify the same by reading
3610 * the PIF Feed-back register.
3613 val64 = readq(&bar0->pif_rd_swapper_fb);
3614 if (val64 != 0x0123456789ABCDEFULL) {
3615 int i = 0;
3616 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3617 0x8100008181000081ULL, /* FE=1, SE=0 */
3618 0x4200004242000042ULL, /* FE=0, SE=1 */
3619 0}; /* FE=0, SE=0 */
3621 while(i<4) {
3622 writeq(value[i], &bar0->swapper_ctrl);
3623 val64 = readq(&bar0->pif_rd_swapper_fb);
3624 if (val64 == 0x0123456789ABCDEFULL)
3625 break;
3626 i++;
3628 if (i == 4) {
3629 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3630 dev->name);
3631 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3632 (unsigned long long) val64);
3633 return FAILURE;
3635 valr = value[i];
3636 } else {
3637 valr = readq(&bar0->swapper_ctrl);
3640 valt = 0x0123456789ABCDEFULL;
3641 writeq(valt, &bar0->xmsi_address);
3642 val64 = readq(&bar0->xmsi_address);
3644 if(val64 != valt) {
3645 int i = 0;
3646 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3647 0x0081810000818100ULL, /* FE=1, SE=0 */
3648 0x0042420000424200ULL, /* FE=0, SE=1 */
3649 0}; /* FE=0, SE=0 */
3651 while(i<4) {
3652 writeq((value[i] | valr), &bar0->swapper_ctrl);
3653 writeq(valt, &bar0->xmsi_address);
3654 val64 = readq(&bar0->xmsi_address);
3655 if(val64 == valt)
3656 break;
3657 i++;
3659 if(i == 4) {
3660 unsigned long long x = val64;
3661 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3662 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3663 return FAILURE;
3666 val64 = readq(&bar0->swapper_ctrl);
3667 val64 &= 0xFFFF000000000000ULL;
3669 #ifdef __BIG_ENDIAN
3671 * The device by default set to a big endian format, so a
3672 * big endian driver need not set anything.
3674 val64 |= (SWAPPER_CTRL_TXP_FE |
3675 SWAPPER_CTRL_TXP_SE |
3676 SWAPPER_CTRL_TXD_R_FE |
3677 SWAPPER_CTRL_TXD_W_FE |
3678 SWAPPER_CTRL_TXF_R_FE |
3679 SWAPPER_CTRL_RXD_R_FE |
3680 SWAPPER_CTRL_RXD_W_FE |
3681 SWAPPER_CTRL_RXF_W_FE |
3682 SWAPPER_CTRL_XMSI_FE |
3683 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3684 if (sp->config.intr_type == INTA)
3685 val64 |= SWAPPER_CTRL_XMSI_SE;
3686 writeq(val64, &bar0->swapper_ctrl);
3687 #else
3689 * Initially we enable all bits to make it accessible by the
3690 * driver, then we selectively enable only those bits that
3691 * we want to set.
3693 val64 |= (SWAPPER_CTRL_TXP_FE |
3694 SWAPPER_CTRL_TXP_SE |
3695 SWAPPER_CTRL_TXD_R_FE |
3696 SWAPPER_CTRL_TXD_R_SE |
3697 SWAPPER_CTRL_TXD_W_FE |
3698 SWAPPER_CTRL_TXD_W_SE |
3699 SWAPPER_CTRL_TXF_R_FE |
3700 SWAPPER_CTRL_RXD_R_FE |
3701 SWAPPER_CTRL_RXD_R_SE |
3702 SWAPPER_CTRL_RXD_W_FE |
3703 SWAPPER_CTRL_RXD_W_SE |
3704 SWAPPER_CTRL_RXF_W_FE |
3705 SWAPPER_CTRL_XMSI_FE |
3706 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3707 if (sp->config.intr_type == INTA)
3708 val64 |= SWAPPER_CTRL_XMSI_SE;
3709 writeq(val64, &bar0->swapper_ctrl);
3710 #endif
3711 val64 = readq(&bar0->swapper_ctrl);
3714 * Verifying if endian settings are accurate by reading a
3715 * feedback register.
3717 val64 = readq(&bar0->pif_rd_swapper_fb);
3718 if (val64 != 0x0123456789ABCDEFULL) {
3719 /* Endian settings are incorrect, calls for another dekko. */
3720 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3721 dev->name);
3722 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3723 (unsigned long long) val64);
3724 return FAILURE;
3727 return SUCCESS;
3730 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3732 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3733 u64 val64;
3734 int ret = 0, cnt = 0;
3736 do {
3737 val64 = readq(&bar0->xmsi_access);
3738 if (!(val64 & s2BIT(15)))
3739 break;
3740 mdelay(1);
3741 cnt++;
3742 } while(cnt < 5);
3743 if (cnt == 5) {
3744 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3745 ret = 1;
3748 return ret;
3751 static void restore_xmsi_data(struct s2io_nic *nic)
3753 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3754 u64 val64;
3755 int i, msix_index;
3758 if (nic->device_type == XFRAME_I_DEVICE)
3759 return;
3761 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3762 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3763 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3764 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3765 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3766 writeq(val64, &bar0->xmsi_access);
3767 if (wait_for_msix_trans(nic, msix_index)) {
3768 DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
3769 continue;
3774 static void store_xmsi_data(struct s2io_nic *nic)
3776 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3777 u64 val64, addr, data;
3778 int i, msix_index;
3780 if (nic->device_type == XFRAME_I_DEVICE)
3781 return;
3783 /* Store and display */
3784 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3785 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3786 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3787 writeq(val64, &bar0->xmsi_access);
3788 if (wait_for_msix_trans(nic, msix_index)) {
3789 DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
3790 continue;
3792 addr = readq(&bar0->xmsi_address);
3793 data = readq(&bar0->xmsi_data);
3794 if (addr && data) {
3795 nic->msix_info[i].addr = addr;
3796 nic->msix_info[i].data = data;
3801 static int s2io_enable_msi_x(struct s2io_nic *nic)
3803 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3804 u64 rx_mat;
3805 u16 msi_control; /* Temp variable */
3806 int ret, i, j, msix_indx = 1;
3808 nic->entries = kmalloc(nic->num_entries * sizeof(struct msix_entry),
3809 GFP_KERNEL);
3810 if (!nic->entries) {
3811 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3812 __func__);
3813 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3814 return -ENOMEM;
3816 nic->mac_control.stats_info->sw_stat.mem_allocated
3817 += (nic->num_entries * sizeof(struct msix_entry));
3819 memset(nic->entries, 0, nic->num_entries * sizeof(struct msix_entry));
3821 nic->s2io_entries =
3822 kmalloc(nic->num_entries * sizeof(struct s2io_msix_entry),
3823 GFP_KERNEL);
3824 if (!nic->s2io_entries) {
3825 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3826 __func__);
3827 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3828 kfree(nic->entries);
3829 nic->mac_control.stats_info->sw_stat.mem_freed
3830 += (nic->num_entries * sizeof(struct msix_entry));
3831 return -ENOMEM;
3833 nic->mac_control.stats_info->sw_stat.mem_allocated
3834 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3835 memset(nic->s2io_entries, 0,
3836 nic->num_entries * sizeof(struct s2io_msix_entry));
3838 nic->entries[0].entry = 0;
3839 nic->s2io_entries[0].entry = 0;
3840 nic->s2io_entries[0].in_use = MSIX_FLG;
3841 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3842 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3844 for (i = 1; i < nic->num_entries; i++) {
3845 nic->entries[i].entry = ((i - 1) * 8) + 1;
3846 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3847 nic->s2io_entries[i].arg = NULL;
3848 nic->s2io_entries[i].in_use = 0;
3851 rx_mat = readq(&bar0->rx_mat);
3852 for (j = 0; j < nic->config.rx_ring_num; j++) {
3853 rx_mat |= RX_MAT_SET(j, msix_indx);
3854 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3855 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3856 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3857 msix_indx += 8;
3859 writeq(rx_mat, &bar0->rx_mat);
3860 readq(&bar0->rx_mat);
3862 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3863 /* We fail init if error or we get less vectors than min required */
3864 if (ret) {
3865 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3866 kfree(nic->entries);
3867 nic->mac_control.stats_info->sw_stat.mem_freed
3868 += (nic->num_entries * sizeof(struct msix_entry));
3869 kfree(nic->s2io_entries);
3870 nic->mac_control.stats_info->sw_stat.mem_freed
3871 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3872 nic->entries = NULL;
3873 nic->s2io_entries = NULL;
3874 return -ENOMEM;
3878 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3879 * in the herc NIC. (Temp change, needs to be removed later)
3881 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3882 msi_control |= 0x1; /* Enable MSI */
3883 pci_write_config_word(nic->pdev, 0x42, msi_control);
3885 return 0;
3888 /* Handle software interrupt used during MSI(X) test */
3889 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3891 struct s2io_nic *sp = dev_id;
3893 sp->msi_detected = 1;
3894 wake_up(&sp->msi_wait);
3896 return IRQ_HANDLED;
3899 /* Test interrupt path by forcing a a software IRQ */
3900 static int s2io_test_msi(struct s2io_nic *sp)
3902 struct pci_dev *pdev = sp->pdev;
3903 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3904 int err;
3905 u64 val64, saved64;
3907 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3908 sp->name, sp);
3909 if (err) {
3910 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3911 sp->dev->name, pci_name(pdev), pdev->irq);
3912 return err;
3915 init_waitqueue_head (&sp->msi_wait);
3916 sp->msi_detected = 0;
3918 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3919 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3920 val64 |= SCHED_INT_CTRL_TIMER_EN;
3921 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3922 writeq(val64, &bar0->scheduled_int_ctrl);
3924 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3926 if (!sp->msi_detected) {
3927 /* MSI(X) test failed, go back to INTx mode */
3928 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3929 "using MSI(X) during test\n", sp->dev->name,
3930 pci_name(pdev));
3932 err = -EOPNOTSUPP;
3935 free_irq(sp->entries[1].vector, sp);
3937 writeq(saved64, &bar0->scheduled_int_ctrl);
3939 return err;
3942 static void remove_msix_isr(struct s2io_nic *sp)
3944 int i;
3945 u16 msi_control;
3947 for (i = 0; i < sp->num_entries; i++) {
3948 if (sp->s2io_entries[i].in_use ==
3949 MSIX_REGISTERED_SUCCESS) {
3950 int vector = sp->entries[i].vector;
3951 void *arg = sp->s2io_entries[i].arg;
3952 free_irq(vector, arg);
3956 kfree(sp->entries);
3957 kfree(sp->s2io_entries);
3958 sp->entries = NULL;
3959 sp->s2io_entries = NULL;
3961 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3962 msi_control &= 0xFFFE; /* Disable MSI */
3963 pci_write_config_word(sp->pdev, 0x42, msi_control);
3965 pci_disable_msix(sp->pdev);
3968 static void remove_inta_isr(struct s2io_nic *sp)
3970 struct net_device *dev = sp->dev;
3972 free_irq(sp->pdev->irq, dev);
3975 /* ********************************************************* *
3976 * Functions defined below concern the OS part of the driver *
3977 * ********************************************************* */
3980 * s2io_open - open entry point of the driver
3981 * @dev : pointer to the device structure.
3982 * Description:
3983 * This function is the open entry point of the driver. It mainly calls a
3984 * function to allocate Rx buffers and inserts them into the buffer
3985 * descriptors and then enables the Rx part of the NIC.
3986 * Return value:
3987 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3988 * file on failure.
3991 static int s2io_open(struct net_device *dev)
3993 struct s2io_nic *sp = dev->priv;
3994 int err = 0;
3997 * Make sure you have link off by default every time
3998 * Nic is initialized
4000 netif_carrier_off(dev);
4001 sp->last_link_state = 0;
4003 /* Initialize H/W and enable interrupts */
4004 err = s2io_card_up(sp);
4005 if (err) {
4006 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4007 dev->name);
4008 goto hw_init_failed;
4011 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4012 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4013 s2io_card_down(sp);
4014 err = -ENODEV;
4015 goto hw_init_failed;
4017 s2io_start_all_tx_queue(sp);
4018 return 0;
4020 hw_init_failed:
4021 if (sp->config.intr_type == MSI_X) {
4022 if (sp->entries) {
4023 kfree(sp->entries);
4024 sp->mac_control.stats_info->sw_stat.mem_freed
4025 += (sp->num_entries * sizeof(struct msix_entry));
4027 if (sp->s2io_entries) {
4028 kfree(sp->s2io_entries);
4029 sp->mac_control.stats_info->sw_stat.mem_freed
4030 += (sp->num_entries * sizeof(struct s2io_msix_entry));
4033 return err;
4037 * s2io_close -close entry point of the driver
4038 * @dev : device pointer.
4039 * Description:
4040 * This is the stop entry point of the driver. It needs to undo exactly
4041 * whatever was done by the open entry point,thus it's usually referred to
4042 * as the close function.Among other things this function mainly stops the
4043 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4044 * Return value:
4045 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4046 * file on failure.
4049 static int s2io_close(struct net_device *dev)
4051 struct s2io_nic *sp = dev->priv;
4052 struct config_param *config = &sp->config;
4053 u64 tmp64;
4054 int offset;
4056 /* Return if the device is already closed *
4057 * Can happen when s2io_card_up failed in change_mtu *
4059 if (!is_s2io_card_up(sp))
4060 return 0;
4062 s2io_stop_all_tx_queue(sp);
4063 /* delete all populated mac entries */
4064 for (offset = 1; offset < config->max_mc_addr; offset++) {
4065 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4066 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4067 do_s2io_delete_unicast_mc(sp, tmp64);
4070 s2io_card_down(sp);
4072 return 0;
4076 * s2io_xmit - Tx entry point of te driver
4077 * @skb : the socket buffer containing the Tx data.
4078 * @dev : device pointer.
4079 * Description :
4080 * This function is the Tx entry point of the driver. S2IO NIC supports
4081 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4082 * NOTE: when device cant queue the pkt,just the trans_start variable will
4083 * not be upadted.
4084 * Return value:
4085 * 0 on success & 1 on failure.
4088 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4090 struct s2io_nic *sp = dev->priv;
4091 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4092 register u64 val64;
4093 struct TxD *txdp;
4094 struct TxFIFO_element __iomem *tx_fifo;
4095 unsigned long flags = 0;
4096 u16 vlan_tag = 0;
4097 struct fifo_info *fifo = NULL;
4098 struct mac_info *mac_control;
4099 struct config_param *config;
4100 int do_spin_lock = 1;
4101 int offload_type;
4102 int enable_per_list_interrupt = 0;
4103 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4105 mac_control = &sp->mac_control;
4106 config = &sp->config;
4108 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4110 if (unlikely(skb->len <= 0)) {
4111 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4112 dev_kfree_skb_any(skb);
4113 return 0;
4116 if (!is_s2io_card_up(sp)) {
4117 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4118 dev->name);
4119 dev_kfree_skb(skb);
4120 return 0;
4123 queue = 0;
4124 if (sp->vlgrp && vlan_tx_tag_present(skb))
4125 vlan_tag = vlan_tx_tag_get(skb);
4126 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4127 if (skb->protocol == htons(ETH_P_IP)) {
4128 struct iphdr *ip;
4129 struct tcphdr *th;
4130 ip = ip_hdr(skb);
4132 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4133 th = (struct tcphdr *)(((unsigned char *)ip) +
4134 ip->ihl*4);
4136 if (ip->protocol == IPPROTO_TCP) {
4137 queue_len = sp->total_tcp_fifos;
4138 queue = (ntohs(th->source) +
4139 ntohs(th->dest)) &
4140 sp->fifo_selector[queue_len - 1];
4141 if (queue >= queue_len)
4142 queue = queue_len - 1;
4143 } else if (ip->protocol == IPPROTO_UDP) {
4144 queue_len = sp->total_udp_fifos;
4145 queue = (ntohs(th->source) +
4146 ntohs(th->dest)) &
4147 sp->fifo_selector[queue_len - 1];
4148 if (queue >= queue_len)
4149 queue = queue_len - 1;
4150 queue += sp->udp_fifo_idx;
4151 if (skb->len > 1024)
4152 enable_per_list_interrupt = 1;
4153 do_spin_lock = 0;
4157 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4158 /* get fifo number based on skb->priority value */
4159 queue = config->fifo_mapping
4160 [skb->priority & (MAX_TX_FIFOS - 1)];
4161 fifo = &mac_control->fifos[queue];
4163 if (do_spin_lock)
4164 spin_lock_irqsave(&fifo->tx_lock, flags);
4165 else {
4166 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4167 return NETDEV_TX_LOCKED;
4170 if (sp->config.multiq) {
4171 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4172 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4173 return NETDEV_TX_BUSY;
4175 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4176 if (netif_queue_stopped(dev)) {
4177 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4178 return NETDEV_TX_BUSY;
4182 put_off = (u16) fifo->tx_curr_put_info.offset;
4183 get_off = (u16) fifo->tx_curr_get_info.offset;
4184 txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
4186 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4187 /* Avoid "put" pointer going beyond "get" pointer */
4188 if (txdp->Host_Control ||
4189 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4190 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4191 s2io_stop_tx_queue(sp, fifo->fifo_no);
4192 dev_kfree_skb(skb);
4193 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4194 return 0;
4197 offload_type = s2io_offload_type(skb);
4198 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4199 txdp->Control_1 |= TXD_TCP_LSO_EN;
4200 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4202 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4203 txdp->Control_2 |=
4204 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4205 TXD_TX_CKO_UDP_EN);
4207 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4208 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4209 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4210 if (enable_per_list_interrupt)
4211 if (put_off & (queue_len >> 5))
4212 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4213 if (vlan_tag) {
4214 txdp->Control_2 |= TXD_VLAN_ENABLE;
4215 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4218 frg_len = skb->len - skb->data_len;
4219 if (offload_type == SKB_GSO_UDP) {
4220 int ufo_size;
4222 ufo_size = s2io_udp_mss(skb);
4223 ufo_size &= ~7;
4224 txdp->Control_1 |= TXD_UFO_EN;
4225 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4226 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4227 #ifdef __BIG_ENDIAN
4228 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4229 fifo->ufo_in_band_v[put_off] =
4230 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4231 #else
4232 fifo->ufo_in_band_v[put_off] =
4233 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4234 #endif
4235 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4236 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4237 fifo->ufo_in_band_v,
4238 sizeof(u64), PCI_DMA_TODEVICE);
4239 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4240 goto pci_map_failed;
4241 txdp++;
4244 txdp->Buffer_Pointer = pci_map_single
4245 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4246 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4247 goto pci_map_failed;
4249 txdp->Host_Control = (unsigned long) skb;
4250 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4251 if (offload_type == SKB_GSO_UDP)
4252 txdp->Control_1 |= TXD_UFO_EN;
4254 frg_cnt = skb_shinfo(skb)->nr_frags;
4255 /* For fragmented SKB. */
4256 for (i = 0; i < frg_cnt; i++) {
4257 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4258 /* A '0' length fragment will be ignored */
4259 if (!frag->size)
4260 continue;
4261 txdp++;
4262 txdp->Buffer_Pointer = (u64) pci_map_page
4263 (sp->pdev, frag->page, frag->page_offset,
4264 frag->size, PCI_DMA_TODEVICE);
4265 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4266 if (offload_type == SKB_GSO_UDP)
4267 txdp->Control_1 |= TXD_UFO_EN;
4269 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4271 if (offload_type == SKB_GSO_UDP)
4272 frg_cnt++; /* as Txd0 was used for inband header */
4274 tx_fifo = mac_control->tx_FIFO_start[queue];
4275 val64 = fifo->list_info[put_off].list_phy_addr;
4276 writeq(val64, &tx_fifo->TxDL_Pointer);
4278 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4279 TX_FIFO_LAST_LIST);
4280 if (offload_type)
4281 val64 |= TX_FIFO_SPECIAL_FUNC;
4283 writeq(val64, &tx_fifo->List_Control);
4285 mmiowb();
4287 put_off++;
4288 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4289 put_off = 0;
4290 fifo->tx_curr_put_info.offset = put_off;
4292 /* Avoid "put" pointer going beyond "get" pointer */
4293 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4294 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4295 DBG_PRINT(TX_DBG,
4296 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4297 put_off, get_off);
4298 s2io_stop_tx_queue(sp, fifo->fifo_no);
4300 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4301 dev->trans_start = jiffies;
4302 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4304 if (sp->config.intr_type == MSI_X)
4305 tx_intr_handler(fifo);
4307 return 0;
4308 pci_map_failed:
4309 stats->pci_map_fail_cnt++;
4310 s2io_stop_tx_queue(sp, fifo->fifo_no);
4311 stats->mem_freed += skb->truesize;
4312 dev_kfree_skb(skb);
4313 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4314 return 0;
4317 static void
4318 s2io_alarm_handle(unsigned long data)
4320 struct s2io_nic *sp = (struct s2io_nic *)data;
4321 struct net_device *dev = sp->dev;
4323 s2io_handle_errors(dev);
4324 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4327 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4329 struct ring_info *ring = (struct ring_info *)dev_id;
4330 struct s2io_nic *sp = ring->nic;
4331 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4332 struct net_device *dev = sp->dev;
4334 if (unlikely(!is_s2io_card_up(sp)))
4335 return IRQ_HANDLED;
4337 if (sp->config.napi) {
4338 u8 __iomem *addr = NULL;
4339 u8 val8 = 0;
4341 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4342 addr += (7 - ring->ring_no);
4343 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4344 writeb(val8, addr);
4345 val8 = readb(addr);
4346 netif_rx_schedule(dev, &ring->napi);
4347 } else {
4348 rx_intr_handler(ring, 0);
4349 s2io_chk_rx_buffers(sp, ring);
4352 return IRQ_HANDLED;
4355 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4357 int i;
4358 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4359 struct s2io_nic *sp = fifos->nic;
4360 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4361 struct config_param *config = &sp->config;
4362 u64 reason;
4364 if (unlikely(!is_s2io_card_up(sp)))
4365 return IRQ_NONE;
4367 reason = readq(&bar0->general_int_status);
4368 if (unlikely(reason == S2IO_MINUS_ONE))
4369 /* Nothing much can be done. Get out */
4370 return IRQ_HANDLED;
4372 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4373 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4375 if (reason & GEN_INTR_TXPIC)
4376 s2io_txpic_intr_handle(sp);
4378 if (reason & GEN_INTR_TXTRAFFIC)
4379 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4381 for (i = 0; i < config->tx_fifo_num; i++)
4382 tx_intr_handler(&fifos[i]);
4384 writeq(sp->general_int_mask, &bar0->general_int_mask);
4385 readl(&bar0->general_int_status);
4386 return IRQ_HANDLED;
4388 /* The interrupt was not raised by us */
4389 return IRQ_NONE;
4392 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4394 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4395 u64 val64;
4397 val64 = readq(&bar0->pic_int_status);
4398 if (val64 & PIC_INT_GPIO) {
4399 val64 = readq(&bar0->gpio_int_reg);
4400 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4401 (val64 & GPIO_INT_REG_LINK_UP)) {
4403 * This is unstable state so clear both up/down
4404 * interrupt and adapter to re-evaluate the link state.
4406 val64 |= GPIO_INT_REG_LINK_DOWN;
4407 val64 |= GPIO_INT_REG_LINK_UP;
4408 writeq(val64, &bar0->gpio_int_reg);
4409 val64 = readq(&bar0->gpio_int_mask);
4410 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4411 GPIO_INT_MASK_LINK_DOWN);
4412 writeq(val64, &bar0->gpio_int_mask);
4414 else if (val64 & GPIO_INT_REG_LINK_UP) {
4415 val64 = readq(&bar0->adapter_status);
4416 /* Enable Adapter */
4417 val64 = readq(&bar0->adapter_control);
4418 val64 |= ADAPTER_CNTL_EN;
4419 writeq(val64, &bar0->adapter_control);
4420 val64 |= ADAPTER_LED_ON;
4421 writeq(val64, &bar0->adapter_control);
4422 if (!sp->device_enabled_once)
4423 sp->device_enabled_once = 1;
4425 s2io_link(sp, LINK_UP);
4427 * unmask link down interrupt and mask link-up
4428 * intr
4430 val64 = readq(&bar0->gpio_int_mask);
4431 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4432 val64 |= GPIO_INT_MASK_LINK_UP;
4433 writeq(val64, &bar0->gpio_int_mask);
4435 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4436 val64 = readq(&bar0->adapter_status);
4437 s2io_link(sp, LINK_DOWN);
4438 /* Link is down so unmaks link up interrupt */
4439 val64 = readq(&bar0->gpio_int_mask);
4440 val64 &= ~GPIO_INT_MASK_LINK_UP;
4441 val64 |= GPIO_INT_MASK_LINK_DOWN;
4442 writeq(val64, &bar0->gpio_int_mask);
4444 /* turn off LED */
4445 val64 = readq(&bar0->adapter_control);
4446 val64 = val64 &(~ADAPTER_LED_ON);
4447 writeq(val64, &bar0->adapter_control);
4450 val64 = readq(&bar0->gpio_int_mask);
4454 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4455 * @value: alarm bits
4456 * @addr: address value
4457 * @cnt: counter variable
4458 * Description: Check for alarm and increment the counter
4459 * Return Value:
4460 * 1 - if alarm bit set
4461 * 0 - if alarm bit is not set
4463 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4464 unsigned long long *cnt)
4466 u64 val64;
4467 val64 = readq(addr);
4468 if ( val64 & value ) {
4469 writeq(val64, addr);
4470 (*cnt)++;
4471 return 1;
4473 return 0;
4478 * s2io_handle_errors - Xframe error indication handler
4479 * @nic: device private variable
4480 * Description: Handle alarms such as loss of link, single or
4481 * double ECC errors, critical and serious errors.
4482 * Return Value:
4483 * NONE
4485 static void s2io_handle_errors(void * dev_id)
4487 struct net_device *dev = (struct net_device *) dev_id;
4488 struct s2io_nic *sp = dev->priv;
4489 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4490 u64 temp64 = 0,val64=0;
4491 int i = 0;
4493 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4494 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4496 if (!is_s2io_card_up(sp))
4497 return;
4499 if (pci_channel_offline(sp->pdev))
4500 return;
4502 memset(&sw_stat->ring_full_cnt, 0,
4503 sizeof(sw_stat->ring_full_cnt));
4505 /* Handling the XPAK counters update */
4506 if(stats->xpak_timer_count < 72000) {
4507 /* waiting for an hour */
4508 stats->xpak_timer_count++;
4509 } else {
4510 s2io_updt_xpak_counter(dev);
4511 /* reset the count to zero */
4512 stats->xpak_timer_count = 0;
4515 /* Handling link status change error Intr */
4516 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4517 val64 = readq(&bar0->mac_rmac_err_reg);
4518 writeq(val64, &bar0->mac_rmac_err_reg);
4519 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4520 schedule_work(&sp->set_link_task);
4523 /* In case of a serious error, the device will be Reset. */
4524 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4525 &sw_stat->serious_err_cnt))
4526 goto reset;
4528 /* Check for data parity error */
4529 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4530 &sw_stat->parity_err_cnt))
4531 goto reset;
4533 /* Check for ring full counter */
4534 if (sp->device_type == XFRAME_II_DEVICE) {
4535 val64 = readq(&bar0->ring_bump_counter1);
4536 for (i=0; i<4; i++) {
4537 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4538 temp64 >>= 64 - ((i+1)*16);
4539 sw_stat->ring_full_cnt[i] += temp64;
4542 val64 = readq(&bar0->ring_bump_counter2);
4543 for (i=0; i<4; i++) {
4544 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4545 temp64 >>= 64 - ((i+1)*16);
4546 sw_stat->ring_full_cnt[i+4] += temp64;
4550 val64 = readq(&bar0->txdma_int_status);
4551 /*check for pfc_err*/
4552 if (val64 & TXDMA_PFC_INT) {
4553 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4554 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4555 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4556 &sw_stat->pfc_err_cnt))
4557 goto reset;
4558 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4559 &sw_stat->pfc_err_cnt);
4562 /*check for tda_err*/
4563 if (val64 & TXDMA_TDA_INT) {
4564 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4565 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4566 &sw_stat->tda_err_cnt))
4567 goto reset;
4568 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4569 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4571 /*check for pcc_err*/
4572 if (val64 & TXDMA_PCC_INT) {
4573 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4574 | PCC_N_SERR | PCC_6_COF_OV_ERR
4575 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4576 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4577 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4578 &sw_stat->pcc_err_cnt))
4579 goto reset;
4580 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4581 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4584 /*check for tti_err*/
4585 if (val64 & TXDMA_TTI_INT) {
4586 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4587 &sw_stat->tti_err_cnt))
4588 goto reset;
4589 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4590 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4593 /*check for lso_err*/
4594 if (val64 & TXDMA_LSO_INT) {
4595 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4596 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4597 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4598 goto reset;
4599 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4600 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4603 /*check for tpa_err*/
4604 if (val64 & TXDMA_TPA_INT) {
4605 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4606 &sw_stat->tpa_err_cnt))
4607 goto reset;
4608 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4609 &sw_stat->tpa_err_cnt);
4612 /*check for sm_err*/
4613 if (val64 & TXDMA_SM_INT) {
4614 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4615 &sw_stat->sm_err_cnt))
4616 goto reset;
4619 val64 = readq(&bar0->mac_int_status);
4620 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4621 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4622 &bar0->mac_tmac_err_reg,
4623 &sw_stat->mac_tmac_err_cnt))
4624 goto reset;
4625 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4626 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4627 &bar0->mac_tmac_err_reg,
4628 &sw_stat->mac_tmac_err_cnt);
4631 val64 = readq(&bar0->xgxs_int_status);
4632 if (val64 & XGXS_INT_STATUS_TXGXS) {
4633 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4634 &bar0->xgxs_txgxs_err_reg,
4635 &sw_stat->xgxs_txgxs_err_cnt))
4636 goto reset;
4637 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4638 &bar0->xgxs_txgxs_err_reg,
4639 &sw_stat->xgxs_txgxs_err_cnt);
4642 val64 = readq(&bar0->rxdma_int_status);
4643 if (val64 & RXDMA_INT_RC_INT_M) {
4644 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4645 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4646 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4647 goto reset;
4648 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4649 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4650 &sw_stat->rc_err_cnt);
4651 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4652 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4653 &sw_stat->prc_pcix_err_cnt))
4654 goto reset;
4655 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4656 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4657 &sw_stat->prc_pcix_err_cnt);
4660 if (val64 & RXDMA_INT_RPA_INT_M) {
4661 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4662 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4663 goto reset;
4664 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4665 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4668 if (val64 & RXDMA_INT_RDA_INT_M) {
4669 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4670 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4671 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4672 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4673 goto reset;
4674 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4675 | RDA_MISC_ERR | RDA_PCIX_ERR,
4676 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4679 if (val64 & RXDMA_INT_RTI_INT_M) {
4680 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4681 &sw_stat->rti_err_cnt))
4682 goto reset;
4683 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4684 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4687 val64 = readq(&bar0->mac_int_status);
4688 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4689 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4690 &bar0->mac_rmac_err_reg,
4691 &sw_stat->mac_rmac_err_cnt))
4692 goto reset;
4693 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4694 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4695 &sw_stat->mac_rmac_err_cnt);
4698 val64 = readq(&bar0->xgxs_int_status);
4699 if (val64 & XGXS_INT_STATUS_RXGXS) {
4700 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4701 &bar0->xgxs_rxgxs_err_reg,
4702 &sw_stat->xgxs_rxgxs_err_cnt))
4703 goto reset;
4706 val64 = readq(&bar0->mc_int_status);
4707 if(val64 & MC_INT_STATUS_MC_INT) {
4708 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4709 &sw_stat->mc_err_cnt))
4710 goto reset;
4712 /* Handling Ecc errors */
4713 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4714 writeq(val64, &bar0->mc_err_reg);
4715 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4716 sw_stat->double_ecc_errs++;
4717 if (sp->device_type != XFRAME_II_DEVICE) {
4719 * Reset XframeI only if critical error
4721 if (val64 &
4722 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4723 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4724 goto reset;
4726 } else
4727 sw_stat->single_ecc_errs++;
4730 return;
4732 reset:
4733 s2io_stop_all_tx_queue(sp);
4734 schedule_work(&sp->rst_timer_task);
4735 sw_stat->soft_reset_cnt++;
4736 return;
4740 * s2io_isr - ISR handler of the device .
4741 * @irq: the irq of the device.
4742 * @dev_id: a void pointer to the dev structure of the NIC.
4743 * Description: This function is the ISR handler of the device. It
4744 * identifies the reason for the interrupt and calls the relevant
4745 * service routines. As a contongency measure, this ISR allocates the
4746 * recv buffers, if their numbers are below the panic value which is
4747 * presently set to 25% of the original number of rcv buffers allocated.
4748 * Return value:
4749 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4750 * IRQ_NONE: will be returned if interrupt is not from our device
4752 static irqreturn_t s2io_isr(int irq, void *dev_id)
4754 struct net_device *dev = (struct net_device *) dev_id;
4755 struct s2io_nic *sp = dev->priv;
4756 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4757 int i;
4758 u64 reason = 0;
4759 struct mac_info *mac_control;
4760 struct config_param *config;
4762 /* Pretend we handled any irq's from a disconnected card */
4763 if (pci_channel_offline(sp->pdev))
4764 return IRQ_NONE;
4766 if (!is_s2io_card_up(sp))
4767 return IRQ_NONE;
4769 mac_control = &sp->mac_control;
4770 config = &sp->config;
4773 * Identify the cause for interrupt and call the appropriate
4774 * interrupt handler. Causes for the interrupt could be;
4775 * 1. Rx of packet.
4776 * 2. Tx complete.
4777 * 3. Link down.
4779 reason = readq(&bar0->general_int_status);
4781 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4782 /* Nothing much can be done. Get out */
4783 return IRQ_HANDLED;
4786 if (reason & (GEN_INTR_RXTRAFFIC |
4787 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4789 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4791 if (config->napi) {
4792 if (reason & GEN_INTR_RXTRAFFIC) {
4793 netif_rx_schedule(dev, &sp->napi);
4794 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4795 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4796 readl(&bar0->rx_traffic_int);
4798 } else {
4800 * rx_traffic_int reg is an R1 register, writing all 1's
4801 * will ensure that the actual interrupt causing bit
4802 * get's cleared and hence a read can be avoided.
4804 if (reason & GEN_INTR_RXTRAFFIC)
4805 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4807 for (i = 0; i < config->rx_ring_num; i++)
4808 rx_intr_handler(&mac_control->rings[i], 0);
4812 * tx_traffic_int reg is an R1 register, writing all 1's
4813 * will ensure that the actual interrupt causing bit get's
4814 * cleared and hence a read can be avoided.
4816 if (reason & GEN_INTR_TXTRAFFIC)
4817 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4819 for (i = 0; i < config->tx_fifo_num; i++)
4820 tx_intr_handler(&mac_control->fifos[i]);
4822 if (reason & GEN_INTR_TXPIC)
4823 s2io_txpic_intr_handle(sp);
4826 * Reallocate the buffers from the interrupt handler itself.
4828 if (!config->napi) {
4829 for (i = 0; i < config->rx_ring_num; i++)
4830 s2io_chk_rx_buffers(sp, &mac_control->rings[i]);
4832 writeq(sp->general_int_mask, &bar0->general_int_mask);
4833 readl(&bar0->general_int_status);
4835 return IRQ_HANDLED;
4838 else if (!reason) {
4839 /* The interrupt was not raised by us */
4840 return IRQ_NONE;
4843 return IRQ_HANDLED;
4847 * s2io_updt_stats -
4849 static void s2io_updt_stats(struct s2io_nic *sp)
4851 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4852 u64 val64;
4853 int cnt = 0;
4855 if (is_s2io_card_up(sp)) {
4856 /* Apprx 30us on a 133 MHz bus */
4857 val64 = SET_UPDT_CLICKS(10) |
4858 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4859 writeq(val64, &bar0->stat_cfg);
4860 do {
4861 udelay(100);
4862 val64 = readq(&bar0->stat_cfg);
4863 if (!(val64 & s2BIT(0)))
4864 break;
4865 cnt++;
4866 if (cnt == 5)
4867 break; /* Updt failed */
4868 } while(1);
4873 * s2io_get_stats - Updates the device statistics structure.
4874 * @dev : pointer to the device structure.
4875 * Description:
4876 * This function updates the device statistics structure in the s2io_nic
4877 * structure and returns a pointer to the same.
4878 * Return value:
4879 * pointer to the updated net_device_stats structure.
4882 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4884 struct s2io_nic *sp = dev->priv;
4885 struct mac_info *mac_control;
4886 struct config_param *config;
4887 int i;
4890 mac_control = &sp->mac_control;
4891 config = &sp->config;
4893 /* Configure Stats for immediate updt */
4894 s2io_updt_stats(sp);
4896 /* Using sp->stats as a staging area, because reset (due to mtu
4897 change, for example) will clear some hardware counters */
4898 dev->stats.tx_packets +=
4899 le32_to_cpu(mac_control->stats_info->tmac_frms) -
4900 sp->stats.tx_packets;
4901 sp->stats.tx_packets =
4902 le32_to_cpu(mac_control->stats_info->tmac_frms);
4903 dev->stats.tx_errors +=
4904 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms) -
4905 sp->stats.tx_errors;
4906 sp->stats.tx_errors =
4907 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4908 dev->stats.rx_errors +=
4909 le64_to_cpu(mac_control->stats_info->rmac_drop_frms) -
4910 sp->stats.rx_errors;
4911 sp->stats.rx_errors =
4912 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4913 dev->stats.multicast =
4914 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms) -
4915 sp->stats.multicast;
4916 sp->stats.multicast =
4917 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4918 dev->stats.rx_length_errors =
4919 le64_to_cpu(mac_control->stats_info->rmac_long_frms) -
4920 sp->stats.rx_length_errors;
4921 sp->stats.rx_length_errors =
4922 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4924 /* collect per-ring rx_packets and rx_bytes */
4925 dev->stats.rx_packets = dev->stats.rx_bytes = 0;
4926 for (i = 0; i < config->rx_ring_num; i++) {
4927 dev->stats.rx_packets += mac_control->rings[i].rx_packets;
4928 dev->stats.rx_bytes += mac_control->rings[i].rx_bytes;
4931 return (&dev->stats);
4935 * s2io_set_multicast - entry point for multicast address enable/disable.
4936 * @dev : pointer to the device structure
4937 * Description:
4938 * This function is a driver entry point which gets called by the kernel
4939 * whenever multicast addresses must be enabled/disabled. This also gets
4940 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4941 * determine, if multicast address must be enabled or if promiscuous mode
4942 * is to be disabled etc.
4943 * Return value:
4944 * void.
4947 static void s2io_set_multicast(struct net_device *dev)
4949 int i, j, prev_cnt;
4950 struct dev_mc_list *mclist;
4951 struct s2io_nic *sp = dev->priv;
4952 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4953 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4954 0xfeffffffffffULL;
4955 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4956 void __iomem *add;
4957 struct config_param *config = &sp->config;
4959 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4960 /* Enable all Multicast addresses */
4961 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4962 &bar0->rmac_addr_data0_mem);
4963 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4964 &bar0->rmac_addr_data1_mem);
4965 val64 = RMAC_ADDR_CMD_MEM_WE |
4966 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4967 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4968 writeq(val64, &bar0->rmac_addr_cmd_mem);
4969 /* Wait till command completes */
4970 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4971 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4972 S2IO_BIT_RESET);
4974 sp->m_cast_flg = 1;
4975 sp->all_multi_pos = config->max_mc_addr - 1;
4976 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4977 /* Disable all Multicast addresses */
4978 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4979 &bar0->rmac_addr_data0_mem);
4980 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4981 &bar0->rmac_addr_data1_mem);
4982 val64 = RMAC_ADDR_CMD_MEM_WE |
4983 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4984 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4985 writeq(val64, &bar0->rmac_addr_cmd_mem);
4986 /* Wait till command completes */
4987 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4988 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4989 S2IO_BIT_RESET);
4991 sp->m_cast_flg = 0;
4992 sp->all_multi_pos = 0;
4995 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4996 /* Put the NIC into promiscuous mode */
4997 add = &bar0->mac_cfg;
4998 val64 = readq(&bar0->mac_cfg);
4999 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5001 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5002 writel((u32) val64, add);
5003 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5004 writel((u32) (val64 >> 32), (add + 4));
5006 if (vlan_tag_strip != 1) {
5007 val64 = readq(&bar0->rx_pa_cfg);
5008 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5009 writeq(val64, &bar0->rx_pa_cfg);
5010 sp->vlan_strip_flag = 0;
5013 val64 = readq(&bar0->mac_cfg);
5014 sp->promisc_flg = 1;
5015 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5016 dev->name);
5017 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5018 /* Remove the NIC from promiscuous mode */
5019 add = &bar0->mac_cfg;
5020 val64 = readq(&bar0->mac_cfg);
5021 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5023 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5024 writel((u32) val64, add);
5025 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5026 writel((u32) (val64 >> 32), (add + 4));
5028 if (vlan_tag_strip != 0) {
5029 val64 = readq(&bar0->rx_pa_cfg);
5030 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5031 writeq(val64, &bar0->rx_pa_cfg);
5032 sp->vlan_strip_flag = 1;
5035 val64 = readq(&bar0->mac_cfg);
5036 sp->promisc_flg = 0;
5037 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
5038 dev->name);
5041 /* Update individual M_CAST address list */
5042 if ((!sp->m_cast_flg) && dev->mc_count) {
5043 if (dev->mc_count >
5044 (config->max_mc_addr - config->max_mac_addr)) {
5045 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5046 dev->name);
5047 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5048 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5049 return;
5052 prev_cnt = sp->mc_addr_count;
5053 sp->mc_addr_count = dev->mc_count;
5055 /* Clear out the previous list of Mc in the H/W. */
5056 for (i = 0; i < prev_cnt; i++) {
5057 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5058 &bar0->rmac_addr_data0_mem);
5059 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5060 &bar0->rmac_addr_data1_mem);
5061 val64 = RMAC_ADDR_CMD_MEM_WE |
5062 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5063 RMAC_ADDR_CMD_MEM_OFFSET
5064 (config->mc_start_offset + i);
5065 writeq(val64, &bar0->rmac_addr_cmd_mem);
5067 /* Wait for command completes */
5068 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5069 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5070 S2IO_BIT_RESET)) {
5071 DBG_PRINT(ERR_DBG, "%s: Adding ",
5072 dev->name);
5073 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5074 return;
5078 /* Create the new Rx filter list and update the same in H/W. */
5079 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5080 i++, mclist = mclist->next) {
5081 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5082 ETH_ALEN);
5083 mac_addr = 0;
5084 for (j = 0; j < ETH_ALEN; j++) {
5085 mac_addr |= mclist->dmi_addr[j];
5086 mac_addr <<= 8;
5088 mac_addr >>= 8;
5089 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5090 &bar0->rmac_addr_data0_mem);
5091 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5092 &bar0->rmac_addr_data1_mem);
5093 val64 = RMAC_ADDR_CMD_MEM_WE |
5094 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5095 RMAC_ADDR_CMD_MEM_OFFSET
5096 (i + config->mc_start_offset);
5097 writeq(val64, &bar0->rmac_addr_cmd_mem);
5099 /* Wait for command completes */
5100 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5101 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5102 S2IO_BIT_RESET)) {
5103 DBG_PRINT(ERR_DBG, "%s: Adding ",
5104 dev->name);
5105 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5106 return;
5112 /* read from CAM unicast & multicast addresses and store it in
5113 * def_mac_addr structure
5115 void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5117 int offset;
5118 u64 mac_addr = 0x0;
5119 struct config_param *config = &sp->config;
5121 /* store unicast & multicast mac addresses */
5122 for (offset = 0; offset < config->max_mc_addr; offset++) {
5123 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5124 /* if read fails disable the entry */
5125 if (mac_addr == FAILURE)
5126 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5127 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5131 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5132 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5134 int offset;
5135 struct config_param *config = &sp->config;
5136 /* restore unicast mac address */
5137 for (offset = 0; offset < config->max_mac_addr; offset++)
5138 do_s2io_prog_unicast(sp->dev,
5139 sp->def_mac_addr[offset].mac_addr);
5141 /* restore multicast mac address */
5142 for (offset = config->mc_start_offset;
5143 offset < config->max_mc_addr; offset++)
5144 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5147 /* add a multicast MAC address to CAM */
5148 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5150 int i;
5151 u64 mac_addr = 0;
5152 struct config_param *config = &sp->config;
5154 for (i = 0; i < ETH_ALEN; i++) {
5155 mac_addr <<= 8;
5156 mac_addr |= addr[i];
5158 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5159 return SUCCESS;
5161 /* check if the multicast mac already preset in CAM */
5162 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5163 u64 tmp64;
5164 tmp64 = do_s2io_read_unicast_mc(sp, i);
5165 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5166 break;
5168 if (tmp64 == mac_addr)
5169 return SUCCESS;
5171 if (i == config->max_mc_addr) {
5172 DBG_PRINT(ERR_DBG,
5173 "CAM full no space left for multicast MAC\n");
5174 return FAILURE;
5176 /* Update the internal structure with this new mac address */
5177 do_s2io_copy_mac_addr(sp, i, mac_addr);
5179 return (do_s2io_add_mac(sp, mac_addr, i));
5182 /* add MAC address to CAM */
5183 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5185 u64 val64;
5186 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5188 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5189 &bar0->rmac_addr_data0_mem);
5191 val64 =
5192 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5193 RMAC_ADDR_CMD_MEM_OFFSET(off);
5194 writeq(val64, &bar0->rmac_addr_cmd_mem);
5196 /* Wait till command completes */
5197 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5198 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5199 S2IO_BIT_RESET)) {
5200 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5201 return FAILURE;
5203 return SUCCESS;
5205 /* deletes a specified unicast/multicast mac entry from CAM */
5206 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5208 int offset;
5209 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5210 struct config_param *config = &sp->config;
5212 for (offset = 1;
5213 offset < config->max_mc_addr; offset++) {
5214 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5215 if (tmp64 == addr) {
5216 /* disable the entry by writing 0xffffffffffffULL */
5217 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5218 return FAILURE;
5219 /* store the new mac list from CAM */
5220 do_s2io_store_unicast_mc(sp);
5221 return SUCCESS;
5224 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5225 (unsigned long long)addr);
5226 return FAILURE;
5229 /* read mac entries from CAM */
5230 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5232 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5233 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5235 /* read mac addr */
5236 val64 =
5237 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5238 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5239 writeq(val64, &bar0->rmac_addr_cmd_mem);
5241 /* Wait till command completes */
5242 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5243 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5244 S2IO_BIT_RESET)) {
5245 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5246 return FAILURE;
5248 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5249 return (tmp64 >> 16);
5253 * s2io_set_mac_addr driver entry point
5256 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5258 struct sockaddr *addr = p;
5260 if (!is_valid_ether_addr(addr->sa_data))
5261 return -EINVAL;
5263 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5265 /* store the MAC address in CAM */
5266 return (do_s2io_prog_unicast(dev, dev->dev_addr));
5269 * do_s2io_prog_unicast - Programs the Xframe mac address
5270 * @dev : pointer to the device structure.
5271 * @addr: a uchar pointer to the new mac address which is to be set.
5272 * Description : This procedure will program the Xframe to receive
5273 * frames with new Mac Address
5274 * Return value: SUCCESS on success and an appropriate (-)ve integer
5275 * as defined in errno.h file on failure.
5278 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5280 struct s2io_nic *sp = dev->priv;
5281 register u64 mac_addr = 0, perm_addr = 0;
5282 int i;
5283 u64 tmp64;
5284 struct config_param *config = &sp->config;
5287 * Set the new MAC address as the new unicast filter and reflect this
5288 * change on the device address registered with the OS. It will be
5289 * at offset 0.
5291 for (i = 0; i < ETH_ALEN; i++) {
5292 mac_addr <<= 8;
5293 mac_addr |= addr[i];
5294 perm_addr <<= 8;
5295 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5298 /* check if the dev_addr is different than perm_addr */
5299 if (mac_addr == perm_addr)
5300 return SUCCESS;
5302 /* check if the mac already preset in CAM */
5303 for (i = 1; i < config->max_mac_addr; i++) {
5304 tmp64 = do_s2io_read_unicast_mc(sp, i);
5305 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5306 break;
5308 if (tmp64 == mac_addr) {
5309 DBG_PRINT(INFO_DBG,
5310 "MAC addr:0x%llx already present in CAM\n",
5311 (unsigned long long)mac_addr);
5312 return SUCCESS;
5315 if (i == config->max_mac_addr) {
5316 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5317 return FAILURE;
5319 /* Update the internal structure with this new mac address */
5320 do_s2io_copy_mac_addr(sp, i, mac_addr);
5321 return (do_s2io_add_mac(sp, mac_addr, i));
5325 * s2io_ethtool_sset - Sets different link parameters.
5326 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5327 * @info: pointer to the structure with parameters given by ethtool to set
5328 * link information.
5329 * Description:
5330 * The function sets different link parameters provided by the user onto
5331 * the NIC.
5332 * Return value:
5333 * 0 on success.
5336 static int s2io_ethtool_sset(struct net_device *dev,
5337 struct ethtool_cmd *info)
5339 struct s2io_nic *sp = dev->priv;
5340 if ((info->autoneg == AUTONEG_ENABLE) ||
5341 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5342 return -EINVAL;
5343 else {
5344 s2io_close(sp->dev);
5345 s2io_open(sp->dev);
5348 return 0;
5352 * s2io_ethtol_gset - Return link specific information.
5353 * @sp : private member of the device structure, pointer to the
5354 * s2io_nic structure.
5355 * @info : pointer to the structure with parameters given by ethtool
5356 * to return link information.
5357 * Description:
5358 * Returns link specific information like speed, duplex etc.. to ethtool.
5359 * Return value :
5360 * return 0 on success.
5363 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5365 struct s2io_nic *sp = dev->priv;
5366 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5367 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5368 info->port = PORT_FIBRE;
5370 /* info->transceiver */
5371 info->transceiver = XCVR_EXTERNAL;
5373 if (netif_carrier_ok(sp->dev)) {
5374 info->speed = 10000;
5375 info->duplex = DUPLEX_FULL;
5376 } else {
5377 info->speed = -1;
5378 info->duplex = -1;
5381 info->autoneg = AUTONEG_DISABLE;
5382 return 0;
5386 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5387 * @sp : private member of the device structure, which is a pointer to the
5388 * s2io_nic structure.
5389 * @info : pointer to the structure with parameters given by ethtool to
5390 * return driver information.
5391 * Description:
5392 * Returns driver specefic information like name, version etc.. to ethtool.
5393 * Return value:
5394 * void
5397 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5398 struct ethtool_drvinfo *info)
5400 struct s2io_nic *sp = dev->priv;
5402 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5403 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5404 strncpy(info->fw_version, "", sizeof(info->fw_version));
5405 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5406 info->regdump_len = XENA_REG_SPACE;
5407 info->eedump_len = XENA_EEPROM_SPACE;
5411 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5412 * @sp: private member of the device structure, which is a pointer to the
5413 * s2io_nic structure.
5414 * @regs : pointer to the structure with parameters given by ethtool for
5415 * dumping the registers.
5416 * @reg_space: The input argumnet into which all the registers are dumped.
5417 * Description:
5418 * Dumps the entire register space of xFrame NIC into the user given
5419 * buffer area.
5420 * Return value :
5421 * void .
5424 static void s2io_ethtool_gregs(struct net_device *dev,
5425 struct ethtool_regs *regs, void *space)
5427 int i;
5428 u64 reg;
5429 u8 *reg_space = (u8 *) space;
5430 struct s2io_nic *sp = dev->priv;
5432 regs->len = XENA_REG_SPACE;
5433 regs->version = sp->pdev->subsystem_device;
5435 for (i = 0; i < regs->len; i += 8) {
5436 reg = readq(sp->bar0 + i);
5437 memcpy((reg_space + i), &reg, 8);
5442 * s2io_phy_id - timer function that alternates adapter LED.
5443 * @data : address of the private member of the device structure, which
5444 * is a pointer to the s2io_nic structure, provided as an u32.
5445 * Description: This is actually the timer function that alternates the
5446 * adapter LED bit of the adapter control bit to set/reset every time on
5447 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5448 * once every second.
5450 static void s2io_phy_id(unsigned long data)
5452 struct s2io_nic *sp = (struct s2io_nic *) data;
5453 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5454 u64 val64 = 0;
5455 u16 subid;
5457 subid = sp->pdev->subsystem_device;
5458 if ((sp->device_type == XFRAME_II_DEVICE) ||
5459 ((subid & 0xFF) >= 0x07)) {
5460 val64 = readq(&bar0->gpio_control);
5461 val64 ^= GPIO_CTRL_GPIO_0;
5462 writeq(val64, &bar0->gpio_control);
5463 } else {
5464 val64 = readq(&bar0->adapter_control);
5465 val64 ^= ADAPTER_LED_ON;
5466 writeq(val64, &bar0->adapter_control);
5469 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5473 * s2io_ethtool_idnic - To physically identify the nic on the system.
5474 * @sp : private member of the device structure, which is a pointer to the
5475 * s2io_nic structure.
5476 * @id : pointer to the structure with identification parameters given by
5477 * ethtool.
5478 * Description: Used to physically identify the NIC on the system.
5479 * The Link LED will blink for a time specified by the user for
5480 * identification.
5481 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5482 * identification is possible only if it's link is up.
5483 * Return value:
5484 * int , returns 0 on success
5487 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5489 u64 val64 = 0, last_gpio_ctrl_val;
5490 struct s2io_nic *sp = dev->priv;
5491 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5492 u16 subid;
5494 subid = sp->pdev->subsystem_device;
5495 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5496 if ((sp->device_type == XFRAME_I_DEVICE) &&
5497 ((subid & 0xFF) < 0x07)) {
5498 val64 = readq(&bar0->adapter_control);
5499 if (!(val64 & ADAPTER_CNTL_EN)) {
5500 printk(KERN_ERR
5501 "Adapter Link down, cannot blink LED\n");
5502 return -EFAULT;
5505 if (sp->id_timer.function == NULL) {
5506 init_timer(&sp->id_timer);
5507 sp->id_timer.function = s2io_phy_id;
5508 sp->id_timer.data = (unsigned long) sp;
5510 mod_timer(&sp->id_timer, jiffies);
5511 if (data)
5512 msleep_interruptible(data * HZ);
5513 else
5514 msleep_interruptible(MAX_FLICKER_TIME);
5515 del_timer_sync(&sp->id_timer);
5517 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5518 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5519 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5522 return 0;
5525 static void s2io_ethtool_gringparam(struct net_device *dev,
5526 struct ethtool_ringparam *ering)
5528 struct s2io_nic *sp = dev->priv;
5529 int i,tx_desc_count=0,rx_desc_count=0;
5531 if (sp->rxd_mode == RXD_MODE_1)
5532 ering->rx_max_pending = MAX_RX_DESC_1;
5533 else if (sp->rxd_mode == RXD_MODE_3B)
5534 ering->rx_max_pending = MAX_RX_DESC_2;
5536 ering->tx_max_pending = MAX_TX_DESC;
5537 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5538 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5540 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5541 ering->tx_pending = tx_desc_count;
5542 rx_desc_count = 0;
5543 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5544 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5546 ering->rx_pending = rx_desc_count;
5548 ering->rx_mini_max_pending = 0;
5549 ering->rx_mini_pending = 0;
5550 if(sp->rxd_mode == RXD_MODE_1)
5551 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5552 else if (sp->rxd_mode == RXD_MODE_3B)
5553 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5554 ering->rx_jumbo_pending = rx_desc_count;
5558 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5559 * @sp : private member of the device structure, which is a pointer to the
5560 * s2io_nic structure.
5561 * @ep : pointer to the structure with pause parameters given by ethtool.
5562 * Description:
5563 * Returns the Pause frame generation and reception capability of the NIC.
5564 * Return value:
5565 * void
5567 static void s2io_ethtool_getpause_data(struct net_device *dev,
5568 struct ethtool_pauseparam *ep)
5570 u64 val64;
5571 struct s2io_nic *sp = dev->priv;
5572 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5574 val64 = readq(&bar0->rmac_pause_cfg);
5575 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5576 ep->tx_pause = TRUE;
5577 if (val64 & RMAC_PAUSE_RX_ENABLE)
5578 ep->rx_pause = TRUE;
5579 ep->autoneg = FALSE;
5583 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5584 * @sp : private member of the device structure, which is a pointer to the
5585 * s2io_nic structure.
5586 * @ep : pointer to the structure with pause parameters given by ethtool.
5587 * Description:
5588 * It can be used to set or reset Pause frame generation or reception
5589 * support of the NIC.
5590 * Return value:
5591 * int, returns 0 on Success
5594 static int s2io_ethtool_setpause_data(struct net_device *dev,
5595 struct ethtool_pauseparam *ep)
5597 u64 val64;
5598 struct s2io_nic *sp = dev->priv;
5599 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5601 val64 = readq(&bar0->rmac_pause_cfg);
5602 if (ep->tx_pause)
5603 val64 |= RMAC_PAUSE_GEN_ENABLE;
5604 else
5605 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5606 if (ep->rx_pause)
5607 val64 |= RMAC_PAUSE_RX_ENABLE;
5608 else
5609 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5610 writeq(val64, &bar0->rmac_pause_cfg);
5611 return 0;
5615 * read_eeprom - reads 4 bytes of data from user given offset.
5616 * @sp : private member of the device structure, which is a pointer to the
5617 * s2io_nic structure.
5618 * @off : offset at which the data must be written
5619 * @data : Its an output parameter where the data read at the given
5620 * offset is stored.
5621 * Description:
5622 * Will read 4 bytes of data from the user given offset and return the
5623 * read data.
5624 * NOTE: Will allow to read only part of the EEPROM visible through the
5625 * I2C bus.
5626 * Return value:
5627 * -1 on failure and 0 on success.
5630 #define S2IO_DEV_ID 5
5631 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5633 int ret = -1;
5634 u32 exit_cnt = 0;
5635 u64 val64;
5636 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5638 if (sp->device_type == XFRAME_I_DEVICE) {
5639 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5640 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5641 I2C_CONTROL_CNTL_START;
5642 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5644 while (exit_cnt < 5) {
5645 val64 = readq(&bar0->i2c_control);
5646 if (I2C_CONTROL_CNTL_END(val64)) {
5647 *data = I2C_CONTROL_GET_DATA(val64);
5648 ret = 0;
5649 break;
5651 msleep(50);
5652 exit_cnt++;
5656 if (sp->device_type == XFRAME_II_DEVICE) {
5657 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5658 SPI_CONTROL_BYTECNT(0x3) |
5659 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5660 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5661 val64 |= SPI_CONTROL_REQ;
5662 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5663 while (exit_cnt < 5) {
5664 val64 = readq(&bar0->spi_control);
5665 if (val64 & SPI_CONTROL_NACK) {
5666 ret = 1;
5667 break;
5668 } else if (val64 & SPI_CONTROL_DONE) {
5669 *data = readq(&bar0->spi_data);
5670 *data &= 0xffffff;
5671 ret = 0;
5672 break;
5674 msleep(50);
5675 exit_cnt++;
5678 return ret;
5682 * write_eeprom - actually writes the relevant part of the data value.
5683 * @sp : private member of the device structure, which is a pointer to the
5684 * s2io_nic structure.
5685 * @off : offset at which the data must be written
5686 * @data : The data that is to be written
5687 * @cnt : Number of bytes of the data that are actually to be written into
5688 * the Eeprom. (max of 3)
5689 * Description:
5690 * Actually writes the relevant part of the data value into the Eeprom
5691 * through the I2C bus.
5692 * Return value:
5693 * 0 on success, -1 on failure.
5696 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5698 int exit_cnt = 0, ret = -1;
5699 u64 val64;
5700 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5702 if (sp->device_type == XFRAME_I_DEVICE) {
5703 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5704 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5705 I2C_CONTROL_CNTL_START;
5706 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5708 while (exit_cnt < 5) {
5709 val64 = readq(&bar0->i2c_control);
5710 if (I2C_CONTROL_CNTL_END(val64)) {
5711 if (!(val64 & I2C_CONTROL_NACK))
5712 ret = 0;
5713 break;
5715 msleep(50);
5716 exit_cnt++;
5720 if (sp->device_type == XFRAME_II_DEVICE) {
5721 int write_cnt = (cnt == 8) ? 0 : cnt;
5722 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5724 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5725 SPI_CONTROL_BYTECNT(write_cnt) |
5726 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5727 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5728 val64 |= SPI_CONTROL_REQ;
5729 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5730 while (exit_cnt < 5) {
5731 val64 = readq(&bar0->spi_control);
5732 if (val64 & SPI_CONTROL_NACK) {
5733 ret = 1;
5734 break;
5735 } else if (val64 & SPI_CONTROL_DONE) {
5736 ret = 0;
5737 break;
5739 msleep(50);
5740 exit_cnt++;
5743 return ret;
5745 static void s2io_vpd_read(struct s2io_nic *nic)
5747 u8 *vpd_data;
5748 u8 data;
5749 int i=0, cnt, fail = 0;
5750 int vpd_addr = 0x80;
5752 if (nic->device_type == XFRAME_II_DEVICE) {
5753 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5754 vpd_addr = 0x80;
5756 else {
5757 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5758 vpd_addr = 0x50;
5760 strcpy(nic->serial_num, "NOT AVAILABLE");
5762 vpd_data = kmalloc(256, GFP_KERNEL);
5763 if (!vpd_data) {
5764 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5765 return;
5767 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5769 for (i = 0; i < 256; i +=4 ) {
5770 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5771 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5772 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5773 for (cnt = 0; cnt <5; cnt++) {
5774 msleep(2);
5775 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5776 if (data == 0x80)
5777 break;
5779 if (cnt >= 5) {
5780 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5781 fail = 1;
5782 break;
5784 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5785 (u32 *)&vpd_data[i]);
5788 if(!fail) {
5789 /* read serial number of adapter */
5790 for (cnt = 0; cnt < 256; cnt++) {
5791 if ((vpd_data[cnt] == 'S') &&
5792 (vpd_data[cnt+1] == 'N') &&
5793 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5794 memset(nic->serial_num, 0, VPD_STRING_LEN);
5795 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5796 vpd_data[cnt+2]);
5797 break;
5802 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5803 memset(nic->product_name, 0, vpd_data[1]);
5804 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5806 kfree(vpd_data);
5807 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5811 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5812 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5813 * @eeprom : pointer to the user level structure provided by ethtool,
5814 * containing all relevant information.
5815 * @data_buf : user defined value to be written into Eeprom.
5816 * Description: Reads the values stored in the Eeprom at given offset
5817 * for a given length. Stores these values int the input argument data
5818 * buffer 'data_buf' and returns these to the caller (ethtool.)
5819 * Return value:
5820 * int 0 on success
5823 static int s2io_ethtool_geeprom(struct net_device *dev,
5824 struct ethtool_eeprom *eeprom, u8 * data_buf)
5826 u32 i, valid;
5827 u64 data;
5828 struct s2io_nic *sp = dev->priv;
5830 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5832 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5833 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5835 for (i = 0; i < eeprom->len; i += 4) {
5836 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5837 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5838 return -EFAULT;
5840 valid = INV(data);
5841 memcpy((data_buf + i), &valid, 4);
5843 return 0;
5847 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5848 * @sp : private member of the device structure, which is a pointer to the
5849 * s2io_nic structure.
5850 * @eeprom : pointer to the user level structure provided by ethtool,
5851 * containing all relevant information.
5852 * @data_buf ; user defined value to be written into Eeprom.
5853 * Description:
5854 * Tries to write the user provided value in the Eeprom, at the offset
5855 * given by the user.
5856 * Return value:
5857 * 0 on success, -EFAULT on failure.
5860 static int s2io_ethtool_seeprom(struct net_device *dev,
5861 struct ethtool_eeprom *eeprom,
5862 u8 * data_buf)
5864 int len = eeprom->len, cnt = 0;
5865 u64 valid = 0, data;
5866 struct s2io_nic *sp = dev->priv;
5868 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5869 DBG_PRINT(ERR_DBG,
5870 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5871 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5872 eeprom->magic);
5873 return -EFAULT;
5876 while (len) {
5877 data = (u32) data_buf[cnt] & 0x000000FF;
5878 if (data) {
5879 valid = (u32) (data << 24);
5880 } else
5881 valid = data;
5883 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5884 DBG_PRINT(ERR_DBG,
5885 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5886 DBG_PRINT(ERR_DBG,
5887 "write into the specified offset\n");
5888 return -EFAULT;
5890 cnt++;
5891 len--;
5894 return 0;
5898 * s2io_register_test - reads and writes into all clock domains.
5899 * @sp : private member of the device structure, which is a pointer to the
5900 * s2io_nic structure.
5901 * @data : variable that returns the result of each of the test conducted b
5902 * by the driver.
5903 * Description:
5904 * Read and write into all clock domains. The NIC has 3 clock domains,
5905 * see that registers in all the three regions are accessible.
5906 * Return value:
5907 * 0 on success.
5910 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5912 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5913 u64 val64 = 0, exp_val;
5914 int fail = 0;
5916 val64 = readq(&bar0->pif_rd_swapper_fb);
5917 if (val64 != 0x123456789abcdefULL) {
5918 fail = 1;
5919 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5922 val64 = readq(&bar0->rmac_pause_cfg);
5923 if (val64 != 0xc000ffff00000000ULL) {
5924 fail = 1;
5925 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5928 val64 = readq(&bar0->rx_queue_cfg);
5929 if (sp->device_type == XFRAME_II_DEVICE)
5930 exp_val = 0x0404040404040404ULL;
5931 else
5932 exp_val = 0x0808080808080808ULL;
5933 if (val64 != exp_val) {
5934 fail = 1;
5935 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5938 val64 = readq(&bar0->xgxs_efifo_cfg);
5939 if (val64 != 0x000000001923141EULL) {
5940 fail = 1;
5941 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5944 val64 = 0x5A5A5A5A5A5A5A5AULL;
5945 writeq(val64, &bar0->xmsi_data);
5946 val64 = readq(&bar0->xmsi_data);
5947 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5948 fail = 1;
5949 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5952 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5953 writeq(val64, &bar0->xmsi_data);
5954 val64 = readq(&bar0->xmsi_data);
5955 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5956 fail = 1;
5957 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5960 *data = fail;
5961 return fail;
5965 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5966 * @sp : private member of the device structure, which is a pointer to the
5967 * s2io_nic structure.
5968 * @data:variable that returns the result of each of the test conducted by
5969 * the driver.
5970 * Description:
5971 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5972 * register.
5973 * Return value:
5974 * 0 on success.
5977 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5979 int fail = 0;
5980 u64 ret_data, org_4F0, org_7F0;
5981 u8 saved_4F0 = 0, saved_7F0 = 0;
5982 struct net_device *dev = sp->dev;
5984 /* Test Write Error at offset 0 */
5985 /* Note that SPI interface allows write access to all areas
5986 * of EEPROM. Hence doing all negative testing only for Xframe I.
5988 if (sp->device_type == XFRAME_I_DEVICE)
5989 if (!write_eeprom(sp, 0, 0, 3))
5990 fail = 1;
5992 /* Save current values at offsets 0x4F0 and 0x7F0 */
5993 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5994 saved_4F0 = 1;
5995 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5996 saved_7F0 = 1;
5998 /* Test Write at offset 4f0 */
5999 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6000 fail = 1;
6001 if (read_eeprom(sp, 0x4F0, &ret_data))
6002 fail = 1;
6004 if (ret_data != 0x012345) {
6005 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6006 "Data written %llx Data read %llx\n",
6007 dev->name, (unsigned long long)0x12345,
6008 (unsigned long long)ret_data);
6009 fail = 1;
6012 /* Reset the EEPROM data go FFFF */
6013 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6015 /* Test Write Request Error at offset 0x7c */
6016 if (sp->device_type == XFRAME_I_DEVICE)
6017 if (!write_eeprom(sp, 0x07C, 0, 3))
6018 fail = 1;
6020 /* Test Write Request at offset 0x7f0 */
6021 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6022 fail = 1;
6023 if (read_eeprom(sp, 0x7F0, &ret_data))
6024 fail = 1;
6026 if (ret_data != 0x012345) {
6027 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6028 "Data written %llx Data read %llx\n",
6029 dev->name, (unsigned long long)0x12345,
6030 (unsigned long long)ret_data);
6031 fail = 1;
6034 /* Reset the EEPROM data go FFFF */
6035 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6037 if (sp->device_type == XFRAME_I_DEVICE) {
6038 /* Test Write Error at offset 0x80 */
6039 if (!write_eeprom(sp, 0x080, 0, 3))
6040 fail = 1;
6042 /* Test Write Error at offset 0xfc */
6043 if (!write_eeprom(sp, 0x0FC, 0, 3))
6044 fail = 1;
6046 /* Test Write Error at offset 0x100 */
6047 if (!write_eeprom(sp, 0x100, 0, 3))
6048 fail = 1;
6050 /* Test Write Error at offset 4ec */
6051 if (!write_eeprom(sp, 0x4EC, 0, 3))
6052 fail = 1;
6055 /* Restore values at offsets 0x4F0 and 0x7F0 */
6056 if (saved_4F0)
6057 write_eeprom(sp, 0x4F0, org_4F0, 3);
6058 if (saved_7F0)
6059 write_eeprom(sp, 0x7F0, org_7F0, 3);
6061 *data = fail;
6062 return fail;
6066 * s2io_bist_test - invokes the MemBist test of the card .
6067 * @sp : private member of the device structure, which is a pointer to the
6068 * s2io_nic structure.
6069 * @data:variable that returns the result of each of the test conducted by
6070 * the driver.
6071 * Description:
6072 * This invokes the MemBist test of the card. We give around
6073 * 2 secs time for the Test to complete. If it's still not complete
6074 * within this peiod, we consider that the test failed.
6075 * Return value:
6076 * 0 on success and -1 on failure.
6079 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
6081 u8 bist = 0;
6082 int cnt = 0, ret = -1;
6084 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6085 bist |= PCI_BIST_START;
6086 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6088 while (cnt < 20) {
6089 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6090 if (!(bist & PCI_BIST_START)) {
6091 *data = (bist & PCI_BIST_CODE_MASK);
6092 ret = 0;
6093 break;
6095 msleep(100);
6096 cnt++;
6099 return ret;
6103 * s2io-link_test - verifies the link state of the nic
6104 * @sp ; private member of the device structure, which is a pointer to the
6105 * s2io_nic structure.
6106 * @data: variable that returns the result of each of the test conducted by
6107 * the driver.
6108 * Description:
6109 * The function verifies the link state of the NIC and updates the input
6110 * argument 'data' appropriately.
6111 * Return value:
6112 * 0 on success.
6115 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
6117 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6118 u64 val64;
6120 val64 = readq(&bar0->adapter_status);
6121 if(!(LINK_IS_UP(val64)))
6122 *data = 1;
6123 else
6124 *data = 0;
6126 return *data;
6130 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6131 * @sp - private member of the device structure, which is a pointer to the
6132 * s2io_nic structure.
6133 * @data - variable that returns the result of each of the test
6134 * conducted by the driver.
6135 * Description:
6136 * This is one of the offline test that tests the read and write
6137 * access to the RldRam chip on the NIC.
6138 * Return value:
6139 * 0 on success.
6142 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
6144 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6145 u64 val64;
6146 int cnt, iteration = 0, test_fail = 0;
6148 val64 = readq(&bar0->adapter_control);
6149 val64 &= ~ADAPTER_ECC_EN;
6150 writeq(val64, &bar0->adapter_control);
6152 val64 = readq(&bar0->mc_rldram_test_ctrl);
6153 val64 |= MC_RLDRAM_TEST_MODE;
6154 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6156 val64 = readq(&bar0->mc_rldram_mrs);
6157 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6158 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6160 val64 |= MC_RLDRAM_MRS_ENABLE;
6161 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6163 while (iteration < 2) {
6164 val64 = 0x55555555aaaa0000ULL;
6165 if (iteration == 1) {
6166 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6168 writeq(val64, &bar0->mc_rldram_test_d0);
6170 val64 = 0xaaaa5a5555550000ULL;
6171 if (iteration == 1) {
6172 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6174 writeq(val64, &bar0->mc_rldram_test_d1);
6176 val64 = 0x55aaaaaaaa5a0000ULL;
6177 if (iteration == 1) {
6178 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6180 writeq(val64, &bar0->mc_rldram_test_d2);
6182 val64 = (u64) (0x0000003ffffe0100ULL);
6183 writeq(val64, &bar0->mc_rldram_test_add);
6185 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6186 MC_RLDRAM_TEST_GO;
6187 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6189 for (cnt = 0; cnt < 5; cnt++) {
6190 val64 = readq(&bar0->mc_rldram_test_ctrl);
6191 if (val64 & MC_RLDRAM_TEST_DONE)
6192 break;
6193 msleep(200);
6196 if (cnt == 5)
6197 break;
6199 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6200 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6202 for (cnt = 0; cnt < 5; cnt++) {
6203 val64 = readq(&bar0->mc_rldram_test_ctrl);
6204 if (val64 & MC_RLDRAM_TEST_DONE)
6205 break;
6206 msleep(500);
6209 if (cnt == 5)
6210 break;
6212 val64 = readq(&bar0->mc_rldram_test_ctrl);
6213 if (!(val64 & MC_RLDRAM_TEST_PASS))
6214 test_fail = 1;
6216 iteration++;
6219 *data = test_fail;
6221 /* Bring the adapter out of test mode */
6222 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6224 return test_fail;
6228 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6229 * @sp : private member of the device structure, which is a pointer to the
6230 * s2io_nic structure.
6231 * @ethtest : pointer to a ethtool command specific structure that will be
6232 * returned to the user.
6233 * @data : variable that returns the result of each of the test
6234 * conducted by the driver.
6235 * Description:
6236 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6237 * the health of the card.
6238 * Return value:
6239 * void
6242 static void s2io_ethtool_test(struct net_device *dev,
6243 struct ethtool_test *ethtest,
6244 uint64_t * data)
6246 struct s2io_nic *sp = dev->priv;
6247 int orig_state = netif_running(sp->dev);
6249 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6250 /* Offline Tests. */
6251 if (orig_state)
6252 s2io_close(sp->dev);
6254 if (s2io_register_test(sp, &data[0]))
6255 ethtest->flags |= ETH_TEST_FL_FAILED;
6257 s2io_reset(sp);
6259 if (s2io_rldram_test(sp, &data[3]))
6260 ethtest->flags |= ETH_TEST_FL_FAILED;
6262 s2io_reset(sp);
6264 if (s2io_eeprom_test(sp, &data[1]))
6265 ethtest->flags |= ETH_TEST_FL_FAILED;
6267 if (s2io_bist_test(sp, &data[4]))
6268 ethtest->flags |= ETH_TEST_FL_FAILED;
6270 if (orig_state)
6271 s2io_open(sp->dev);
6273 data[2] = 0;
6274 } else {
6275 /* Online Tests. */
6276 if (!orig_state) {
6277 DBG_PRINT(ERR_DBG,
6278 "%s: is not up, cannot run test\n",
6279 dev->name);
6280 data[0] = -1;
6281 data[1] = -1;
6282 data[2] = -1;
6283 data[3] = -1;
6284 data[4] = -1;
6287 if (s2io_link_test(sp, &data[2]))
6288 ethtest->flags |= ETH_TEST_FL_FAILED;
6290 data[0] = 0;
6291 data[1] = 0;
6292 data[3] = 0;
6293 data[4] = 0;
6297 static void s2io_get_ethtool_stats(struct net_device *dev,
6298 struct ethtool_stats *estats,
6299 u64 * tmp_stats)
6301 int i = 0, k;
6302 struct s2io_nic *sp = dev->priv;
6303 struct stat_block *stat_info = sp->mac_control.stats_info;
6305 s2io_updt_stats(sp);
6306 tmp_stats[i++] =
6307 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6308 le32_to_cpu(stat_info->tmac_frms);
6309 tmp_stats[i++] =
6310 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6311 le32_to_cpu(stat_info->tmac_data_octets);
6312 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6313 tmp_stats[i++] =
6314 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6315 le32_to_cpu(stat_info->tmac_mcst_frms);
6316 tmp_stats[i++] =
6317 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6318 le32_to_cpu(stat_info->tmac_bcst_frms);
6319 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6320 tmp_stats[i++] =
6321 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6322 le32_to_cpu(stat_info->tmac_ttl_octets);
6323 tmp_stats[i++] =
6324 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6325 le32_to_cpu(stat_info->tmac_ucst_frms);
6326 tmp_stats[i++] =
6327 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6328 le32_to_cpu(stat_info->tmac_nucst_frms);
6329 tmp_stats[i++] =
6330 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6331 le32_to_cpu(stat_info->tmac_any_err_frms);
6332 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6333 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6334 tmp_stats[i++] =
6335 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6336 le32_to_cpu(stat_info->tmac_vld_ip);
6337 tmp_stats[i++] =
6338 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6339 le32_to_cpu(stat_info->tmac_drop_ip);
6340 tmp_stats[i++] =
6341 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6342 le32_to_cpu(stat_info->tmac_icmp);
6343 tmp_stats[i++] =
6344 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6345 le32_to_cpu(stat_info->tmac_rst_tcp);
6346 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6347 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6348 le32_to_cpu(stat_info->tmac_udp);
6349 tmp_stats[i++] =
6350 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6351 le32_to_cpu(stat_info->rmac_vld_frms);
6352 tmp_stats[i++] =
6353 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6354 le32_to_cpu(stat_info->rmac_data_octets);
6355 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6356 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6357 tmp_stats[i++] =
6358 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6359 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6360 tmp_stats[i++] =
6361 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6362 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6363 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6364 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6365 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6366 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6367 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6368 tmp_stats[i++] =
6369 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6370 le32_to_cpu(stat_info->rmac_ttl_octets);
6371 tmp_stats[i++] =
6372 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6373 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6374 tmp_stats[i++] =
6375 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6376 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6377 tmp_stats[i++] =
6378 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6379 le32_to_cpu(stat_info->rmac_discarded_frms);
6380 tmp_stats[i++] =
6381 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6382 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6383 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6384 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6385 tmp_stats[i++] =
6386 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6387 le32_to_cpu(stat_info->rmac_usized_frms);
6388 tmp_stats[i++] =
6389 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6390 le32_to_cpu(stat_info->rmac_osized_frms);
6391 tmp_stats[i++] =
6392 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6393 le32_to_cpu(stat_info->rmac_frag_frms);
6394 tmp_stats[i++] =
6395 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6396 le32_to_cpu(stat_info->rmac_jabber_frms);
6397 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6398 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6399 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6400 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6401 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6402 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6403 tmp_stats[i++] =
6404 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6405 le32_to_cpu(stat_info->rmac_ip);
6406 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6407 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6408 tmp_stats[i++] =
6409 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6410 le32_to_cpu(stat_info->rmac_drop_ip);
6411 tmp_stats[i++] =
6412 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6413 le32_to_cpu(stat_info->rmac_icmp);
6414 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6415 tmp_stats[i++] =
6416 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6417 le32_to_cpu(stat_info->rmac_udp);
6418 tmp_stats[i++] =
6419 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6420 le32_to_cpu(stat_info->rmac_err_drp_udp);
6421 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6422 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6423 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6424 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6425 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6426 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6427 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6428 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6429 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6430 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6431 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6432 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6433 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6434 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6435 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6436 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6437 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6438 tmp_stats[i++] =
6439 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6440 le32_to_cpu(stat_info->rmac_pause_cnt);
6441 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6442 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6443 tmp_stats[i++] =
6444 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6445 le32_to_cpu(stat_info->rmac_accepted_ip);
6446 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6447 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6448 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6449 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6450 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6451 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6452 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6453 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6454 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6455 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6456 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6457 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6458 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6459 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6460 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6461 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6462 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6463 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6464 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6466 /* Enhanced statistics exist only for Hercules */
6467 if(sp->device_type == XFRAME_II_DEVICE) {
6468 tmp_stats[i++] =
6469 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6470 tmp_stats[i++] =
6471 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6472 tmp_stats[i++] =
6473 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6474 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6475 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6476 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6477 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6478 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6479 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6480 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6481 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6482 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6483 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6484 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6485 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6486 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6489 tmp_stats[i++] = 0;
6490 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6491 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6492 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6493 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6494 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6495 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6496 for (k = 0; k < MAX_RX_RINGS; k++)
6497 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6498 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6499 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6500 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6501 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6502 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6503 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6504 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6505 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6506 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6507 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6508 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6509 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6510 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6511 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6512 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6513 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6514 if (stat_info->sw_stat.num_aggregations) {
6515 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6516 int count = 0;
6518 * Since 64-bit divide does not work on all platforms,
6519 * do repeated subtraction.
6521 while (tmp >= stat_info->sw_stat.num_aggregations) {
6522 tmp -= stat_info->sw_stat.num_aggregations;
6523 count++;
6525 tmp_stats[i++] = count;
6527 else
6528 tmp_stats[i++] = 0;
6529 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6530 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6531 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6532 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6533 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6534 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6535 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6536 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6537 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6539 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6540 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6541 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6542 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6543 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6545 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6546 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6547 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6548 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6549 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6550 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6551 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6552 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6553 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6554 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6555 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6556 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6557 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6558 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6559 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6560 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6561 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6562 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6563 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6564 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6565 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6566 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6567 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6568 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6569 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6570 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6573 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6575 return (XENA_REG_SPACE);
6579 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6581 struct s2io_nic *sp = dev->priv;
6583 return (sp->rx_csum);
6586 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6588 struct s2io_nic *sp = dev->priv;
6590 if (data)
6591 sp->rx_csum = 1;
6592 else
6593 sp->rx_csum = 0;
6595 return 0;
6598 static int s2io_get_eeprom_len(struct net_device *dev)
6600 return (XENA_EEPROM_SPACE);
6603 static int s2io_get_sset_count(struct net_device *dev, int sset)
6605 struct s2io_nic *sp = dev->priv;
6607 switch (sset) {
6608 case ETH_SS_TEST:
6609 return S2IO_TEST_LEN;
6610 case ETH_SS_STATS:
6611 switch(sp->device_type) {
6612 case XFRAME_I_DEVICE:
6613 return XFRAME_I_STAT_LEN;
6614 case XFRAME_II_DEVICE:
6615 return XFRAME_II_STAT_LEN;
6616 default:
6617 return 0;
6619 default:
6620 return -EOPNOTSUPP;
6624 static void s2io_ethtool_get_strings(struct net_device *dev,
6625 u32 stringset, u8 * data)
6627 int stat_size = 0;
6628 struct s2io_nic *sp = dev->priv;
6630 switch (stringset) {
6631 case ETH_SS_TEST:
6632 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6633 break;
6634 case ETH_SS_STATS:
6635 stat_size = sizeof(ethtool_xena_stats_keys);
6636 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6637 if(sp->device_type == XFRAME_II_DEVICE) {
6638 memcpy(data + stat_size,
6639 &ethtool_enhanced_stats_keys,
6640 sizeof(ethtool_enhanced_stats_keys));
6641 stat_size += sizeof(ethtool_enhanced_stats_keys);
6644 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6645 sizeof(ethtool_driver_stats_keys));
6649 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6651 if (data)
6652 dev->features |= NETIF_F_IP_CSUM;
6653 else
6654 dev->features &= ~NETIF_F_IP_CSUM;
6656 return 0;
6659 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6661 return (dev->features & NETIF_F_TSO) != 0;
6663 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6665 if (data)
6666 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6667 else
6668 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6670 return 0;
6673 static const struct ethtool_ops netdev_ethtool_ops = {
6674 .get_settings = s2io_ethtool_gset,
6675 .set_settings = s2io_ethtool_sset,
6676 .get_drvinfo = s2io_ethtool_gdrvinfo,
6677 .get_regs_len = s2io_ethtool_get_regs_len,
6678 .get_regs = s2io_ethtool_gregs,
6679 .get_link = ethtool_op_get_link,
6680 .get_eeprom_len = s2io_get_eeprom_len,
6681 .get_eeprom = s2io_ethtool_geeprom,
6682 .set_eeprom = s2io_ethtool_seeprom,
6683 .get_ringparam = s2io_ethtool_gringparam,
6684 .get_pauseparam = s2io_ethtool_getpause_data,
6685 .set_pauseparam = s2io_ethtool_setpause_data,
6686 .get_rx_csum = s2io_ethtool_get_rx_csum,
6687 .set_rx_csum = s2io_ethtool_set_rx_csum,
6688 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6689 .set_sg = ethtool_op_set_sg,
6690 .get_tso = s2io_ethtool_op_get_tso,
6691 .set_tso = s2io_ethtool_op_set_tso,
6692 .set_ufo = ethtool_op_set_ufo,
6693 .self_test = s2io_ethtool_test,
6694 .get_strings = s2io_ethtool_get_strings,
6695 .phys_id = s2io_ethtool_idnic,
6696 .get_ethtool_stats = s2io_get_ethtool_stats,
6697 .get_sset_count = s2io_get_sset_count,
6701 * s2io_ioctl - Entry point for the Ioctl
6702 * @dev : Device pointer.
6703 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6704 * a proprietary structure used to pass information to the driver.
6705 * @cmd : This is used to distinguish between the different commands that
6706 * can be passed to the IOCTL functions.
6707 * Description:
6708 * Currently there are no special functionality supported in IOCTL, hence
6709 * function always return EOPNOTSUPPORTED
6712 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6714 return -EOPNOTSUPP;
6718 * s2io_change_mtu - entry point to change MTU size for the device.
6719 * @dev : device pointer.
6720 * @new_mtu : the new MTU size for the device.
6721 * Description: A driver entry point to change MTU size for the device.
6722 * Before changing the MTU the device must be stopped.
6723 * Return value:
6724 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6725 * file on failure.
6728 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6730 struct s2io_nic *sp = dev->priv;
6731 int ret = 0;
6733 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6734 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6735 dev->name);
6736 return -EPERM;
6739 dev->mtu = new_mtu;
6740 if (netif_running(dev)) {
6741 s2io_stop_all_tx_queue(sp);
6742 s2io_card_down(sp);
6743 ret = s2io_card_up(sp);
6744 if (ret) {
6745 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6746 __func__);
6747 return ret;
6749 s2io_wake_all_tx_queue(sp);
6750 } else { /* Device is down */
6751 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6752 u64 val64 = new_mtu;
6754 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6757 return ret;
6761 * s2io_set_link - Set the LInk status
6762 * @data: long pointer to device private structue
6763 * Description: Sets the link status for the adapter
6766 static void s2io_set_link(struct work_struct *work)
6768 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6769 struct net_device *dev = nic->dev;
6770 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6771 register u64 val64;
6772 u16 subid;
6774 rtnl_lock();
6776 if (!netif_running(dev))
6777 goto out_unlock;
6779 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6780 /* The card is being reset, no point doing anything */
6781 goto out_unlock;
6784 subid = nic->pdev->subsystem_device;
6785 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6787 * Allow a small delay for the NICs self initiated
6788 * cleanup to complete.
6790 msleep(100);
6793 val64 = readq(&bar0->adapter_status);
6794 if (LINK_IS_UP(val64)) {
6795 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6796 if (verify_xena_quiescence(nic)) {
6797 val64 = readq(&bar0->adapter_control);
6798 val64 |= ADAPTER_CNTL_EN;
6799 writeq(val64, &bar0->adapter_control);
6800 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6801 nic->device_type, subid)) {
6802 val64 = readq(&bar0->gpio_control);
6803 val64 |= GPIO_CTRL_GPIO_0;
6804 writeq(val64, &bar0->gpio_control);
6805 val64 = readq(&bar0->gpio_control);
6806 } else {
6807 val64 |= ADAPTER_LED_ON;
6808 writeq(val64, &bar0->adapter_control);
6810 nic->device_enabled_once = TRUE;
6811 } else {
6812 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6813 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6814 s2io_stop_all_tx_queue(nic);
6817 val64 = readq(&bar0->adapter_control);
6818 val64 |= ADAPTER_LED_ON;
6819 writeq(val64, &bar0->adapter_control);
6820 s2io_link(nic, LINK_UP);
6821 } else {
6822 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6823 subid)) {
6824 val64 = readq(&bar0->gpio_control);
6825 val64 &= ~GPIO_CTRL_GPIO_0;
6826 writeq(val64, &bar0->gpio_control);
6827 val64 = readq(&bar0->gpio_control);
6829 /* turn off LED */
6830 val64 = readq(&bar0->adapter_control);
6831 val64 = val64 &(~ADAPTER_LED_ON);
6832 writeq(val64, &bar0->adapter_control);
6833 s2io_link(nic, LINK_DOWN);
6835 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6837 out_unlock:
6838 rtnl_unlock();
6841 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6842 struct buffAdd *ba,
6843 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6844 u64 *temp2, int size)
6846 struct net_device *dev = sp->dev;
6847 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6849 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6850 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6851 /* allocate skb */
6852 if (*skb) {
6853 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6855 * As Rx frame are not going to be processed,
6856 * using same mapped address for the Rxd
6857 * buffer pointer
6859 rxdp1->Buffer0_ptr = *temp0;
6860 } else {
6861 *skb = dev_alloc_skb(size);
6862 if (!(*skb)) {
6863 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6864 DBG_PRINT(INFO_DBG, "memory to allocate ");
6865 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6866 sp->mac_control.stats_info->sw_stat. \
6867 mem_alloc_fail_cnt++;
6868 return -ENOMEM ;
6870 sp->mac_control.stats_info->sw_stat.mem_allocated
6871 += (*skb)->truesize;
6872 /* storing the mapped addr in a temp variable
6873 * such it will be used for next rxd whose
6874 * Host Control is NULL
6876 rxdp1->Buffer0_ptr = *temp0 =
6877 pci_map_single( sp->pdev, (*skb)->data,
6878 size - NET_IP_ALIGN,
6879 PCI_DMA_FROMDEVICE);
6880 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6881 goto memalloc_failed;
6882 rxdp->Host_Control = (unsigned long) (*skb);
6884 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6885 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6886 /* Two buffer Mode */
6887 if (*skb) {
6888 rxdp3->Buffer2_ptr = *temp2;
6889 rxdp3->Buffer0_ptr = *temp0;
6890 rxdp3->Buffer1_ptr = *temp1;
6891 } else {
6892 *skb = dev_alloc_skb(size);
6893 if (!(*skb)) {
6894 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6895 DBG_PRINT(INFO_DBG, "memory to allocate ");
6896 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6897 sp->mac_control.stats_info->sw_stat. \
6898 mem_alloc_fail_cnt++;
6899 return -ENOMEM;
6901 sp->mac_control.stats_info->sw_stat.mem_allocated
6902 += (*skb)->truesize;
6903 rxdp3->Buffer2_ptr = *temp2 =
6904 pci_map_single(sp->pdev, (*skb)->data,
6905 dev->mtu + 4,
6906 PCI_DMA_FROMDEVICE);
6907 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6908 goto memalloc_failed;
6909 rxdp3->Buffer0_ptr = *temp0 =
6910 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6911 PCI_DMA_FROMDEVICE);
6912 if (pci_dma_mapping_error(sp->pdev,
6913 rxdp3->Buffer0_ptr)) {
6914 pci_unmap_single (sp->pdev,
6915 (dma_addr_t)rxdp3->Buffer2_ptr,
6916 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6917 goto memalloc_failed;
6919 rxdp->Host_Control = (unsigned long) (*skb);
6921 /* Buffer-1 will be dummy buffer not used */
6922 rxdp3->Buffer1_ptr = *temp1 =
6923 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6924 PCI_DMA_FROMDEVICE);
6925 if (pci_dma_mapping_error(sp->pdev,
6926 rxdp3->Buffer1_ptr)) {
6927 pci_unmap_single (sp->pdev,
6928 (dma_addr_t)rxdp3->Buffer0_ptr,
6929 BUF0_LEN, PCI_DMA_FROMDEVICE);
6930 pci_unmap_single (sp->pdev,
6931 (dma_addr_t)rxdp3->Buffer2_ptr,
6932 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6933 goto memalloc_failed;
6937 return 0;
6938 memalloc_failed:
6939 stats->pci_map_fail_cnt++;
6940 stats->mem_freed += (*skb)->truesize;
6941 dev_kfree_skb(*skb);
6942 return -ENOMEM;
6945 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6946 int size)
6948 struct net_device *dev = sp->dev;
6949 if (sp->rxd_mode == RXD_MODE_1) {
6950 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6951 } else if (sp->rxd_mode == RXD_MODE_3B) {
6952 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6953 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6954 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6958 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6960 int i, j, k, blk_cnt = 0, size;
6961 struct mac_info * mac_control = &sp->mac_control;
6962 struct config_param *config = &sp->config;
6963 struct net_device *dev = sp->dev;
6964 struct RxD_t *rxdp = NULL;
6965 struct sk_buff *skb = NULL;
6966 struct buffAdd *ba = NULL;
6967 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6969 /* Calculate the size based on ring mode */
6970 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6971 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6972 if (sp->rxd_mode == RXD_MODE_1)
6973 size += NET_IP_ALIGN;
6974 else if (sp->rxd_mode == RXD_MODE_3B)
6975 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6977 for (i = 0; i < config->rx_ring_num; i++) {
6978 blk_cnt = config->rx_cfg[i].num_rxd /
6979 (rxd_count[sp->rxd_mode] +1);
6981 for (j = 0; j < blk_cnt; j++) {
6982 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6983 rxdp = mac_control->rings[i].
6984 rx_blocks[j].rxds[k].virt_addr;
6985 if(sp->rxd_mode == RXD_MODE_3B)
6986 ba = &mac_control->rings[i].ba[j][k];
6987 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6988 &skb,(u64 *)&temp0_64,
6989 (u64 *)&temp1_64,
6990 (u64 *)&temp2_64,
6991 size) == -ENOMEM) {
6992 return 0;
6995 set_rxd_buffer_size(sp, rxdp, size);
6996 wmb();
6997 /* flip the Ownership bit to Hardware */
6998 rxdp->Control_1 |= RXD_OWN_XENA;
7002 return 0;
7006 static int s2io_add_isr(struct s2io_nic * sp)
7008 int ret = 0;
7009 struct net_device *dev = sp->dev;
7010 int err = 0;
7012 if (sp->config.intr_type == MSI_X)
7013 ret = s2io_enable_msi_x(sp);
7014 if (ret) {
7015 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7016 sp->config.intr_type = INTA;
7019 /* Store the values of the MSIX table in the struct s2io_nic structure */
7020 store_xmsi_data(sp);
7022 /* After proper initialization of H/W, register ISR */
7023 if (sp->config.intr_type == MSI_X) {
7024 int i, msix_rx_cnt = 0;
7026 for (i = 0; i < sp->num_entries; i++) {
7027 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7028 if (sp->s2io_entries[i].type ==
7029 MSIX_RING_TYPE) {
7030 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7031 dev->name, i);
7032 err = request_irq(sp->entries[i].vector,
7033 s2io_msix_ring_handle, 0,
7034 sp->desc[i],
7035 sp->s2io_entries[i].arg);
7036 } else if (sp->s2io_entries[i].type ==
7037 MSIX_ALARM_TYPE) {
7038 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7039 dev->name, i);
7040 err = request_irq(sp->entries[i].vector,
7041 s2io_msix_fifo_handle, 0,
7042 sp->desc[i],
7043 sp->s2io_entries[i].arg);
7046 /* if either data or addr is zero print it. */
7047 if (!(sp->msix_info[i].addr &&
7048 sp->msix_info[i].data)) {
7049 DBG_PRINT(ERR_DBG,
7050 "%s @Addr:0x%llx Data:0x%llx\n",
7051 sp->desc[i],
7052 (unsigned long long)
7053 sp->msix_info[i].addr,
7054 (unsigned long long)
7055 ntohl(sp->msix_info[i].data));
7056 } else
7057 msix_rx_cnt++;
7058 if (err) {
7059 remove_msix_isr(sp);
7061 DBG_PRINT(ERR_DBG,
7062 "%s:MSI-X-%d registration "
7063 "failed\n", dev->name, i);
7065 DBG_PRINT(ERR_DBG,
7066 "%s: Defaulting to INTA\n",
7067 dev->name);
7068 sp->config.intr_type = INTA;
7069 break;
7071 sp->s2io_entries[i].in_use =
7072 MSIX_REGISTERED_SUCCESS;
7075 if (!err) {
7076 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
7077 --msix_rx_cnt);
7078 DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled"
7079 " through alarm vector\n");
7082 if (sp->config.intr_type == INTA) {
7083 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7084 sp->name, dev);
7085 if (err) {
7086 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7087 dev->name);
7088 return -1;
7091 return 0;
7093 static void s2io_rem_isr(struct s2io_nic * sp)
7095 if (sp->config.intr_type == MSI_X)
7096 remove_msix_isr(sp);
7097 else
7098 remove_inta_isr(sp);
7101 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
7103 int cnt = 0;
7104 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7105 register u64 val64 = 0;
7106 struct config_param *config;
7107 config = &sp->config;
7109 if (!is_s2io_card_up(sp))
7110 return;
7112 del_timer_sync(&sp->alarm_timer);
7113 /* If s2io_set_link task is executing, wait till it completes. */
7114 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
7115 msleep(50);
7117 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7119 /* Disable napi */
7120 if (sp->config.napi) {
7121 int off = 0;
7122 if (config->intr_type == MSI_X) {
7123 for (; off < sp->config.rx_ring_num; off++)
7124 napi_disable(&sp->mac_control.rings[off].napi);
7126 else
7127 napi_disable(&sp->napi);
7130 /* disable Tx and Rx traffic on the NIC */
7131 if (do_io)
7132 stop_nic(sp);
7134 s2io_rem_isr(sp);
7136 /* stop the tx queue, indicate link down */
7137 s2io_link(sp, LINK_DOWN);
7139 /* Check if the device is Quiescent and then Reset the NIC */
7140 while(do_io) {
7141 /* As per the HW requirement we need to replenish the
7142 * receive buffer to avoid the ring bump. Since there is
7143 * no intention of processing the Rx frame at this pointwe are
7144 * just settting the ownership bit of rxd in Each Rx
7145 * ring to HW and set the appropriate buffer size
7146 * based on the ring mode
7148 rxd_owner_bit_reset(sp);
7150 val64 = readq(&bar0->adapter_status);
7151 if (verify_xena_quiescence(sp)) {
7152 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
7153 break;
7156 msleep(50);
7157 cnt++;
7158 if (cnt == 10) {
7159 DBG_PRINT(ERR_DBG,
7160 "s2io_close:Device not Quiescent ");
7161 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7162 (unsigned long long) val64);
7163 break;
7166 if (do_io)
7167 s2io_reset(sp);
7169 /* Free all Tx buffers */
7170 free_tx_buffers(sp);
7172 /* Free all Rx buffers */
7173 free_rx_buffers(sp);
7175 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7178 static void s2io_card_down(struct s2io_nic * sp)
7180 do_s2io_card_down(sp, 1);
7183 static int s2io_card_up(struct s2io_nic * sp)
7185 int i, ret = 0;
7186 struct mac_info *mac_control;
7187 struct config_param *config;
7188 struct net_device *dev = (struct net_device *) sp->dev;
7189 u16 interruptible;
7191 /* Initialize the H/W I/O registers */
7192 ret = init_nic(sp);
7193 if (ret != 0) {
7194 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7195 dev->name);
7196 if (ret != -EIO)
7197 s2io_reset(sp);
7198 return ret;
7202 * Initializing the Rx buffers. For now we are considering only 1
7203 * Rx ring and initializing buffers into 30 Rx blocks
7205 mac_control = &sp->mac_control;
7206 config = &sp->config;
7208 for (i = 0; i < config->rx_ring_num; i++) {
7209 mac_control->rings[i].mtu = dev->mtu;
7210 ret = fill_rx_buffers(sp, &mac_control->rings[i], 1);
7211 if (ret) {
7212 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7213 dev->name);
7214 s2io_reset(sp);
7215 free_rx_buffers(sp);
7216 return -ENOMEM;
7218 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7219 mac_control->rings[i].rx_bufs_left);
7222 /* Initialise napi */
7223 if (config->napi) {
7224 int i;
7225 if (config->intr_type == MSI_X) {
7226 for (i = 0; i < sp->config.rx_ring_num; i++)
7227 napi_enable(&sp->mac_control.rings[i].napi);
7228 } else {
7229 napi_enable(&sp->napi);
7233 /* Maintain the state prior to the open */
7234 if (sp->promisc_flg)
7235 sp->promisc_flg = 0;
7236 if (sp->m_cast_flg) {
7237 sp->m_cast_flg = 0;
7238 sp->all_multi_pos= 0;
7241 /* Setting its receive mode */
7242 s2io_set_multicast(dev);
7244 if (sp->lro) {
7245 /* Initialize max aggregatable pkts per session based on MTU */
7246 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7247 /* Check if we can use(if specified) user provided value */
7248 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7249 sp->lro_max_aggr_per_sess = lro_max_pkts;
7252 /* Enable Rx Traffic and interrupts on the NIC */
7253 if (start_nic(sp)) {
7254 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7255 s2io_reset(sp);
7256 free_rx_buffers(sp);
7257 return -ENODEV;
7260 /* Add interrupt service routine */
7261 if (s2io_add_isr(sp) != 0) {
7262 if (sp->config.intr_type == MSI_X)
7263 s2io_rem_isr(sp);
7264 s2io_reset(sp);
7265 free_rx_buffers(sp);
7266 return -ENODEV;
7269 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7271 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7273 /* Enable select interrupts */
7274 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7275 if (sp->config.intr_type != INTA) {
7276 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7277 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7278 } else {
7279 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7280 interruptible |= TX_PIC_INTR;
7281 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7284 return 0;
7288 * s2io_restart_nic - Resets the NIC.
7289 * @data : long pointer to the device private structure
7290 * Description:
7291 * This function is scheduled to be run by the s2io_tx_watchdog
7292 * function after 0.5 secs to reset the NIC. The idea is to reduce
7293 * the run time of the watch dog routine which is run holding a
7294 * spin lock.
7297 static void s2io_restart_nic(struct work_struct *work)
7299 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7300 struct net_device *dev = sp->dev;
7302 rtnl_lock();
7304 if (!netif_running(dev))
7305 goto out_unlock;
7307 s2io_card_down(sp);
7308 if (s2io_card_up(sp)) {
7309 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7310 dev->name);
7312 s2io_wake_all_tx_queue(sp);
7313 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7314 dev->name);
7315 out_unlock:
7316 rtnl_unlock();
7320 * s2io_tx_watchdog - Watchdog for transmit side.
7321 * @dev : Pointer to net device structure
7322 * Description:
7323 * This function is triggered if the Tx Queue is stopped
7324 * for a pre-defined amount of time when the Interface is still up.
7325 * If the Interface is jammed in such a situation, the hardware is
7326 * reset (by s2io_close) and restarted again (by s2io_open) to
7327 * overcome any problem that might have been caused in the hardware.
7328 * Return value:
7329 * void
7332 static void s2io_tx_watchdog(struct net_device *dev)
7334 struct s2io_nic *sp = dev->priv;
7336 if (netif_carrier_ok(dev)) {
7337 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7338 schedule_work(&sp->rst_timer_task);
7339 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7344 * rx_osm_handler - To perform some OS related operations on SKB.
7345 * @sp: private member of the device structure,pointer to s2io_nic structure.
7346 * @skb : the socket buffer pointer.
7347 * @len : length of the packet
7348 * @cksum : FCS checksum of the frame.
7349 * @ring_no : the ring from which this RxD was extracted.
7350 * Description:
7351 * This function is called by the Rx interrupt serivce routine to perform
7352 * some OS related operations on the SKB before passing it to the upper
7353 * layers. It mainly checks if the checksum is OK, if so adds it to the
7354 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7355 * to the upper layer. If the checksum is wrong, it increments the Rx
7356 * packet error count, frees the SKB and returns error.
7357 * Return value:
7358 * SUCCESS on success and -1 on failure.
7360 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7362 struct s2io_nic *sp = ring_data->nic;
7363 struct net_device *dev = (struct net_device *) ring_data->dev;
7364 struct sk_buff *skb = (struct sk_buff *)
7365 ((unsigned long) rxdp->Host_Control);
7366 int ring_no = ring_data->ring_no;
7367 u16 l3_csum, l4_csum;
7368 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7369 struct lro *lro;
7370 u8 err_mask;
7372 skb->dev = dev;
7374 if (err) {
7375 /* Check for parity error */
7376 if (err & 0x1) {
7377 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7379 err_mask = err >> 48;
7380 switch(err_mask) {
7381 case 1:
7382 sp->mac_control.stats_info->sw_stat.
7383 rx_parity_err_cnt++;
7384 break;
7386 case 2:
7387 sp->mac_control.stats_info->sw_stat.
7388 rx_abort_cnt++;
7389 break;
7391 case 3:
7392 sp->mac_control.stats_info->sw_stat.
7393 rx_parity_abort_cnt++;
7394 break;
7396 case 4:
7397 sp->mac_control.stats_info->sw_stat.
7398 rx_rda_fail_cnt++;
7399 break;
7401 case 5:
7402 sp->mac_control.stats_info->sw_stat.
7403 rx_unkn_prot_cnt++;
7404 break;
7406 case 6:
7407 sp->mac_control.stats_info->sw_stat.
7408 rx_fcs_err_cnt++;
7409 break;
7411 case 7:
7412 sp->mac_control.stats_info->sw_stat.
7413 rx_buf_size_err_cnt++;
7414 break;
7416 case 8:
7417 sp->mac_control.stats_info->sw_stat.
7418 rx_rxd_corrupt_cnt++;
7419 break;
7421 case 15:
7422 sp->mac_control.stats_info->sw_stat.
7423 rx_unkn_err_cnt++;
7424 break;
7427 * Drop the packet if bad transfer code. Exception being
7428 * 0x5, which could be due to unsupported IPv6 extension header.
7429 * In this case, we let stack handle the packet.
7430 * Note that in this case, since checksum will be incorrect,
7431 * stack will validate the same.
7433 if (err_mask != 0x5) {
7434 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7435 dev->name, err_mask);
7436 dev->stats.rx_crc_errors++;
7437 sp->mac_control.stats_info->sw_stat.mem_freed
7438 += skb->truesize;
7439 dev_kfree_skb(skb);
7440 ring_data->rx_bufs_left -= 1;
7441 rxdp->Host_Control = 0;
7442 return 0;
7446 /* Updating statistics */
7447 ring_data->rx_packets++;
7448 rxdp->Host_Control = 0;
7449 if (sp->rxd_mode == RXD_MODE_1) {
7450 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7452 ring_data->rx_bytes += len;
7453 skb_put(skb, len);
7455 } else if (sp->rxd_mode == RXD_MODE_3B) {
7456 int get_block = ring_data->rx_curr_get_info.block_index;
7457 int get_off = ring_data->rx_curr_get_info.offset;
7458 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7459 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7460 unsigned char *buff = skb_push(skb, buf0_len);
7462 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7463 ring_data->rx_bytes += buf0_len + buf2_len;
7464 memcpy(buff, ba->ba_0, buf0_len);
7465 skb_put(skb, buf2_len);
7468 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) ||
7469 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7470 (sp->rx_csum)) {
7471 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7472 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7473 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7475 * NIC verifies if the Checksum of the received
7476 * frame is Ok or not and accordingly returns
7477 * a flag in the RxD.
7479 skb->ip_summed = CHECKSUM_UNNECESSARY;
7480 if (ring_data->lro) {
7481 u32 tcp_len;
7482 u8 *tcp;
7483 int ret = 0;
7485 ret = s2io_club_tcp_session(ring_data,
7486 skb->data, &tcp, &tcp_len, &lro,
7487 rxdp, sp);
7488 switch (ret) {
7489 case 3: /* Begin anew */
7490 lro->parent = skb;
7491 goto aggregate;
7492 case 1: /* Aggregate */
7494 lro_append_pkt(sp, lro,
7495 skb, tcp_len);
7496 goto aggregate;
7498 case 4: /* Flush session */
7500 lro_append_pkt(sp, lro,
7501 skb, tcp_len);
7502 queue_rx_frame(lro->parent,
7503 lro->vlan_tag);
7504 clear_lro_session(lro);
7505 sp->mac_control.stats_info->
7506 sw_stat.flush_max_pkts++;
7507 goto aggregate;
7509 case 2: /* Flush both */
7510 lro->parent->data_len =
7511 lro->frags_len;
7512 sp->mac_control.stats_info->
7513 sw_stat.sending_both++;
7514 queue_rx_frame(lro->parent,
7515 lro->vlan_tag);
7516 clear_lro_session(lro);
7517 goto send_up;
7518 case 0: /* sessions exceeded */
7519 case -1: /* non-TCP or not
7520 * L2 aggregatable
7522 case 5: /*
7523 * First pkt in session not
7524 * L3/L4 aggregatable
7526 break;
7527 default:
7528 DBG_PRINT(ERR_DBG,
7529 "%s: Samadhana!!\n",
7530 __func__);
7531 BUG();
7534 } else {
7536 * Packet with erroneous checksum, let the
7537 * upper layers deal with it.
7539 skb->ip_summed = CHECKSUM_NONE;
7541 } else
7542 skb->ip_summed = CHECKSUM_NONE;
7544 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7545 send_up:
7546 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7547 dev->last_rx = jiffies;
7548 aggregate:
7549 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7550 return SUCCESS;
7554 * s2io_link - stops/starts the Tx queue.
7555 * @sp : private member of the device structure, which is a pointer to the
7556 * s2io_nic structure.
7557 * @link : inidicates whether link is UP/DOWN.
7558 * Description:
7559 * This function stops/starts the Tx queue depending on whether the link
7560 * status of the NIC is is down or up. This is called by the Alarm
7561 * interrupt handler whenever a link change interrupt comes up.
7562 * Return value:
7563 * void.
7566 static void s2io_link(struct s2io_nic * sp, int link)
7568 struct net_device *dev = (struct net_device *) sp->dev;
7570 if (link != sp->last_link_state) {
7571 init_tti(sp, link);
7572 if (link == LINK_DOWN) {
7573 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7574 s2io_stop_all_tx_queue(sp);
7575 netif_carrier_off(dev);
7576 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7577 sp->mac_control.stats_info->sw_stat.link_up_time =
7578 jiffies - sp->start_time;
7579 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7580 } else {
7581 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7582 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7583 sp->mac_control.stats_info->sw_stat.link_down_time =
7584 jiffies - sp->start_time;
7585 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7586 netif_carrier_on(dev);
7587 s2io_wake_all_tx_queue(sp);
7590 sp->last_link_state = link;
7591 sp->start_time = jiffies;
7595 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7596 * @sp : private member of the device structure, which is a pointer to the
7597 * s2io_nic structure.
7598 * Description:
7599 * This function initializes a few of the PCI and PCI-X configuration registers
7600 * with recommended values.
7601 * Return value:
7602 * void
7605 static void s2io_init_pci(struct s2io_nic * sp)
7607 u16 pci_cmd = 0, pcix_cmd = 0;
7609 /* Enable Data Parity Error Recovery in PCI-X command register. */
7610 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7611 &(pcix_cmd));
7612 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7613 (pcix_cmd | 1));
7614 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7615 &(pcix_cmd));
7617 /* Set the PErr Response bit in PCI command register. */
7618 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7619 pci_write_config_word(sp->pdev, PCI_COMMAND,
7620 (pci_cmd | PCI_COMMAND_PARITY));
7621 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7624 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7625 u8 *dev_multiq)
7627 if ((tx_fifo_num > MAX_TX_FIFOS) ||
7628 (tx_fifo_num < 1)) {
7629 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7630 "(%d) not supported\n", tx_fifo_num);
7632 if (tx_fifo_num < 1)
7633 tx_fifo_num = 1;
7634 else
7635 tx_fifo_num = MAX_TX_FIFOS;
7637 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7638 DBG_PRINT(ERR_DBG, "tx fifos\n");
7641 if (multiq)
7642 *dev_multiq = multiq;
7644 if (tx_steering_type && (1 == tx_fifo_num)) {
7645 if (tx_steering_type != TX_DEFAULT_STEERING)
7646 DBG_PRINT(ERR_DBG,
7647 "s2io: Tx steering is not supported with "
7648 "one fifo. Disabling Tx steering.\n");
7649 tx_steering_type = NO_STEERING;
7652 if ((tx_steering_type < NO_STEERING) ||
7653 (tx_steering_type > TX_DEFAULT_STEERING)) {
7654 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7655 "supported\n");
7656 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7657 tx_steering_type = NO_STEERING;
7660 if (rx_ring_num > MAX_RX_RINGS) {
7661 DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not "
7662 "supported\n");
7663 DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
7664 MAX_RX_RINGS);
7665 rx_ring_num = MAX_RX_RINGS;
7668 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7669 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7670 "Defaulting to INTA\n");
7671 *dev_intr_type = INTA;
7674 if ((*dev_intr_type == MSI_X) &&
7675 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7676 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7677 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7678 "Defaulting to INTA\n");
7679 *dev_intr_type = INTA;
7682 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7683 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7684 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7685 rx_ring_mode = 1;
7687 return SUCCESS;
7691 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7692 * or Traffic class respectively.
7693 * @nic: device private variable
7694 * Description: The function configures the receive steering to
7695 * desired receive ring.
7696 * Return Value: SUCCESS on success and
7697 * '-1' on failure (endian settings incorrect).
7699 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7701 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7702 register u64 val64 = 0;
7704 if (ds_codepoint > 63)
7705 return FAILURE;
7707 val64 = RTS_DS_MEM_DATA(ring);
7708 writeq(val64, &bar0->rts_ds_mem_data);
7710 val64 = RTS_DS_MEM_CTRL_WE |
7711 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7712 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7714 writeq(val64, &bar0->rts_ds_mem_ctrl);
7716 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7717 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7718 S2IO_BIT_RESET);
7722 * s2io_init_nic - Initialization of the adapter .
7723 * @pdev : structure containing the PCI related information of the device.
7724 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7725 * Description:
7726 * The function initializes an adapter identified by the pci_dec structure.
7727 * All OS related initialization including memory and device structure and
7728 * initlaization of the device private variable is done. Also the swapper
7729 * control register is initialized to enable read and write into the I/O
7730 * registers of the device.
7731 * Return value:
7732 * returns 0 on success and negative on failure.
7735 static int __devinit
7736 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7738 struct s2io_nic *sp;
7739 struct net_device *dev;
7740 int i, j, ret;
7741 int dma_flag = FALSE;
7742 u32 mac_up, mac_down;
7743 u64 val64 = 0, tmp64 = 0;
7744 struct XENA_dev_config __iomem *bar0 = NULL;
7745 u16 subid;
7746 struct mac_info *mac_control;
7747 struct config_param *config;
7748 int mode;
7749 u8 dev_intr_type = intr_type;
7750 u8 dev_multiq = 0;
7752 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7753 if (ret)
7754 return ret;
7756 if ((ret = pci_enable_device(pdev))) {
7757 DBG_PRINT(ERR_DBG,
7758 "s2io_init_nic: pci_enable_device failed\n");
7759 return ret;
7762 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7763 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7764 dma_flag = TRUE;
7765 if (pci_set_consistent_dma_mask
7766 (pdev, DMA_64BIT_MASK)) {
7767 DBG_PRINT(ERR_DBG,
7768 "Unable to obtain 64bit DMA for \
7769 consistent allocations\n");
7770 pci_disable_device(pdev);
7771 return -ENOMEM;
7773 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7774 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7775 } else {
7776 pci_disable_device(pdev);
7777 return -ENOMEM;
7779 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7780 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __func__, ret);
7781 pci_disable_device(pdev);
7782 return -ENODEV;
7784 if (dev_multiq)
7785 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7786 else
7787 dev = alloc_etherdev(sizeof(struct s2io_nic));
7788 if (dev == NULL) {
7789 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7790 pci_disable_device(pdev);
7791 pci_release_regions(pdev);
7792 return -ENODEV;
7795 pci_set_master(pdev);
7796 pci_set_drvdata(pdev, dev);
7797 SET_NETDEV_DEV(dev, &pdev->dev);
7799 /* Private member variable initialized to s2io NIC structure */
7800 sp = dev->priv;
7801 memset(sp, 0, sizeof(struct s2io_nic));
7802 sp->dev = dev;
7803 sp->pdev = pdev;
7804 sp->high_dma_flag = dma_flag;
7805 sp->device_enabled_once = FALSE;
7806 if (rx_ring_mode == 1)
7807 sp->rxd_mode = RXD_MODE_1;
7808 if (rx_ring_mode == 2)
7809 sp->rxd_mode = RXD_MODE_3B;
7811 sp->config.intr_type = dev_intr_type;
7813 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7814 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7815 sp->device_type = XFRAME_II_DEVICE;
7816 else
7817 sp->device_type = XFRAME_I_DEVICE;
7819 sp->lro = lro_enable;
7821 /* Initialize some PCI/PCI-X fields of the NIC. */
7822 s2io_init_pci(sp);
7825 * Setting the device configuration parameters.
7826 * Most of these parameters can be specified by the user during
7827 * module insertion as they are module loadable parameters. If
7828 * these parameters are not not specified during load time, they
7829 * are initialized with default values.
7831 mac_control = &sp->mac_control;
7832 config = &sp->config;
7834 config->napi = napi;
7835 config->tx_steering_type = tx_steering_type;
7837 /* Tx side parameters. */
7838 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7839 config->tx_fifo_num = MAX_TX_FIFOS;
7840 else
7841 config->tx_fifo_num = tx_fifo_num;
7843 /* Initialize the fifos used for tx steering */
7844 if (config->tx_fifo_num < 5) {
7845 if (config->tx_fifo_num == 1)
7846 sp->total_tcp_fifos = 1;
7847 else
7848 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7849 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7850 sp->total_udp_fifos = 1;
7851 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7852 } else {
7853 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7854 FIFO_OTHER_MAX_NUM);
7855 sp->udp_fifo_idx = sp->total_tcp_fifos;
7856 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7857 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7860 config->multiq = dev_multiq;
7861 for (i = 0; i < config->tx_fifo_num; i++) {
7862 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7863 config->tx_cfg[i].fifo_priority = i;
7866 /* mapping the QoS priority to the configured fifos */
7867 for (i = 0; i < MAX_TX_FIFOS; i++)
7868 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7870 /* map the hashing selector table to the configured fifos */
7871 for (i = 0; i < config->tx_fifo_num; i++)
7872 sp->fifo_selector[i] = fifo_selector[i];
7875 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7876 for (i = 0; i < config->tx_fifo_num; i++) {
7877 config->tx_cfg[i].f_no_snoop =
7878 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7879 if (config->tx_cfg[i].fifo_len < 65) {
7880 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7881 break;
7884 /* + 2 because one Txd for skb->data and one Txd for UFO */
7885 config->max_txds = MAX_SKB_FRAGS + 2;
7887 /* Rx side parameters. */
7888 config->rx_ring_num = rx_ring_num;
7889 for (i = 0; i < config->rx_ring_num; i++) {
7890 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7891 (rxd_count[sp->rxd_mode] + 1);
7892 config->rx_cfg[i].ring_priority = i;
7893 mac_control->rings[i].rx_bufs_left = 0;
7894 mac_control->rings[i].rxd_mode = sp->rxd_mode;
7895 mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode];
7896 mac_control->rings[i].pdev = sp->pdev;
7897 mac_control->rings[i].dev = sp->dev;
7900 for (i = 0; i < rx_ring_num; i++) {
7901 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7902 config->rx_cfg[i].f_no_snoop =
7903 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7906 /* Setting Mac Control parameters */
7907 mac_control->rmac_pause_time = rmac_pause_time;
7908 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7909 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7912 /* initialize the shared memory used by the NIC and the host */
7913 if (init_shared_mem(sp)) {
7914 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7915 dev->name);
7916 ret = -ENOMEM;
7917 goto mem_alloc_failed;
7920 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7921 pci_resource_len(pdev, 0));
7922 if (!sp->bar0) {
7923 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7924 dev->name);
7925 ret = -ENOMEM;
7926 goto bar0_remap_failed;
7929 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7930 pci_resource_len(pdev, 2));
7931 if (!sp->bar1) {
7932 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7933 dev->name);
7934 ret = -ENOMEM;
7935 goto bar1_remap_failed;
7938 dev->irq = pdev->irq;
7939 dev->base_addr = (unsigned long) sp->bar0;
7941 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7942 for (j = 0; j < MAX_TX_FIFOS; j++) {
7943 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7944 (sp->bar1 + (j * 0x00020000));
7947 /* Driver entry points */
7948 dev->open = &s2io_open;
7949 dev->stop = &s2io_close;
7950 dev->hard_start_xmit = &s2io_xmit;
7951 dev->get_stats = &s2io_get_stats;
7952 dev->set_multicast_list = &s2io_set_multicast;
7953 dev->do_ioctl = &s2io_ioctl;
7954 dev->set_mac_address = &s2io_set_mac_addr;
7955 dev->change_mtu = &s2io_change_mtu;
7956 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7957 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7958 dev->vlan_rx_register = s2io_vlan_rx_register;
7959 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
7962 * will use eth_mac_addr() for dev->set_mac_address
7963 * mac address will be set every time dev->open() is called
7965 #ifdef CONFIG_NET_POLL_CONTROLLER
7966 dev->poll_controller = s2io_netpoll;
7967 #endif
7969 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7970 if (sp->high_dma_flag == TRUE)
7971 dev->features |= NETIF_F_HIGHDMA;
7972 dev->features |= NETIF_F_TSO;
7973 dev->features |= NETIF_F_TSO6;
7974 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7975 dev->features |= NETIF_F_UFO;
7976 dev->features |= NETIF_F_HW_CSUM;
7978 dev->tx_timeout = &s2io_tx_watchdog;
7979 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7980 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7981 INIT_WORK(&sp->set_link_task, s2io_set_link);
7983 pci_save_state(sp->pdev);
7985 /* Setting swapper control on the NIC, for proper reset operation */
7986 if (s2io_set_swapper(sp)) {
7987 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7988 dev->name);
7989 ret = -EAGAIN;
7990 goto set_swap_failed;
7993 /* Verify if the Herc works on the slot its placed into */
7994 if (sp->device_type & XFRAME_II_DEVICE) {
7995 mode = s2io_verify_pci_mode(sp);
7996 if (mode < 0) {
7997 DBG_PRINT(ERR_DBG, "%s: ", __func__);
7998 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7999 ret = -EBADSLT;
8000 goto set_swap_failed;
8004 if (sp->config.intr_type == MSI_X) {
8005 sp->num_entries = config->rx_ring_num + 1;
8006 ret = s2io_enable_msi_x(sp);
8008 if (!ret) {
8009 ret = s2io_test_msi(sp);
8010 /* rollback MSI-X, will re-enable during add_isr() */
8011 remove_msix_isr(sp);
8013 if (ret) {
8015 DBG_PRINT(ERR_DBG,
8016 "%s: MSI-X requested but failed to enable\n",
8017 dev->name);
8018 sp->config.intr_type = INTA;
8022 if (config->intr_type == MSI_X) {
8023 for (i = 0; i < config->rx_ring_num ; i++)
8024 netif_napi_add(dev, &mac_control->rings[i].napi,
8025 s2io_poll_msix, 64);
8026 } else {
8027 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8030 /* Not needed for Herc */
8031 if (sp->device_type & XFRAME_I_DEVICE) {
8033 * Fix for all "FFs" MAC address problems observed on
8034 * Alpha platforms
8036 fix_mac_address(sp);
8037 s2io_reset(sp);
8041 * MAC address initialization.
8042 * For now only one mac address will be read and used.
8044 bar0 = sp->bar0;
8045 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8046 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8047 writeq(val64, &bar0->rmac_addr_cmd_mem);
8048 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8049 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
8050 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8051 mac_down = (u32) tmp64;
8052 mac_up = (u32) (tmp64 >> 32);
8054 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8055 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8056 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8057 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8058 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8059 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8061 /* Set the factory defined MAC address initially */
8062 dev->addr_len = ETH_ALEN;
8063 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8064 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8066 /* initialize number of multicast & unicast MAC entries variables */
8067 if (sp->device_type == XFRAME_I_DEVICE) {
8068 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8069 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8070 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8071 } else if (sp->device_type == XFRAME_II_DEVICE) {
8072 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8073 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8074 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8077 /* store mac addresses from CAM to s2io_nic structure */
8078 do_s2io_store_unicast_mc(sp);
8080 /* Configure MSIX vector for number of rings configured plus one */
8081 if ((sp->device_type == XFRAME_II_DEVICE) &&
8082 (config->intr_type == MSI_X))
8083 sp->num_entries = config->rx_ring_num + 1;
8085 /* Store the values of the MSIX table in the s2io_nic structure */
8086 store_xmsi_data(sp);
8087 /* reset Nic and bring it to known state */
8088 s2io_reset(sp);
8091 * Initialize link state flags
8092 * and the card state parameter
8094 sp->state = 0;
8096 /* Initialize spinlocks */
8097 for (i = 0; i < sp->config.tx_fifo_num; i++)
8098 spin_lock_init(&mac_control->fifos[i].tx_lock);
8101 * SXE-002: Configure link and activity LED to init state
8102 * on driver load.
8104 subid = sp->pdev->subsystem_device;
8105 if ((subid & 0xFF) >= 0x07) {
8106 val64 = readq(&bar0->gpio_control);
8107 val64 |= 0x0000800000000000ULL;
8108 writeq(val64, &bar0->gpio_control);
8109 val64 = 0x0411040400000000ULL;
8110 writeq(val64, (void __iomem *) bar0 + 0x2700);
8111 val64 = readq(&bar0->gpio_control);
8114 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8116 if (register_netdev(dev)) {
8117 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8118 ret = -ENODEV;
8119 goto register_failed;
8121 s2io_vpd_read(sp);
8122 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8123 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
8124 sp->product_name, pdev->revision);
8125 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8126 s2io_driver_version);
8127 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %pM\n", dev->name, dev->dev_addr);
8128 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
8129 if (sp->device_type & XFRAME_II_DEVICE) {
8130 mode = s2io_print_pci_mode(sp);
8131 if (mode < 0) {
8132 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8133 ret = -EBADSLT;
8134 unregister_netdev(dev);
8135 goto set_swap_failed;
8138 switch(sp->rxd_mode) {
8139 case RXD_MODE_1:
8140 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8141 dev->name);
8142 break;
8143 case RXD_MODE_3B:
8144 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8145 dev->name);
8146 break;
8149 switch (sp->config.napi) {
8150 case 0:
8151 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8152 break;
8153 case 1:
8154 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8155 break;
8158 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8159 sp->config.tx_fifo_num);
8161 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8162 sp->config.rx_ring_num);
8164 switch(sp->config.intr_type) {
8165 case INTA:
8166 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8167 break;
8168 case MSI_X:
8169 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8170 break;
8172 if (sp->config.multiq) {
8173 for (i = 0; i < sp->config.tx_fifo_num; i++)
8174 mac_control->fifos[i].multiq = config->multiq;
8175 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8176 dev->name);
8177 } else
8178 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8179 dev->name);
8181 switch (sp->config.tx_steering_type) {
8182 case NO_STEERING:
8183 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8184 " transmit\n", dev->name);
8185 break;
8186 case TX_PRIORITY_STEERING:
8187 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8188 " transmit\n", dev->name);
8189 break;
8190 case TX_DEFAULT_STEERING:
8191 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8192 " transmit\n", dev->name);
8195 if (sp->lro)
8196 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8197 dev->name);
8198 if (ufo)
8199 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8200 " enabled\n", dev->name);
8201 /* Initialize device name */
8202 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8204 if (vlan_tag_strip)
8205 sp->vlan_strip_flag = 1;
8206 else
8207 sp->vlan_strip_flag = 0;
8210 * Make Link state as off at this point, when the Link change
8211 * interrupt comes the state will be automatically changed to
8212 * the right state.
8214 netif_carrier_off(dev);
8216 return 0;
8218 register_failed:
8219 set_swap_failed:
8220 iounmap(sp->bar1);
8221 bar1_remap_failed:
8222 iounmap(sp->bar0);
8223 bar0_remap_failed:
8224 mem_alloc_failed:
8225 free_shared_mem(sp);
8226 pci_disable_device(pdev);
8227 pci_release_regions(pdev);
8228 pci_set_drvdata(pdev, NULL);
8229 free_netdev(dev);
8231 return ret;
8235 * s2io_rem_nic - Free the PCI device
8236 * @pdev: structure containing the PCI related information of the device.
8237 * Description: This function is called by the Pci subsystem to release a
8238 * PCI device and free up all resource held up by the device. This could
8239 * be in response to a Hot plug event or when the driver is to be removed
8240 * from memory.
8243 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8245 struct net_device *dev =
8246 (struct net_device *) pci_get_drvdata(pdev);
8247 struct s2io_nic *sp;
8249 if (dev == NULL) {
8250 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8251 return;
8254 flush_scheduled_work();
8256 sp = dev->priv;
8257 unregister_netdev(dev);
8259 free_shared_mem(sp);
8260 iounmap(sp->bar0);
8261 iounmap(sp->bar1);
8262 pci_release_regions(pdev);
8263 pci_set_drvdata(pdev, NULL);
8264 free_netdev(dev);
8265 pci_disable_device(pdev);
8269 * s2io_starter - Entry point for the driver
8270 * Description: This function is the entry point for the driver. It verifies
8271 * the module loadable parameters and initializes PCI configuration space.
8274 static int __init s2io_starter(void)
8276 return pci_register_driver(&s2io_driver);
8280 * s2io_closer - Cleanup routine for the driver
8281 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8284 static __exit void s2io_closer(void)
8286 pci_unregister_driver(&s2io_driver);
8287 DBG_PRINT(INIT_DBG, "cleanup done\n");
8290 module_init(s2io_starter);
8291 module_exit(s2io_closer);
8293 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8294 struct tcphdr **tcp, struct RxD_t *rxdp,
8295 struct s2io_nic *sp)
8297 int ip_off;
8298 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8300 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8301 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8302 __func__);
8303 return -1;
8306 /* Checking for DIX type or DIX type with VLAN */
8307 if ((l2_type == 0)
8308 || (l2_type == 4)) {
8309 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8311 * If vlan stripping is disabled and the frame is VLAN tagged,
8312 * shift the offset by the VLAN header size bytes.
8314 if ((!sp->vlan_strip_flag) &&
8315 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8316 ip_off += HEADER_VLAN_SIZE;
8317 } else {
8318 /* LLC, SNAP etc are considered non-mergeable */
8319 return -1;
8322 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8323 ip_len = (u8)((*ip)->ihl);
8324 ip_len <<= 2;
8325 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8327 return 0;
8330 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8331 struct tcphdr *tcp)
8333 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8334 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8335 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8336 return -1;
8337 return 0;
8340 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8342 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8345 static void initiate_new_session(struct lro *lro, u8 *l2h,
8346 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
8348 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8349 lro->l2h = l2h;
8350 lro->iph = ip;
8351 lro->tcph = tcp;
8352 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8353 lro->tcp_ack = tcp->ack_seq;
8354 lro->sg_num = 1;
8355 lro->total_len = ntohs(ip->tot_len);
8356 lro->frags_len = 0;
8357 lro->vlan_tag = vlan_tag;
8359 * check if we saw TCP timestamp. Other consistency checks have
8360 * already been done.
8362 if (tcp->doff == 8) {
8363 __be32 *ptr;
8364 ptr = (__be32 *)(tcp+1);
8365 lro->saw_ts = 1;
8366 lro->cur_tsval = ntohl(*(ptr+1));
8367 lro->cur_tsecr = *(ptr+2);
8369 lro->in_use = 1;
8372 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8374 struct iphdr *ip = lro->iph;
8375 struct tcphdr *tcp = lro->tcph;
8376 __sum16 nchk;
8377 struct stat_block *statinfo = sp->mac_control.stats_info;
8378 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8380 /* Update L3 header */
8381 ip->tot_len = htons(lro->total_len);
8382 ip->check = 0;
8383 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8384 ip->check = nchk;
8386 /* Update L4 header */
8387 tcp->ack_seq = lro->tcp_ack;
8388 tcp->window = lro->window;
8390 /* Update tsecr field if this session has timestamps enabled */
8391 if (lro->saw_ts) {
8392 __be32 *ptr = (__be32 *)(tcp + 1);
8393 *(ptr+2) = lro->cur_tsecr;
8396 /* Update counters required for calculation of
8397 * average no. of packets aggregated.
8399 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8400 statinfo->sw_stat.num_aggregations++;
8403 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8404 struct tcphdr *tcp, u32 l4_pyld)
8406 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8407 lro->total_len += l4_pyld;
8408 lro->frags_len += l4_pyld;
8409 lro->tcp_next_seq += l4_pyld;
8410 lro->sg_num++;
8412 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8413 lro->tcp_ack = tcp->ack_seq;
8414 lro->window = tcp->window;
8416 if (lro->saw_ts) {
8417 __be32 *ptr;
8418 /* Update tsecr and tsval from this packet */
8419 ptr = (__be32 *)(tcp+1);
8420 lro->cur_tsval = ntohl(*(ptr+1));
8421 lro->cur_tsecr = *(ptr + 2);
8425 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8426 struct tcphdr *tcp, u32 tcp_pyld_len)
8428 u8 *ptr;
8430 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8432 if (!tcp_pyld_len) {
8433 /* Runt frame or a pure ack */
8434 return -1;
8437 if (ip->ihl != 5) /* IP has options */
8438 return -1;
8440 /* If we see CE codepoint in IP header, packet is not mergeable */
8441 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8442 return -1;
8444 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8445 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8446 tcp->ece || tcp->cwr || !tcp->ack) {
8448 * Currently recognize only the ack control word and
8449 * any other control field being set would result in
8450 * flushing the LRO session
8452 return -1;
8456 * Allow only one TCP timestamp option. Don't aggregate if
8457 * any other options are detected.
8459 if (tcp->doff != 5 && tcp->doff != 8)
8460 return -1;
8462 if (tcp->doff == 8) {
8463 ptr = (u8 *)(tcp + 1);
8464 while (*ptr == TCPOPT_NOP)
8465 ptr++;
8466 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8467 return -1;
8469 /* Ensure timestamp value increases monotonically */
8470 if (l_lro)
8471 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8472 return -1;
8474 /* timestamp echo reply should be non-zero */
8475 if (*((__be32 *)(ptr+6)) == 0)
8476 return -1;
8479 return 0;
8482 static int
8483 s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp,
8484 u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp,
8485 struct s2io_nic *sp)
8487 struct iphdr *ip;
8488 struct tcphdr *tcph;
8489 int ret = 0, i;
8490 u16 vlan_tag = 0;
8492 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8493 rxdp, sp))) {
8494 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8495 ip->saddr, ip->daddr);
8496 } else
8497 return ret;
8499 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8500 tcph = (struct tcphdr *)*tcp;
8501 *tcp_len = get_l4_pyld_length(ip, tcph);
8502 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8503 struct lro *l_lro = &ring_data->lro0_n[i];
8504 if (l_lro->in_use) {
8505 if (check_for_socket_match(l_lro, ip, tcph))
8506 continue;
8507 /* Sock pair matched */
8508 *lro = l_lro;
8510 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8511 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8512 "0x%x, actual 0x%x\n", __func__,
8513 (*lro)->tcp_next_seq,
8514 ntohl(tcph->seq));
8516 sp->mac_control.stats_info->
8517 sw_stat.outof_sequence_pkts++;
8518 ret = 2;
8519 break;
8522 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8523 ret = 1; /* Aggregate */
8524 else
8525 ret = 2; /* Flush both */
8526 break;
8530 if (ret == 0) {
8531 /* Before searching for available LRO objects,
8532 * check if the pkt is L3/L4 aggregatable. If not
8533 * don't create new LRO session. Just send this
8534 * packet up.
8536 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8537 return 5;
8540 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8541 struct lro *l_lro = &ring_data->lro0_n[i];
8542 if (!(l_lro->in_use)) {
8543 *lro = l_lro;
8544 ret = 3; /* Begin anew */
8545 break;
8550 if (ret == 0) { /* sessions exceeded */
8551 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8552 __func__);
8553 *lro = NULL;
8554 return ret;
8557 switch (ret) {
8558 case 3:
8559 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8560 vlan_tag);
8561 break;
8562 case 2:
8563 update_L3L4_header(sp, *lro);
8564 break;
8565 case 1:
8566 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8567 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8568 update_L3L4_header(sp, *lro);
8569 ret = 4; /* Flush the LRO */
8571 break;
8572 default:
8573 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8574 __func__);
8575 break;
8578 return ret;
8581 static void clear_lro_session(struct lro *lro)
8583 static u16 lro_struct_size = sizeof(struct lro);
8585 memset(lro, 0, lro_struct_size);
8588 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8590 struct net_device *dev = skb->dev;
8591 struct s2io_nic *sp = dev->priv;
8593 skb->protocol = eth_type_trans(skb, dev);
8594 if (sp->vlgrp && vlan_tag
8595 && (sp->vlan_strip_flag)) {
8596 /* Queueing the vlan frame to the upper layer */
8597 if (sp->config.napi)
8598 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8599 else
8600 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8601 } else {
8602 if (sp->config.napi)
8603 netif_receive_skb(skb);
8604 else
8605 netif_rx(skb);
8609 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8610 struct sk_buff *skb,
8611 u32 tcp_len)
8613 struct sk_buff *first = lro->parent;
8615 first->len += tcp_len;
8616 first->data_len = lro->frags_len;
8617 skb_pull(skb, (skb->len - tcp_len));
8618 if (skb_shinfo(first)->frag_list)
8619 lro->last_frag->next = skb;
8620 else
8621 skb_shinfo(first)->frag_list = skb;
8622 first->truesize += skb->truesize;
8623 lro->last_frag = skb;
8624 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8625 return;
8629 * s2io_io_error_detected - called when PCI error is detected
8630 * @pdev: Pointer to PCI device
8631 * @state: The current pci connection state
8633 * This function is called after a PCI bus error affecting
8634 * this device has been detected.
8636 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8637 pci_channel_state_t state)
8639 struct net_device *netdev = pci_get_drvdata(pdev);
8640 struct s2io_nic *sp = netdev->priv;
8642 netif_device_detach(netdev);
8644 if (netif_running(netdev)) {
8645 /* Bring down the card, while avoiding PCI I/O */
8646 do_s2io_card_down(sp, 0);
8648 pci_disable_device(pdev);
8650 return PCI_ERS_RESULT_NEED_RESET;
8654 * s2io_io_slot_reset - called after the pci bus has been reset.
8655 * @pdev: Pointer to PCI device
8657 * Restart the card from scratch, as if from a cold-boot.
8658 * At this point, the card has exprienced a hard reset,
8659 * followed by fixups by BIOS, and has its config space
8660 * set up identically to what it was at cold boot.
8662 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8664 struct net_device *netdev = pci_get_drvdata(pdev);
8665 struct s2io_nic *sp = netdev->priv;
8667 if (pci_enable_device(pdev)) {
8668 printk(KERN_ERR "s2io: "
8669 "Cannot re-enable PCI device after reset.\n");
8670 return PCI_ERS_RESULT_DISCONNECT;
8673 pci_set_master(pdev);
8674 s2io_reset(sp);
8676 return PCI_ERS_RESULT_RECOVERED;
8680 * s2io_io_resume - called when traffic can start flowing again.
8681 * @pdev: Pointer to PCI device
8683 * This callback is called when the error recovery driver tells
8684 * us that its OK to resume normal operation.
8686 static void s2io_io_resume(struct pci_dev *pdev)
8688 struct net_device *netdev = pci_get_drvdata(pdev);
8689 struct s2io_nic *sp = netdev->priv;
8691 if (netif_running(netdev)) {
8692 if (s2io_card_up(sp)) {
8693 printk(KERN_ERR "s2io: "
8694 "Can't bring device back up after reset.\n");
8695 return;
8698 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8699 s2io_card_down(sp);
8700 printk(KERN_ERR "s2io: "
8701 "Can't resetore mac addr after reset.\n");
8702 return;
8706 netif_device_attach(netdev);
8707 netif_tx_wake_all_queues(netdev);