[CPUFREQ] powernow-k8: get drv data for correct CPU
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / cpu / cpufreq / powernow-k8.c
blob20c7b99d7ba852276da5e1228617c5054a5af37e
2 /*
3 * (c) 2003-2006 Advanced Micro Devices, Inc.
4 * Your use of this code is subject to the terms and conditions of the
5 * GNU general public license version 2. See "COPYING" or
6 * http://www.gnu.org/licenses/gpl.html
8 * Support : mark.langsdorf@amd.com
10 * Based on the powernow-k7.c module written by Dave Jones.
11 * (C) 2003 Dave Jones on behalf of SuSE Labs
12 * (C) 2004 Dominik Brodowski <linux@brodo.de>
13 * (C) 2004 Pavel Machek <pavel@suse.cz>
14 * Licensed under the terms of the GNU GPL License version 2.
15 * Based upon datasheets & sample CPUs kindly provided by AMD.
17 * Valuable input gratefully received from Dave Jones, Pavel Machek,
18 * Dominik Brodowski, Jacob Shin, and others.
19 * Originally developed by Paul Devriendt.
20 * Processor information obtained from Chapter 9 (Power and Thermal Management)
21 * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
22 * Opteron Processors" available for download from www.amd.com
24 * Tables for specific CPUs can be inferred from
25 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
28 #include <linux/kernel.h>
29 #include <linux/smp.h>
30 #include <linux/module.h>
31 #include <linux/init.h>
32 #include <linux/cpufreq.h>
33 #include <linux/slab.h>
34 #include <linux/string.h>
35 #include <linux/cpumask.h>
36 #include <linux/sched.h> /* for current / set_cpus_allowed() */
37 #include <linux/io.h>
38 #include <linux/delay.h>
40 #include <asm/msr.h>
42 #include <linux/acpi.h>
43 #include <linux/mutex.h>
44 #include <acpi/processor.h>
46 #define PFX "powernow-k8: "
47 #define VERSION "version 2.20.00"
48 #include "powernow-k8.h"
50 /* serialize freq changes */
51 static DEFINE_MUTEX(fidvid_mutex);
53 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
55 static int cpu_family = CPU_OPTERON;
57 #ifndef CONFIG_SMP
58 static inline const struct cpumask *cpu_core_mask(int cpu)
60 return cpumask_of(0);
62 #endif
64 /* Return a frequency in MHz, given an input fid */
65 static u32 find_freq_from_fid(u32 fid)
67 return 800 + (fid * 100);
70 /* Return a frequency in KHz, given an input fid */
71 static u32 find_khz_freq_from_fid(u32 fid)
73 return 1000 * find_freq_from_fid(fid);
76 static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
77 u32 pstate)
79 return data[pstate].frequency;
82 /* Return the vco fid for an input fid
84 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
85 * only from corresponding high fids. This returns "high" fid corresponding to
86 * "low" one.
88 static u32 convert_fid_to_vco_fid(u32 fid)
90 if (fid < HI_FID_TABLE_BOTTOM)
91 return 8 + (2 * fid);
92 else
93 return fid;
97 * Return 1 if the pending bit is set. Unless we just instructed the processor
98 * to transition to a new state, seeing this bit set is really bad news.
100 static int pending_bit_stuck(void)
102 u32 lo, hi;
104 if (cpu_family == CPU_HW_PSTATE)
105 return 0;
107 rdmsr(MSR_FIDVID_STATUS, lo, hi);
108 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
112 * Update the global current fid / vid values from the status msr.
113 * Returns 1 on error.
115 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
117 u32 lo, hi;
118 u32 i = 0;
120 if (cpu_family == CPU_HW_PSTATE) {
121 rdmsr(MSR_PSTATE_STATUS, lo, hi);
122 i = lo & HW_PSTATE_MASK;
123 data->currpstate = i;
126 * a workaround for family 11h erratum 311 might cause
127 * an "out-of-range Pstate if the core is in Pstate-0
129 if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
130 data->currpstate = HW_PSTATE_0;
132 return 0;
134 do {
135 if (i++ > 10000) {
136 dprintk("detected change pending stuck\n");
137 return 1;
139 rdmsr(MSR_FIDVID_STATUS, lo, hi);
140 } while (lo & MSR_S_LO_CHANGE_PENDING);
142 data->currvid = hi & MSR_S_HI_CURRENT_VID;
143 data->currfid = lo & MSR_S_LO_CURRENT_FID;
145 return 0;
148 /* the isochronous relief time */
149 static void count_off_irt(struct powernow_k8_data *data)
151 udelay((1 << data->irt) * 10);
152 return;
155 /* the voltage stabilization time */
156 static void count_off_vst(struct powernow_k8_data *data)
158 udelay(data->vstable * VST_UNITS_20US);
159 return;
162 /* need to init the control msr to a safe value (for each cpu) */
163 static void fidvid_msr_init(void)
165 u32 lo, hi;
166 u8 fid, vid;
168 rdmsr(MSR_FIDVID_STATUS, lo, hi);
169 vid = hi & MSR_S_HI_CURRENT_VID;
170 fid = lo & MSR_S_LO_CURRENT_FID;
171 lo = fid | (vid << MSR_C_LO_VID_SHIFT);
172 hi = MSR_C_HI_STP_GNT_BENIGN;
173 dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
174 wrmsr(MSR_FIDVID_CTL, lo, hi);
177 /* write the new fid value along with the other control fields to the msr */
178 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
180 u32 lo;
181 u32 savevid = data->currvid;
182 u32 i = 0;
184 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
185 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
186 return 1;
189 lo = fid;
190 lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
191 lo |= MSR_C_LO_INIT_FID_VID;
193 dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
194 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
196 do {
197 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
198 if (i++ > 100) {
199 printk(KERN_ERR PFX
200 "Hardware error - pending bit very stuck - "
201 "no further pstate changes possible\n");
202 return 1;
204 } while (query_current_values_with_pending_wait(data));
206 count_off_irt(data);
208 if (savevid != data->currvid) {
209 printk(KERN_ERR PFX
210 "vid change on fid trans, old 0x%x, new 0x%x\n",
211 savevid, data->currvid);
212 return 1;
215 if (fid != data->currfid) {
216 printk(KERN_ERR PFX
217 "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
218 data->currfid);
219 return 1;
222 return 0;
225 /* Write a new vid to the hardware */
226 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
228 u32 lo;
229 u32 savefid = data->currfid;
230 int i = 0;
232 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
233 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
234 return 1;
237 lo = data->currfid;
238 lo |= (vid << MSR_C_LO_VID_SHIFT);
239 lo |= MSR_C_LO_INIT_FID_VID;
241 dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
242 vid, lo, STOP_GRANT_5NS);
244 do {
245 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
246 if (i++ > 100) {
247 printk(KERN_ERR PFX "internal error - pending bit "
248 "very stuck - no further pstate "
249 "changes possible\n");
250 return 1;
252 } while (query_current_values_with_pending_wait(data));
254 if (savefid != data->currfid) {
255 printk(KERN_ERR PFX "fid changed on vid trans, old "
256 "0x%x new 0x%x\n",
257 savefid, data->currfid);
258 return 1;
261 if (vid != data->currvid) {
262 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
263 "curr 0x%x\n",
264 vid, data->currvid);
265 return 1;
268 return 0;
272 * Reduce the vid by the max of step or reqvid.
273 * Decreasing vid codes represent increasing voltages:
274 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
276 static int decrease_vid_code_by_step(struct powernow_k8_data *data,
277 u32 reqvid, u32 step)
279 if ((data->currvid - reqvid) > step)
280 reqvid = data->currvid - step;
282 if (write_new_vid(data, reqvid))
283 return 1;
285 count_off_vst(data);
287 return 0;
290 /* Change hardware pstate by single MSR write */
291 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
293 wrmsr(MSR_PSTATE_CTRL, pstate, 0);
294 data->currpstate = pstate;
295 return 0;
298 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
299 static int transition_fid_vid(struct powernow_k8_data *data,
300 u32 reqfid, u32 reqvid)
302 if (core_voltage_pre_transition(data, reqvid))
303 return 1;
305 if (core_frequency_transition(data, reqfid))
306 return 1;
308 if (core_voltage_post_transition(data, reqvid))
309 return 1;
311 if (query_current_values_with_pending_wait(data))
312 return 1;
314 if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
315 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
316 "curr 0x%x 0x%x\n",
317 smp_processor_id(),
318 reqfid, reqvid, data->currfid, data->currvid);
319 return 1;
322 dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
323 smp_processor_id(), data->currfid, data->currvid);
325 return 0;
328 /* Phase 1 - core voltage transition ... setup voltage */
329 static int core_voltage_pre_transition(struct powernow_k8_data *data,
330 u32 reqvid)
332 u32 rvosteps = data->rvo;
333 u32 savefid = data->currfid;
334 u32 maxvid, lo;
336 dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
337 "reqvid 0x%x, rvo 0x%x\n",
338 smp_processor_id(),
339 data->currfid, data->currvid, reqvid, data->rvo);
341 rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
342 maxvid = 0x1f & (maxvid >> 16);
343 dprintk("ph1 maxvid=0x%x\n", maxvid);
344 if (reqvid < maxvid) /* lower numbers are higher voltages */
345 reqvid = maxvid;
347 while (data->currvid > reqvid) {
348 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
349 data->currvid, reqvid);
350 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
351 return 1;
354 while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) {
355 if (data->currvid == maxvid) {
356 rvosteps = 0;
357 } else {
358 dprintk("ph1: changing vid for rvo, req 0x%x\n",
359 data->currvid - 1);
360 if (decrease_vid_code_by_step(data, data->currvid-1, 1))
361 return 1;
362 rvosteps--;
366 if (query_current_values_with_pending_wait(data))
367 return 1;
369 if (savefid != data->currfid) {
370 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
371 data->currfid);
372 return 1;
375 dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
376 data->currfid, data->currvid);
378 return 0;
381 /* Phase 2 - core frequency transition */
382 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
384 u32 vcoreqfid, vcocurrfid, vcofiddiff;
385 u32 fid_interval, savevid = data->currvid;
387 if ((reqfid < HI_FID_TABLE_BOTTOM) &&
388 (data->currfid < HI_FID_TABLE_BOTTOM)) {
389 printk(KERN_ERR PFX "ph2: illegal lo-lo transition "
390 "0x%x 0x%x\n", reqfid, data->currfid);
391 return 1;
394 if (data->currfid == reqfid) {
395 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
396 data->currfid);
397 return 0;
400 dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
401 "reqfid 0x%x\n",
402 smp_processor_id(),
403 data->currfid, data->currvid, reqfid);
405 vcoreqfid = convert_fid_to_vco_fid(reqfid);
406 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
407 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
408 : vcoreqfid - vcocurrfid;
410 while (vcofiddiff > 2) {
411 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
413 if (reqfid > data->currfid) {
414 if (data->currfid > LO_FID_TABLE_TOP) {
415 if (write_new_fid(data,
416 data->currfid + fid_interval))
417 return 1;
418 } else {
419 if (write_new_fid
420 (data,
421 2 + convert_fid_to_vco_fid(data->currfid)))
422 return 1;
424 } else {
425 if (write_new_fid(data, data->currfid - fid_interval))
426 return 1;
429 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
430 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
431 : vcoreqfid - vcocurrfid;
434 if (write_new_fid(data, reqfid))
435 return 1;
437 if (query_current_values_with_pending_wait(data))
438 return 1;
440 if (data->currfid != reqfid) {
441 printk(KERN_ERR PFX
442 "ph2: mismatch, failed fid transition, "
443 "curr 0x%x, req 0x%x\n",
444 data->currfid, reqfid);
445 return 1;
448 if (savevid != data->currvid) {
449 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
450 savevid, data->currvid);
451 return 1;
454 dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
455 data->currfid, data->currvid);
457 return 0;
460 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
461 static int core_voltage_post_transition(struct powernow_k8_data *data,
462 u32 reqvid)
464 u32 savefid = data->currfid;
465 u32 savereqvid = reqvid;
467 dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
468 smp_processor_id(),
469 data->currfid, data->currvid);
471 if (reqvid != data->currvid) {
472 if (write_new_vid(data, reqvid))
473 return 1;
475 if (savefid != data->currfid) {
476 printk(KERN_ERR PFX
477 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
478 savefid, data->currfid);
479 return 1;
482 if (data->currvid != reqvid) {
483 printk(KERN_ERR PFX
484 "ph3: failed vid transition\n, "
485 "req 0x%x, curr 0x%x",
486 reqvid, data->currvid);
487 return 1;
491 if (query_current_values_with_pending_wait(data))
492 return 1;
494 if (savereqvid != data->currvid) {
495 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
496 return 1;
499 if (savefid != data->currfid) {
500 dprintk("ph3 failed, currfid changed 0x%x\n",
501 data->currfid);
502 return 1;
505 dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
506 data->currfid, data->currvid);
508 return 0;
511 static int check_supported_cpu(unsigned int cpu)
513 cpumask_t oldmask;
514 u32 eax, ebx, ecx, edx;
515 unsigned int rc = 0;
517 oldmask = current->cpus_allowed;
518 set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
520 if (smp_processor_id() != cpu) {
521 printk(KERN_ERR PFX "limiting to cpu %u failed\n", cpu);
522 goto out;
525 if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
526 goto out;
528 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
529 if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
530 ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
531 goto out;
533 if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
534 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
535 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
536 printk(KERN_INFO PFX
537 "Processor cpuid %x not supported\n", eax);
538 goto out;
541 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
542 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
543 printk(KERN_INFO PFX
544 "No frequency change capabilities detected\n");
545 goto out;
548 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
549 if ((edx & P_STATE_TRANSITION_CAPABLE)
550 != P_STATE_TRANSITION_CAPABLE) {
551 printk(KERN_INFO PFX
552 "Power state transitions not supported\n");
553 goto out;
555 } else { /* must be a HW Pstate capable processor */
556 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
557 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
558 cpu_family = CPU_HW_PSTATE;
559 else
560 goto out;
563 rc = 1;
565 out:
566 set_cpus_allowed_ptr(current, &oldmask);
567 return rc;
570 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
571 u8 maxvid)
573 unsigned int j;
574 u8 lastfid = 0xff;
576 for (j = 0; j < data->numps; j++) {
577 if (pst[j].vid > LEAST_VID) {
578 printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
579 j, pst[j].vid);
580 return -EINVAL;
582 if (pst[j].vid < data->rvo) {
583 /* vid + rvo >= 0 */
584 printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
585 " %d\n", j);
586 return -ENODEV;
588 if (pst[j].vid < maxvid + data->rvo) {
589 /* vid + rvo >= maxvid */
590 printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
591 " %d\n", j);
592 return -ENODEV;
594 if (pst[j].fid > MAX_FID) {
595 printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
596 " %d\n", j);
597 return -ENODEV;
599 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
600 /* Only first fid is allowed to be in "low" range */
601 printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
602 "0x%x\n", j, pst[j].fid);
603 return -EINVAL;
605 if (pst[j].fid < lastfid)
606 lastfid = pst[j].fid;
608 if (lastfid & 1) {
609 printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
610 return -EINVAL;
612 if (lastfid > LO_FID_TABLE_TOP)
613 printk(KERN_INFO FW_BUG PFX
614 "first fid not from lo freq table\n");
616 return 0;
619 static void invalidate_entry(struct powernow_k8_data *data, unsigned int entry)
621 data->powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
624 static void print_basics(struct powernow_k8_data *data)
626 int j;
627 for (j = 0; j < data->numps; j++) {
628 if (data->powernow_table[j].frequency !=
629 CPUFREQ_ENTRY_INVALID) {
630 if (cpu_family == CPU_HW_PSTATE) {
631 printk(KERN_INFO PFX
632 " %d : pstate %d (%d MHz)\n", j,
633 data->powernow_table[j].index,
634 data->powernow_table[j].frequency/1000);
635 } else {
636 printk(KERN_INFO PFX
637 " %d : fid 0x%x (%d MHz), vid 0x%x\n",
639 data->powernow_table[j].index & 0xff,
640 data->powernow_table[j].frequency/1000,
641 data->powernow_table[j].index >> 8);
645 if (data->batps)
646 printk(KERN_INFO PFX "Only %d pstates on battery\n",
647 data->batps);
650 static u32 freq_from_fid_did(u32 fid, u32 did)
652 u32 mhz = 0;
654 if (boot_cpu_data.x86 == 0x10)
655 mhz = (100 * (fid + 0x10)) >> did;
656 else if (boot_cpu_data.x86 == 0x11)
657 mhz = (100 * (fid + 8)) >> did;
658 else
659 BUG();
661 return mhz * 1000;
664 static int fill_powernow_table(struct powernow_k8_data *data,
665 struct pst_s *pst, u8 maxvid)
667 struct cpufreq_frequency_table *powernow_table;
668 unsigned int j;
670 if (data->batps) {
671 /* use ACPI support to get full speed on mains power */
672 printk(KERN_WARNING PFX
673 "Only %d pstates usable (use ACPI driver for full "
674 "range\n", data->batps);
675 data->numps = data->batps;
678 for (j = 1; j < data->numps; j++) {
679 if (pst[j-1].fid >= pst[j].fid) {
680 printk(KERN_ERR PFX "PST out of sequence\n");
681 return -EINVAL;
685 if (data->numps < 2) {
686 printk(KERN_ERR PFX "no p states to transition\n");
687 return -ENODEV;
690 if (check_pst_table(data, pst, maxvid))
691 return -EINVAL;
693 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
694 * (data->numps + 1)), GFP_KERNEL);
695 if (!powernow_table) {
696 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
697 return -ENOMEM;
700 for (j = 0; j < data->numps; j++) {
701 int freq;
702 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
703 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
704 freq = find_khz_freq_from_fid(pst[j].fid);
705 powernow_table[j].frequency = freq;
707 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
708 powernow_table[data->numps].index = 0;
710 if (query_current_values_with_pending_wait(data)) {
711 kfree(powernow_table);
712 return -EIO;
715 dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
716 data->powernow_table = powernow_table;
717 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
718 print_basics(data);
720 for (j = 0; j < data->numps; j++)
721 if ((pst[j].fid == data->currfid) &&
722 (pst[j].vid == data->currvid))
723 return 0;
725 dprintk("currfid/vid do not match PST, ignoring\n");
726 return 0;
729 /* Find and validate the PSB/PST table in BIOS. */
730 static int find_psb_table(struct powernow_k8_data *data)
732 struct psb_s *psb;
733 unsigned int i;
734 u32 mvs;
735 u8 maxvid;
736 u32 cpst = 0;
737 u32 thiscpuid;
739 for (i = 0xc0000; i < 0xffff0; i += 0x10) {
740 /* Scan BIOS looking for the signature. */
741 /* It can not be at ffff0 - it is too big. */
743 psb = phys_to_virt(i);
744 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
745 continue;
747 dprintk("found PSB header at 0x%p\n", psb);
749 dprintk("table vers: 0x%x\n", psb->tableversion);
750 if (psb->tableversion != PSB_VERSION_1_4) {
751 printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
752 return -ENODEV;
755 dprintk("flags: 0x%x\n", psb->flags1);
756 if (psb->flags1) {
757 printk(KERN_ERR FW_BUG PFX "unknown flags\n");
758 return -ENODEV;
761 data->vstable = psb->vstable;
762 dprintk("voltage stabilization time: %d(*20us)\n",
763 data->vstable);
765 dprintk("flags2: 0x%x\n", psb->flags2);
766 data->rvo = psb->flags2 & 3;
767 data->irt = ((psb->flags2) >> 2) & 3;
768 mvs = ((psb->flags2) >> 4) & 3;
769 data->vidmvs = 1 << mvs;
770 data->batps = ((psb->flags2) >> 6) & 3;
772 dprintk("ramp voltage offset: %d\n", data->rvo);
773 dprintk("isochronous relief time: %d\n", data->irt);
774 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
776 dprintk("numpst: 0x%x\n", psb->num_tables);
777 cpst = psb->num_tables;
778 if ((psb->cpuid == 0x00000fc0) ||
779 (psb->cpuid == 0x00000fe0)) {
780 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
781 if ((thiscpuid == 0x00000fc0) ||
782 (thiscpuid == 0x00000fe0))
783 cpst = 1;
785 if (cpst != 1) {
786 printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
787 return -ENODEV;
790 data->plllock = psb->plllocktime;
791 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
792 dprintk("maxfid: 0x%x\n", psb->maxfid);
793 dprintk("maxvid: 0x%x\n", psb->maxvid);
794 maxvid = psb->maxvid;
796 data->numps = psb->numps;
797 dprintk("numpstates: 0x%x\n", data->numps);
798 return fill_powernow_table(data,
799 (struct pst_s *)(psb+1), maxvid);
802 * If you see this message, complain to BIOS manufacturer. If
803 * he tells you "we do not support Linux" or some similar
804 * nonsense, remember that Windows 2000 uses the same legacy
805 * mechanism that the old Linux PSB driver uses. Tell them it
806 * is broken with Windows 2000.
808 * The reference to the AMD documentation is chapter 9 in the
809 * BIOS and Kernel Developer's Guide, which is available on
810 * www.amd.com
812 printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
813 return -ENODEV;
816 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
817 unsigned int index)
819 acpi_integer control;
821 if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
822 return;
824 control = data->acpi_data.states[index].control;
825 data->irt = (control >> IRT_SHIFT) & IRT_MASK;
826 data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
827 data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
828 data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
829 data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
830 data->vstable = (control >> VST_SHIFT) & VST_MASK;
833 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
835 struct cpufreq_frequency_table *powernow_table;
836 int ret_val = -ENODEV;
837 acpi_integer control, status;
839 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
840 dprintk("register performance failed: bad ACPI data\n");
841 return -EIO;
844 /* verify the data contained in the ACPI structures */
845 if (data->acpi_data.state_count <= 1) {
846 dprintk("No ACPI P-States\n");
847 goto err_out;
850 control = data->acpi_data.control_register.space_id;
851 status = data->acpi_data.status_register.space_id;
853 if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
854 (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
855 dprintk("Invalid control/status registers (%x - %x)\n",
856 control, status);
857 goto err_out;
860 /* fill in data->powernow_table */
861 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
862 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
863 if (!powernow_table) {
864 dprintk("powernow_table memory alloc failure\n");
865 goto err_out;
868 if (cpu_family == CPU_HW_PSTATE)
869 ret_val = fill_powernow_table_pstate(data, powernow_table);
870 else
871 ret_val = fill_powernow_table_fidvid(data, powernow_table);
872 if (ret_val)
873 goto err_out_mem;
875 powernow_table[data->acpi_data.state_count].frequency =
876 CPUFREQ_TABLE_END;
877 powernow_table[data->acpi_data.state_count].index = 0;
878 data->powernow_table = powernow_table;
880 /* fill in data */
881 data->numps = data->acpi_data.state_count;
882 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
883 print_basics(data);
884 powernow_k8_acpi_pst_values(data, 0);
886 /* notify BIOS that we exist */
887 acpi_processor_notify_smm(THIS_MODULE);
889 if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
890 printk(KERN_ERR PFX
891 "unable to alloc powernow_k8_data cpumask\n");
892 ret_val = -ENOMEM;
893 goto err_out_mem;
896 return 0;
898 err_out_mem:
899 kfree(powernow_table);
901 err_out:
902 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
904 /* data->acpi_data.state_count informs us at ->exit()
905 * whether ACPI was used */
906 data->acpi_data.state_count = 0;
908 return ret_val;
911 static int fill_powernow_table_pstate(struct powernow_k8_data *data,
912 struct cpufreq_frequency_table *powernow_table)
914 int i;
915 u32 hi = 0, lo = 0;
916 rdmsr(MSR_PSTATE_CUR_LIMIT, hi, lo);
917 data->max_hw_pstate = (hi & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
919 for (i = 0; i < data->acpi_data.state_count; i++) {
920 u32 index;
922 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
923 if (index > data->max_hw_pstate) {
924 printk(KERN_ERR PFX "invalid pstate %d - "
925 "bad value %d.\n", i, index);
926 printk(KERN_ERR PFX "Please report to BIOS "
927 "manufacturer\n");
928 invalidate_entry(data, i);
929 continue;
931 rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
932 if (!(hi & HW_PSTATE_VALID_MASK)) {
933 dprintk("invalid pstate %d, ignoring\n", index);
934 invalidate_entry(data, i);
935 continue;
938 powernow_table[i].index = index;
940 /* Frequency may be rounded for these */
941 if (boot_cpu_data.x86 == 0x10 || boot_cpu_data.x86 == 0x11) {
942 powernow_table[i].frequency =
943 freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
944 } else
945 powernow_table[i].frequency =
946 data->acpi_data.states[i].core_frequency * 1000;
948 return 0;
951 static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
952 struct cpufreq_frequency_table *powernow_table)
954 int i;
955 int cntlofreq = 0;
957 for (i = 0; i < data->acpi_data.state_count; i++) {
958 u32 fid;
959 u32 vid;
960 u32 freq, index;
961 acpi_integer status, control;
963 if (data->exttype) {
964 status = data->acpi_data.states[i].status;
965 fid = status & EXT_FID_MASK;
966 vid = (status >> VID_SHIFT) & EXT_VID_MASK;
967 } else {
968 control = data->acpi_data.states[i].control;
969 fid = control & FID_MASK;
970 vid = (control >> VID_SHIFT) & VID_MASK;
973 dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
975 index = fid | (vid<<8);
976 powernow_table[i].index = index;
978 freq = find_khz_freq_from_fid(fid);
979 powernow_table[i].frequency = freq;
981 /* verify frequency is OK */
982 if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
983 dprintk("invalid freq %u kHz, ignoring\n", freq);
984 invalidate_entry(data, i);
985 continue;
988 /* verify voltage is OK -
989 * BIOSs are using "off" to indicate invalid */
990 if (vid == VID_OFF) {
991 dprintk("invalid vid %u, ignoring\n", vid);
992 invalidate_entry(data, i);
993 continue;
996 /* verify only 1 entry from the lo frequency table */
997 if (fid < HI_FID_TABLE_BOTTOM) {
998 if (cntlofreq) {
999 /* if both entries are the same,
1000 * ignore this one ... */
1001 if ((freq != powernow_table[cntlofreq].frequency) ||
1002 (index != powernow_table[cntlofreq].index)) {
1003 printk(KERN_ERR PFX
1004 "Too many lo freq table "
1005 "entries\n");
1006 return 1;
1009 dprintk("double low frequency table entry, "
1010 "ignoring it.\n");
1011 invalidate_entry(data, i);
1012 continue;
1013 } else
1014 cntlofreq = i;
1017 if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
1018 printk(KERN_INFO PFX "invalid freq entries "
1019 "%u kHz vs. %u kHz\n", freq,
1020 (unsigned int)
1021 (data->acpi_data.states[i].core_frequency
1022 * 1000));
1023 invalidate_entry(data, i);
1024 continue;
1027 return 0;
1030 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1032 if (data->acpi_data.state_count)
1033 acpi_processor_unregister_performance(&data->acpi_data,
1034 data->cpu);
1035 free_cpumask_var(data->acpi_data.shared_cpu_map);
1038 static int get_transition_latency(struct powernow_k8_data *data)
1040 int max_latency = 0;
1041 int i;
1042 for (i = 0; i < data->acpi_data.state_count; i++) {
1043 int cur_latency = data->acpi_data.states[i].transition_latency
1044 + data->acpi_data.states[i].bus_master_latency;
1045 if (cur_latency > max_latency)
1046 max_latency = cur_latency;
1048 if (max_latency == 0) {
1050 * Fam 11h always returns 0 as transition latency.
1051 * This is intended and means "very fast". While cpufreq core
1052 * and governors currently can handle that gracefully, better
1053 * set it to 1 to avoid problems in the future.
1054 * For all others it's a BIOS bug.
1056 if (!boot_cpu_data.x86 == 0x11)
1057 printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
1058 "latency\n");
1059 max_latency = 1;
1061 /* value in usecs, needs to be in nanoseconds */
1062 return 1000 * max_latency;
1065 /* Take a frequency, and issue the fid/vid transition command */
1066 static int transition_frequency_fidvid(struct powernow_k8_data *data,
1067 unsigned int index)
1069 u32 fid = 0;
1070 u32 vid = 0;
1071 int res, i;
1072 struct cpufreq_freqs freqs;
1074 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1076 /* fid/vid correctness check for k8 */
1077 /* fid are the lower 8 bits of the index we stored into
1078 * the cpufreq frequency table in find_psb_table, vid
1079 * are the upper 8 bits.
1081 fid = data->powernow_table[index].index & 0xFF;
1082 vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1084 dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1086 if (query_current_values_with_pending_wait(data))
1087 return 1;
1089 if ((data->currvid == vid) && (data->currfid == fid)) {
1090 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
1091 fid, vid);
1092 return 0;
1095 if ((fid < HI_FID_TABLE_BOTTOM) &&
1096 (data->currfid < HI_FID_TABLE_BOTTOM)) {
1097 printk(KERN_ERR PFX
1098 "ignoring illegal change in lo freq table-%x to 0x%x\n",
1099 data->currfid, fid);
1100 return 1;
1103 dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1104 smp_processor_id(), fid, vid);
1105 freqs.old = find_khz_freq_from_fid(data->currfid);
1106 freqs.new = find_khz_freq_from_fid(fid);
1108 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1109 freqs.cpu = i;
1110 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1113 res = transition_fid_vid(data, fid, vid);
1114 freqs.new = find_khz_freq_from_fid(data->currfid);
1116 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1117 freqs.cpu = i;
1118 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1120 return res;
1123 /* Take a frequency, and issue the hardware pstate transition command */
1124 static int transition_frequency_pstate(struct powernow_k8_data *data,
1125 unsigned int index)
1127 u32 pstate = 0;
1128 int res, i;
1129 struct cpufreq_freqs freqs;
1131 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1133 /* get MSR index for hardware pstate transition */
1134 pstate = index & HW_PSTATE_MASK;
1135 if (pstate > data->max_hw_pstate)
1136 return 0;
1137 freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1138 data->currpstate);
1139 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1141 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1142 freqs.cpu = i;
1143 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1146 res = transition_pstate(data, pstate);
1147 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1149 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1150 freqs.cpu = i;
1151 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1153 return res;
1156 /* Driver entry point to switch to the target frequency */
1157 static int powernowk8_target(struct cpufreq_policy *pol,
1158 unsigned targfreq, unsigned relation)
1160 cpumask_t oldmask;
1161 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1162 u32 checkfid;
1163 u32 checkvid;
1164 unsigned int newstate;
1165 int ret = -EIO;
1167 if (!data)
1168 return -EINVAL;
1170 checkfid = data->currfid;
1171 checkvid = data->currvid;
1173 /* only run on specific CPU from here on */
1174 oldmask = current->cpus_allowed;
1175 set_cpus_allowed_ptr(current, &cpumask_of_cpu(pol->cpu));
1177 if (smp_processor_id() != pol->cpu) {
1178 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1179 goto err_out;
1182 if (pending_bit_stuck()) {
1183 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1184 goto err_out;
1187 dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1188 pol->cpu, targfreq, pol->min, pol->max, relation);
1190 if (query_current_values_with_pending_wait(data))
1191 goto err_out;
1193 if (cpu_family != CPU_HW_PSTATE) {
1194 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1195 data->currfid, data->currvid);
1197 if ((checkvid != data->currvid) ||
1198 (checkfid != data->currfid)) {
1199 printk(KERN_INFO PFX
1200 "error - out of sync, fix 0x%x 0x%x, "
1201 "vid 0x%x 0x%x\n",
1202 checkfid, data->currfid,
1203 checkvid, data->currvid);
1207 if (cpufreq_frequency_table_target(pol, data->powernow_table,
1208 targfreq, relation, &newstate))
1209 goto err_out;
1211 mutex_lock(&fidvid_mutex);
1213 powernow_k8_acpi_pst_values(data, newstate);
1215 if (cpu_family == CPU_HW_PSTATE)
1216 ret = transition_frequency_pstate(data, newstate);
1217 else
1218 ret = transition_frequency_fidvid(data, newstate);
1219 if (ret) {
1220 printk(KERN_ERR PFX "transition frequency failed\n");
1221 ret = 1;
1222 mutex_unlock(&fidvid_mutex);
1223 goto err_out;
1225 mutex_unlock(&fidvid_mutex);
1227 if (cpu_family == CPU_HW_PSTATE)
1228 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1229 newstate);
1230 else
1231 pol->cur = find_khz_freq_from_fid(data->currfid);
1232 ret = 0;
1234 err_out:
1235 set_cpus_allowed_ptr(current, &oldmask);
1236 return ret;
1239 /* Driver entry point to verify the policy and range of frequencies */
1240 static int powernowk8_verify(struct cpufreq_policy *pol)
1242 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1244 if (!data)
1245 return -EINVAL;
1247 return cpufreq_frequency_table_verify(pol, data->powernow_table);
1250 /* per CPU init entry point to the driver */
1251 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1253 static const char ACPI_PSS_BIOS_BUG_MSG[] =
1254 KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1255 KERN_ERR FW_BUG PFX "Try again with latest BIOS.\n";
1256 struct powernow_k8_data *data;
1257 cpumask_t oldmask;
1258 int rc;
1260 if (!cpu_online(pol->cpu))
1261 return -ENODEV;
1263 if (!check_supported_cpu(pol->cpu))
1264 return -ENODEV;
1266 data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1267 if (!data) {
1268 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1269 return -ENOMEM;
1272 data->cpu = pol->cpu;
1273 data->currpstate = HW_PSTATE_INVALID;
1275 if (powernow_k8_cpu_init_acpi(data)) {
1277 * Use the PSB BIOS structure. This is only availabe on
1278 * an UP version, and is deprecated by AMD.
1280 if (num_online_cpus() != 1) {
1281 printk_once(ACPI_PSS_BIOS_BUG_MSG);
1282 goto err_out;
1284 if (pol->cpu != 0) {
1285 printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1286 "CPU other than CPU0. Complain to your BIOS "
1287 "vendor.\n");
1288 goto err_out;
1290 rc = find_psb_table(data);
1291 if (rc)
1292 goto err_out;
1294 /* Take a crude guess here.
1295 * That guess was in microseconds, so multiply with 1000 */
1296 pol->cpuinfo.transition_latency = (
1297 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1298 ((1 << data->irt) * 30)) * 1000;
1299 } else /* ACPI _PSS objects available */
1300 pol->cpuinfo.transition_latency = get_transition_latency(data);
1302 /* only run on specific CPU from here on */
1303 oldmask = current->cpus_allowed;
1304 set_cpus_allowed_ptr(current, &cpumask_of_cpu(pol->cpu));
1306 if (smp_processor_id() != pol->cpu) {
1307 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1308 goto err_out_unmask;
1311 if (pending_bit_stuck()) {
1312 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1313 goto err_out_unmask;
1316 if (query_current_values_with_pending_wait(data))
1317 goto err_out_unmask;
1319 if (cpu_family == CPU_OPTERON)
1320 fidvid_msr_init();
1322 /* run on any CPU again */
1323 set_cpus_allowed_ptr(current, &oldmask);
1325 if (cpu_family == CPU_HW_PSTATE)
1326 cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1327 else
1328 cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1329 data->available_cores = pol->cpus;
1331 if (cpu_family == CPU_HW_PSTATE)
1332 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1333 data->currpstate);
1334 else
1335 pol->cur = find_khz_freq_from_fid(data->currfid);
1336 dprintk("policy current frequency %d kHz\n", pol->cur);
1338 /* min/max the cpu is capable of */
1339 if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1340 printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1341 powernow_k8_cpu_exit_acpi(data);
1342 kfree(data->powernow_table);
1343 kfree(data);
1344 return -EINVAL;
1347 cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1349 if (cpu_family == CPU_HW_PSTATE)
1350 dprintk("cpu_init done, current pstate 0x%x\n",
1351 data->currpstate);
1352 else
1353 dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1354 data->currfid, data->currvid);
1356 per_cpu(powernow_data, pol->cpu) = data;
1358 return 0;
1360 err_out_unmask:
1361 set_cpus_allowed_ptr(current, &oldmask);
1362 powernow_k8_cpu_exit_acpi(data);
1364 err_out:
1365 kfree(data);
1366 return -ENODEV;
1369 static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1371 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1373 if (!data)
1374 return -EINVAL;
1376 powernow_k8_cpu_exit_acpi(data);
1378 cpufreq_frequency_table_put_attr(pol->cpu);
1380 kfree(data->powernow_table);
1381 kfree(data);
1383 return 0;
1386 static unsigned int powernowk8_get(unsigned int cpu)
1388 struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1389 cpumask_t oldmask = current->cpus_allowed;
1390 unsigned int khz = 0;
1392 if (!data)
1393 return -EINVAL;
1395 set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
1396 if (smp_processor_id() != cpu) {
1397 printk(KERN_ERR PFX
1398 "limiting to CPU %d failed in powernowk8_get\n", cpu);
1399 set_cpus_allowed_ptr(current, &oldmask);
1400 return 0;
1403 if (query_current_values_with_pending_wait(data))
1404 goto out;
1406 if (cpu_family == CPU_HW_PSTATE)
1407 khz = find_khz_freq_from_pstate(data->powernow_table,
1408 data->currpstate);
1409 else
1410 khz = find_khz_freq_from_fid(data->currfid);
1413 out:
1414 set_cpus_allowed_ptr(current, &oldmask);
1415 return khz;
1418 static struct freq_attr *powernow_k8_attr[] = {
1419 &cpufreq_freq_attr_scaling_available_freqs,
1420 NULL,
1423 static struct cpufreq_driver cpufreq_amd64_driver = {
1424 .verify = powernowk8_verify,
1425 .target = powernowk8_target,
1426 .init = powernowk8_cpu_init,
1427 .exit = __devexit_p(powernowk8_cpu_exit),
1428 .get = powernowk8_get,
1429 .name = "powernow-k8",
1430 .owner = THIS_MODULE,
1431 .attr = powernow_k8_attr,
1434 /* driver entry point for init */
1435 static int __cpuinit powernowk8_init(void)
1437 unsigned int i, supported_cpus = 0;
1439 for_each_online_cpu(i) {
1440 if (check_supported_cpu(i))
1441 supported_cpus++;
1444 if (supported_cpus == num_online_cpus()) {
1445 printk(KERN_INFO PFX "Found %d %s "
1446 "processors (%d cpu cores) (" VERSION ")\n",
1447 num_online_nodes(),
1448 boot_cpu_data.x86_model_id, supported_cpus);
1449 return cpufreq_register_driver(&cpufreq_amd64_driver);
1452 return -ENODEV;
1455 /* driver entry point for term */
1456 static void __exit powernowk8_exit(void)
1458 dprintk("exit\n");
1460 cpufreq_unregister_driver(&cpufreq_amd64_driver);
1463 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1464 "Mark Langsdorf <mark.langsdorf@amd.com>");
1465 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1466 MODULE_LICENSE("GPL");
1468 late_initcall(powernowk8_init);
1469 module_exit(powernowk8_exit);