rfkill: protect suspended rfkill controllers
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ata / libata-core.c
blob5ba96c5052c8c737bf8e07d8968affb334636ccd
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <scsi/scsi.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_host.h>
62 #include <linux/libata.h>
63 #include <asm/byteorder.h>
64 #include <linux/cdrom.h>
66 #include "libata.h"
69 /* debounce timing parameters in msecs { interval, duration, timeout } */
70 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
71 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
72 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
74 const struct ata_port_operations ata_base_port_ops = {
75 .prereset = ata_std_prereset,
76 .postreset = ata_std_postreset,
77 .error_handler = ata_std_error_handler,
80 const struct ata_port_operations sata_port_ops = {
81 .inherits = &ata_base_port_ops,
83 .qc_defer = ata_std_qc_defer,
84 .hardreset = sata_std_hardreset,
87 static unsigned int ata_dev_init_params(struct ata_device *dev,
88 u16 heads, u16 sectors);
89 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
90 static unsigned int ata_dev_set_feature(struct ata_device *dev,
91 u8 enable, u8 feature);
92 static void ata_dev_xfermask(struct ata_device *dev);
93 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
95 unsigned int ata_print_id = 1;
96 static struct workqueue_struct *ata_wq;
98 struct workqueue_struct *ata_aux_wq;
100 struct ata_force_param {
101 const char *name;
102 unsigned int cbl;
103 int spd_limit;
104 unsigned long xfer_mask;
105 unsigned int horkage_on;
106 unsigned int horkage_off;
109 struct ata_force_ent {
110 int port;
111 int device;
112 struct ata_force_param param;
115 static struct ata_force_ent *ata_force_tbl;
116 static int ata_force_tbl_size;
118 static char ata_force_param_buf[PAGE_SIZE] __initdata;
119 /* param_buf is thrown away after initialization, disallow read */
120 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
121 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
123 static int atapi_enabled = 1;
124 module_param(atapi_enabled, int, 0444);
125 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
127 static int atapi_dmadir = 0;
128 module_param(atapi_dmadir, int, 0444);
129 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
131 int atapi_passthru16 = 1;
132 module_param(atapi_passthru16, int, 0444);
133 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
135 int libata_fua = 0;
136 module_param_named(fua, libata_fua, int, 0444);
137 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
139 static int ata_ignore_hpa;
140 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
141 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
143 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
144 module_param_named(dma, libata_dma_mask, int, 0444);
145 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
147 static int ata_probe_timeout;
148 module_param(ata_probe_timeout, int, 0444);
149 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
151 int libata_noacpi = 0;
152 module_param_named(noacpi, libata_noacpi, int, 0444);
153 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
155 int libata_allow_tpm = 0;
156 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
157 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
159 MODULE_AUTHOR("Jeff Garzik");
160 MODULE_DESCRIPTION("Library module for ATA devices");
161 MODULE_LICENSE("GPL");
162 MODULE_VERSION(DRV_VERSION);
166 * ata_force_cbl - force cable type according to libata.force
167 * @ap: ATA port of interest
169 * Force cable type according to libata.force and whine about it.
170 * The last entry which has matching port number is used, so it
171 * can be specified as part of device force parameters. For
172 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
173 * same effect.
175 * LOCKING:
176 * EH context.
178 void ata_force_cbl(struct ata_port *ap)
180 int i;
182 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
183 const struct ata_force_ent *fe = &ata_force_tbl[i];
185 if (fe->port != -1 && fe->port != ap->print_id)
186 continue;
188 if (fe->param.cbl == ATA_CBL_NONE)
189 continue;
191 ap->cbl = fe->param.cbl;
192 ata_port_printk(ap, KERN_NOTICE,
193 "FORCE: cable set to %s\n", fe->param.name);
194 return;
199 * ata_force_spd_limit - force SATA spd limit according to libata.force
200 * @link: ATA link of interest
202 * Force SATA spd limit according to libata.force and whine about
203 * it. When only the port part is specified (e.g. 1:), the limit
204 * applies to all links connected to both the host link and all
205 * fan-out ports connected via PMP. If the device part is
206 * specified as 0 (e.g. 1.00:), it specifies the first fan-out
207 * link not the host link. Device number 15 always points to the
208 * host link whether PMP is attached or not.
210 * LOCKING:
211 * EH context.
213 static void ata_force_spd_limit(struct ata_link *link)
215 int linkno, i;
217 if (ata_is_host_link(link))
218 linkno = 15;
219 else
220 linkno = link->pmp;
222 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
223 const struct ata_force_ent *fe = &ata_force_tbl[i];
225 if (fe->port != -1 && fe->port != link->ap->print_id)
226 continue;
228 if (fe->device != -1 && fe->device != linkno)
229 continue;
231 if (!fe->param.spd_limit)
232 continue;
234 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
235 ata_link_printk(link, KERN_NOTICE,
236 "FORCE: PHY spd limit set to %s\n", fe->param.name);
237 return;
242 * ata_force_xfermask - force xfermask according to libata.force
243 * @dev: ATA device of interest
245 * Force xfer_mask according to libata.force and whine about it.
246 * For consistency with link selection, device number 15 selects
247 * the first device connected to the host link.
249 * LOCKING:
250 * EH context.
252 static void ata_force_xfermask(struct ata_device *dev)
254 int devno = dev->link->pmp + dev->devno;
255 int alt_devno = devno;
256 int i;
258 /* allow n.15 for the first device attached to host port */
259 if (ata_is_host_link(dev->link) && devno == 0)
260 alt_devno = 15;
262 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
263 const struct ata_force_ent *fe = &ata_force_tbl[i];
264 unsigned long pio_mask, mwdma_mask, udma_mask;
266 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
267 continue;
269 if (fe->device != -1 && fe->device != devno &&
270 fe->device != alt_devno)
271 continue;
273 if (!fe->param.xfer_mask)
274 continue;
276 ata_unpack_xfermask(fe->param.xfer_mask,
277 &pio_mask, &mwdma_mask, &udma_mask);
278 if (udma_mask)
279 dev->udma_mask = udma_mask;
280 else if (mwdma_mask) {
281 dev->udma_mask = 0;
282 dev->mwdma_mask = mwdma_mask;
283 } else {
284 dev->udma_mask = 0;
285 dev->mwdma_mask = 0;
286 dev->pio_mask = pio_mask;
289 ata_dev_printk(dev, KERN_NOTICE,
290 "FORCE: xfer_mask set to %s\n", fe->param.name);
291 return;
296 * ata_force_horkage - force horkage according to libata.force
297 * @dev: ATA device of interest
299 * Force horkage according to libata.force and whine about it.
300 * For consistency with link selection, device number 15 selects
301 * the first device connected to the host link.
303 * LOCKING:
304 * EH context.
306 static void ata_force_horkage(struct ata_device *dev)
308 int devno = dev->link->pmp + dev->devno;
309 int alt_devno = devno;
310 int i;
312 /* allow n.15 for the first device attached to host port */
313 if (ata_is_host_link(dev->link) && devno == 0)
314 alt_devno = 15;
316 for (i = 0; i < ata_force_tbl_size; i++) {
317 const struct ata_force_ent *fe = &ata_force_tbl[i];
319 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
320 continue;
322 if (fe->device != -1 && fe->device != devno &&
323 fe->device != alt_devno)
324 continue;
326 if (!(~dev->horkage & fe->param.horkage_on) &&
327 !(dev->horkage & fe->param.horkage_off))
328 continue;
330 dev->horkage |= fe->param.horkage_on;
331 dev->horkage &= ~fe->param.horkage_off;
333 ata_dev_printk(dev, KERN_NOTICE,
334 "FORCE: horkage modified (%s)\n", fe->param.name);
339 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
340 * @opcode: SCSI opcode
342 * Determine ATAPI command type from @opcode.
344 * LOCKING:
345 * None.
347 * RETURNS:
348 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
350 int atapi_cmd_type(u8 opcode)
352 switch (opcode) {
353 case GPCMD_READ_10:
354 case GPCMD_READ_12:
355 return ATAPI_READ;
357 case GPCMD_WRITE_10:
358 case GPCMD_WRITE_12:
359 case GPCMD_WRITE_AND_VERIFY_10:
360 return ATAPI_WRITE;
362 case GPCMD_READ_CD:
363 case GPCMD_READ_CD_MSF:
364 return ATAPI_READ_CD;
366 case ATA_16:
367 case ATA_12:
368 if (atapi_passthru16)
369 return ATAPI_PASS_THRU;
370 /* fall thru */
371 default:
372 return ATAPI_MISC;
377 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
378 * @tf: Taskfile to convert
379 * @pmp: Port multiplier port
380 * @is_cmd: This FIS is for command
381 * @fis: Buffer into which data will output
383 * Converts a standard ATA taskfile to a Serial ATA
384 * FIS structure (Register - Host to Device).
386 * LOCKING:
387 * Inherited from caller.
389 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
391 fis[0] = 0x27; /* Register - Host to Device FIS */
392 fis[1] = pmp & 0xf; /* Port multiplier number*/
393 if (is_cmd)
394 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
396 fis[2] = tf->command;
397 fis[3] = tf->feature;
399 fis[4] = tf->lbal;
400 fis[5] = tf->lbam;
401 fis[6] = tf->lbah;
402 fis[7] = tf->device;
404 fis[8] = tf->hob_lbal;
405 fis[9] = tf->hob_lbam;
406 fis[10] = tf->hob_lbah;
407 fis[11] = tf->hob_feature;
409 fis[12] = tf->nsect;
410 fis[13] = tf->hob_nsect;
411 fis[14] = 0;
412 fis[15] = tf->ctl;
414 fis[16] = 0;
415 fis[17] = 0;
416 fis[18] = 0;
417 fis[19] = 0;
421 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
422 * @fis: Buffer from which data will be input
423 * @tf: Taskfile to output
425 * Converts a serial ATA FIS structure to a standard ATA taskfile.
427 * LOCKING:
428 * Inherited from caller.
431 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
433 tf->command = fis[2]; /* status */
434 tf->feature = fis[3]; /* error */
436 tf->lbal = fis[4];
437 tf->lbam = fis[5];
438 tf->lbah = fis[6];
439 tf->device = fis[7];
441 tf->hob_lbal = fis[8];
442 tf->hob_lbam = fis[9];
443 tf->hob_lbah = fis[10];
445 tf->nsect = fis[12];
446 tf->hob_nsect = fis[13];
449 static const u8 ata_rw_cmds[] = {
450 /* pio multi */
451 ATA_CMD_READ_MULTI,
452 ATA_CMD_WRITE_MULTI,
453 ATA_CMD_READ_MULTI_EXT,
454 ATA_CMD_WRITE_MULTI_EXT,
458 ATA_CMD_WRITE_MULTI_FUA_EXT,
459 /* pio */
460 ATA_CMD_PIO_READ,
461 ATA_CMD_PIO_WRITE,
462 ATA_CMD_PIO_READ_EXT,
463 ATA_CMD_PIO_WRITE_EXT,
468 /* dma */
469 ATA_CMD_READ,
470 ATA_CMD_WRITE,
471 ATA_CMD_READ_EXT,
472 ATA_CMD_WRITE_EXT,
476 ATA_CMD_WRITE_FUA_EXT
480 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
481 * @tf: command to examine and configure
482 * @dev: device tf belongs to
484 * Examine the device configuration and tf->flags to calculate
485 * the proper read/write commands and protocol to use.
487 * LOCKING:
488 * caller.
490 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
492 u8 cmd;
494 int index, fua, lba48, write;
496 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
497 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
498 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
500 if (dev->flags & ATA_DFLAG_PIO) {
501 tf->protocol = ATA_PROT_PIO;
502 index = dev->multi_count ? 0 : 8;
503 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
504 /* Unable to use DMA due to host limitation */
505 tf->protocol = ATA_PROT_PIO;
506 index = dev->multi_count ? 0 : 8;
507 } else {
508 tf->protocol = ATA_PROT_DMA;
509 index = 16;
512 cmd = ata_rw_cmds[index + fua + lba48 + write];
513 if (cmd) {
514 tf->command = cmd;
515 return 0;
517 return -1;
521 * ata_tf_read_block - Read block address from ATA taskfile
522 * @tf: ATA taskfile of interest
523 * @dev: ATA device @tf belongs to
525 * LOCKING:
526 * None.
528 * Read block address from @tf. This function can handle all
529 * three address formats - LBA, LBA48 and CHS. tf->protocol and
530 * flags select the address format to use.
532 * RETURNS:
533 * Block address read from @tf.
535 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
537 u64 block = 0;
539 if (tf->flags & ATA_TFLAG_LBA) {
540 if (tf->flags & ATA_TFLAG_LBA48) {
541 block |= (u64)tf->hob_lbah << 40;
542 block |= (u64)tf->hob_lbam << 32;
543 block |= tf->hob_lbal << 24;
544 } else
545 block |= (tf->device & 0xf) << 24;
547 block |= tf->lbah << 16;
548 block |= tf->lbam << 8;
549 block |= tf->lbal;
550 } else {
551 u32 cyl, head, sect;
553 cyl = tf->lbam | (tf->lbah << 8);
554 head = tf->device & 0xf;
555 sect = tf->lbal;
557 block = (cyl * dev->heads + head) * dev->sectors + sect;
560 return block;
564 * ata_build_rw_tf - Build ATA taskfile for given read/write request
565 * @tf: Target ATA taskfile
566 * @dev: ATA device @tf belongs to
567 * @block: Block address
568 * @n_block: Number of blocks
569 * @tf_flags: RW/FUA etc...
570 * @tag: tag
572 * LOCKING:
573 * None.
575 * Build ATA taskfile @tf for read/write request described by
576 * @block, @n_block, @tf_flags and @tag on @dev.
578 * RETURNS:
580 * 0 on success, -ERANGE if the request is too large for @dev,
581 * -EINVAL if the request is invalid.
583 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
584 u64 block, u32 n_block, unsigned int tf_flags,
585 unsigned int tag)
587 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
588 tf->flags |= tf_flags;
590 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
591 /* yay, NCQ */
592 if (!lba_48_ok(block, n_block))
593 return -ERANGE;
595 tf->protocol = ATA_PROT_NCQ;
596 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
598 if (tf->flags & ATA_TFLAG_WRITE)
599 tf->command = ATA_CMD_FPDMA_WRITE;
600 else
601 tf->command = ATA_CMD_FPDMA_READ;
603 tf->nsect = tag << 3;
604 tf->hob_feature = (n_block >> 8) & 0xff;
605 tf->feature = n_block & 0xff;
607 tf->hob_lbah = (block >> 40) & 0xff;
608 tf->hob_lbam = (block >> 32) & 0xff;
609 tf->hob_lbal = (block >> 24) & 0xff;
610 tf->lbah = (block >> 16) & 0xff;
611 tf->lbam = (block >> 8) & 0xff;
612 tf->lbal = block & 0xff;
614 tf->device = 1 << 6;
615 if (tf->flags & ATA_TFLAG_FUA)
616 tf->device |= 1 << 7;
617 } else if (dev->flags & ATA_DFLAG_LBA) {
618 tf->flags |= ATA_TFLAG_LBA;
620 if (lba_28_ok(block, n_block)) {
621 /* use LBA28 */
622 tf->device |= (block >> 24) & 0xf;
623 } else if (lba_48_ok(block, n_block)) {
624 if (!(dev->flags & ATA_DFLAG_LBA48))
625 return -ERANGE;
627 /* use LBA48 */
628 tf->flags |= ATA_TFLAG_LBA48;
630 tf->hob_nsect = (n_block >> 8) & 0xff;
632 tf->hob_lbah = (block >> 40) & 0xff;
633 tf->hob_lbam = (block >> 32) & 0xff;
634 tf->hob_lbal = (block >> 24) & 0xff;
635 } else
636 /* request too large even for LBA48 */
637 return -ERANGE;
639 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
640 return -EINVAL;
642 tf->nsect = n_block & 0xff;
644 tf->lbah = (block >> 16) & 0xff;
645 tf->lbam = (block >> 8) & 0xff;
646 tf->lbal = block & 0xff;
648 tf->device |= ATA_LBA;
649 } else {
650 /* CHS */
651 u32 sect, head, cyl, track;
653 /* The request -may- be too large for CHS addressing. */
654 if (!lba_28_ok(block, n_block))
655 return -ERANGE;
657 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
658 return -EINVAL;
660 /* Convert LBA to CHS */
661 track = (u32)block / dev->sectors;
662 cyl = track / dev->heads;
663 head = track % dev->heads;
664 sect = (u32)block % dev->sectors + 1;
666 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
667 (u32)block, track, cyl, head, sect);
669 /* Check whether the converted CHS can fit.
670 Cylinder: 0-65535
671 Head: 0-15
672 Sector: 1-255*/
673 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
674 return -ERANGE;
676 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
677 tf->lbal = sect;
678 tf->lbam = cyl;
679 tf->lbah = cyl >> 8;
680 tf->device |= head;
683 return 0;
687 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
688 * @pio_mask: pio_mask
689 * @mwdma_mask: mwdma_mask
690 * @udma_mask: udma_mask
692 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
693 * unsigned int xfer_mask.
695 * LOCKING:
696 * None.
698 * RETURNS:
699 * Packed xfer_mask.
701 unsigned long ata_pack_xfermask(unsigned long pio_mask,
702 unsigned long mwdma_mask,
703 unsigned long udma_mask)
705 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
706 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
707 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
711 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
712 * @xfer_mask: xfer_mask to unpack
713 * @pio_mask: resulting pio_mask
714 * @mwdma_mask: resulting mwdma_mask
715 * @udma_mask: resulting udma_mask
717 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
718 * Any NULL distination masks will be ignored.
720 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
721 unsigned long *mwdma_mask, unsigned long *udma_mask)
723 if (pio_mask)
724 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
725 if (mwdma_mask)
726 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
727 if (udma_mask)
728 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
731 static const struct ata_xfer_ent {
732 int shift, bits;
733 u8 base;
734 } ata_xfer_tbl[] = {
735 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
736 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
737 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
738 { -1, },
742 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
743 * @xfer_mask: xfer_mask of interest
745 * Return matching XFER_* value for @xfer_mask. Only the highest
746 * bit of @xfer_mask is considered.
748 * LOCKING:
749 * None.
751 * RETURNS:
752 * Matching XFER_* value, 0xff if no match found.
754 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
756 int highbit = fls(xfer_mask) - 1;
757 const struct ata_xfer_ent *ent;
759 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
760 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
761 return ent->base + highbit - ent->shift;
762 return 0xff;
766 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
767 * @xfer_mode: XFER_* of interest
769 * Return matching xfer_mask for @xfer_mode.
771 * LOCKING:
772 * None.
774 * RETURNS:
775 * Matching xfer_mask, 0 if no match found.
777 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
779 const struct ata_xfer_ent *ent;
781 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
782 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
783 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
784 & ~((1 << ent->shift) - 1);
785 return 0;
789 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
790 * @xfer_mode: XFER_* of interest
792 * Return matching xfer_shift for @xfer_mode.
794 * LOCKING:
795 * None.
797 * RETURNS:
798 * Matching xfer_shift, -1 if no match found.
800 int ata_xfer_mode2shift(unsigned long xfer_mode)
802 const struct ata_xfer_ent *ent;
804 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
805 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
806 return ent->shift;
807 return -1;
811 * ata_mode_string - convert xfer_mask to string
812 * @xfer_mask: mask of bits supported; only highest bit counts.
814 * Determine string which represents the highest speed
815 * (highest bit in @modemask).
817 * LOCKING:
818 * None.
820 * RETURNS:
821 * Constant C string representing highest speed listed in
822 * @mode_mask, or the constant C string "<n/a>".
824 const char *ata_mode_string(unsigned long xfer_mask)
826 static const char * const xfer_mode_str[] = {
827 "PIO0",
828 "PIO1",
829 "PIO2",
830 "PIO3",
831 "PIO4",
832 "PIO5",
833 "PIO6",
834 "MWDMA0",
835 "MWDMA1",
836 "MWDMA2",
837 "MWDMA3",
838 "MWDMA4",
839 "UDMA/16",
840 "UDMA/25",
841 "UDMA/33",
842 "UDMA/44",
843 "UDMA/66",
844 "UDMA/100",
845 "UDMA/133",
846 "UDMA7",
848 int highbit;
850 highbit = fls(xfer_mask) - 1;
851 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
852 return xfer_mode_str[highbit];
853 return "<n/a>";
856 static const char *sata_spd_string(unsigned int spd)
858 static const char * const spd_str[] = {
859 "1.5 Gbps",
860 "3.0 Gbps",
863 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
864 return "<unknown>";
865 return spd_str[spd - 1];
868 void ata_dev_disable(struct ata_device *dev)
870 if (ata_dev_enabled(dev)) {
871 if (ata_msg_drv(dev->link->ap))
872 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
873 ata_acpi_on_disable(dev);
874 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
875 ATA_DNXFER_QUIET);
876 dev->class++;
880 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
882 struct ata_link *link = dev->link;
883 struct ata_port *ap = link->ap;
884 u32 scontrol;
885 unsigned int err_mask;
886 int rc;
889 * disallow DIPM for drivers which haven't set
890 * ATA_FLAG_IPM. This is because when DIPM is enabled,
891 * phy ready will be set in the interrupt status on
892 * state changes, which will cause some drivers to
893 * think there are errors - additionally drivers will
894 * need to disable hot plug.
896 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
897 ap->pm_policy = NOT_AVAILABLE;
898 return -EINVAL;
902 * For DIPM, we will only enable it for the
903 * min_power setting.
905 * Why? Because Disks are too stupid to know that
906 * If the host rejects a request to go to SLUMBER
907 * they should retry at PARTIAL, and instead it
908 * just would give up. So, for medium_power to
909 * work at all, we need to only allow HIPM.
911 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
912 if (rc)
913 return rc;
915 switch (policy) {
916 case MIN_POWER:
917 /* no restrictions on IPM transitions */
918 scontrol &= ~(0x3 << 8);
919 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
920 if (rc)
921 return rc;
923 /* enable DIPM */
924 if (dev->flags & ATA_DFLAG_DIPM)
925 err_mask = ata_dev_set_feature(dev,
926 SETFEATURES_SATA_ENABLE, SATA_DIPM);
927 break;
928 case MEDIUM_POWER:
929 /* allow IPM to PARTIAL */
930 scontrol &= ~(0x1 << 8);
931 scontrol |= (0x2 << 8);
932 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
933 if (rc)
934 return rc;
937 * we don't have to disable DIPM since IPM flags
938 * disallow transitions to SLUMBER, which effectively
939 * disable DIPM if it does not support PARTIAL
941 break;
942 case NOT_AVAILABLE:
943 case MAX_PERFORMANCE:
944 /* disable all IPM transitions */
945 scontrol |= (0x3 << 8);
946 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
947 if (rc)
948 return rc;
951 * we don't have to disable DIPM since IPM flags
952 * disallow all transitions which effectively
953 * disable DIPM anyway.
955 break;
958 /* FIXME: handle SET FEATURES failure */
959 (void) err_mask;
961 return 0;
965 * ata_dev_enable_pm - enable SATA interface power management
966 * @dev: device to enable power management
967 * @policy: the link power management policy
969 * Enable SATA Interface power management. This will enable
970 * Device Interface Power Management (DIPM) for min_power
971 * policy, and then call driver specific callbacks for
972 * enabling Host Initiated Power management.
974 * Locking: Caller.
975 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
977 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
979 int rc = 0;
980 struct ata_port *ap = dev->link->ap;
982 /* set HIPM first, then DIPM */
983 if (ap->ops->enable_pm)
984 rc = ap->ops->enable_pm(ap, policy);
985 if (rc)
986 goto enable_pm_out;
987 rc = ata_dev_set_dipm(dev, policy);
989 enable_pm_out:
990 if (rc)
991 ap->pm_policy = MAX_PERFORMANCE;
992 else
993 ap->pm_policy = policy;
994 return /* rc */; /* hopefully we can use 'rc' eventually */
997 #ifdef CONFIG_PM
999 * ata_dev_disable_pm - disable SATA interface power management
1000 * @dev: device to disable power management
1002 * Disable SATA Interface power management. This will disable
1003 * Device Interface Power Management (DIPM) without changing
1004 * policy, call driver specific callbacks for disabling Host
1005 * Initiated Power management.
1007 * Locking: Caller.
1008 * Returns: void
1010 static void ata_dev_disable_pm(struct ata_device *dev)
1012 struct ata_port *ap = dev->link->ap;
1014 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1015 if (ap->ops->disable_pm)
1016 ap->ops->disable_pm(ap);
1018 #endif /* CONFIG_PM */
1020 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1022 ap->pm_policy = policy;
1023 ap->link.eh_info.action |= ATA_EH_LPM;
1024 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1025 ata_port_schedule_eh(ap);
1028 #ifdef CONFIG_PM
1029 static void ata_lpm_enable(struct ata_host *host)
1031 struct ata_link *link;
1032 struct ata_port *ap;
1033 struct ata_device *dev;
1034 int i;
1036 for (i = 0; i < host->n_ports; i++) {
1037 ap = host->ports[i];
1038 ata_port_for_each_link(link, ap) {
1039 ata_link_for_each_dev(dev, link)
1040 ata_dev_disable_pm(dev);
1045 static void ata_lpm_disable(struct ata_host *host)
1047 int i;
1049 for (i = 0; i < host->n_ports; i++) {
1050 struct ata_port *ap = host->ports[i];
1051 ata_lpm_schedule(ap, ap->pm_policy);
1054 #endif /* CONFIG_PM */
1057 * ata_dev_classify - determine device type based on ATA-spec signature
1058 * @tf: ATA taskfile register set for device to be identified
1060 * Determine from taskfile register contents whether a device is
1061 * ATA or ATAPI, as per "Signature and persistence" section
1062 * of ATA/PI spec (volume 1, sect 5.14).
1064 * LOCKING:
1065 * None.
1067 * RETURNS:
1068 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1069 * %ATA_DEV_UNKNOWN the event of failure.
1071 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1073 /* Apple's open source Darwin code hints that some devices only
1074 * put a proper signature into the LBA mid/high registers,
1075 * So, we only check those. It's sufficient for uniqueness.
1077 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1078 * signatures for ATA and ATAPI devices attached on SerialATA,
1079 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1080 * spec has never mentioned about using different signatures
1081 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1082 * Multiplier specification began to use 0x69/0x96 to identify
1083 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1084 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1085 * 0x69/0x96 shortly and described them as reserved for
1086 * SerialATA.
1088 * We follow the current spec and consider that 0x69/0x96
1089 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1091 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1092 DPRINTK("found ATA device by sig\n");
1093 return ATA_DEV_ATA;
1096 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1097 DPRINTK("found ATAPI device by sig\n");
1098 return ATA_DEV_ATAPI;
1101 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1102 DPRINTK("found PMP device by sig\n");
1103 return ATA_DEV_PMP;
1106 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1107 printk(KERN_INFO "ata: SEMB device ignored\n");
1108 return ATA_DEV_SEMB_UNSUP; /* not yet */
1111 DPRINTK("unknown device\n");
1112 return ATA_DEV_UNKNOWN;
1116 * ata_id_string - Convert IDENTIFY DEVICE page into string
1117 * @id: IDENTIFY DEVICE results we will examine
1118 * @s: string into which data is output
1119 * @ofs: offset into identify device page
1120 * @len: length of string to return. must be an even number.
1122 * The strings in the IDENTIFY DEVICE page are broken up into
1123 * 16-bit chunks. Run through the string, and output each
1124 * 8-bit chunk linearly, regardless of platform.
1126 * LOCKING:
1127 * caller.
1130 void ata_id_string(const u16 *id, unsigned char *s,
1131 unsigned int ofs, unsigned int len)
1133 unsigned int c;
1135 BUG_ON(len & 1);
1137 while (len > 0) {
1138 c = id[ofs] >> 8;
1139 *s = c;
1140 s++;
1142 c = id[ofs] & 0xff;
1143 *s = c;
1144 s++;
1146 ofs++;
1147 len -= 2;
1152 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1153 * @id: IDENTIFY DEVICE results we will examine
1154 * @s: string into which data is output
1155 * @ofs: offset into identify device page
1156 * @len: length of string to return. must be an odd number.
1158 * This function is identical to ata_id_string except that it
1159 * trims trailing spaces and terminates the resulting string with
1160 * null. @len must be actual maximum length (even number) + 1.
1162 * LOCKING:
1163 * caller.
1165 void ata_id_c_string(const u16 *id, unsigned char *s,
1166 unsigned int ofs, unsigned int len)
1168 unsigned char *p;
1170 ata_id_string(id, s, ofs, len - 1);
1172 p = s + strnlen(s, len - 1);
1173 while (p > s && p[-1] == ' ')
1174 p--;
1175 *p = '\0';
1178 static u64 ata_id_n_sectors(const u16 *id)
1180 if (ata_id_has_lba(id)) {
1181 if (ata_id_has_lba48(id))
1182 return ata_id_u64(id, 100);
1183 else
1184 return ata_id_u32(id, 60);
1185 } else {
1186 if (ata_id_current_chs_valid(id))
1187 return ata_id_u32(id, 57);
1188 else
1189 return id[1] * id[3] * id[6];
1193 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1195 u64 sectors = 0;
1197 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1198 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1199 sectors |= (tf->hob_lbal & 0xff) << 24;
1200 sectors |= (tf->lbah & 0xff) << 16;
1201 sectors |= (tf->lbam & 0xff) << 8;
1202 sectors |= (tf->lbal & 0xff);
1204 return sectors;
1207 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1209 u64 sectors = 0;
1211 sectors |= (tf->device & 0x0f) << 24;
1212 sectors |= (tf->lbah & 0xff) << 16;
1213 sectors |= (tf->lbam & 0xff) << 8;
1214 sectors |= (tf->lbal & 0xff);
1216 return sectors;
1220 * ata_read_native_max_address - Read native max address
1221 * @dev: target device
1222 * @max_sectors: out parameter for the result native max address
1224 * Perform an LBA48 or LBA28 native size query upon the device in
1225 * question.
1227 * RETURNS:
1228 * 0 on success, -EACCES if command is aborted by the drive.
1229 * -EIO on other errors.
1231 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1233 unsigned int err_mask;
1234 struct ata_taskfile tf;
1235 int lba48 = ata_id_has_lba48(dev->id);
1237 ata_tf_init(dev, &tf);
1239 /* always clear all address registers */
1240 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1242 if (lba48) {
1243 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1244 tf.flags |= ATA_TFLAG_LBA48;
1245 } else
1246 tf.command = ATA_CMD_READ_NATIVE_MAX;
1248 tf.protocol |= ATA_PROT_NODATA;
1249 tf.device |= ATA_LBA;
1251 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1252 if (err_mask) {
1253 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1254 "max address (err_mask=0x%x)\n", err_mask);
1255 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1256 return -EACCES;
1257 return -EIO;
1260 if (lba48)
1261 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1262 else
1263 *max_sectors = ata_tf_to_lba(&tf) + 1;
1264 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1265 (*max_sectors)--;
1266 return 0;
1270 * ata_set_max_sectors - Set max sectors
1271 * @dev: target device
1272 * @new_sectors: new max sectors value to set for the device
1274 * Set max sectors of @dev to @new_sectors.
1276 * RETURNS:
1277 * 0 on success, -EACCES if command is aborted or denied (due to
1278 * previous non-volatile SET_MAX) by the drive. -EIO on other
1279 * errors.
1281 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1283 unsigned int err_mask;
1284 struct ata_taskfile tf;
1285 int lba48 = ata_id_has_lba48(dev->id);
1287 new_sectors--;
1289 ata_tf_init(dev, &tf);
1291 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1293 if (lba48) {
1294 tf.command = ATA_CMD_SET_MAX_EXT;
1295 tf.flags |= ATA_TFLAG_LBA48;
1297 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1298 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1299 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1300 } else {
1301 tf.command = ATA_CMD_SET_MAX;
1303 tf.device |= (new_sectors >> 24) & 0xf;
1306 tf.protocol |= ATA_PROT_NODATA;
1307 tf.device |= ATA_LBA;
1309 tf.lbal = (new_sectors >> 0) & 0xff;
1310 tf.lbam = (new_sectors >> 8) & 0xff;
1311 tf.lbah = (new_sectors >> 16) & 0xff;
1313 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1314 if (err_mask) {
1315 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1316 "max address (err_mask=0x%x)\n", err_mask);
1317 if (err_mask == AC_ERR_DEV &&
1318 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1319 return -EACCES;
1320 return -EIO;
1323 return 0;
1327 * ata_hpa_resize - Resize a device with an HPA set
1328 * @dev: Device to resize
1330 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1331 * it if required to the full size of the media. The caller must check
1332 * the drive has the HPA feature set enabled.
1334 * RETURNS:
1335 * 0 on success, -errno on failure.
1337 static int ata_hpa_resize(struct ata_device *dev)
1339 struct ata_eh_context *ehc = &dev->link->eh_context;
1340 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1341 u64 sectors = ata_id_n_sectors(dev->id);
1342 u64 native_sectors;
1343 int rc;
1345 /* do we need to do it? */
1346 if (dev->class != ATA_DEV_ATA ||
1347 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1348 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1349 return 0;
1351 /* read native max address */
1352 rc = ata_read_native_max_address(dev, &native_sectors);
1353 if (rc) {
1354 /* If device aborted the command or HPA isn't going to
1355 * be unlocked, skip HPA resizing.
1357 if (rc == -EACCES || !ata_ignore_hpa) {
1358 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1359 "broken, skipping HPA handling\n");
1360 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1362 /* we can continue if device aborted the command */
1363 if (rc == -EACCES)
1364 rc = 0;
1367 return rc;
1370 /* nothing to do? */
1371 if (native_sectors <= sectors || !ata_ignore_hpa) {
1372 if (!print_info || native_sectors == sectors)
1373 return 0;
1375 if (native_sectors > sectors)
1376 ata_dev_printk(dev, KERN_INFO,
1377 "HPA detected: current %llu, native %llu\n",
1378 (unsigned long long)sectors,
1379 (unsigned long long)native_sectors);
1380 else if (native_sectors < sectors)
1381 ata_dev_printk(dev, KERN_WARNING,
1382 "native sectors (%llu) is smaller than "
1383 "sectors (%llu)\n",
1384 (unsigned long long)native_sectors,
1385 (unsigned long long)sectors);
1386 return 0;
1389 /* let's unlock HPA */
1390 rc = ata_set_max_sectors(dev, native_sectors);
1391 if (rc == -EACCES) {
1392 /* if device aborted the command, skip HPA resizing */
1393 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1394 "(%llu -> %llu), skipping HPA handling\n",
1395 (unsigned long long)sectors,
1396 (unsigned long long)native_sectors);
1397 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1398 return 0;
1399 } else if (rc)
1400 return rc;
1402 /* re-read IDENTIFY data */
1403 rc = ata_dev_reread_id(dev, 0);
1404 if (rc) {
1405 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1406 "data after HPA resizing\n");
1407 return rc;
1410 if (print_info) {
1411 u64 new_sectors = ata_id_n_sectors(dev->id);
1412 ata_dev_printk(dev, KERN_INFO,
1413 "HPA unlocked: %llu -> %llu, native %llu\n",
1414 (unsigned long long)sectors,
1415 (unsigned long long)new_sectors,
1416 (unsigned long long)native_sectors);
1419 return 0;
1423 * ata_dump_id - IDENTIFY DEVICE info debugging output
1424 * @id: IDENTIFY DEVICE page to dump
1426 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1427 * page.
1429 * LOCKING:
1430 * caller.
1433 static inline void ata_dump_id(const u16 *id)
1435 DPRINTK("49==0x%04x "
1436 "53==0x%04x "
1437 "63==0x%04x "
1438 "64==0x%04x "
1439 "75==0x%04x \n",
1440 id[49],
1441 id[53],
1442 id[63],
1443 id[64],
1444 id[75]);
1445 DPRINTK("80==0x%04x "
1446 "81==0x%04x "
1447 "82==0x%04x "
1448 "83==0x%04x "
1449 "84==0x%04x \n",
1450 id[80],
1451 id[81],
1452 id[82],
1453 id[83],
1454 id[84]);
1455 DPRINTK("88==0x%04x "
1456 "93==0x%04x\n",
1457 id[88],
1458 id[93]);
1462 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1463 * @id: IDENTIFY data to compute xfer mask from
1465 * Compute the xfermask for this device. This is not as trivial
1466 * as it seems if we must consider early devices correctly.
1468 * FIXME: pre IDE drive timing (do we care ?).
1470 * LOCKING:
1471 * None.
1473 * RETURNS:
1474 * Computed xfermask
1476 unsigned long ata_id_xfermask(const u16 *id)
1478 unsigned long pio_mask, mwdma_mask, udma_mask;
1480 /* Usual case. Word 53 indicates word 64 is valid */
1481 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1482 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1483 pio_mask <<= 3;
1484 pio_mask |= 0x7;
1485 } else {
1486 /* If word 64 isn't valid then Word 51 high byte holds
1487 * the PIO timing number for the maximum. Turn it into
1488 * a mask.
1490 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1491 if (mode < 5) /* Valid PIO range */
1492 pio_mask = (2 << mode) - 1;
1493 else
1494 pio_mask = 1;
1496 /* But wait.. there's more. Design your standards by
1497 * committee and you too can get a free iordy field to
1498 * process. However its the speeds not the modes that
1499 * are supported... Note drivers using the timing API
1500 * will get this right anyway
1504 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1506 if (ata_id_is_cfa(id)) {
1508 * Process compact flash extended modes
1510 int pio = id[163] & 0x7;
1511 int dma = (id[163] >> 3) & 7;
1513 if (pio)
1514 pio_mask |= (1 << 5);
1515 if (pio > 1)
1516 pio_mask |= (1 << 6);
1517 if (dma)
1518 mwdma_mask |= (1 << 3);
1519 if (dma > 1)
1520 mwdma_mask |= (1 << 4);
1523 udma_mask = 0;
1524 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1525 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1527 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1531 * ata_pio_queue_task - Queue port_task
1532 * @ap: The ata_port to queue port_task for
1533 * @fn: workqueue function to be scheduled
1534 * @data: data for @fn to use
1535 * @delay: delay time in msecs for workqueue function
1537 * Schedule @fn(@data) for execution after @delay jiffies using
1538 * port_task. There is one port_task per port and it's the
1539 * user(low level driver)'s responsibility to make sure that only
1540 * one task is active at any given time.
1542 * libata core layer takes care of synchronization between
1543 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1544 * synchronization.
1546 * LOCKING:
1547 * Inherited from caller.
1549 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1551 ap->port_task_data = data;
1553 /* may fail if ata_port_flush_task() in progress */
1554 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1558 * ata_port_flush_task - Flush port_task
1559 * @ap: The ata_port to flush port_task for
1561 * After this function completes, port_task is guranteed not to
1562 * be running or scheduled.
1564 * LOCKING:
1565 * Kernel thread context (may sleep)
1567 void ata_port_flush_task(struct ata_port *ap)
1569 DPRINTK("ENTER\n");
1571 cancel_rearming_delayed_work(&ap->port_task);
1573 if (ata_msg_ctl(ap))
1574 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1577 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1579 struct completion *waiting = qc->private_data;
1581 complete(waiting);
1585 * ata_exec_internal_sg - execute libata internal command
1586 * @dev: Device to which the command is sent
1587 * @tf: Taskfile registers for the command and the result
1588 * @cdb: CDB for packet command
1589 * @dma_dir: Data tranfer direction of the command
1590 * @sgl: sg list for the data buffer of the command
1591 * @n_elem: Number of sg entries
1592 * @timeout: Timeout in msecs (0 for default)
1594 * Executes libata internal command with timeout. @tf contains
1595 * command on entry and result on return. Timeout and error
1596 * conditions are reported via return value. No recovery action
1597 * is taken after a command times out. It's caller's duty to
1598 * clean up after timeout.
1600 * LOCKING:
1601 * None. Should be called with kernel context, might sleep.
1603 * RETURNS:
1604 * Zero on success, AC_ERR_* mask on failure
1606 unsigned ata_exec_internal_sg(struct ata_device *dev,
1607 struct ata_taskfile *tf, const u8 *cdb,
1608 int dma_dir, struct scatterlist *sgl,
1609 unsigned int n_elem, unsigned long timeout)
1611 struct ata_link *link = dev->link;
1612 struct ata_port *ap = link->ap;
1613 u8 command = tf->command;
1614 int auto_timeout = 0;
1615 struct ata_queued_cmd *qc;
1616 unsigned int tag, preempted_tag;
1617 u32 preempted_sactive, preempted_qc_active;
1618 int preempted_nr_active_links;
1619 DECLARE_COMPLETION_ONSTACK(wait);
1620 unsigned long flags;
1621 unsigned int err_mask;
1622 int rc;
1624 spin_lock_irqsave(ap->lock, flags);
1626 /* no internal command while frozen */
1627 if (ap->pflags & ATA_PFLAG_FROZEN) {
1628 spin_unlock_irqrestore(ap->lock, flags);
1629 return AC_ERR_SYSTEM;
1632 /* initialize internal qc */
1634 /* XXX: Tag 0 is used for drivers with legacy EH as some
1635 * drivers choke if any other tag is given. This breaks
1636 * ata_tag_internal() test for those drivers. Don't use new
1637 * EH stuff without converting to it.
1639 if (ap->ops->error_handler)
1640 tag = ATA_TAG_INTERNAL;
1641 else
1642 tag = 0;
1644 if (test_and_set_bit(tag, &ap->qc_allocated))
1645 BUG();
1646 qc = __ata_qc_from_tag(ap, tag);
1648 qc->tag = tag;
1649 qc->scsicmd = NULL;
1650 qc->ap = ap;
1651 qc->dev = dev;
1652 ata_qc_reinit(qc);
1654 preempted_tag = link->active_tag;
1655 preempted_sactive = link->sactive;
1656 preempted_qc_active = ap->qc_active;
1657 preempted_nr_active_links = ap->nr_active_links;
1658 link->active_tag = ATA_TAG_POISON;
1659 link->sactive = 0;
1660 ap->qc_active = 0;
1661 ap->nr_active_links = 0;
1663 /* prepare & issue qc */
1664 qc->tf = *tf;
1665 if (cdb)
1666 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1667 qc->flags |= ATA_QCFLAG_RESULT_TF;
1668 qc->dma_dir = dma_dir;
1669 if (dma_dir != DMA_NONE) {
1670 unsigned int i, buflen = 0;
1671 struct scatterlist *sg;
1673 for_each_sg(sgl, sg, n_elem, i)
1674 buflen += sg->length;
1676 ata_sg_init(qc, sgl, n_elem);
1677 qc->nbytes = buflen;
1680 qc->private_data = &wait;
1681 qc->complete_fn = ata_qc_complete_internal;
1683 ata_qc_issue(qc);
1685 spin_unlock_irqrestore(ap->lock, flags);
1687 if (!timeout) {
1688 if (ata_probe_timeout)
1689 timeout = ata_probe_timeout * 1000;
1690 else {
1691 timeout = ata_internal_cmd_timeout(dev, command);
1692 auto_timeout = 1;
1696 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1698 ata_port_flush_task(ap);
1700 if (!rc) {
1701 spin_lock_irqsave(ap->lock, flags);
1703 /* We're racing with irq here. If we lose, the
1704 * following test prevents us from completing the qc
1705 * twice. If we win, the port is frozen and will be
1706 * cleaned up by ->post_internal_cmd().
1708 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1709 qc->err_mask |= AC_ERR_TIMEOUT;
1711 if (ap->ops->error_handler)
1712 ata_port_freeze(ap);
1713 else
1714 ata_qc_complete(qc);
1716 if (ata_msg_warn(ap))
1717 ata_dev_printk(dev, KERN_WARNING,
1718 "qc timeout (cmd 0x%x)\n", command);
1721 spin_unlock_irqrestore(ap->lock, flags);
1724 /* do post_internal_cmd */
1725 if (ap->ops->post_internal_cmd)
1726 ap->ops->post_internal_cmd(qc);
1728 /* perform minimal error analysis */
1729 if (qc->flags & ATA_QCFLAG_FAILED) {
1730 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1731 qc->err_mask |= AC_ERR_DEV;
1733 if (!qc->err_mask)
1734 qc->err_mask |= AC_ERR_OTHER;
1736 if (qc->err_mask & ~AC_ERR_OTHER)
1737 qc->err_mask &= ~AC_ERR_OTHER;
1740 /* finish up */
1741 spin_lock_irqsave(ap->lock, flags);
1743 *tf = qc->result_tf;
1744 err_mask = qc->err_mask;
1746 ata_qc_free(qc);
1747 link->active_tag = preempted_tag;
1748 link->sactive = preempted_sactive;
1749 ap->qc_active = preempted_qc_active;
1750 ap->nr_active_links = preempted_nr_active_links;
1752 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1753 * Until those drivers are fixed, we detect the condition
1754 * here, fail the command with AC_ERR_SYSTEM and reenable the
1755 * port.
1757 * Note that this doesn't change any behavior as internal
1758 * command failure results in disabling the device in the
1759 * higher layer for LLDDs without new reset/EH callbacks.
1761 * Kill the following code as soon as those drivers are fixed.
1763 if (ap->flags & ATA_FLAG_DISABLED) {
1764 err_mask |= AC_ERR_SYSTEM;
1765 ata_port_probe(ap);
1768 spin_unlock_irqrestore(ap->lock, flags);
1770 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1771 ata_internal_cmd_timed_out(dev, command);
1773 return err_mask;
1777 * ata_exec_internal - execute libata internal command
1778 * @dev: Device to which the command is sent
1779 * @tf: Taskfile registers for the command and the result
1780 * @cdb: CDB for packet command
1781 * @dma_dir: Data tranfer direction of the command
1782 * @buf: Data buffer of the command
1783 * @buflen: Length of data buffer
1784 * @timeout: Timeout in msecs (0 for default)
1786 * Wrapper around ata_exec_internal_sg() which takes simple
1787 * buffer instead of sg list.
1789 * LOCKING:
1790 * None. Should be called with kernel context, might sleep.
1792 * RETURNS:
1793 * Zero on success, AC_ERR_* mask on failure
1795 unsigned ata_exec_internal(struct ata_device *dev,
1796 struct ata_taskfile *tf, const u8 *cdb,
1797 int dma_dir, void *buf, unsigned int buflen,
1798 unsigned long timeout)
1800 struct scatterlist *psg = NULL, sg;
1801 unsigned int n_elem = 0;
1803 if (dma_dir != DMA_NONE) {
1804 WARN_ON(!buf);
1805 sg_init_one(&sg, buf, buflen);
1806 psg = &sg;
1807 n_elem++;
1810 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1811 timeout);
1815 * ata_do_simple_cmd - execute simple internal command
1816 * @dev: Device to which the command is sent
1817 * @cmd: Opcode to execute
1819 * Execute a 'simple' command, that only consists of the opcode
1820 * 'cmd' itself, without filling any other registers
1822 * LOCKING:
1823 * Kernel thread context (may sleep).
1825 * RETURNS:
1826 * Zero on success, AC_ERR_* mask on failure
1828 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1830 struct ata_taskfile tf;
1832 ata_tf_init(dev, &tf);
1834 tf.command = cmd;
1835 tf.flags |= ATA_TFLAG_DEVICE;
1836 tf.protocol = ATA_PROT_NODATA;
1838 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1842 * ata_pio_need_iordy - check if iordy needed
1843 * @adev: ATA device
1845 * Check if the current speed of the device requires IORDY. Used
1846 * by various controllers for chip configuration.
1849 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1851 /* Controller doesn't support IORDY. Probably a pointless check
1852 as the caller should know this */
1853 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1854 return 0;
1855 /* PIO3 and higher it is mandatory */
1856 if (adev->pio_mode > XFER_PIO_2)
1857 return 1;
1858 /* We turn it on when possible */
1859 if (ata_id_has_iordy(adev->id))
1860 return 1;
1861 return 0;
1865 * ata_pio_mask_no_iordy - Return the non IORDY mask
1866 * @adev: ATA device
1868 * Compute the highest mode possible if we are not using iordy. Return
1869 * -1 if no iordy mode is available.
1872 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1874 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1875 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1876 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1877 /* Is the speed faster than the drive allows non IORDY ? */
1878 if (pio) {
1879 /* This is cycle times not frequency - watch the logic! */
1880 if (pio > 240) /* PIO2 is 240nS per cycle */
1881 return 3 << ATA_SHIFT_PIO;
1882 return 7 << ATA_SHIFT_PIO;
1885 return 3 << ATA_SHIFT_PIO;
1889 * ata_do_dev_read_id - default ID read method
1890 * @dev: device
1891 * @tf: proposed taskfile
1892 * @id: data buffer
1894 * Issue the identify taskfile and hand back the buffer containing
1895 * identify data. For some RAID controllers and for pre ATA devices
1896 * this function is wrapped or replaced by the driver
1898 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1899 struct ata_taskfile *tf, u16 *id)
1901 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1902 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1906 * ata_dev_read_id - Read ID data from the specified device
1907 * @dev: target device
1908 * @p_class: pointer to class of the target device (may be changed)
1909 * @flags: ATA_READID_* flags
1910 * @id: buffer to read IDENTIFY data into
1912 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1913 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1914 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1915 * for pre-ATA4 drives.
1917 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1918 * now we abort if we hit that case.
1920 * LOCKING:
1921 * Kernel thread context (may sleep)
1923 * RETURNS:
1924 * 0 on success, -errno otherwise.
1926 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1927 unsigned int flags, u16 *id)
1929 struct ata_port *ap = dev->link->ap;
1930 unsigned int class = *p_class;
1931 struct ata_taskfile tf;
1932 unsigned int err_mask = 0;
1933 const char *reason;
1934 int may_fallback = 1, tried_spinup = 0;
1935 int rc;
1937 if (ata_msg_ctl(ap))
1938 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1940 retry:
1941 ata_tf_init(dev, &tf);
1943 switch (class) {
1944 case ATA_DEV_ATA:
1945 tf.command = ATA_CMD_ID_ATA;
1946 break;
1947 case ATA_DEV_ATAPI:
1948 tf.command = ATA_CMD_ID_ATAPI;
1949 break;
1950 default:
1951 rc = -ENODEV;
1952 reason = "unsupported class";
1953 goto err_out;
1956 tf.protocol = ATA_PROT_PIO;
1958 /* Some devices choke if TF registers contain garbage. Make
1959 * sure those are properly initialized.
1961 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1963 /* Device presence detection is unreliable on some
1964 * controllers. Always poll IDENTIFY if available.
1966 tf.flags |= ATA_TFLAG_POLLING;
1968 if (ap->ops->read_id)
1969 err_mask = ap->ops->read_id(dev, &tf, id);
1970 else
1971 err_mask = ata_do_dev_read_id(dev, &tf, id);
1973 if (err_mask) {
1974 if (err_mask & AC_ERR_NODEV_HINT) {
1975 ata_dev_printk(dev, KERN_DEBUG,
1976 "NODEV after polling detection\n");
1977 return -ENOENT;
1980 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1981 /* Device or controller might have reported
1982 * the wrong device class. Give a shot at the
1983 * other IDENTIFY if the current one is
1984 * aborted by the device.
1986 if (may_fallback) {
1987 may_fallback = 0;
1989 if (class == ATA_DEV_ATA)
1990 class = ATA_DEV_ATAPI;
1991 else
1992 class = ATA_DEV_ATA;
1993 goto retry;
1996 /* Control reaches here iff the device aborted
1997 * both flavors of IDENTIFYs which happens
1998 * sometimes with phantom devices.
2000 ata_dev_printk(dev, KERN_DEBUG,
2001 "both IDENTIFYs aborted, assuming NODEV\n");
2002 return -ENOENT;
2005 rc = -EIO;
2006 reason = "I/O error";
2007 goto err_out;
2010 /* Falling back doesn't make sense if ID data was read
2011 * successfully at least once.
2013 may_fallback = 0;
2015 swap_buf_le16(id, ATA_ID_WORDS);
2017 /* sanity check */
2018 rc = -EINVAL;
2019 reason = "device reports invalid type";
2021 if (class == ATA_DEV_ATA) {
2022 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2023 goto err_out;
2024 } else {
2025 if (ata_id_is_ata(id))
2026 goto err_out;
2029 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2030 tried_spinup = 1;
2032 * Drive powered-up in standby mode, and requires a specific
2033 * SET_FEATURES spin-up subcommand before it will accept
2034 * anything other than the original IDENTIFY command.
2036 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2037 if (err_mask && id[2] != 0x738c) {
2038 rc = -EIO;
2039 reason = "SPINUP failed";
2040 goto err_out;
2043 * If the drive initially returned incomplete IDENTIFY info,
2044 * we now must reissue the IDENTIFY command.
2046 if (id[2] == 0x37c8)
2047 goto retry;
2050 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2052 * The exact sequence expected by certain pre-ATA4 drives is:
2053 * SRST RESET
2054 * IDENTIFY (optional in early ATA)
2055 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2056 * anything else..
2057 * Some drives were very specific about that exact sequence.
2059 * Note that ATA4 says lba is mandatory so the second check
2060 * shoud never trigger.
2062 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2063 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2064 if (err_mask) {
2065 rc = -EIO;
2066 reason = "INIT_DEV_PARAMS failed";
2067 goto err_out;
2070 /* current CHS translation info (id[53-58]) might be
2071 * changed. reread the identify device info.
2073 flags &= ~ATA_READID_POSTRESET;
2074 goto retry;
2078 *p_class = class;
2080 return 0;
2082 err_out:
2083 if (ata_msg_warn(ap))
2084 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2085 "(%s, err_mask=0x%x)\n", reason, err_mask);
2086 return rc;
2089 static inline u8 ata_dev_knobble(struct ata_device *dev)
2091 struct ata_port *ap = dev->link->ap;
2092 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2095 static void ata_dev_config_ncq(struct ata_device *dev,
2096 char *desc, size_t desc_sz)
2098 struct ata_port *ap = dev->link->ap;
2099 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2101 if (!ata_id_has_ncq(dev->id)) {
2102 desc[0] = '\0';
2103 return;
2105 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2106 snprintf(desc, desc_sz, "NCQ (not used)");
2107 return;
2109 if (ap->flags & ATA_FLAG_NCQ) {
2110 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2111 dev->flags |= ATA_DFLAG_NCQ;
2114 if (hdepth >= ddepth)
2115 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2116 else
2117 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2121 * ata_dev_configure - Configure the specified ATA/ATAPI device
2122 * @dev: Target device to configure
2124 * Configure @dev according to @dev->id. Generic and low-level
2125 * driver specific fixups are also applied.
2127 * LOCKING:
2128 * Kernel thread context (may sleep)
2130 * RETURNS:
2131 * 0 on success, -errno otherwise
2133 int ata_dev_configure(struct ata_device *dev)
2135 struct ata_port *ap = dev->link->ap;
2136 struct ata_eh_context *ehc = &dev->link->eh_context;
2137 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2138 const u16 *id = dev->id;
2139 unsigned long xfer_mask;
2140 char revbuf[7]; /* XYZ-99\0 */
2141 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2142 char modelbuf[ATA_ID_PROD_LEN+1];
2143 int rc;
2145 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2146 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2147 __func__);
2148 return 0;
2151 if (ata_msg_probe(ap))
2152 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2154 /* set horkage */
2155 dev->horkage |= ata_dev_blacklisted(dev);
2156 ata_force_horkage(dev);
2158 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2159 ata_dev_printk(dev, KERN_INFO,
2160 "unsupported device, disabling\n");
2161 ata_dev_disable(dev);
2162 return 0;
2165 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2166 dev->class == ATA_DEV_ATAPI) {
2167 ata_dev_printk(dev, KERN_WARNING,
2168 "WARNING: ATAPI is %s, device ignored.\n",
2169 atapi_enabled ? "not supported with this driver"
2170 : "disabled");
2171 ata_dev_disable(dev);
2172 return 0;
2175 /* let ACPI work its magic */
2176 rc = ata_acpi_on_devcfg(dev);
2177 if (rc)
2178 return rc;
2180 /* massage HPA, do it early as it might change IDENTIFY data */
2181 rc = ata_hpa_resize(dev);
2182 if (rc)
2183 return rc;
2185 /* print device capabilities */
2186 if (ata_msg_probe(ap))
2187 ata_dev_printk(dev, KERN_DEBUG,
2188 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2189 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2190 __func__,
2191 id[49], id[82], id[83], id[84],
2192 id[85], id[86], id[87], id[88]);
2194 /* initialize to-be-configured parameters */
2195 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2196 dev->max_sectors = 0;
2197 dev->cdb_len = 0;
2198 dev->n_sectors = 0;
2199 dev->cylinders = 0;
2200 dev->heads = 0;
2201 dev->sectors = 0;
2204 * common ATA, ATAPI feature tests
2207 /* find max transfer mode; for printk only */
2208 xfer_mask = ata_id_xfermask(id);
2210 if (ata_msg_probe(ap))
2211 ata_dump_id(id);
2213 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2214 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2215 sizeof(fwrevbuf));
2217 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2218 sizeof(modelbuf));
2220 /* ATA-specific feature tests */
2221 if (dev->class == ATA_DEV_ATA) {
2222 if (ata_id_is_cfa(id)) {
2223 if (id[162] & 1) /* CPRM may make this media unusable */
2224 ata_dev_printk(dev, KERN_WARNING,
2225 "supports DRM functions and may "
2226 "not be fully accessable.\n");
2227 snprintf(revbuf, 7, "CFA");
2228 } else {
2229 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2230 /* Warn the user if the device has TPM extensions */
2231 if (ata_id_has_tpm(id))
2232 ata_dev_printk(dev, KERN_WARNING,
2233 "supports DRM functions and may "
2234 "not be fully accessable.\n");
2237 dev->n_sectors = ata_id_n_sectors(id);
2239 if (dev->id[59] & 0x100)
2240 dev->multi_count = dev->id[59] & 0xff;
2242 if (ata_id_has_lba(id)) {
2243 const char *lba_desc;
2244 char ncq_desc[20];
2246 lba_desc = "LBA";
2247 dev->flags |= ATA_DFLAG_LBA;
2248 if (ata_id_has_lba48(id)) {
2249 dev->flags |= ATA_DFLAG_LBA48;
2250 lba_desc = "LBA48";
2252 if (dev->n_sectors >= (1UL << 28) &&
2253 ata_id_has_flush_ext(id))
2254 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2257 /* config NCQ */
2258 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2260 /* print device info to dmesg */
2261 if (ata_msg_drv(ap) && print_info) {
2262 ata_dev_printk(dev, KERN_INFO,
2263 "%s: %s, %s, max %s\n",
2264 revbuf, modelbuf, fwrevbuf,
2265 ata_mode_string(xfer_mask));
2266 ata_dev_printk(dev, KERN_INFO,
2267 "%Lu sectors, multi %u: %s %s\n",
2268 (unsigned long long)dev->n_sectors,
2269 dev->multi_count, lba_desc, ncq_desc);
2271 } else {
2272 /* CHS */
2274 /* Default translation */
2275 dev->cylinders = id[1];
2276 dev->heads = id[3];
2277 dev->sectors = id[6];
2279 if (ata_id_current_chs_valid(id)) {
2280 /* Current CHS translation is valid. */
2281 dev->cylinders = id[54];
2282 dev->heads = id[55];
2283 dev->sectors = id[56];
2286 /* print device info to dmesg */
2287 if (ata_msg_drv(ap) && print_info) {
2288 ata_dev_printk(dev, KERN_INFO,
2289 "%s: %s, %s, max %s\n",
2290 revbuf, modelbuf, fwrevbuf,
2291 ata_mode_string(xfer_mask));
2292 ata_dev_printk(dev, KERN_INFO,
2293 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2294 (unsigned long long)dev->n_sectors,
2295 dev->multi_count, dev->cylinders,
2296 dev->heads, dev->sectors);
2300 dev->cdb_len = 16;
2303 /* ATAPI-specific feature tests */
2304 else if (dev->class == ATA_DEV_ATAPI) {
2305 const char *cdb_intr_string = "";
2306 const char *atapi_an_string = "";
2307 const char *dma_dir_string = "";
2308 u32 sntf;
2310 rc = atapi_cdb_len(id);
2311 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2312 if (ata_msg_warn(ap))
2313 ata_dev_printk(dev, KERN_WARNING,
2314 "unsupported CDB len\n");
2315 rc = -EINVAL;
2316 goto err_out_nosup;
2318 dev->cdb_len = (unsigned int) rc;
2320 /* Enable ATAPI AN if both the host and device have
2321 * the support. If PMP is attached, SNTF is required
2322 * to enable ATAPI AN to discern between PHY status
2323 * changed notifications and ATAPI ANs.
2325 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2326 (!sata_pmp_attached(ap) ||
2327 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2328 unsigned int err_mask;
2330 /* issue SET feature command to turn this on */
2331 err_mask = ata_dev_set_feature(dev,
2332 SETFEATURES_SATA_ENABLE, SATA_AN);
2333 if (err_mask)
2334 ata_dev_printk(dev, KERN_ERR,
2335 "failed to enable ATAPI AN "
2336 "(err_mask=0x%x)\n", err_mask);
2337 else {
2338 dev->flags |= ATA_DFLAG_AN;
2339 atapi_an_string = ", ATAPI AN";
2343 if (ata_id_cdb_intr(dev->id)) {
2344 dev->flags |= ATA_DFLAG_CDB_INTR;
2345 cdb_intr_string = ", CDB intr";
2348 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2349 dev->flags |= ATA_DFLAG_DMADIR;
2350 dma_dir_string = ", DMADIR";
2353 /* print device info to dmesg */
2354 if (ata_msg_drv(ap) && print_info)
2355 ata_dev_printk(dev, KERN_INFO,
2356 "ATAPI: %s, %s, max %s%s%s%s\n",
2357 modelbuf, fwrevbuf,
2358 ata_mode_string(xfer_mask),
2359 cdb_intr_string, atapi_an_string,
2360 dma_dir_string);
2363 /* determine max_sectors */
2364 dev->max_sectors = ATA_MAX_SECTORS;
2365 if (dev->flags & ATA_DFLAG_LBA48)
2366 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2368 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2369 if (ata_id_has_hipm(dev->id))
2370 dev->flags |= ATA_DFLAG_HIPM;
2371 if (ata_id_has_dipm(dev->id))
2372 dev->flags |= ATA_DFLAG_DIPM;
2375 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2376 200 sectors */
2377 if (ata_dev_knobble(dev)) {
2378 if (ata_msg_drv(ap) && print_info)
2379 ata_dev_printk(dev, KERN_INFO,
2380 "applying bridge limits\n");
2381 dev->udma_mask &= ATA_UDMA5;
2382 dev->max_sectors = ATA_MAX_SECTORS;
2385 if ((dev->class == ATA_DEV_ATAPI) &&
2386 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2387 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2388 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2391 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2392 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2393 dev->max_sectors);
2395 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2396 dev->horkage |= ATA_HORKAGE_IPM;
2398 /* reset link pm_policy for this port to no pm */
2399 ap->pm_policy = MAX_PERFORMANCE;
2402 if (ap->ops->dev_config)
2403 ap->ops->dev_config(dev);
2405 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2406 /* Let the user know. We don't want to disallow opens for
2407 rescue purposes, or in case the vendor is just a blithering
2408 idiot. Do this after the dev_config call as some controllers
2409 with buggy firmware may want to avoid reporting false device
2410 bugs */
2412 if (print_info) {
2413 ata_dev_printk(dev, KERN_WARNING,
2414 "Drive reports diagnostics failure. This may indicate a drive\n");
2415 ata_dev_printk(dev, KERN_WARNING,
2416 "fault or invalid emulation. Contact drive vendor for information.\n");
2420 return 0;
2422 err_out_nosup:
2423 if (ata_msg_probe(ap))
2424 ata_dev_printk(dev, KERN_DEBUG,
2425 "%s: EXIT, err\n", __func__);
2426 return rc;
2430 * ata_cable_40wire - return 40 wire cable type
2431 * @ap: port
2433 * Helper method for drivers which want to hardwire 40 wire cable
2434 * detection.
2437 int ata_cable_40wire(struct ata_port *ap)
2439 return ATA_CBL_PATA40;
2443 * ata_cable_80wire - return 80 wire cable type
2444 * @ap: port
2446 * Helper method for drivers which want to hardwire 80 wire cable
2447 * detection.
2450 int ata_cable_80wire(struct ata_port *ap)
2452 return ATA_CBL_PATA80;
2456 * ata_cable_unknown - return unknown PATA cable.
2457 * @ap: port
2459 * Helper method for drivers which have no PATA cable detection.
2462 int ata_cable_unknown(struct ata_port *ap)
2464 return ATA_CBL_PATA_UNK;
2468 * ata_cable_ignore - return ignored PATA cable.
2469 * @ap: port
2471 * Helper method for drivers which don't use cable type to limit
2472 * transfer mode.
2474 int ata_cable_ignore(struct ata_port *ap)
2476 return ATA_CBL_PATA_IGN;
2480 * ata_cable_sata - return SATA cable type
2481 * @ap: port
2483 * Helper method for drivers which have SATA cables
2486 int ata_cable_sata(struct ata_port *ap)
2488 return ATA_CBL_SATA;
2492 * ata_bus_probe - Reset and probe ATA bus
2493 * @ap: Bus to probe
2495 * Master ATA bus probing function. Initiates a hardware-dependent
2496 * bus reset, then attempts to identify any devices found on
2497 * the bus.
2499 * LOCKING:
2500 * PCI/etc. bus probe sem.
2502 * RETURNS:
2503 * Zero on success, negative errno otherwise.
2506 int ata_bus_probe(struct ata_port *ap)
2508 unsigned int classes[ATA_MAX_DEVICES];
2509 int tries[ATA_MAX_DEVICES];
2510 int rc;
2511 struct ata_device *dev;
2513 ata_port_probe(ap);
2515 ata_link_for_each_dev(dev, &ap->link)
2516 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2518 retry:
2519 ata_link_for_each_dev(dev, &ap->link) {
2520 /* If we issue an SRST then an ATA drive (not ATAPI)
2521 * may change configuration and be in PIO0 timing. If
2522 * we do a hard reset (or are coming from power on)
2523 * this is true for ATA or ATAPI. Until we've set a
2524 * suitable controller mode we should not touch the
2525 * bus as we may be talking too fast.
2527 dev->pio_mode = XFER_PIO_0;
2529 /* If the controller has a pio mode setup function
2530 * then use it to set the chipset to rights. Don't
2531 * touch the DMA setup as that will be dealt with when
2532 * configuring devices.
2534 if (ap->ops->set_piomode)
2535 ap->ops->set_piomode(ap, dev);
2538 /* reset and determine device classes */
2539 ap->ops->phy_reset(ap);
2541 ata_link_for_each_dev(dev, &ap->link) {
2542 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2543 dev->class != ATA_DEV_UNKNOWN)
2544 classes[dev->devno] = dev->class;
2545 else
2546 classes[dev->devno] = ATA_DEV_NONE;
2548 dev->class = ATA_DEV_UNKNOWN;
2551 ata_port_probe(ap);
2553 /* read IDENTIFY page and configure devices. We have to do the identify
2554 specific sequence bass-ackwards so that PDIAG- is released by
2555 the slave device */
2557 ata_link_for_each_dev_reverse(dev, &ap->link) {
2558 if (tries[dev->devno])
2559 dev->class = classes[dev->devno];
2561 if (!ata_dev_enabled(dev))
2562 continue;
2564 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2565 dev->id);
2566 if (rc)
2567 goto fail;
2570 /* Now ask for the cable type as PDIAG- should have been released */
2571 if (ap->ops->cable_detect)
2572 ap->cbl = ap->ops->cable_detect(ap);
2574 /* We may have SATA bridge glue hiding here irrespective of the
2575 reported cable types and sensed types */
2576 ata_link_for_each_dev(dev, &ap->link) {
2577 if (!ata_dev_enabled(dev))
2578 continue;
2579 /* SATA drives indicate we have a bridge. We don't know which
2580 end of the link the bridge is which is a problem */
2581 if (ata_id_is_sata(dev->id))
2582 ap->cbl = ATA_CBL_SATA;
2585 /* After the identify sequence we can now set up the devices. We do
2586 this in the normal order so that the user doesn't get confused */
2588 ata_link_for_each_dev(dev, &ap->link) {
2589 if (!ata_dev_enabled(dev))
2590 continue;
2592 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2593 rc = ata_dev_configure(dev);
2594 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2595 if (rc)
2596 goto fail;
2599 /* configure transfer mode */
2600 rc = ata_set_mode(&ap->link, &dev);
2601 if (rc)
2602 goto fail;
2604 ata_link_for_each_dev(dev, &ap->link)
2605 if (ata_dev_enabled(dev))
2606 return 0;
2608 /* no device present, disable port */
2609 ata_port_disable(ap);
2610 return -ENODEV;
2612 fail:
2613 tries[dev->devno]--;
2615 switch (rc) {
2616 case -EINVAL:
2617 /* eeek, something went very wrong, give up */
2618 tries[dev->devno] = 0;
2619 break;
2621 case -ENODEV:
2622 /* give it just one more chance */
2623 tries[dev->devno] = min(tries[dev->devno], 1);
2624 case -EIO:
2625 if (tries[dev->devno] == 1) {
2626 /* This is the last chance, better to slow
2627 * down than lose it.
2629 sata_down_spd_limit(&ap->link);
2630 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2634 if (!tries[dev->devno])
2635 ata_dev_disable(dev);
2637 goto retry;
2641 * ata_port_probe - Mark port as enabled
2642 * @ap: Port for which we indicate enablement
2644 * Modify @ap data structure such that the system
2645 * thinks that the entire port is enabled.
2647 * LOCKING: host lock, or some other form of
2648 * serialization.
2651 void ata_port_probe(struct ata_port *ap)
2653 ap->flags &= ~ATA_FLAG_DISABLED;
2657 * sata_print_link_status - Print SATA link status
2658 * @link: SATA link to printk link status about
2660 * This function prints link speed and status of a SATA link.
2662 * LOCKING:
2663 * None.
2665 static void sata_print_link_status(struct ata_link *link)
2667 u32 sstatus, scontrol, tmp;
2669 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2670 return;
2671 sata_scr_read(link, SCR_CONTROL, &scontrol);
2673 if (ata_link_online(link)) {
2674 tmp = (sstatus >> 4) & 0xf;
2675 ata_link_printk(link, KERN_INFO,
2676 "SATA link up %s (SStatus %X SControl %X)\n",
2677 sata_spd_string(tmp), sstatus, scontrol);
2678 } else {
2679 ata_link_printk(link, KERN_INFO,
2680 "SATA link down (SStatus %X SControl %X)\n",
2681 sstatus, scontrol);
2686 * ata_dev_pair - return other device on cable
2687 * @adev: device
2689 * Obtain the other device on the same cable, or if none is
2690 * present NULL is returned
2693 struct ata_device *ata_dev_pair(struct ata_device *adev)
2695 struct ata_link *link = adev->link;
2696 struct ata_device *pair = &link->device[1 - adev->devno];
2697 if (!ata_dev_enabled(pair))
2698 return NULL;
2699 return pair;
2703 * ata_port_disable - Disable port.
2704 * @ap: Port to be disabled.
2706 * Modify @ap data structure such that the system
2707 * thinks that the entire port is disabled, and should
2708 * never attempt to probe or communicate with devices
2709 * on this port.
2711 * LOCKING: host lock, or some other form of
2712 * serialization.
2715 void ata_port_disable(struct ata_port *ap)
2717 ap->link.device[0].class = ATA_DEV_NONE;
2718 ap->link.device[1].class = ATA_DEV_NONE;
2719 ap->flags |= ATA_FLAG_DISABLED;
2723 * sata_down_spd_limit - adjust SATA spd limit downward
2724 * @link: Link to adjust SATA spd limit for
2726 * Adjust SATA spd limit of @link downward. Note that this
2727 * function only adjusts the limit. The change must be applied
2728 * using sata_set_spd().
2730 * LOCKING:
2731 * Inherited from caller.
2733 * RETURNS:
2734 * 0 on success, negative errno on failure
2736 int sata_down_spd_limit(struct ata_link *link)
2738 u32 sstatus, spd, mask;
2739 int rc, highbit;
2741 if (!sata_scr_valid(link))
2742 return -EOPNOTSUPP;
2744 /* If SCR can be read, use it to determine the current SPD.
2745 * If not, use cached value in link->sata_spd.
2747 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2748 if (rc == 0)
2749 spd = (sstatus >> 4) & 0xf;
2750 else
2751 spd = link->sata_spd;
2753 mask = link->sata_spd_limit;
2754 if (mask <= 1)
2755 return -EINVAL;
2757 /* unconditionally mask off the highest bit */
2758 highbit = fls(mask) - 1;
2759 mask &= ~(1 << highbit);
2761 /* Mask off all speeds higher than or equal to the current
2762 * one. Force 1.5Gbps if current SPD is not available.
2764 if (spd > 1)
2765 mask &= (1 << (spd - 1)) - 1;
2766 else
2767 mask &= 1;
2769 /* were we already at the bottom? */
2770 if (!mask)
2771 return -EINVAL;
2773 link->sata_spd_limit = mask;
2775 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2776 sata_spd_string(fls(mask)));
2778 return 0;
2781 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2783 struct ata_link *host_link = &link->ap->link;
2784 u32 limit, target, spd;
2786 limit = link->sata_spd_limit;
2788 /* Don't configure downstream link faster than upstream link.
2789 * It doesn't speed up anything and some PMPs choke on such
2790 * configuration.
2792 if (!ata_is_host_link(link) && host_link->sata_spd)
2793 limit &= (1 << host_link->sata_spd) - 1;
2795 if (limit == UINT_MAX)
2796 target = 0;
2797 else
2798 target = fls(limit);
2800 spd = (*scontrol >> 4) & 0xf;
2801 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2803 return spd != target;
2807 * sata_set_spd_needed - is SATA spd configuration needed
2808 * @link: Link in question
2810 * Test whether the spd limit in SControl matches
2811 * @link->sata_spd_limit. This function is used to determine
2812 * whether hardreset is necessary to apply SATA spd
2813 * configuration.
2815 * LOCKING:
2816 * Inherited from caller.
2818 * RETURNS:
2819 * 1 if SATA spd configuration is needed, 0 otherwise.
2821 static int sata_set_spd_needed(struct ata_link *link)
2823 u32 scontrol;
2825 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2826 return 1;
2828 return __sata_set_spd_needed(link, &scontrol);
2832 * sata_set_spd - set SATA spd according to spd limit
2833 * @link: Link to set SATA spd for
2835 * Set SATA spd of @link according to sata_spd_limit.
2837 * LOCKING:
2838 * Inherited from caller.
2840 * RETURNS:
2841 * 0 if spd doesn't need to be changed, 1 if spd has been
2842 * changed. Negative errno if SCR registers are inaccessible.
2844 int sata_set_spd(struct ata_link *link)
2846 u32 scontrol;
2847 int rc;
2849 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2850 return rc;
2852 if (!__sata_set_spd_needed(link, &scontrol))
2853 return 0;
2855 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2856 return rc;
2858 return 1;
2862 * This mode timing computation functionality is ported over from
2863 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2866 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2867 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2868 * for UDMA6, which is currently supported only by Maxtor drives.
2870 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2873 static const struct ata_timing ata_timing[] = {
2874 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2875 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2876 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2877 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2878 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2879 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2880 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2881 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2883 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2884 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2885 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2887 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2888 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2889 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2890 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2891 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2893 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2894 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2895 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2896 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2897 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2898 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2899 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2900 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2902 { 0xFF }
2905 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2906 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2908 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2910 q->setup = EZ(t->setup * 1000, T);
2911 q->act8b = EZ(t->act8b * 1000, T);
2912 q->rec8b = EZ(t->rec8b * 1000, T);
2913 q->cyc8b = EZ(t->cyc8b * 1000, T);
2914 q->active = EZ(t->active * 1000, T);
2915 q->recover = EZ(t->recover * 1000, T);
2916 q->cycle = EZ(t->cycle * 1000, T);
2917 q->udma = EZ(t->udma * 1000, UT);
2920 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2921 struct ata_timing *m, unsigned int what)
2923 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2924 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2925 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2926 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2927 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2928 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2929 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2930 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2933 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2935 const struct ata_timing *t = ata_timing;
2937 while (xfer_mode > t->mode)
2938 t++;
2940 if (xfer_mode == t->mode)
2941 return t;
2942 return NULL;
2945 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2946 struct ata_timing *t, int T, int UT)
2948 const struct ata_timing *s;
2949 struct ata_timing p;
2952 * Find the mode.
2955 if (!(s = ata_timing_find_mode(speed)))
2956 return -EINVAL;
2958 memcpy(t, s, sizeof(*s));
2961 * If the drive is an EIDE drive, it can tell us it needs extended
2962 * PIO/MW_DMA cycle timing.
2965 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2966 memset(&p, 0, sizeof(p));
2967 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2968 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2969 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2970 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2971 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2973 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2977 * Convert the timing to bus clock counts.
2980 ata_timing_quantize(t, t, T, UT);
2983 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2984 * S.M.A.R.T * and some other commands. We have to ensure that the
2985 * DMA cycle timing is slower/equal than the fastest PIO timing.
2988 if (speed > XFER_PIO_6) {
2989 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2990 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2994 * Lengthen active & recovery time so that cycle time is correct.
2997 if (t->act8b + t->rec8b < t->cyc8b) {
2998 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2999 t->rec8b = t->cyc8b - t->act8b;
3002 if (t->active + t->recover < t->cycle) {
3003 t->active += (t->cycle - (t->active + t->recover)) / 2;
3004 t->recover = t->cycle - t->active;
3007 /* In a few cases quantisation may produce enough errors to
3008 leave t->cycle too low for the sum of active and recovery
3009 if so we must correct this */
3010 if (t->active + t->recover > t->cycle)
3011 t->cycle = t->active + t->recover;
3013 return 0;
3017 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3018 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3019 * @cycle: cycle duration in ns
3021 * Return matching xfer mode for @cycle. The returned mode is of
3022 * the transfer type specified by @xfer_shift. If @cycle is too
3023 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3024 * than the fastest known mode, the fasted mode is returned.
3026 * LOCKING:
3027 * None.
3029 * RETURNS:
3030 * Matching xfer_mode, 0xff if no match found.
3032 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3034 u8 base_mode = 0xff, last_mode = 0xff;
3035 const struct ata_xfer_ent *ent;
3036 const struct ata_timing *t;
3038 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3039 if (ent->shift == xfer_shift)
3040 base_mode = ent->base;
3042 for (t = ata_timing_find_mode(base_mode);
3043 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3044 unsigned short this_cycle;
3046 switch (xfer_shift) {
3047 case ATA_SHIFT_PIO:
3048 case ATA_SHIFT_MWDMA:
3049 this_cycle = t->cycle;
3050 break;
3051 case ATA_SHIFT_UDMA:
3052 this_cycle = t->udma;
3053 break;
3054 default:
3055 return 0xff;
3058 if (cycle > this_cycle)
3059 break;
3061 last_mode = t->mode;
3064 return last_mode;
3068 * ata_down_xfermask_limit - adjust dev xfer masks downward
3069 * @dev: Device to adjust xfer masks
3070 * @sel: ATA_DNXFER_* selector
3072 * Adjust xfer masks of @dev downward. Note that this function
3073 * does not apply the change. Invoking ata_set_mode() afterwards
3074 * will apply the limit.
3076 * LOCKING:
3077 * Inherited from caller.
3079 * RETURNS:
3080 * 0 on success, negative errno on failure
3082 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3084 char buf[32];
3085 unsigned long orig_mask, xfer_mask;
3086 unsigned long pio_mask, mwdma_mask, udma_mask;
3087 int quiet, highbit;
3089 quiet = !!(sel & ATA_DNXFER_QUIET);
3090 sel &= ~ATA_DNXFER_QUIET;
3092 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3093 dev->mwdma_mask,
3094 dev->udma_mask);
3095 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3097 switch (sel) {
3098 case ATA_DNXFER_PIO:
3099 highbit = fls(pio_mask) - 1;
3100 pio_mask &= ~(1 << highbit);
3101 break;
3103 case ATA_DNXFER_DMA:
3104 if (udma_mask) {
3105 highbit = fls(udma_mask) - 1;
3106 udma_mask &= ~(1 << highbit);
3107 if (!udma_mask)
3108 return -ENOENT;
3109 } else if (mwdma_mask) {
3110 highbit = fls(mwdma_mask) - 1;
3111 mwdma_mask &= ~(1 << highbit);
3112 if (!mwdma_mask)
3113 return -ENOENT;
3115 break;
3117 case ATA_DNXFER_40C:
3118 udma_mask &= ATA_UDMA_MASK_40C;
3119 break;
3121 case ATA_DNXFER_FORCE_PIO0:
3122 pio_mask &= 1;
3123 case ATA_DNXFER_FORCE_PIO:
3124 mwdma_mask = 0;
3125 udma_mask = 0;
3126 break;
3128 default:
3129 BUG();
3132 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3134 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3135 return -ENOENT;
3137 if (!quiet) {
3138 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3139 snprintf(buf, sizeof(buf), "%s:%s",
3140 ata_mode_string(xfer_mask),
3141 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3142 else
3143 snprintf(buf, sizeof(buf), "%s",
3144 ata_mode_string(xfer_mask));
3146 ata_dev_printk(dev, KERN_WARNING,
3147 "limiting speed to %s\n", buf);
3150 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3151 &dev->udma_mask);
3153 return 0;
3156 static int ata_dev_set_mode(struct ata_device *dev)
3158 struct ata_eh_context *ehc = &dev->link->eh_context;
3159 const char *dev_err_whine = "";
3160 int ign_dev_err = 0;
3161 unsigned int err_mask;
3162 int rc;
3164 dev->flags &= ~ATA_DFLAG_PIO;
3165 if (dev->xfer_shift == ATA_SHIFT_PIO)
3166 dev->flags |= ATA_DFLAG_PIO;
3168 err_mask = ata_dev_set_xfermode(dev);
3170 if (err_mask & ~AC_ERR_DEV)
3171 goto fail;
3173 /* revalidate */
3174 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3175 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3176 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3177 if (rc)
3178 return rc;
3180 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3181 /* Old CFA may refuse this command, which is just fine */
3182 if (ata_id_is_cfa(dev->id))
3183 ign_dev_err = 1;
3184 /* Catch several broken garbage emulations plus some pre
3185 ATA devices */
3186 if (ata_id_major_version(dev->id) == 0 &&
3187 dev->pio_mode <= XFER_PIO_2)
3188 ign_dev_err = 1;
3189 /* Some very old devices and some bad newer ones fail
3190 any kind of SET_XFERMODE request but support PIO0-2
3191 timings and no IORDY */
3192 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3193 ign_dev_err = 1;
3195 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3196 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3197 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3198 dev->dma_mode == XFER_MW_DMA_0 &&
3199 (dev->id[63] >> 8) & 1)
3200 ign_dev_err = 1;
3202 /* if the device is actually configured correctly, ignore dev err */
3203 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3204 ign_dev_err = 1;
3206 if (err_mask & AC_ERR_DEV) {
3207 if (!ign_dev_err)
3208 goto fail;
3209 else
3210 dev_err_whine = " (device error ignored)";
3213 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3214 dev->xfer_shift, (int)dev->xfer_mode);
3216 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3217 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3218 dev_err_whine);
3220 return 0;
3222 fail:
3223 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3224 "(err_mask=0x%x)\n", err_mask);
3225 return -EIO;
3229 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3230 * @link: link on which timings will be programmed
3231 * @r_failed_dev: out parameter for failed device
3233 * Standard implementation of the function used to tune and set
3234 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3235 * ata_dev_set_mode() fails, pointer to the failing device is
3236 * returned in @r_failed_dev.
3238 * LOCKING:
3239 * PCI/etc. bus probe sem.
3241 * RETURNS:
3242 * 0 on success, negative errno otherwise
3245 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3247 struct ata_port *ap = link->ap;
3248 struct ata_device *dev;
3249 int rc = 0, used_dma = 0, found = 0;
3251 /* step 1: calculate xfer_mask */
3252 ata_link_for_each_dev(dev, link) {
3253 unsigned long pio_mask, dma_mask;
3254 unsigned int mode_mask;
3256 if (!ata_dev_enabled(dev))
3257 continue;
3259 mode_mask = ATA_DMA_MASK_ATA;
3260 if (dev->class == ATA_DEV_ATAPI)
3261 mode_mask = ATA_DMA_MASK_ATAPI;
3262 else if (ata_id_is_cfa(dev->id))
3263 mode_mask = ATA_DMA_MASK_CFA;
3265 ata_dev_xfermask(dev);
3266 ata_force_xfermask(dev);
3268 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3269 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3271 if (libata_dma_mask & mode_mask)
3272 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3273 else
3274 dma_mask = 0;
3276 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3277 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3279 found = 1;
3280 if (dev->dma_mode != 0xff)
3281 used_dma = 1;
3283 if (!found)
3284 goto out;
3286 /* step 2: always set host PIO timings */
3287 ata_link_for_each_dev(dev, link) {
3288 if (!ata_dev_enabled(dev))
3289 continue;
3291 if (dev->pio_mode == 0xff) {
3292 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3293 rc = -EINVAL;
3294 goto out;
3297 dev->xfer_mode = dev->pio_mode;
3298 dev->xfer_shift = ATA_SHIFT_PIO;
3299 if (ap->ops->set_piomode)
3300 ap->ops->set_piomode(ap, dev);
3303 /* step 3: set host DMA timings */
3304 ata_link_for_each_dev(dev, link) {
3305 if (!ata_dev_enabled(dev) || dev->dma_mode == 0xff)
3306 continue;
3308 dev->xfer_mode = dev->dma_mode;
3309 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3310 if (ap->ops->set_dmamode)
3311 ap->ops->set_dmamode(ap, dev);
3314 /* step 4: update devices' xfer mode */
3315 ata_link_for_each_dev(dev, link) {
3316 /* don't update suspended devices' xfer mode */
3317 if (!ata_dev_enabled(dev))
3318 continue;
3320 rc = ata_dev_set_mode(dev);
3321 if (rc)
3322 goto out;
3325 /* Record simplex status. If we selected DMA then the other
3326 * host channels are not permitted to do so.
3328 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3329 ap->host->simplex_claimed = ap;
3331 out:
3332 if (rc)
3333 *r_failed_dev = dev;
3334 return rc;
3338 * ata_wait_ready - wait for link to become ready
3339 * @link: link to be waited on
3340 * @deadline: deadline jiffies for the operation
3341 * @check_ready: callback to check link readiness
3343 * Wait for @link to become ready. @check_ready should return
3344 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3345 * link doesn't seem to be occupied, other errno for other error
3346 * conditions.
3348 * Transient -ENODEV conditions are allowed for
3349 * ATA_TMOUT_FF_WAIT.
3351 * LOCKING:
3352 * EH context.
3354 * RETURNS:
3355 * 0 if @linke is ready before @deadline; otherwise, -errno.
3357 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3358 int (*check_ready)(struct ata_link *link))
3360 unsigned long start = jiffies;
3361 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3362 int warned = 0;
3364 if (time_after(nodev_deadline, deadline))
3365 nodev_deadline = deadline;
3367 while (1) {
3368 unsigned long now = jiffies;
3369 int ready, tmp;
3371 ready = tmp = check_ready(link);
3372 if (ready > 0)
3373 return 0;
3375 /* -ENODEV could be transient. Ignore -ENODEV if link
3376 * is online. Also, some SATA devices take a long
3377 * time to clear 0xff after reset. For example,
3378 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3379 * GoVault needs even more than that. Wait for
3380 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3382 * Note that some PATA controllers (pata_ali) explode
3383 * if status register is read more than once when
3384 * there's no device attached.
3386 if (ready == -ENODEV) {
3387 if (ata_link_online(link))
3388 ready = 0;
3389 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3390 !ata_link_offline(link) &&
3391 time_before(now, nodev_deadline))
3392 ready = 0;
3395 if (ready)
3396 return ready;
3397 if (time_after(now, deadline))
3398 return -EBUSY;
3400 if (!warned && time_after(now, start + 5 * HZ) &&
3401 (deadline - now > 3 * HZ)) {
3402 ata_link_printk(link, KERN_WARNING,
3403 "link is slow to respond, please be patient "
3404 "(ready=%d)\n", tmp);
3405 warned = 1;
3408 msleep(50);
3413 * ata_wait_after_reset - wait for link to become ready after reset
3414 * @link: link to be waited on
3415 * @deadline: deadline jiffies for the operation
3416 * @check_ready: callback to check link readiness
3418 * Wait for @link to become ready after reset.
3420 * LOCKING:
3421 * EH context.
3423 * RETURNS:
3424 * 0 if @linke is ready before @deadline; otherwise, -errno.
3426 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3427 int (*check_ready)(struct ata_link *link))
3429 msleep(ATA_WAIT_AFTER_RESET);
3431 return ata_wait_ready(link, deadline, check_ready);
3435 * sata_link_debounce - debounce SATA phy status
3436 * @link: ATA link to debounce SATA phy status for
3437 * @params: timing parameters { interval, duratinon, timeout } in msec
3438 * @deadline: deadline jiffies for the operation
3440 * Make sure SStatus of @link reaches stable state, determined by
3441 * holding the same value where DET is not 1 for @duration polled
3442 * every @interval, before @timeout. Timeout constraints the
3443 * beginning of the stable state. Because DET gets stuck at 1 on
3444 * some controllers after hot unplugging, this functions waits
3445 * until timeout then returns 0 if DET is stable at 1.
3447 * @timeout is further limited by @deadline. The sooner of the
3448 * two is used.
3450 * LOCKING:
3451 * Kernel thread context (may sleep)
3453 * RETURNS:
3454 * 0 on success, -errno on failure.
3456 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3457 unsigned long deadline)
3459 unsigned long interval = params[0];
3460 unsigned long duration = params[1];
3461 unsigned long last_jiffies, t;
3462 u32 last, cur;
3463 int rc;
3465 t = ata_deadline(jiffies, params[2]);
3466 if (time_before(t, deadline))
3467 deadline = t;
3469 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3470 return rc;
3471 cur &= 0xf;
3473 last = cur;
3474 last_jiffies = jiffies;
3476 while (1) {
3477 msleep(interval);
3478 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3479 return rc;
3480 cur &= 0xf;
3482 /* DET stable? */
3483 if (cur == last) {
3484 if (cur == 1 && time_before(jiffies, deadline))
3485 continue;
3486 if (time_after(jiffies,
3487 ata_deadline(last_jiffies, duration)))
3488 return 0;
3489 continue;
3492 /* unstable, start over */
3493 last = cur;
3494 last_jiffies = jiffies;
3496 /* Check deadline. If debouncing failed, return
3497 * -EPIPE to tell upper layer to lower link speed.
3499 if (time_after(jiffies, deadline))
3500 return -EPIPE;
3505 * sata_link_resume - resume SATA link
3506 * @link: ATA link to resume SATA
3507 * @params: timing parameters { interval, duratinon, timeout } in msec
3508 * @deadline: deadline jiffies for the operation
3510 * Resume SATA phy @link and debounce it.
3512 * LOCKING:
3513 * Kernel thread context (may sleep)
3515 * RETURNS:
3516 * 0 on success, -errno on failure.
3518 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3519 unsigned long deadline)
3521 u32 scontrol, serror;
3522 int rc;
3524 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3525 return rc;
3527 scontrol = (scontrol & 0x0f0) | 0x300;
3529 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3530 return rc;
3532 /* Some PHYs react badly if SStatus is pounded immediately
3533 * after resuming. Delay 200ms before debouncing.
3535 msleep(200);
3537 if ((rc = sata_link_debounce(link, params, deadline)))
3538 return rc;
3540 /* clear SError, some PHYs require this even for SRST to work */
3541 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3542 rc = sata_scr_write(link, SCR_ERROR, serror);
3544 return rc != -EINVAL ? rc : 0;
3548 * ata_std_prereset - prepare for reset
3549 * @link: ATA link to be reset
3550 * @deadline: deadline jiffies for the operation
3552 * @link is about to be reset. Initialize it. Failure from
3553 * prereset makes libata abort whole reset sequence and give up
3554 * that port, so prereset should be best-effort. It does its
3555 * best to prepare for reset sequence but if things go wrong, it
3556 * should just whine, not fail.
3558 * LOCKING:
3559 * Kernel thread context (may sleep)
3561 * RETURNS:
3562 * 0 on success, -errno otherwise.
3564 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3566 struct ata_port *ap = link->ap;
3567 struct ata_eh_context *ehc = &link->eh_context;
3568 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3569 int rc;
3571 /* if we're about to do hardreset, nothing more to do */
3572 if (ehc->i.action & ATA_EH_HARDRESET)
3573 return 0;
3575 /* if SATA, resume link */
3576 if (ap->flags & ATA_FLAG_SATA) {
3577 rc = sata_link_resume(link, timing, deadline);
3578 /* whine about phy resume failure but proceed */
3579 if (rc && rc != -EOPNOTSUPP)
3580 ata_link_printk(link, KERN_WARNING, "failed to resume "
3581 "link for reset (errno=%d)\n", rc);
3584 /* no point in trying softreset on offline link */
3585 if (ata_link_offline(link))
3586 ehc->i.action &= ~ATA_EH_SOFTRESET;
3588 return 0;
3592 * sata_link_hardreset - reset link via SATA phy reset
3593 * @link: link to reset
3594 * @timing: timing parameters { interval, duratinon, timeout } in msec
3595 * @deadline: deadline jiffies for the operation
3596 * @online: optional out parameter indicating link onlineness
3597 * @check_ready: optional callback to check link readiness
3599 * SATA phy-reset @link using DET bits of SControl register.
3600 * After hardreset, link readiness is waited upon using
3601 * ata_wait_ready() if @check_ready is specified. LLDs are
3602 * allowed to not specify @check_ready and wait itself after this
3603 * function returns. Device classification is LLD's
3604 * responsibility.
3606 * *@online is set to one iff reset succeeded and @link is online
3607 * after reset.
3609 * LOCKING:
3610 * Kernel thread context (may sleep)
3612 * RETURNS:
3613 * 0 on success, -errno otherwise.
3615 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3616 unsigned long deadline,
3617 bool *online, int (*check_ready)(struct ata_link *))
3619 u32 scontrol;
3620 int rc;
3622 DPRINTK("ENTER\n");
3624 if (online)
3625 *online = false;
3627 if (sata_set_spd_needed(link)) {
3628 /* SATA spec says nothing about how to reconfigure
3629 * spd. To be on the safe side, turn off phy during
3630 * reconfiguration. This works for at least ICH7 AHCI
3631 * and Sil3124.
3633 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3634 goto out;
3636 scontrol = (scontrol & 0x0f0) | 0x304;
3638 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3639 goto out;
3641 sata_set_spd(link);
3644 /* issue phy wake/reset */
3645 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3646 goto out;
3648 scontrol = (scontrol & 0x0f0) | 0x301;
3650 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3651 goto out;
3653 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3654 * 10.4.2 says at least 1 ms.
3656 msleep(1);
3658 /* bring link back */
3659 rc = sata_link_resume(link, timing, deadline);
3660 if (rc)
3661 goto out;
3662 /* if link is offline nothing more to do */
3663 if (ata_link_offline(link))
3664 goto out;
3666 /* Link is online. From this point, -ENODEV too is an error. */
3667 if (online)
3668 *online = true;
3670 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3671 /* If PMP is supported, we have to do follow-up SRST.
3672 * Some PMPs don't send D2H Reg FIS after hardreset if
3673 * the first port is empty. Wait only for
3674 * ATA_TMOUT_PMP_SRST_WAIT.
3676 if (check_ready) {
3677 unsigned long pmp_deadline;
3679 pmp_deadline = ata_deadline(jiffies,
3680 ATA_TMOUT_PMP_SRST_WAIT);
3681 if (time_after(pmp_deadline, deadline))
3682 pmp_deadline = deadline;
3683 ata_wait_ready(link, pmp_deadline, check_ready);
3685 rc = -EAGAIN;
3686 goto out;
3689 rc = 0;
3690 if (check_ready)
3691 rc = ata_wait_ready(link, deadline, check_ready);
3692 out:
3693 if (rc && rc != -EAGAIN) {
3694 /* online is set iff link is online && reset succeeded */
3695 if (online)
3696 *online = false;
3697 ata_link_printk(link, KERN_ERR,
3698 "COMRESET failed (errno=%d)\n", rc);
3700 DPRINTK("EXIT, rc=%d\n", rc);
3701 return rc;
3705 * sata_std_hardreset - COMRESET w/o waiting or classification
3706 * @link: link to reset
3707 * @class: resulting class of attached device
3708 * @deadline: deadline jiffies for the operation
3710 * Standard SATA COMRESET w/o waiting or classification.
3712 * LOCKING:
3713 * Kernel thread context (may sleep)
3715 * RETURNS:
3716 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3718 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3719 unsigned long deadline)
3721 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3722 bool online;
3723 int rc;
3725 /* do hardreset */
3726 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3727 return online ? -EAGAIN : rc;
3731 * ata_std_postreset - standard postreset callback
3732 * @link: the target ata_link
3733 * @classes: classes of attached devices
3735 * This function is invoked after a successful reset. Note that
3736 * the device might have been reset more than once using
3737 * different reset methods before postreset is invoked.
3739 * LOCKING:
3740 * Kernel thread context (may sleep)
3742 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3744 u32 serror;
3746 DPRINTK("ENTER\n");
3748 /* reset complete, clear SError */
3749 if (!sata_scr_read(link, SCR_ERROR, &serror))
3750 sata_scr_write(link, SCR_ERROR, serror);
3752 /* print link status */
3753 sata_print_link_status(link);
3755 DPRINTK("EXIT\n");
3759 * ata_dev_same_device - Determine whether new ID matches configured device
3760 * @dev: device to compare against
3761 * @new_class: class of the new device
3762 * @new_id: IDENTIFY page of the new device
3764 * Compare @new_class and @new_id against @dev and determine
3765 * whether @dev is the device indicated by @new_class and
3766 * @new_id.
3768 * LOCKING:
3769 * None.
3771 * RETURNS:
3772 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3774 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3775 const u16 *new_id)
3777 const u16 *old_id = dev->id;
3778 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3779 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3781 if (dev->class != new_class) {
3782 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3783 dev->class, new_class);
3784 return 0;
3787 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3788 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3789 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3790 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3792 if (strcmp(model[0], model[1])) {
3793 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3794 "'%s' != '%s'\n", model[0], model[1]);
3795 return 0;
3798 if (strcmp(serial[0], serial[1])) {
3799 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3800 "'%s' != '%s'\n", serial[0], serial[1]);
3801 return 0;
3804 return 1;
3808 * ata_dev_reread_id - Re-read IDENTIFY data
3809 * @dev: target ATA device
3810 * @readid_flags: read ID flags
3812 * Re-read IDENTIFY page and make sure @dev is still attached to
3813 * the port.
3815 * LOCKING:
3816 * Kernel thread context (may sleep)
3818 * RETURNS:
3819 * 0 on success, negative errno otherwise
3821 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3823 unsigned int class = dev->class;
3824 u16 *id = (void *)dev->link->ap->sector_buf;
3825 int rc;
3827 /* read ID data */
3828 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3829 if (rc)
3830 return rc;
3832 /* is the device still there? */
3833 if (!ata_dev_same_device(dev, class, id))
3834 return -ENODEV;
3836 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3837 return 0;
3841 * ata_dev_revalidate - Revalidate ATA device
3842 * @dev: device to revalidate
3843 * @new_class: new class code
3844 * @readid_flags: read ID flags
3846 * Re-read IDENTIFY page, make sure @dev is still attached to the
3847 * port and reconfigure it according to the new IDENTIFY page.
3849 * LOCKING:
3850 * Kernel thread context (may sleep)
3852 * RETURNS:
3853 * 0 on success, negative errno otherwise
3855 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3856 unsigned int readid_flags)
3858 u64 n_sectors = dev->n_sectors;
3859 int rc;
3861 if (!ata_dev_enabled(dev))
3862 return -ENODEV;
3864 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3865 if (ata_class_enabled(new_class) &&
3866 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3867 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3868 dev->class, new_class);
3869 rc = -ENODEV;
3870 goto fail;
3873 /* re-read ID */
3874 rc = ata_dev_reread_id(dev, readid_flags);
3875 if (rc)
3876 goto fail;
3878 /* configure device according to the new ID */
3879 rc = ata_dev_configure(dev);
3880 if (rc)
3881 goto fail;
3883 /* verify n_sectors hasn't changed */
3884 if (dev->class == ATA_DEV_ATA && n_sectors &&
3885 dev->n_sectors != n_sectors) {
3886 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3887 "%llu != %llu\n",
3888 (unsigned long long)n_sectors,
3889 (unsigned long long)dev->n_sectors);
3891 /* restore original n_sectors */
3892 dev->n_sectors = n_sectors;
3894 rc = -ENODEV;
3895 goto fail;
3898 return 0;
3900 fail:
3901 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3902 return rc;
3905 struct ata_blacklist_entry {
3906 const char *model_num;
3907 const char *model_rev;
3908 unsigned long horkage;
3911 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3912 /* Devices with DMA related problems under Linux */
3913 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3914 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3915 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3916 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3917 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3918 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3919 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3920 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3921 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3922 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3923 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3924 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3925 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3926 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3927 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3928 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3929 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3930 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3931 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3932 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3933 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3934 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3935 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3936 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3937 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3938 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3939 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3940 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3941 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
3942 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3943 /* Odd clown on sil3726/4726 PMPs */
3944 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
3946 /* Weird ATAPI devices */
3947 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3949 /* Devices we expect to fail diagnostics */
3951 /* Devices where NCQ should be avoided */
3952 /* NCQ is slow */
3953 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3954 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3955 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3956 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3957 /* NCQ is broken */
3958 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
3959 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3960 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
3961 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
3963 /* Blacklist entries taken from Silicon Image 3124/3132
3964 Windows driver .inf file - also several Linux problem reports */
3965 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3966 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3967 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3969 /* devices which puke on READ_NATIVE_MAX */
3970 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3971 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3972 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3973 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3975 /* Devices which report 1 sector over size HPA */
3976 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
3977 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
3978 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
3980 /* Devices which get the IVB wrong */
3981 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
3982 /* Maybe we should just blacklist TSSTcorp... */
3983 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
3984 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
3985 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
3986 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
3987 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
3988 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
3990 /* End Marker */
3994 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
3996 const char *p;
3997 int len;
4000 * check for trailing wildcard: *\0
4002 p = strchr(patt, wildchar);
4003 if (p && ((*(p + 1)) == 0))
4004 len = p - patt;
4005 else {
4006 len = strlen(name);
4007 if (!len) {
4008 if (!*patt)
4009 return 0;
4010 return -1;
4014 return strncmp(patt, name, len);
4017 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4019 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4020 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4021 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4023 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4024 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4026 while (ad->model_num) {
4027 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4028 if (ad->model_rev == NULL)
4029 return ad->horkage;
4030 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4031 return ad->horkage;
4033 ad++;
4035 return 0;
4038 static int ata_dma_blacklisted(const struct ata_device *dev)
4040 /* We don't support polling DMA.
4041 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4042 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4044 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4045 (dev->flags & ATA_DFLAG_CDB_INTR))
4046 return 1;
4047 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4051 * ata_is_40wire - check drive side detection
4052 * @dev: device
4054 * Perform drive side detection decoding, allowing for device vendors
4055 * who can't follow the documentation.
4058 static int ata_is_40wire(struct ata_device *dev)
4060 if (dev->horkage & ATA_HORKAGE_IVB)
4061 return ata_drive_40wire_relaxed(dev->id);
4062 return ata_drive_40wire(dev->id);
4066 * cable_is_40wire - 40/80/SATA decider
4067 * @ap: port to consider
4069 * This function encapsulates the policy for speed management
4070 * in one place. At the moment we don't cache the result but
4071 * there is a good case for setting ap->cbl to the result when
4072 * we are called with unknown cables (and figuring out if it
4073 * impacts hotplug at all).
4075 * Return 1 if the cable appears to be 40 wire.
4078 static int cable_is_40wire(struct ata_port *ap)
4080 struct ata_link *link;
4081 struct ata_device *dev;
4083 /* If the controller thinks we are 40 wire, we are */
4084 if (ap->cbl == ATA_CBL_PATA40)
4085 return 1;
4086 /* If the controller thinks we are 80 wire, we are */
4087 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4088 return 0;
4089 /* If the system is known to be 40 wire short cable (eg laptop),
4090 then we allow 80 wire modes even if the drive isn't sure */
4091 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4092 return 0;
4093 /* If the controller doesn't know we scan
4095 - Note: We look for all 40 wire detects at this point.
4096 Any 80 wire detect is taken to be 80 wire cable
4097 because
4098 - In many setups only the one drive (slave if present)
4099 will give a valid detect
4100 - If you have a non detect capable drive you don't
4101 want it to colour the choice
4103 ata_port_for_each_link(link, ap) {
4104 ata_link_for_each_dev(dev, link) {
4105 if (!ata_is_40wire(dev))
4106 return 0;
4109 return 1;
4113 * ata_dev_xfermask - Compute supported xfermask of the given device
4114 * @dev: Device to compute xfermask for
4116 * Compute supported xfermask of @dev and store it in
4117 * dev->*_mask. This function is responsible for applying all
4118 * known limits including host controller limits, device
4119 * blacklist, etc...
4121 * LOCKING:
4122 * None.
4124 static void ata_dev_xfermask(struct ata_device *dev)
4126 struct ata_link *link = dev->link;
4127 struct ata_port *ap = link->ap;
4128 struct ata_host *host = ap->host;
4129 unsigned long xfer_mask;
4131 /* controller modes available */
4132 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4133 ap->mwdma_mask, ap->udma_mask);
4135 /* drive modes available */
4136 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4137 dev->mwdma_mask, dev->udma_mask);
4138 xfer_mask &= ata_id_xfermask(dev->id);
4141 * CFA Advanced TrueIDE timings are not allowed on a shared
4142 * cable
4144 if (ata_dev_pair(dev)) {
4145 /* No PIO5 or PIO6 */
4146 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4147 /* No MWDMA3 or MWDMA 4 */
4148 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4151 if (ata_dma_blacklisted(dev)) {
4152 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4153 ata_dev_printk(dev, KERN_WARNING,
4154 "device is on DMA blacklist, disabling DMA\n");
4157 if ((host->flags & ATA_HOST_SIMPLEX) &&
4158 host->simplex_claimed && host->simplex_claimed != ap) {
4159 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4160 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4161 "other device, disabling DMA\n");
4164 if (ap->flags & ATA_FLAG_NO_IORDY)
4165 xfer_mask &= ata_pio_mask_no_iordy(dev);
4167 if (ap->ops->mode_filter)
4168 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4170 /* Apply cable rule here. Don't apply it early because when
4171 * we handle hot plug the cable type can itself change.
4172 * Check this last so that we know if the transfer rate was
4173 * solely limited by the cable.
4174 * Unknown or 80 wire cables reported host side are checked
4175 * drive side as well. Cases where we know a 40wire cable
4176 * is used safely for 80 are not checked here.
4178 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4179 /* UDMA/44 or higher would be available */
4180 if (cable_is_40wire(ap)) {
4181 ata_dev_printk(dev, KERN_WARNING,
4182 "limited to UDMA/33 due to 40-wire cable\n");
4183 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4186 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4187 &dev->mwdma_mask, &dev->udma_mask);
4191 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4192 * @dev: Device to which command will be sent
4194 * Issue SET FEATURES - XFER MODE command to device @dev
4195 * on port @ap.
4197 * LOCKING:
4198 * PCI/etc. bus probe sem.
4200 * RETURNS:
4201 * 0 on success, AC_ERR_* mask otherwise.
4204 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4206 struct ata_taskfile tf;
4207 unsigned int err_mask;
4209 /* set up set-features taskfile */
4210 DPRINTK("set features - xfer mode\n");
4212 /* Some controllers and ATAPI devices show flaky interrupt
4213 * behavior after setting xfer mode. Use polling instead.
4215 ata_tf_init(dev, &tf);
4216 tf.command = ATA_CMD_SET_FEATURES;
4217 tf.feature = SETFEATURES_XFER;
4218 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4219 tf.protocol = ATA_PROT_NODATA;
4220 /* If we are using IORDY we must send the mode setting command */
4221 if (ata_pio_need_iordy(dev))
4222 tf.nsect = dev->xfer_mode;
4223 /* If the device has IORDY and the controller does not - turn it off */
4224 else if (ata_id_has_iordy(dev->id))
4225 tf.nsect = 0x01;
4226 else /* In the ancient relic department - skip all of this */
4227 return 0;
4229 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4231 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4232 return err_mask;
4235 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4236 * @dev: Device to which command will be sent
4237 * @enable: Whether to enable or disable the feature
4238 * @feature: The sector count represents the feature to set
4240 * Issue SET FEATURES - SATA FEATURES command to device @dev
4241 * on port @ap with sector count
4243 * LOCKING:
4244 * PCI/etc. bus probe sem.
4246 * RETURNS:
4247 * 0 on success, AC_ERR_* mask otherwise.
4249 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4250 u8 feature)
4252 struct ata_taskfile tf;
4253 unsigned int err_mask;
4255 /* set up set-features taskfile */
4256 DPRINTK("set features - SATA features\n");
4258 ata_tf_init(dev, &tf);
4259 tf.command = ATA_CMD_SET_FEATURES;
4260 tf.feature = enable;
4261 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4262 tf.protocol = ATA_PROT_NODATA;
4263 tf.nsect = feature;
4265 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4267 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4268 return err_mask;
4272 * ata_dev_init_params - Issue INIT DEV PARAMS command
4273 * @dev: Device to which command will be sent
4274 * @heads: Number of heads (taskfile parameter)
4275 * @sectors: Number of sectors (taskfile parameter)
4277 * LOCKING:
4278 * Kernel thread context (may sleep)
4280 * RETURNS:
4281 * 0 on success, AC_ERR_* mask otherwise.
4283 static unsigned int ata_dev_init_params(struct ata_device *dev,
4284 u16 heads, u16 sectors)
4286 struct ata_taskfile tf;
4287 unsigned int err_mask;
4289 /* Number of sectors per track 1-255. Number of heads 1-16 */
4290 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4291 return AC_ERR_INVALID;
4293 /* set up init dev params taskfile */
4294 DPRINTK("init dev params \n");
4296 ata_tf_init(dev, &tf);
4297 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4298 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4299 tf.protocol = ATA_PROT_NODATA;
4300 tf.nsect = sectors;
4301 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4303 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4304 /* A clean abort indicates an original or just out of spec drive
4305 and we should continue as we issue the setup based on the
4306 drive reported working geometry */
4307 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4308 err_mask = 0;
4310 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4311 return err_mask;
4315 * ata_sg_clean - Unmap DMA memory associated with command
4316 * @qc: Command containing DMA memory to be released
4318 * Unmap all mapped DMA memory associated with this command.
4320 * LOCKING:
4321 * spin_lock_irqsave(host lock)
4323 void ata_sg_clean(struct ata_queued_cmd *qc)
4325 struct ata_port *ap = qc->ap;
4326 struct scatterlist *sg = qc->sg;
4327 int dir = qc->dma_dir;
4329 WARN_ON(sg == NULL);
4331 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4333 if (qc->n_elem)
4334 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4336 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4337 qc->sg = NULL;
4341 * atapi_check_dma - Check whether ATAPI DMA can be supported
4342 * @qc: Metadata associated with taskfile to check
4344 * Allow low-level driver to filter ATA PACKET commands, returning
4345 * a status indicating whether or not it is OK to use DMA for the
4346 * supplied PACKET command.
4348 * LOCKING:
4349 * spin_lock_irqsave(host lock)
4351 * RETURNS: 0 when ATAPI DMA can be used
4352 * nonzero otherwise
4354 int atapi_check_dma(struct ata_queued_cmd *qc)
4356 struct ata_port *ap = qc->ap;
4358 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4359 * few ATAPI devices choke on such DMA requests.
4361 if (unlikely(qc->nbytes & 15))
4362 return 1;
4364 if (ap->ops->check_atapi_dma)
4365 return ap->ops->check_atapi_dma(qc);
4367 return 0;
4371 * ata_std_qc_defer - Check whether a qc needs to be deferred
4372 * @qc: ATA command in question
4374 * Non-NCQ commands cannot run with any other command, NCQ or
4375 * not. As upper layer only knows the queue depth, we are
4376 * responsible for maintaining exclusion. This function checks
4377 * whether a new command @qc can be issued.
4379 * LOCKING:
4380 * spin_lock_irqsave(host lock)
4382 * RETURNS:
4383 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4385 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4387 struct ata_link *link = qc->dev->link;
4389 if (qc->tf.protocol == ATA_PROT_NCQ) {
4390 if (!ata_tag_valid(link->active_tag))
4391 return 0;
4392 } else {
4393 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4394 return 0;
4397 return ATA_DEFER_LINK;
4400 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4403 * ata_sg_init - Associate command with scatter-gather table.
4404 * @qc: Command to be associated
4405 * @sg: Scatter-gather table.
4406 * @n_elem: Number of elements in s/g table.
4408 * Initialize the data-related elements of queued_cmd @qc
4409 * to point to a scatter-gather table @sg, containing @n_elem
4410 * elements.
4412 * LOCKING:
4413 * spin_lock_irqsave(host lock)
4415 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4416 unsigned int n_elem)
4418 qc->sg = sg;
4419 qc->n_elem = n_elem;
4420 qc->cursg = qc->sg;
4424 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4425 * @qc: Command with scatter-gather table to be mapped.
4427 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4429 * LOCKING:
4430 * spin_lock_irqsave(host lock)
4432 * RETURNS:
4433 * Zero on success, negative on error.
4436 static int ata_sg_setup(struct ata_queued_cmd *qc)
4438 struct ata_port *ap = qc->ap;
4439 unsigned int n_elem;
4441 VPRINTK("ENTER, ata%u\n", ap->print_id);
4443 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4444 if (n_elem < 1)
4445 return -1;
4447 DPRINTK("%d sg elements mapped\n", n_elem);
4449 qc->n_elem = n_elem;
4450 qc->flags |= ATA_QCFLAG_DMAMAP;
4452 return 0;
4456 * swap_buf_le16 - swap halves of 16-bit words in place
4457 * @buf: Buffer to swap
4458 * @buf_words: Number of 16-bit words in buffer.
4460 * Swap halves of 16-bit words if needed to convert from
4461 * little-endian byte order to native cpu byte order, or
4462 * vice-versa.
4464 * LOCKING:
4465 * Inherited from caller.
4467 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4469 #ifdef __BIG_ENDIAN
4470 unsigned int i;
4472 for (i = 0; i < buf_words; i++)
4473 buf[i] = le16_to_cpu(buf[i]);
4474 #endif /* __BIG_ENDIAN */
4478 * ata_qc_new - Request an available ATA command, for queueing
4479 * @ap: Port associated with device @dev
4480 * @dev: Device from whom we request an available command structure
4482 * LOCKING:
4483 * None.
4486 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4488 struct ata_queued_cmd *qc = NULL;
4489 unsigned int i;
4491 /* no command while frozen */
4492 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4493 return NULL;
4495 /* the last tag is reserved for internal command. */
4496 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4497 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4498 qc = __ata_qc_from_tag(ap, i);
4499 break;
4502 if (qc)
4503 qc->tag = i;
4505 return qc;
4509 * ata_qc_new_init - Request an available ATA command, and initialize it
4510 * @dev: Device from whom we request an available command structure
4512 * LOCKING:
4513 * None.
4516 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4518 struct ata_port *ap = dev->link->ap;
4519 struct ata_queued_cmd *qc;
4521 qc = ata_qc_new(ap);
4522 if (qc) {
4523 qc->scsicmd = NULL;
4524 qc->ap = ap;
4525 qc->dev = dev;
4527 ata_qc_reinit(qc);
4530 return qc;
4534 * ata_qc_free - free unused ata_queued_cmd
4535 * @qc: Command to complete
4537 * Designed to free unused ata_queued_cmd object
4538 * in case something prevents using it.
4540 * LOCKING:
4541 * spin_lock_irqsave(host lock)
4543 void ata_qc_free(struct ata_queued_cmd *qc)
4545 struct ata_port *ap = qc->ap;
4546 unsigned int tag;
4548 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4550 qc->flags = 0;
4551 tag = qc->tag;
4552 if (likely(ata_tag_valid(tag))) {
4553 qc->tag = ATA_TAG_POISON;
4554 clear_bit(tag, &ap->qc_allocated);
4558 void __ata_qc_complete(struct ata_queued_cmd *qc)
4560 struct ata_port *ap = qc->ap;
4561 struct ata_link *link = qc->dev->link;
4563 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4564 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4566 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4567 ata_sg_clean(qc);
4569 /* command should be marked inactive atomically with qc completion */
4570 if (qc->tf.protocol == ATA_PROT_NCQ) {
4571 link->sactive &= ~(1 << qc->tag);
4572 if (!link->sactive)
4573 ap->nr_active_links--;
4574 } else {
4575 link->active_tag = ATA_TAG_POISON;
4576 ap->nr_active_links--;
4579 /* clear exclusive status */
4580 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4581 ap->excl_link == link))
4582 ap->excl_link = NULL;
4584 /* atapi: mark qc as inactive to prevent the interrupt handler
4585 * from completing the command twice later, before the error handler
4586 * is called. (when rc != 0 and atapi request sense is needed)
4588 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4589 ap->qc_active &= ~(1 << qc->tag);
4591 /* call completion callback */
4592 qc->complete_fn(qc);
4595 static void fill_result_tf(struct ata_queued_cmd *qc)
4597 struct ata_port *ap = qc->ap;
4599 qc->result_tf.flags = qc->tf.flags;
4600 ap->ops->qc_fill_rtf(qc);
4603 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4605 struct ata_device *dev = qc->dev;
4607 if (ata_tag_internal(qc->tag))
4608 return;
4610 if (ata_is_nodata(qc->tf.protocol))
4611 return;
4613 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4614 return;
4616 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4620 * ata_qc_complete - Complete an active ATA command
4621 * @qc: Command to complete
4622 * @err_mask: ATA Status register contents
4624 * Indicate to the mid and upper layers that an ATA
4625 * command has completed, with either an ok or not-ok status.
4627 * LOCKING:
4628 * spin_lock_irqsave(host lock)
4630 void ata_qc_complete(struct ata_queued_cmd *qc)
4632 struct ata_port *ap = qc->ap;
4634 /* XXX: New EH and old EH use different mechanisms to
4635 * synchronize EH with regular execution path.
4637 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4638 * Normal execution path is responsible for not accessing a
4639 * failed qc. libata core enforces the rule by returning NULL
4640 * from ata_qc_from_tag() for failed qcs.
4642 * Old EH depends on ata_qc_complete() nullifying completion
4643 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4644 * not synchronize with interrupt handler. Only PIO task is
4645 * taken care of.
4647 if (ap->ops->error_handler) {
4648 struct ata_device *dev = qc->dev;
4649 struct ata_eh_info *ehi = &dev->link->eh_info;
4651 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4653 if (unlikely(qc->err_mask))
4654 qc->flags |= ATA_QCFLAG_FAILED;
4656 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4657 if (!ata_tag_internal(qc->tag)) {
4658 /* always fill result TF for failed qc */
4659 fill_result_tf(qc);
4660 ata_qc_schedule_eh(qc);
4661 return;
4665 /* read result TF if requested */
4666 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4667 fill_result_tf(qc);
4669 /* Some commands need post-processing after successful
4670 * completion.
4672 switch (qc->tf.command) {
4673 case ATA_CMD_SET_FEATURES:
4674 if (qc->tf.feature != SETFEATURES_WC_ON &&
4675 qc->tf.feature != SETFEATURES_WC_OFF)
4676 break;
4677 /* fall through */
4678 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4679 case ATA_CMD_SET_MULTI: /* multi_count changed */
4680 /* revalidate device */
4681 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4682 ata_port_schedule_eh(ap);
4683 break;
4685 case ATA_CMD_SLEEP:
4686 dev->flags |= ATA_DFLAG_SLEEPING;
4687 break;
4690 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4691 ata_verify_xfer(qc);
4693 __ata_qc_complete(qc);
4694 } else {
4695 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4696 return;
4698 /* read result TF if failed or requested */
4699 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4700 fill_result_tf(qc);
4702 __ata_qc_complete(qc);
4707 * ata_qc_complete_multiple - Complete multiple qcs successfully
4708 * @ap: port in question
4709 * @qc_active: new qc_active mask
4711 * Complete in-flight commands. This functions is meant to be
4712 * called from low-level driver's interrupt routine to complete
4713 * requests normally. ap->qc_active and @qc_active is compared
4714 * and commands are completed accordingly.
4716 * LOCKING:
4717 * spin_lock_irqsave(host lock)
4719 * RETURNS:
4720 * Number of completed commands on success, -errno otherwise.
4722 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4724 int nr_done = 0;
4725 u32 done_mask;
4726 int i;
4728 done_mask = ap->qc_active ^ qc_active;
4730 if (unlikely(done_mask & qc_active)) {
4731 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4732 "(%08x->%08x)\n", ap->qc_active, qc_active);
4733 return -EINVAL;
4736 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4737 struct ata_queued_cmd *qc;
4739 if (!(done_mask & (1 << i)))
4740 continue;
4742 if ((qc = ata_qc_from_tag(ap, i))) {
4743 ata_qc_complete(qc);
4744 nr_done++;
4748 return nr_done;
4752 * ata_qc_issue - issue taskfile to device
4753 * @qc: command to issue to device
4755 * Prepare an ATA command to submission to device.
4756 * This includes mapping the data into a DMA-able
4757 * area, filling in the S/G table, and finally
4758 * writing the taskfile to hardware, starting the command.
4760 * LOCKING:
4761 * spin_lock_irqsave(host lock)
4763 void ata_qc_issue(struct ata_queued_cmd *qc)
4765 struct ata_port *ap = qc->ap;
4766 struct ata_link *link = qc->dev->link;
4767 u8 prot = qc->tf.protocol;
4769 /* Make sure only one non-NCQ command is outstanding. The
4770 * check is skipped for old EH because it reuses active qc to
4771 * request ATAPI sense.
4773 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4775 if (ata_is_ncq(prot)) {
4776 WARN_ON(link->sactive & (1 << qc->tag));
4778 if (!link->sactive)
4779 ap->nr_active_links++;
4780 link->sactive |= 1 << qc->tag;
4781 } else {
4782 WARN_ON(link->sactive);
4784 ap->nr_active_links++;
4785 link->active_tag = qc->tag;
4788 qc->flags |= ATA_QCFLAG_ACTIVE;
4789 ap->qc_active |= 1 << qc->tag;
4791 /* We guarantee to LLDs that they will have at least one
4792 * non-zero sg if the command is a data command.
4794 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
4796 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4797 (ap->flags & ATA_FLAG_PIO_DMA)))
4798 if (ata_sg_setup(qc))
4799 goto sg_err;
4801 /* if device is sleeping, schedule reset and abort the link */
4802 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4803 link->eh_info.action |= ATA_EH_RESET;
4804 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4805 ata_link_abort(link);
4806 return;
4809 ap->ops->qc_prep(qc);
4811 qc->err_mask |= ap->ops->qc_issue(qc);
4812 if (unlikely(qc->err_mask))
4813 goto err;
4814 return;
4816 sg_err:
4817 qc->err_mask |= AC_ERR_SYSTEM;
4818 err:
4819 ata_qc_complete(qc);
4823 * sata_scr_valid - test whether SCRs are accessible
4824 * @link: ATA link to test SCR accessibility for
4826 * Test whether SCRs are accessible for @link.
4828 * LOCKING:
4829 * None.
4831 * RETURNS:
4832 * 1 if SCRs are accessible, 0 otherwise.
4834 int sata_scr_valid(struct ata_link *link)
4836 struct ata_port *ap = link->ap;
4838 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
4842 * sata_scr_read - read SCR register of the specified port
4843 * @link: ATA link to read SCR for
4844 * @reg: SCR to read
4845 * @val: Place to store read value
4847 * Read SCR register @reg of @link into *@val. This function is
4848 * guaranteed to succeed if @link is ap->link, the cable type of
4849 * the port is SATA and the port implements ->scr_read.
4851 * LOCKING:
4852 * None if @link is ap->link. Kernel thread context otherwise.
4854 * RETURNS:
4855 * 0 on success, negative errno on failure.
4857 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
4859 if (ata_is_host_link(link)) {
4860 struct ata_port *ap = link->ap;
4862 if (sata_scr_valid(link))
4863 return ap->ops->scr_read(ap, reg, val);
4864 return -EOPNOTSUPP;
4867 return sata_pmp_scr_read(link, reg, val);
4871 * sata_scr_write - write SCR register of the specified port
4872 * @link: ATA link to write SCR for
4873 * @reg: SCR to write
4874 * @val: value to write
4876 * Write @val to SCR register @reg of @link. This function is
4877 * guaranteed to succeed if @link is ap->link, the cable type of
4878 * the port is SATA and the port implements ->scr_read.
4880 * LOCKING:
4881 * None if @link is ap->link. Kernel thread context otherwise.
4883 * RETURNS:
4884 * 0 on success, negative errno on failure.
4886 int sata_scr_write(struct ata_link *link, int reg, u32 val)
4888 if (ata_is_host_link(link)) {
4889 struct ata_port *ap = link->ap;
4891 if (sata_scr_valid(link))
4892 return ap->ops->scr_write(ap, reg, val);
4893 return -EOPNOTSUPP;
4896 return sata_pmp_scr_write(link, reg, val);
4900 * sata_scr_write_flush - write SCR register of the specified port and flush
4901 * @link: ATA link to write SCR for
4902 * @reg: SCR to write
4903 * @val: value to write
4905 * This function is identical to sata_scr_write() except that this
4906 * function performs flush after writing to the register.
4908 * LOCKING:
4909 * None if @link is ap->link. Kernel thread context otherwise.
4911 * RETURNS:
4912 * 0 on success, negative errno on failure.
4914 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
4916 if (ata_is_host_link(link)) {
4917 struct ata_port *ap = link->ap;
4918 int rc;
4920 if (sata_scr_valid(link)) {
4921 rc = ap->ops->scr_write(ap, reg, val);
4922 if (rc == 0)
4923 rc = ap->ops->scr_read(ap, reg, &val);
4924 return rc;
4926 return -EOPNOTSUPP;
4929 return sata_pmp_scr_write(link, reg, val);
4933 * ata_link_online - test whether the given link is online
4934 * @link: ATA link to test
4936 * Test whether @link is online. Note that this function returns
4937 * 0 if online status of @link cannot be obtained, so
4938 * ata_link_online(link) != !ata_link_offline(link).
4940 * LOCKING:
4941 * None.
4943 * RETURNS:
4944 * 1 if the port online status is available and online.
4946 int ata_link_online(struct ata_link *link)
4948 u32 sstatus;
4950 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4951 (sstatus & 0xf) == 0x3)
4952 return 1;
4953 return 0;
4957 * ata_link_offline - test whether the given link is offline
4958 * @link: ATA link to test
4960 * Test whether @link is offline. Note that this function
4961 * returns 0 if offline status of @link cannot be obtained, so
4962 * ata_link_online(link) != !ata_link_offline(link).
4964 * LOCKING:
4965 * None.
4967 * RETURNS:
4968 * 1 if the port offline status is available and offline.
4970 int ata_link_offline(struct ata_link *link)
4972 u32 sstatus;
4974 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4975 (sstatus & 0xf) != 0x3)
4976 return 1;
4977 return 0;
4980 #ifdef CONFIG_PM
4981 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
4982 unsigned int action, unsigned int ehi_flags,
4983 int wait)
4985 unsigned long flags;
4986 int i, rc;
4988 for (i = 0; i < host->n_ports; i++) {
4989 struct ata_port *ap = host->ports[i];
4990 struct ata_link *link;
4992 /* Previous resume operation might still be in
4993 * progress. Wait for PM_PENDING to clear.
4995 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
4996 ata_port_wait_eh(ap);
4997 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5000 /* request PM ops to EH */
5001 spin_lock_irqsave(ap->lock, flags);
5003 ap->pm_mesg = mesg;
5004 if (wait) {
5005 rc = 0;
5006 ap->pm_result = &rc;
5009 ap->pflags |= ATA_PFLAG_PM_PENDING;
5010 __ata_port_for_each_link(link, ap) {
5011 link->eh_info.action |= action;
5012 link->eh_info.flags |= ehi_flags;
5015 ata_port_schedule_eh(ap);
5017 spin_unlock_irqrestore(ap->lock, flags);
5019 /* wait and check result */
5020 if (wait) {
5021 ata_port_wait_eh(ap);
5022 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5023 if (rc)
5024 return rc;
5028 return 0;
5032 * ata_host_suspend - suspend host
5033 * @host: host to suspend
5034 * @mesg: PM message
5036 * Suspend @host. Actual operation is performed by EH. This
5037 * function requests EH to perform PM operations and waits for EH
5038 * to finish.
5040 * LOCKING:
5041 * Kernel thread context (may sleep).
5043 * RETURNS:
5044 * 0 on success, -errno on failure.
5046 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5048 int rc;
5051 * disable link pm on all ports before requesting
5052 * any pm activity
5054 ata_lpm_enable(host);
5056 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5057 if (rc == 0)
5058 host->dev->power.power_state = mesg;
5059 return rc;
5063 * ata_host_resume - resume host
5064 * @host: host to resume
5066 * Resume @host. Actual operation is performed by EH. This
5067 * function requests EH to perform PM operations and returns.
5068 * Note that all resume operations are performed parallely.
5070 * LOCKING:
5071 * Kernel thread context (may sleep).
5073 void ata_host_resume(struct ata_host *host)
5075 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5076 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5077 host->dev->power.power_state = PMSG_ON;
5079 /* reenable link pm */
5080 ata_lpm_disable(host);
5082 #endif
5085 * ata_port_start - Set port up for dma.
5086 * @ap: Port to initialize
5088 * Called just after data structures for each port are
5089 * initialized. Allocates space for PRD table.
5091 * May be used as the port_start() entry in ata_port_operations.
5093 * LOCKING:
5094 * Inherited from caller.
5096 int ata_port_start(struct ata_port *ap)
5098 struct device *dev = ap->dev;
5100 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5101 GFP_KERNEL);
5102 if (!ap->prd)
5103 return -ENOMEM;
5105 return 0;
5109 * ata_dev_init - Initialize an ata_device structure
5110 * @dev: Device structure to initialize
5112 * Initialize @dev in preparation for probing.
5114 * LOCKING:
5115 * Inherited from caller.
5117 void ata_dev_init(struct ata_device *dev)
5119 struct ata_link *link = dev->link;
5120 struct ata_port *ap = link->ap;
5121 unsigned long flags;
5123 /* SATA spd limit is bound to the first device */
5124 link->sata_spd_limit = link->hw_sata_spd_limit;
5125 link->sata_spd = 0;
5127 /* High bits of dev->flags are used to record warm plug
5128 * requests which occur asynchronously. Synchronize using
5129 * host lock.
5131 spin_lock_irqsave(ap->lock, flags);
5132 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5133 dev->horkage = 0;
5134 spin_unlock_irqrestore(ap->lock, flags);
5136 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5137 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5138 dev->pio_mask = UINT_MAX;
5139 dev->mwdma_mask = UINT_MAX;
5140 dev->udma_mask = UINT_MAX;
5144 * ata_link_init - Initialize an ata_link structure
5145 * @ap: ATA port link is attached to
5146 * @link: Link structure to initialize
5147 * @pmp: Port multiplier port number
5149 * Initialize @link.
5151 * LOCKING:
5152 * Kernel thread context (may sleep)
5154 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5156 int i;
5158 /* clear everything except for devices */
5159 memset(link, 0, offsetof(struct ata_link, device[0]));
5161 link->ap = ap;
5162 link->pmp = pmp;
5163 link->active_tag = ATA_TAG_POISON;
5164 link->hw_sata_spd_limit = UINT_MAX;
5166 /* can't use iterator, ap isn't initialized yet */
5167 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5168 struct ata_device *dev = &link->device[i];
5170 dev->link = link;
5171 dev->devno = dev - link->device;
5172 ata_dev_init(dev);
5177 * sata_link_init_spd - Initialize link->sata_spd_limit
5178 * @link: Link to configure sata_spd_limit for
5180 * Initialize @link->[hw_]sata_spd_limit to the currently
5181 * configured value.
5183 * LOCKING:
5184 * Kernel thread context (may sleep).
5186 * RETURNS:
5187 * 0 on success, -errno on failure.
5189 int sata_link_init_spd(struct ata_link *link)
5191 u32 scontrol;
5192 u8 spd;
5193 int rc;
5195 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
5196 if (rc)
5197 return rc;
5199 spd = (scontrol >> 4) & 0xf;
5200 if (spd)
5201 link->hw_sata_spd_limit &= (1 << spd) - 1;
5203 ata_force_spd_limit(link);
5205 link->sata_spd_limit = link->hw_sata_spd_limit;
5207 return 0;
5211 * ata_port_alloc - allocate and initialize basic ATA port resources
5212 * @host: ATA host this allocated port belongs to
5214 * Allocate and initialize basic ATA port resources.
5216 * RETURNS:
5217 * Allocate ATA port on success, NULL on failure.
5219 * LOCKING:
5220 * Inherited from calling layer (may sleep).
5222 struct ata_port *ata_port_alloc(struct ata_host *host)
5224 struct ata_port *ap;
5226 DPRINTK("ENTER\n");
5228 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5229 if (!ap)
5230 return NULL;
5232 ap->pflags |= ATA_PFLAG_INITIALIZING;
5233 ap->lock = &host->lock;
5234 ap->flags = ATA_FLAG_DISABLED;
5235 ap->print_id = -1;
5236 ap->ctl = ATA_DEVCTL_OBS;
5237 ap->host = host;
5238 ap->dev = host->dev;
5239 ap->last_ctl = 0xFF;
5241 #if defined(ATA_VERBOSE_DEBUG)
5242 /* turn on all debugging levels */
5243 ap->msg_enable = 0x00FF;
5244 #elif defined(ATA_DEBUG)
5245 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5246 #else
5247 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5248 #endif
5250 #ifdef CONFIG_ATA_SFF
5251 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5252 #endif
5253 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5254 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5255 INIT_LIST_HEAD(&ap->eh_done_q);
5256 init_waitqueue_head(&ap->eh_wait_q);
5257 init_timer_deferrable(&ap->fastdrain_timer);
5258 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5259 ap->fastdrain_timer.data = (unsigned long)ap;
5261 ap->cbl = ATA_CBL_NONE;
5263 ata_link_init(ap, &ap->link, 0);
5265 #ifdef ATA_IRQ_TRAP
5266 ap->stats.unhandled_irq = 1;
5267 ap->stats.idle_irq = 1;
5268 #endif
5269 return ap;
5272 static void ata_host_release(struct device *gendev, void *res)
5274 struct ata_host *host = dev_get_drvdata(gendev);
5275 int i;
5277 for (i = 0; i < host->n_ports; i++) {
5278 struct ata_port *ap = host->ports[i];
5280 if (!ap)
5281 continue;
5283 if (ap->scsi_host)
5284 scsi_host_put(ap->scsi_host);
5286 kfree(ap->pmp_link);
5287 kfree(ap);
5288 host->ports[i] = NULL;
5291 dev_set_drvdata(gendev, NULL);
5295 * ata_host_alloc - allocate and init basic ATA host resources
5296 * @dev: generic device this host is associated with
5297 * @max_ports: maximum number of ATA ports associated with this host
5299 * Allocate and initialize basic ATA host resources. LLD calls
5300 * this function to allocate a host, initializes it fully and
5301 * attaches it using ata_host_register().
5303 * @max_ports ports are allocated and host->n_ports is
5304 * initialized to @max_ports. The caller is allowed to decrease
5305 * host->n_ports before calling ata_host_register(). The unused
5306 * ports will be automatically freed on registration.
5308 * RETURNS:
5309 * Allocate ATA host on success, NULL on failure.
5311 * LOCKING:
5312 * Inherited from calling layer (may sleep).
5314 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5316 struct ata_host *host;
5317 size_t sz;
5318 int i;
5320 DPRINTK("ENTER\n");
5322 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5323 return NULL;
5325 /* alloc a container for our list of ATA ports (buses) */
5326 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5327 /* alloc a container for our list of ATA ports (buses) */
5328 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5329 if (!host)
5330 goto err_out;
5332 devres_add(dev, host);
5333 dev_set_drvdata(dev, host);
5335 spin_lock_init(&host->lock);
5336 host->dev = dev;
5337 host->n_ports = max_ports;
5339 /* allocate ports bound to this host */
5340 for (i = 0; i < max_ports; i++) {
5341 struct ata_port *ap;
5343 ap = ata_port_alloc(host);
5344 if (!ap)
5345 goto err_out;
5347 ap->port_no = i;
5348 host->ports[i] = ap;
5351 devres_remove_group(dev, NULL);
5352 return host;
5354 err_out:
5355 devres_release_group(dev, NULL);
5356 return NULL;
5360 * ata_host_alloc_pinfo - alloc host and init with port_info array
5361 * @dev: generic device this host is associated with
5362 * @ppi: array of ATA port_info to initialize host with
5363 * @n_ports: number of ATA ports attached to this host
5365 * Allocate ATA host and initialize with info from @ppi. If NULL
5366 * terminated, @ppi may contain fewer entries than @n_ports. The
5367 * last entry will be used for the remaining ports.
5369 * RETURNS:
5370 * Allocate ATA host on success, NULL on failure.
5372 * LOCKING:
5373 * Inherited from calling layer (may sleep).
5375 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5376 const struct ata_port_info * const * ppi,
5377 int n_ports)
5379 const struct ata_port_info *pi;
5380 struct ata_host *host;
5381 int i, j;
5383 host = ata_host_alloc(dev, n_ports);
5384 if (!host)
5385 return NULL;
5387 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5388 struct ata_port *ap = host->ports[i];
5390 if (ppi[j])
5391 pi = ppi[j++];
5393 ap->pio_mask = pi->pio_mask;
5394 ap->mwdma_mask = pi->mwdma_mask;
5395 ap->udma_mask = pi->udma_mask;
5396 ap->flags |= pi->flags;
5397 ap->link.flags |= pi->link_flags;
5398 ap->ops = pi->port_ops;
5400 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5401 host->ops = pi->port_ops;
5404 return host;
5407 static void ata_host_stop(struct device *gendev, void *res)
5409 struct ata_host *host = dev_get_drvdata(gendev);
5410 int i;
5412 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5414 for (i = 0; i < host->n_ports; i++) {
5415 struct ata_port *ap = host->ports[i];
5417 if (ap->ops->port_stop)
5418 ap->ops->port_stop(ap);
5421 if (host->ops->host_stop)
5422 host->ops->host_stop(host);
5426 * ata_finalize_port_ops - finalize ata_port_operations
5427 * @ops: ata_port_operations to finalize
5429 * An ata_port_operations can inherit from another ops and that
5430 * ops can again inherit from another. This can go on as many
5431 * times as necessary as long as there is no loop in the
5432 * inheritance chain.
5434 * Ops tables are finalized when the host is started. NULL or
5435 * unspecified entries are inherited from the closet ancestor
5436 * which has the method and the entry is populated with it.
5437 * After finalization, the ops table directly points to all the
5438 * methods and ->inherits is no longer necessary and cleared.
5440 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5442 * LOCKING:
5443 * None.
5445 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5447 static DEFINE_SPINLOCK(lock);
5448 const struct ata_port_operations *cur;
5449 void **begin = (void **)ops;
5450 void **end = (void **)&ops->inherits;
5451 void **pp;
5453 if (!ops || !ops->inherits)
5454 return;
5456 spin_lock(&lock);
5458 for (cur = ops->inherits; cur; cur = cur->inherits) {
5459 void **inherit = (void **)cur;
5461 for (pp = begin; pp < end; pp++, inherit++)
5462 if (!*pp)
5463 *pp = *inherit;
5466 for (pp = begin; pp < end; pp++)
5467 if (IS_ERR(*pp))
5468 *pp = NULL;
5470 ops->inherits = NULL;
5472 spin_unlock(&lock);
5476 * ata_host_start - start and freeze ports of an ATA host
5477 * @host: ATA host to start ports for
5479 * Start and then freeze ports of @host. Started status is
5480 * recorded in host->flags, so this function can be called
5481 * multiple times. Ports are guaranteed to get started only
5482 * once. If host->ops isn't initialized yet, its set to the
5483 * first non-dummy port ops.
5485 * LOCKING:
5486 * Inherited from calling layer (may sleep).
5488 * RETURNS:
5489 * 0 if all ports are started successfully, -errno otherwise.
5491 int ata_host_start(struct ata_host *host)
5493 int have_stop = 0;
5494 void *start_dr = NULL;
5495 int i, rc;
5497 if (host->flags & ATA_HOST_STARTED)
5498 return 0;
5500 ata_finalize_port_ops(host->ops);
5502 for (i = 0; i < host->n_ports; i++) {
5503 struct ata_port *ap = host->ports[i];
5505 ata_finalize_port_ops(ap->ops);
5507 if (!host->ops && !ata_port_is_dummy(ap))
5508 host->ops = ap->ops;
5510 if (ap->ops->port_stop)
5511 have_stop = 1;
5514 if (host->ops->host_stop)
5515 have_stop = 1;
5517 if (have_stop) {
5518 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5519 if (!start_dr)
5520 return -ENOMEM;
5523 for (i = 0; i < host->n_ports; i++) {
5524 struct ata_port *ap = host->ports[i];
5526 if (ap->ops->port_start) {
5527 rc = ap->ops->port_start(ap);
5528 if (rc) {
5529 if (rc != -ENODEV)
5530 dev_printk(KERN_ERR, host->dev,
5531 "failed to start port %d "
5532 "(errno=%d)\n", i, rc);
5533 goto err_out;
5536 ata_eh_freeze_port(ap);
5539 if (start_dr)
5540 devres_add(host->dev, start_dr);
5541 host->flags |= ATA_HOST_STARTED;
5542 return 0;
5544 err_out:
5545 while (--i >= 0) {
5546 struct ata_port *ap = host->ports[i];
5548 if (ap->ops->port_stop)
5549 ap->ops->port_stop(ap);
5551 devres_free(start_dr);
5552 return rc;
5556 * ata_sas_host_init - Initialize a host struct
5557 * @host: host to initialize
5558 * @dev: device host is attached to
5559 * @flags: host flags
5560 * @ops: port_ops
5562 * LOCKING:
5563 * PCI/etc. bus probe sem.
5566 /* KILLME - the only user left is ipr */
5567 void ata_host_init(struct ata_host *host, struct device *dev,
5568 unsigned long flags, struct ata_port_operations *ops)
5570 spin_lock_init(&host->lock);
5571 host->dev = dev;
5572 host->flags = flags;
5573 host->ops = ops;
5577 * ata_host_register - register initialized ATA host
5578 * @host: ATA host to register
5579 * @sht: template for SCSI host
5581 * Register initialized ATA host. @host is allocated using
5582 * ata_host_alloc() and fully initialized by LLD. This function
5583 * starts ports, registers @host with ATA and SCSI layers and
5584 * probe registered devices.
5586 * LOCKING:
5587 * Inherited from calling layer (may sleep).
5589 * RETURNS:
5590 * 0 on success, -errno otherwise.
5592 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5594 int i, rc;
5596 /* host must have been started */
5597 if (!(host->flags & ATA_HOST_STARTED)) {
5598 dev_printk(KERN_ERR, host->dev,
5599 "BUG: trying to register unstarted host\n");
5600 WARN_ON(1);
5601 return -EINVAL;
5604 /* Blow away unused ports. This happens when LLD can't
5605 * determine the exact number of ports to allocate at
5606 * allocation time.
5608 for (i = host->n_ports; host->ports[i]; i++)
5609 kfree(host->ports[i]);
5611 /* give ports names and add SCSI hosts */
5612 for (i = 0; i < host->n_ports; i++)
5613 host->ports[i]->print_id = ata_print_id++;
5615 rc = ata_scsi_add_hosts(host, sht);
5616 if (rc)
5617 return rc;
5619 /* associate with ACPI nodes */
5620 ata_acpi_associate(host);
5622 /* set cable, sata_spd_limit and report */
5623 for (i = 0; i < host->n_ports; i++) {
5624 struct ata_port *ap = host->ports[i];
5625 unsigned long xfer_mask;
5627 /* set SATA cable type if still unset */
5628 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5629 ap->cbl = ATA_CBL_SATA;
5631 /* init sata_spd_limit to the current value */
5632 sata_link_init_spd(&ap->link);
5634 /* print per-port info to dmesg */
5635 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5636 ap->udma_mask);
5638 if (!ata_port_is_dummy(ap)) {
5639 ata_port_printk(ap, KERN_INFO,
5640 "%cATA max %s %s\n",
5641 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5642 ata_mode_string(xfer_mask),
5643 ap->link.eh_info.desc);
5644 ata_ehi_clear_desc(&ap->link.eh_info);
5645 } else
5646 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5649 /* perform each probe synchronously */
5650 DPRINTK("probe begin\n");
5651 for (i = 0; i < host->n_ports; i++) {
5652 struct ata_port *ap = host->ports[i];
5654 /* probe */
5655 if (ap->ops->error_handler) {
5656 struct ata_eh_info *ehi = &ap->link.eh_info;
5657 unsigned long flags;
5659 ata_port_probe(ap);
5661 /* kick EH for boot probing */
5662 spin_lock_irqsave(ap->lock, flags);
5664 ehi->probe_mask |= ATA_ALL_DEVICES;
5665 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
5666 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5668 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5669 ap->pflags |= ATA_PFLAG_LOADING;
5670 ata_port_schedule_eh(ap);
5672 spin_unlock_irqrestore(ap->lock, flags);
5674 /* wait for EH to finish */
5675 ata_port_wait_eh(ap);
5676 } else {
5677 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5678 rc = ata_bus_probe(ap);
5679 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5681 if (rc) {
5682 /* FIXME: do something useful here?
5683 * Current libata behavior will
5684 * tear down everything when
5685 * the module is removed
5686 * or the h/w is unplugged.
5692 /* probes are done, now scan each port's disk(s) */
5693 DPRINTK("host probe begin\n");
5694 for (i = 0; i < host->n_ports; i++) {
5695 struct ata_port *ap = host->ports[i];
5697 ata_scsi_scan_host(ap, 1);
5700 return 0;
5704 * ata_host_activate - start host, request IRQ and register it
5705 * @host: target ATA host
5706 * @irq: IRQ to request
5707 * @irq_handler: irq_handler used when requesting IRQ
5708 * @irq_flags: irq_flags used when requesting IRQ
5709 * @sht: scsi_host_template to use when registering the host
5711 * After allocating an ATA host and initializing it, most libata
5712 * LLDs perform three steps to activate the host - start host,
5713 * request IRQ and register it. This helper takes necessasry
5714 * arguments and performs the three steps in one go.
5716 * An invalid IRQ skips the IRQ registration and expects the host to
5717 * have set polling mode on the port. In this case, @irq_handler
5718 * should be NULL.
5720 * LOCKING:
5721 * Inherited from calling layer (may sleep).
5723 * RETURNS:
5724 * 0 on success, -errno otherwise.
5726 int ata_host_activate(struct ata_host *host, int irq,
5727 irq_handler_t irq_handler, unsigned long irq_flags,
5728 struct scsi_host_template *sht)
5730 int i, rc;
5732 rc = ata_host_start(host);
5733 if (rc)
5734 return rc;
5736 /* Special case for polling mode */
5737 if (!irq) {
5738 WARN_ON(irq_handler);
5739 return ata_host_register(host, sht);
5742 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5743 dev_driver_string(host->dev), host);
5744 if (rc)
5745 return rc;
5747 for (i = 0; i < host->n_ports; i++)
5748 ata_port_desc(host->ports[i], "irq %d", irq);
5750 rc = ata_host_register(host, sht);
5751 /* if failed, just free the IRQ and leave ports alone */
5752 if (rc)
5753 devm_free_irq(host->dev, irq, host);
5755 return rc;
5759 * ata_port_detach - Detach ATA port in prepration of device removal
5760 * @ap: ATA port to be detached
5762 * Detach all ATA devices and the associated SCSI devices of @ap;
5763 * then, remove the associated SCSI host. @ap is guaranteed to
5764 * be quiescent on return from this function.
5766 * LOCKING:
5767 * Kernel thread context (may sleep).
5769 static void ata_port_detach(struct ata_port *ap)
5771 unsigned long flags;
5772 struct ata_link *link;
5773 struct ata_device *dev;
5775 if (!ap->ops->error_handler)
5776 goto skip_eh;
5778 /* tell EH we're leaving & flush EH */
5779 spin_lock_irqsave(ap->lock, flags);
5780 ap->pflags |= ATA_PFLAG_UNLOADING;
5781 spin_unlock_irqrestore(ap->lock, flags);
5783 ata_port_wait_eh(ap);
5785 /* EH is now guaranteed to see UNLOADING - EH context belongs
5786 * to us. Disable all existing devices.
5788 ata_port_for_each_link(link, ap) {
5789 ata_link_for_each_dev(dev, link)
5790 ata_dev_disable(dev);
5793 /* Final freeze & EH. All in-flight commands are aborted. EH
5794 * will be skipped and retrials will be terminated with bad
5795 * target.
5797 spin_lock_irqsave(ap->lock, flags);
5798 ata_port_freeze(ap); /* won't be thawed */
5799 spin_unlock_irqrestore(ap->lock, flags);
5801 ata_port_wait_eh(ap);
5802 cancel_rearming_delayed_work(&ap->hotplug_task);
5804 skip_eh:
5805 /* remove the associated SCSI host */
5806 scsi_remove_host(ap->scsi_host);
5810 * ata_host_detach - Detach all ports of an ATA host
5811 * @host: Host to detach
5813 * Detach all ports of @host.
5815 * LOCKING:
5816 * Kernel thread context (may sleep).
5818 void ata_host_detach(struct ata_host *host)
5820 int i;
5822 for (i = 0; i < host->n_ports; i++)
5823 ata_port_detach(host->ports[i]);
5825 /* the host is dead now, dissociate ACPI */
5826 ata_acpi_dissociate(host);
5829 #ifdef CONFIG_PCI
5832 * ata_pci_remove_one - PCI layer callback for device removal
5833 * @pdev: PCI device that was removed
5835 * PCI layer indicates to libata via this hook that hot-unplug or
5836 * module unload event has occurred. Detach all ports. Resource
5837 * release is handled via devres.
5839 * LOCKING:
5840 * Inherited from PCI layer (may sleep).
5842 void ata_pci_remove_one(struct pci_dev *pdev)
5844 struct device *dev = &pdev->dev;
5845 struct ata_host *host = dev_get_drvdata(dev);
5847 ata_host_detach(host);
5850 /* move to PCI subsystem */
5851 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5853 unsigned long tmp = 0;
5855 switch (bits->width) {
5856 case 1: {
5857 u8 tmp8 = 0;
5858 pci_read_config_byte(pdev, bits->reg, &tmp8);
5859 tmp = tmp8;
5860 break;
5862 case 2: {
5863 u16 tmp16 = 0;
5864 pci_read_config_word(pdev, bits->reg, &tmp16);
5865 tmp = tmp16;
5866 break;
5868 case 4: {
5869 u32 tmp32 = 0;
5870 pci_read_config_dword(pdev, bits->reg, &tmp32);
5871 tmp = tmp32;
5872 break;
5875 default:
5876 return -EINVAL;
5879 tmp &= bits->mask;
5881 return (tmp == bits->val) ? 1 : 0;
5884 #ifdef CONFIG_PM
5885 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
5887 pci_save_state(pdev);
5888 pci_disable_device(pdev);
5890 if (mesg.event & PM_EVENT_SLEEP)
5891 pci_set_power_state(pdev, PCI_D3hot);
5894 int ata_pci_device_do_resume(struct pci_dev *pdev)
5896 int rc;
5898 pci_set_power_state(pdev, PCI_D0);
5899 pci_restore_state(pdev);
5901 rc = pcim_enable_device(pdev);
5902 if (rc) {
5903 dev_printk(KERN_ERR, &pdev->dev,
5904 "failed to enable device after resume (%d)\n", rc);
5905 return rc;
5908 pci_set_master(pdev);
5909 return 0;
5912 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
5914 struct ata_host *host = dev_get_drvdata(&pdev->dev);
5915 int rc = 0;
5917 rc = ata_host_suspend(host, mesg);
5918 if (rc)
5919 return rc;
5921 ata_pci_device_do_suspend(pdev, mesg);
5923 return 0;
5926 int ata_pci_device_resume(struct pci_dev *pdev)
5928 struct ata_host *host = dev_get_drvdata(&pdev->dev);
5929 int rc;
5931 rc = ata_pci_device_do_resume(pdev);
5932 if (rc == 0)
5933 ata_host_resume(host);
5934 return rc;
5936 #endif /* CONFIG_PM */
5938 #endif /* CONFIG_PCI */
5940 static int __init ata_parse_force_one(char **cur,
5941 struct ata_force_ent *force_ent,
5942 const char **reason)
5944 /* FIXME: Currently, there's no way to tag init const data and
5945 * using __initdata causes build failure on some versions of
5946 * gcc. Once __initdataconst is implemented, add const to the
5947 * following structure.
5949 static struct ata_force_param force_tbl[] __initdata = {
5950 { "40c", .cbl = ATA_CBL_PATA40 },
5951 { "80c", .cbl = ATA_CBL_PATA80 },
5952 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
5953 { "unk", .cbl = ATA_CBL_PATA_UNK },
5954 { "ign", .cbl = ATA_CBL_PATA_IGN },
5955 { "sata", .cbl = ATA_CBL_SATA },
5956 { "1.5Gbps", .spd_limit = 1 },
5957 { "3.0Gbps", .spd_limit = 2 },
5958 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
5959 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
5960 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
5961 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
5962 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
5963 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
5964 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
5965 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
5966 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
5967 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
5968 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
5969 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
5970 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
5971 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
5972 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
5973 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
5974 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
5975 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
5976 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
5977 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
5978 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
5979 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
5980 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
5981 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
5982 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
5983 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
5984 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
5985 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
5986 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
5987 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
5988 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
5989 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
5990 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
5991 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
5992 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
5993 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
5995 char *start = *cur, *p = *cur;
5996 char *id, *val, *endp;
5997 const struct ata_force_param *match_fp = NULL;
5998 int nr_matches = 0, i;
6000 /* find where this param ends and update *cur */
6001 while (*p != '\0' && *p != ',')
6002 p++;
6004 if (*p == '\0')
6005 *cur = p;
6006 else
6007 *cur = p + 1;
6009 *p = '\0';
6011 /* parse */
6012 p = strchr(start, ':');
6013 if (!p) {
6014 val = strstrip(start);
6015 goto parse_val;
6017 *p = '\0';
6019 id = strstrip(start);
6020 val = strstrip(p + 1);
6022 /* parse id */
6023 p = strchr(id, '.');
6024 if (p) {
6025 *p++ = '\0';
6026 force_ent->device = simple_strtoul(p, &endp, 10);
6027 if (p == endp || *endp != '\0') {
6028 *reason = "invalid device";
6029 return -EINVAL;
6033 force_ent->port = simple_strtoul(id, &endp, 10);
6034 if (p == endp || *endp != '\0') {
6035 *reason = "invalid port/link";
6036 return -EINVAL;
6039 parse_val:
6040 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6041 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6042 const struct ata_force_param *fp = &force_tbl[i];
6044 if (strncasecmp(val, fp->name, strlen(val)))
6045 continue;
6047 nr_matches++;
6048 match_fp = fp;
6050 if (strcasecmp(val, fp->name) == 0) {
6051 nr_matches = 1;
6052 break;
6056 if (!nr_matches) {
6057 *reason = "unknown value";
6058 return -EINVAL;
6060 if (nr_matches > 1) {
6061 *reason = "ambigious value";
6062 return -EINVAL;
6065 force_ent->param = *match_fp;
6067 return 0;
6070 static void __init ata_parse_force_param(void)
6072 int idx = 0, size = 1;
6073 int last_port = -1, last_device = -1;
6074 char *p, *cur, *next;
6076 /* calculate maximum number of params and allocate force_tbl */
6077 for (p = ata_force_param_buf; *p; p++)
6078 if (*p == ',')
6079 size++;
6081 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6082 if (!ata_force_tbl) {
6083 printk(KERN_WARNING "ata: failed to extend force table, "
6084 "libata.force ignored\n");
6085 return;
6088 /* parse and populate the table */
6089 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6090 const char *reason = "";
6091 struct ata_force_ent te = { .port = -1, .device = -1 };
6093 next = cur;
6094 if (ata_parse_force_one(&next, &te, &reason)) {
6095 printk(KERN_WARNING "ata: failed to parse force "
6096 "parameter \"%s\" (%s)\n",
6097 cur, reason);
6098 continue;
6101 if (te.port == -1) {
6102 te.port = last_port;
6103 te.device = last_device;
6106 ata_force_tbl[idx++] = te;
6108 last_port = te.port;
6109 last_device = te.device;
6112 ata_force_tbl_size = idx;
6115 static int __init ata_init(void)
6117 ata_parse_force_param();
6119 ata_wq = create_workqueue("ata");
6120 if (!ata_wq)
6121 goto free_force_tbl;
6123 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6124 if (!ata_aux_wq)
6125 goto free_wq;
6127 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6128 return 0;
6130 free_wq:
6131 destroy_workqueue(ata_wq);
6132 free_force_tbl:
6133 kfree(ata_force_tbl);
6134 return -ENOMEM;
6137 static void __exit ata_exit(void)
6139 kfree(ata_force_tbl);
6140 destroy_workqueue(ata_wq);
6141 destroy_workqueue(ata_aux_wq);
6144 subsys_initcall(ata_init);
6145 module_exit(ata_exit);
6147 static unsigned long ratelimit_time;
6148 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6150 int ata_ratelimit(void)
6152 int rc;
6153 unsigned long flags;
6155 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6157 if (time_after(jiffies, ratelimit_time)) {
6158 rc = 1;
6159 ratelimit_time = jiffies + (HZ/5);
6160 } else
6161 rc = 0;
6163 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6165 return rc;
6169 * ata_wait_register - wait until register value changes
6170 * @reg: IO-mapped register
6171 * @mask: Mask to apply to read register value
6172 * @val: Wait condition
6173 * @interval: polling interval in milliseconds
6174 * @timeout: timeout in milliseconds
6176 * Waiting for some bits of register to change is a common
6177 * operation for ATA controllers. This function reads 32bit LE
6178 * IO-mapped register @reg and tests for the following condition.
6180 * (*@reg & mask) != val
6182 * If the condition is met, it returns; otherwise, the process is
6183 * repeated after @interval_msec until timeout.
6185 * LOCKING:
6186 * Kernel thread context (may sleep)
6188 * RETURNS:
6189 * The final register value.
6191 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6192 unsigned long interval, unsigned long timeout)
6194 unsigned long deadline;
6195 u32 tmp;
6197 tmp = ioread32(reg);
6199 /* Calculate timeout _after_ the first read to make sure
6200 * preceding writes reach the controller before starting to
6201 * eat away the timeout.
6203 deadline = ata_deadline(jiffies, timeout);
6205 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6206 msleep(interval);
6207 tmp = ioread32(reg);
6210 return tmp;
6214 * Dummy port_ops
6216 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6218 return AC_ERR_SYSTEM;
6221 static void ata_dummy_error_handler(struct ata_port *ap)
6223 /* truly dummy */
6226 struct ata_port_operations ata_dummy_port_ops = {
6227 .qc_prep = ata_noop_qc_prep,
6228 .qc_issue = ata_dummy_qc_issue,
6229 .error_handler = ata_dummy_error_handler,
6232 const struct ata_port_info ata_dummy_port_info = {
6233 .port_ops = &ata_dummy_port_ops,
6237 * libata is essentially a library of internal helper functions for
6238 * low-level ATA host controller drivers. As such, the API/ABI is
6239 * likely to change as new drivers are added and updated.
6240 * Do not depend on ABI/API stability.
6242 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6243 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6244 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6245 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6246 EXPORT_SYMBOL_GPL(sata_port_ops);
6247 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6248 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6249 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6250 EXPORT_SYMBOL_GPL(ata_host_init);
6251 EXPORT_SYMBOL_GPL(ata_host_alloc);
6252 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6253 EXPORT_SYMBOL_GPL(ata_host_start);
6254 EXPORT_SYMBOL_GPL(ata_host_register);
6255 EXPORT_SYMBOL_GPL(ata_host_activate);
6256 EXPORT_SYMBOL_GPL(ata_host_detach);
6257 EXPORT_SYMBOL_GPL(ata_sg_init);
6258 EXPORT_SYMBOL_GPL(ata_qc_complete);
6259 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6260 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6261 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6262 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6263 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6264 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6265 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6266 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6267 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6268 EXPORT_SYMBOL_GPL(ata_mode_string);
6269 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6270 EXPORT_SYMBOL_GPL(ata_port_start);
6271 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6272 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6273 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6274 EXPORT_SYMBOL_GPL(ata_port_probe);
6275 EXPORT_SYMBOL_GPL(ata_dev_disable);
6276 EXPORT_SYMBOL_GPL(sata_set_spd);
6277 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6278 EXPORT_SYMBOL_GPL(sata_link_debounce);
6279 EXPORT_SYMBOL_GPL(sata_link_resume);
6280 EXPORT_SYMBOL_GPL(ata_std_prereset);
6281 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6282 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6283 EXPORT_SYMBOL_GPL(ata_std_postreset);
6284 EXPORT_SYMBOL_GPL(ata_dev_classify);
6285 EXPORT_SYMBOL_GPL(ata_dev_pair);
6286 EXPORT_SYMBOL_GPL(ata_port_disable);
6287 EXPORT_SYMBOL_GPL(ata_ratelimit);
6288 EXPORT_SYMBOL_GPL(ata_wait_register);
6289 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6290 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6291 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6292 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6293 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6294 EXPORT_SYMBOL_GPL(sata_scr_valid);
6295 EXPORT_SYMBOL_GPL(sata_scr_read);
6296 EXPORT_SYMBOL_GPL(sata_scr_write);
6297 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6298 EXPORT_SYMBOL_GPL(ata_link_online);
6299 EXPORT_SYMBOL_GPL(ata_link_offline);
6300 #ifdef CONFIG_PM
6301 EXPORT_SYMBOL_GPL(ata_host_suspend);
6302 EXPORT_SYMBOL_GPL(ata_host_resume);
6303 #endif /* CONFIG_PM */
6304 EXPORT_SYMBOL_GPL(ata_id_string);
6305 EXPORT_SYMBOL_GPL(ata_id_c_string);
6306 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6307 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6309 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6310 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6311 EXPORT_SYMBOL_GPL(ata_timing_compute);
6312 EXPORT_SYMBOL_GPL(ata_timing_merge);
6313 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6315 #ifdef CONFIG_PCI
6316 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6317 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6318 #ifdef CONFIG_PM
6319 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6320 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6321 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6322 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6323 #endif /* CONFIG_PM */
6324 #endif /* CONFIG_PCI */
6326 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6327 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6328 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6329 EXPORT_SYMBOL_GPL(ata_port_desc);
6330 #ifdef CONFIG_PCI
6331 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6332 #endif /* CONFIG_PCI */
6333 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6334 EXPORT_SYMBOL_GPL(ata_link_abort);
6335 EXPORT_SYMBOL_GPL(ata_port_abort);
6336 EXPORT_SYMBOL_GPL(ata_port_freeze);
6337 EXPORT_SYMBOL_GPL(sata_async_notification);
6338 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6339 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6340 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6341 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6342 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6343 EXPORT_SYMBOL_GPL(ata_do_eh);
6344 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6346 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6347 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6348 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6349 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6350 EXPORT_SYMBOL_GPL(ata_cable_sata);