exofs: Add offset/length to exofs_get_io_state
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / mtd / nand / omap2.c
blob0db2c0e7656ae7abbde5536ca8c842a465482696
1 /*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
11 #include <linux/platform_device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/delay.h>
14 #include <linux/interrupt.h>
15 #include <linux/jiffies.h>
16 #include <linux/sched.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/nand.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/io.h>
21 #include <linux/slab.h>
23 #include <plat/dma.h>
24 #include <plat/gpmc.h>
25 #include <plat/nand.h>
27 #define DRIVER_NAME "omap2-nand"
28 #define OMAP_NAND_TIMEOUT_MS 5000
30 #define NAND_Ecc_P1e (1 << 0)
31 #define NAND_Ecc_P2e (1 << 1)
32 #define NAND_Ecc_P4e (1 << 2)
33 #define NAND_Ecc_P8e (1 << 3)
34 #define NAND_Ecc_P16e (1 << 4)
35 #define NAND_Ecc_P32e (1 << 5)
36 #define NAND_Ecc_P64e (1 << 6)
37 #define NAND_Ecc_P128e (1 << 7)
38 #define NAND_Ecc_P256e (1 << 8)
39 #define NAND_Ecc_P512e (1 << 9)
40 #define NAND_Ecc_P1024e (1 << 10)
41 #define NAND_Ecc_P2048e (1 << 11)
43 #define NAND_Ecc_P1o (1 << 16)
44 #define NAND_Ecc_P2o (1 << 17)
45 #define NAND_Ecc_P4o (1 << 18)
46 #define NAND_Ecc_P8o (1 << 19)
47 #define NAND_Ecc_P16o (1 << 20)
48 #define NAND_Ecc_P32o (1 << 21)
49 #define NAND_Ecc_P64o (1 << 22)
50 #define NAND_Ecc_P128o (1 << 23)
51 #define NAND_Ecc_P256o (1 << 24)
52 #define NAND_Ecc_P512o (1 << 25)
53 #define NAND_Ecc_P1024o (1 << 26)
54 #define NAND_Ecc_P2048o (1 << 27)
56 #define TF(value) (value ? 1 : 0)
58 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
59 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
60 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
61 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
62 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
63 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
64 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
65 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
67 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
68 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
69 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
70 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
71 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
72 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
73 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
74 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
76 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
77 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
78 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
79 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
80 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
81 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
82 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
83 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
85 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
86 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
87 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
88 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
89 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
90 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
91 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
92 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
94 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
95 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
97 static const char *part_probes[] = { "cmdlinepart", NULL };
99 /* oob info generated runtime depending on ecc algorithm and layout selected */
100 static struct nand_ecclayout omap_oobinfo;
101 /* Define some generic bad / good block scan pattern which are used
102 * while scanning a device for factory marked good / bad blocks
104 static uint8_t scan_ff_pattern[] = { 0xff };
105 static struct nand_bbt_descr bb_descrip_flashbased = {
106 .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
107 .offs = 0,
108 .len = 1,
109 .pattern = scan_ff_pattern,
113 struct omap_nand_info {
114 struct nand_hw_control controller;
115 struct omap_nand_platform_data *pdata;
116 struct mtd_info mtd;
117 struct mtd_partition *parts;
118 struct nand_chip nand;
119 struct platform_device *pdev;
121 int gpmc_cs;
122 unsigned long phys_base;
123 struct completion comp;
124 int dma_ch;
125 int gpmc_irq;
126 enum {
127 OMAP_NAND_IO_READ = 0, /* read */
128 OMAP_NAND_IO_WRITE, /* write */
129 } iomode;
130 u_char *buf;
131 int buf_len;
135 * omap_hwcontrol - hardware specific access to control-lines
136 * @mtd: MTD device structure
137 * @cmd: command to device
138 * @ctrl:
139 * NAND_NCE: bit 0 -> don't care
140 * NAND_CLE: bit 1 -> Command Latch
141 * NAND_ALE: bit 2 -> Address Latch
143 * NOTE: boards may use different bits for these!!
145 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
147 struct omap_nand_info *info = container_of(mtd,
148 struct omap_nand_info, mtd);
150 if (cmd != NAND_CMD_NONE) {
151 if (ctrl & NAND_CLE)
152 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
154 else if (ctrl & NAND_ALE)
155 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
157 else /* NAND_NCE */
158 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
163 * omap_read_buf8 - read data from NAND controller into buffer
164 * @mtd: MTD device structure
165 * @buf: buffer to store date
166 * @len: number of bytes to read
168 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
170 struct nand_chip *nand = mtd->priv;
172 ioread8_rep(nand->IO_ADDR_R, buf, len);
176 * omap_write_buf8 - write buffer to NAND controller
177 * @mtd: MTD device structure
178 * @buf: data buffer
179 * @len: number of bytes to write
181 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
183 struct omap_nand_info *info = container_of(mtd,
184 struct omap_nand_info, mtd);
185 u_char *p = (u_char *)buf;
186 u32 status = 0;
188 while (len--) {
189 iowrite8(*p++, info->nand.IO_ADDR_W);
190 /* wait until buffer is available for write */
191 do {
192 status = gpmc_read_status(GPMC_STATUS_BUFFER);
193 } while (!status);
198 * omap_read_buf16 - read data from NAND controller into buffer
199 * @mtd: MTD device structure
200 * @buf: buffer to store date
201 * @len: number of bytes to read
203 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
205 struct nand_chip *nand = mtd->priv;
207 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
211 * omap_write_buf16 - write buffer to NAND controller
212 * @mtd: MTD device structure
213 * @buf: data buffer
214 * @len: number of bytes to write
216 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
218 struct omap_nand_info *info = container_of(mtd,
219 struct omap_nand_info, mtd);
220 u16 *p = (u16 *) buf;
221 u32 status = 0;
222 /* FIXME try bursts of writesw() or DMA ... */
223 len >>= 1;
225 while (len--) {
226 iowrite16(*p++, info->nand.IO_ADDR_W);
227 /* wait until buffer is available for write */
228 do {
229 status = gpmc_read_status(GPMC_STATUS_BUFFER);
230 } while (!status);
235 * omap_read_buf_pref - read data from NAND controller into buffer
236 * @mtd: MTD device structure
237 * @buf: buffer to store date
238 * @len: number of bytes to read
240 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
242 struct omap_nand_info *info = container_of(mtd,
243 struct omap_nand_info, mtd);
244 uint32_t r_count = 0;
245 int ret = 0;
246 u32 *p = (u32 *)buf;
248 /* take care of subpage reads */
249 if (len % 4) {
250 if (info->nand.options & NAND_BUSWIDTH_16)
251 omap_read_buf16(mtd, buf, len % 4);
252 else
253 omap_read_buf8(mtd, buf, len % 4);
254 p = (u32 *) (buf + len % 4);
255 len -= len % 4;
258 /* configure and start prefetch transfer */
259 ret = gpmc_prefetch_enable(info->gpmc_cs,
260 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0);
261 if (ret) {
262 /* PFPW engine is busy, use cpu copy method */
263 if (info->nand.options & NAND_BUSWIDTH_16)
264 omap_read_buf16(mtd, (u_char *)p, len);
265 else
266 omap_read_buf8(mtd, (u_char *)p, len);
267 } else {
268 do {
269 r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
270 r_count = r_count >> 2;
271 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
272 p += r_count;
273 len -= r_count << 2;
274 } while (len);
275 /* disable and stop the PFPW engine */
276 gpmc_prefetch_reset(info->gpmc_cs);
281 * omap_write_buf_pref - write buffer to NAND controller
282 * @mtd: MTD device structure
283 * @buf: data buffer
284 * @len: number of bytes to write
286 static void omap_write_buf_pref(struct mtd_info *mtd,
287 const u_char *buf, int len)
289 struct omap_nand_info *info = container_of(mtd,
290 struct omap_nand_info, mtd);
291 uint32_t w_count = 0;
292 int i = 0, ret = 0;
293 u16 *p = (u16 *)buf;
294 unsigned long tim, limit;
296 /* take care of subpage writes */
297 if (len % 2 != 0) {
298 writeb(*buf, info->nand.IO_ADDR_W);
299 p = (u16 *)(buf + 1);
300 len--;
303 /* configure and start prefetch transfer */
304 ret = gpmc_prefetch_enable(info->gpmc_cs,
305 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1);
306 if (ret) {
307 /* PFPW engine is busy, use cpu copy method */
308 if (info->nand.options & NAND_BUSWIDTH_16)
309 omap_write_buf16(mtd, (u_char *)p, len);
310 else
311 omap_write_buf8(mtd, (u_char *)p, len);
312 } else {
313 while (len) {
314 w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
315 w_count = w_count >> 1;
316 for (i = 0; (i < w_count) && len; i++, len -= 2)
317 iowrite16(*p++, info->nand.IO_ADDR_W);
319 /* wait for data to flushed-out before reset the prefetch */
320 tim = 0;
321 limit = (loops_per_jiffy *
322 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
323 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
324 cpu_relax();
326 /* disable and stop the PFPW engine */
327 gpmc_prefetch_reset(info->gpmc_cs);
332 * omap_nand_dma_cb: callback on the completion of dma transfer
333 * @lch: logical channel
334 * @ch_satuts: channel status
335 * @data: pointer to completion data structure
337 static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
339 complete((struct completion *) data);
343 * omap_nand_dma_transfer: configer and start dma transfer
344 * @mtd: MTD device structure
345 * @addr: virtual address in RAM of source/destination
346 * @len: number of data bytes to be transferred
347 * @is_write: flag for read/write operation
349 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
350 unsigned int len, int is_write)
352 struct omap_nand_info *info = container_of(mtd,
353 struct omap_nand_info, mtd);
354 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
355 DMA_FROM_DEVICE;
356 dma_addr_t dma_addr;
357 int ret;
358 unsigned long tim, limit;
360 /* The fifo depth is 64 bytes max.
361 * But configure the FIFO-threahold to 32 to get a sync at each frame
362 * and frame length is 32 bytes.
364 int buf_len = len >> 6;
366 if (addr >= high_memory) {
367 struct page *p1;
369 if (((size_t)addr & PAGE_MASK) !=
370 ((size_t)(addr + len - 1) & PAGE_MASK))
371 goto out_copy;
372 p1 = vmalloc_to_page(addr);
373 if (!p1)
374 goto out_copy;
375 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
378 dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
379 if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
380 dev_err(&info->pdev->dev,
381 "Couldn't DMA map a %d byte buffer\n", len);
382 goto out_copy;
385 if (is_write) {
386 omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
387 info->phys_base, 0, 0);
388 omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
389 dma_addr, 0, 0);
390 omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
391 0x10, buf_len, OMAP_DMA_SYNC_FRAME,
392 OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
393 } else {
394 omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
395 info->phys_base, 0, 0);
396 omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
397 dma_addr, 0, 0);
398 omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
399 0x10, buf_len, OMAP_DMA_SYNC_FRAME,
400 OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
402 /* configure and start prefetch transfer */
403 ret = gpmc_prefetch_enable(info->gpmc_cs,
404 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write);
405 if (ret)
406 /* PFPW engine is busy, use cpu copy method */
407 goto out_copy;
409 init_completion(&info->comp);
411 omap_start_dma(info->dma_ch);
413 /* setup and start DMA using dma_addr */
414 wait_for_completion(&info->comp);
415 tim = 0;
416 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
417 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
418 cpu_relax();
420 /* disable and stop the PFPW engine */
421 gpmc_prefetch_reset(info->gpmc_cs);
423 dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
424 return 0;
426 out_copy:
427 if (info->nand.options & NAND_BUSWIDTH_16)
428 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
429 : omap_write_buf16(mtd, (u_char *) addr, len);
430 else
431 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
432 : omap_write_buf8(mtd, (u_char *) addr, len);
433 return 0;
437 * omap_read_buf_dma_pref - read data from NAND controller into buffer
438 * @mtd: MTD device structure
439 * @buf: buffer to store date
440 * @len: number of bytes to read
442 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
444 if (len <= mtd->oobsize)
445 omap_read_buf_pref(mtd, buf, len);
446 else
447 /* start transfer in DMA mode */
448 omap_nand_dma_transfer(mtd, buf, len, 0x0);
452 * omap_write_buf_dma_pref - write buffer to NAND controller
453 * @mtd: MTD device structure
454 * @buf: data buffer
455 * @len: number of bytes to write
457 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
458 const u_char *buf, int len)
460 if (len <= mtd->oobsize)
461 omap_write_buf_pref(mtd, buf, len);
462 else
463 /* start transfer in DMA mode */
464 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
468 * omap_nand_irq - GMPC irq handler
469 * @this_irq: gpmc irq number
470 * @dev: omap_nand_info structure pointer is passed here
472 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
474 struct omap_nand_info *info = (struct omap_nand_info *) dev;
475 u32 bytes;
476 u32 irq_stat;
478 irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS);
479 bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
480 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
481 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
482 if (irq_stat & 0x2)
483 goto done;
485 if (info->buf_len && (info->buf_len < bytes))
486 bytes = info->buf_len;
487 else if (!info->buf_len)
488 bytes = 0;
489 iowrite32_rep(info->nand.IO_ADDR_W,
490 (u32 *)info->buf, bytes >> 2);
491 info->buf = info->buf + bytes;
492 info->buf_len -= bytes;
494 } else {
495 ioread32_rep(info->nand.IO_ADDR_R,
496 (u32 *)info->buf, bytes >> 2);
497 info->buf = info->buf + bytes;
499 if (irq_stat & 0x2)
500 goto done;
502 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
504 return IRQ_HANDLED;
506 done:
507 complete(&info->comp);
508 /* disable irq */
509 gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0);
511 /* clear status */
512 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
514 return IRQ_HANDLED;
518 * omap_read_buf_irq_pref - read data from NAND controller into buffer
519 * @mtd: MTD device structure
520 * @buf: buffer to store date
521 * @len: number of bytes to read
523 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
525 struct omap_nand_info *info = container_of(mtd,
526 struct omap_nand_info, mtd);
527 int ret = 0;
529 if (len <= mtd->oobsize) {
530 omap_read_buf_pref(mtd, buf, len);
531 return;
534 info->iomode = OMAP_NAND_IO_READ;
535 info->buf = buf;
536 init_completion(&info->comp);
538 /* configure and start prefetch transfer */
539 ret = gpmc_prefetch_enable(info->gpmc_cs,
540 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0);
541 if (ret)
542 /* PFPW engine is busy, use cpu copy method */
543 goto out_copy;
545 info->buf_len = len;
546 /* enable irq */
547 gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
548 (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
550 /* waiting for read to complete */
551 wait_for_completion(&info->comp);
553 /* disable and stop the PFPW engine */
554 gpmc_prefetch_reset(info->gpmc_cs);
555 return;
557 out_copy:
558 if (info->nand.options & NAND_BUSWIDTH_16)
559 omap_read_buf16(mtd, buf, len);
560 else
561 omap_read_buf8(mtd, buf, len);
565 * omap_write_buf_irq_pref - write buffer to NAND controller
566 * @mtd: MTD device structure
567 * @buf: data buffer
568 * @len: number of bytes to write
570 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
571 const u_char *buf, int len)
573 struct omap_nand_info *info = container_of(mtd,
574 struct omap_nand_info, mtd);
575 int ret = 0;
576 unsigned long tim, limit;
578 if (len <= mtd->oobsize) {
579 omap_write_buf_pref(mtd, buf, len);
580 return;
583 info->iomode = OMAP_NAND_IO_WRITE;
584 info->buf = (u_char *) buf;
585 init_completion(&info->comp);
587 /* configure and start prefetch transfer : size=24 */
588 ret = gpmc_prefetch_enable(info->gpmc_cs,
589 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1);
590 if (ret)
591 /* PFPW engine is busy, use cpu copy method */
592 goto out_copy;
594 info->buf_len = len;
595 /* enable irq */
596 gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
597 (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
599 /* waiting for write to complete */
600 wait_for_completion(&info->comp);
601 /* wait for data to flushed-out before reset the prefetch */
602 tim = 0;
603 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
604 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
605 cpu_relax();
607 /* disable and stop the PFPW engine */
608 gpmc_prefetch_reset(info->gpmc_cs);
609 return;
611 out_copy:
612 if (info->nand.options & NAND_BUSWIDTH_16)
613 omap_write_buf16(mtd, buf, len);
614 else
615 omap_write_buf8(mtd, buf, len);
619 * omap_verify_buf - Verify chip data against buffer
620 * @mtd: MTD device structure
621 * @buf: buffer containing the data to compare
622 * @len: number of bytes to compare
624 static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
626 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
627 mtd);
628 u16 *p = (u16 *) buf;
630 len >>= 1;
631 while (len--) {
632 if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
633 return -EFAULT;
636 return 0;
640 * gen_true_ecc - This function will generate true ECC value
641 * @ecc_buf: buffer to store ecc code
643 * This generated true ECC value can be used when correcting
644 * data read from NAND flash memory core
646 static void gen_true_ecc(u8 *ecc_buf)
648 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
649 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
651 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
652 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
653 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
654 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
655 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
656 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
660 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
661 * @ecc_data1: ecc code from nand spare area
662 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
663 * @page_data: page data
665 * This function compares two ECC's and indicates if there is an error.
666 * If the error can be corrected it will be corrected to the buffer.
667 * If there is no error, %0 is returned. If there is an error but it
668 * was corrected, %1 is returned. Otherwise, %-1 is returned.
670 static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
671 u8 *ecc_data2, /* read from register */
672 u8 *page_data)
674 uint i;
675 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
676 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
677 u8 ecc_bit[24];
678 u8 ecc_sum = 0;
679 u8 find_bit = 0;
680 uint find_byte = 0;
681 int isEccFF;
683 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
685 gen_true_ecc(ecc_data1);
686 gen_true_ecc(ecc_data2);
688 for (i = 0; i <= 2; i++) {
689 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
690 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
693 for (i = 0; i < 8; i++) {
694 tmp0_bit[i] = *ecc_data1 % 2;
695 *ecc_data1 = *ecc_data1 / 2;
698 for (i = 0; i < 8; i++) {
699 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
700 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
703 for (i = 0; i < 8; i++) {
704 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
705 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
708 for (i = 0; i < 8; i++) {
709 comp0_bit[i] = *ecc_data2 % 2;
710 *ecc_data2 = *ecc_data2 / 2;
713 for (i = 0; i < 8; i++) {
714 comp1_bit[i] = *(ecc_data2 + 1) % 2;
715 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
718 for (i = 0; i < 8; i++) {
719 comp2_bit[i] = *(ecc_data2 + 2) % 2;
720 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
723 for (i = 0; i < 6; i++)
724 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
726 for (i = 0; i < 8; i++)
727 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
729 for (i = 0; i < 8; i++)
730 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
732 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
733 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
735 for (i = 0; i < 24; i++)
736 ecc_sum += ecc_bit[i];
738 switch (ecc_sum) {
739 case 0:
740 /* Not reached because this function is not called if
741 * ECC values are equal
743 return 0;
745 case 1:
746 /* Uncorrectable error */
747 DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
748 return -1;
750 case 11:
751 /* UN-Correctable error */
752 DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
753 return -1;
755 case 12:
756 /* Correctable error */
757 find_byte = (ecc_bit[23] << 8) +
758 (ecc_bit[21] << 7) +
759 (ecc_bit[19] << 6) +
760 (ecc_bit[17] << 5) +
761 (ecc_bit[15] << 4) +
762 (ecc_bit[13] << 3) +
763 (ecc_bit[11] << 2) +
764 (ecc_bit[9] << 1) +
765 ecc_bit[7];
767 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
769 DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
770 "offset: %d, bit: %d\n", find_byte, find_bit);
772 page_data[find_byte] ^= (1 << find_bit);
774 return 1;
775 default:
776 if (isEccFF) {
777 if (ecc_data2[0] == 0 &&
778 ecc_data2[1] == 0 &&
779 ecc_data2[2] == 0)
780 return 0;
782 DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
783 return -1;
788 * omap_correct_data - Compares the ECC read with HW generated ECC
789 * @mtd: MTD device structure
790 * @dat: page data
791 * @read_ecc: ecc read from nand flash
792 * @calc_ecc: ecc read from HW ECC registers
794 * Compares the ecc read from nand spare area with ECC registers values
795 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
796 * detection and correction. If there are no errors, %0 is returned. If
797 * there were errors and all of the errors were corrected, the number of
798 * corrected errors is returned. If uncorrectable errors exist, %-1 is
799 * returned.
801 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
802 u_char *read_ecc, u_char *calc_ecc)
804 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
805 mtd);
806 int blockCnt = 0, i = 0, ret = 0;
807 int stat = 0;
809 /* Ex NAND_ECC_HW12_2048 */
810 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
811 (info->nand.ecc.size == 2048))
812 blockCnt = 4;
813 else
814 blockCnt = 1;
816 for (i = 0; i < blockCnt; i++) {
817 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
818 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
819 if (ret < 0)
820 return ret;
821 /* keep track of the number of corrected errors */
822 stat += ret;
824 read_ecc += 3;
825 calc_ecc += 3;
826 dat += 512;
828 return stat;
832 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
833 * @mtd: MTD device structure
834 * @dat: The pointer to data on which ecc is computed
835 * @ecc_code: The ecc_code buffer
837 * Using noninverted ECC can be considered ugly since writing a blank
838 * page ie. padding will clear the ECC bytes. This is no problem as long
839 * nobody is trying to write data on the seemingly unused page. Reading
840 * an erased page will produce an ECC mismatch between generated and read
841 * ECC bytes that has to be dealt with separately.
843 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
844 u_char *ecc_code)
846 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
847 mtd);
848 return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
852 * omap_enable_hwecc - This function enables the hardware ecc functionality
853 * @mtd: MTD device structure
854 * @mode: Read/Write mode
856 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
858 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
859 mtd);
860 struct nand_chip *chip = mtd->priv;
861 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
863 gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
867 * omap_wait - wait until the command is done
868 * @mtd: MTD device structure
869 * @chip: NAND Chip structure
871 * Wait function is called during Program and erase operations and
872 * the way it is called from MTD layer, we should wait till the NAND
873 * chip is ready after the programming/erase operation has completed.
875 * Erase can take up to 400ms and program up to 20ms according to
876 * general NAND and SmartMedia specs
878 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
880 struct nand_chip *this = mtd->priv;
881 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
882 mtd);
883 unsigned long timeo = jiffies;
884 int status = NAND_STATUS_FAIL, state = this->state;
886 if (state == FL_ERASING)
887 timeo += (HZ * 400) / 1000;
888 else
889 timeo += (HZ * 20) / 1000;
891 gpmc_nand_write(info->gpmc_cs,
892 GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
893 while (time_before(jiffies, timeo)) {
894 status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
895 if (status & NAND_STATUS_READY)
896 break;
897 cond_resched();
899 return status;
903 * omap_dev_ready - calls the platform specific dev_ready function
904 * @mtd: MTD device structure
906 static int omap_dev_ready(struct mtd_info *mtd)
908 unsigned int val = 0;
909 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
910 mtd);
912 val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
913 if ((val & 0x100) == 0x100) {
914 /* Clear IRQ Interrupt */
915 val |= 0x100;
916 val &= ~(0x0);
917 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
918 } else {
919 unsigned int cnt = 0;
920 while (cnt++ < 0x1FF) {
921 if ((val & 0x100) == 0x100)
922 return 0;
923 val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
927 return 1;
930 static int __devinit omap_nand_probe(struct platform_device *pdev)
932 struct omap_nand_info *info;
933 struct omap_nand_platform_data *pdata;
934 int err;
935 int i, offset;
937 pdata = pdev->dev.platform_data;
938 if (pdata == NULL) {
939 dev_err(&pdev->dev, "platform data missing\n");
940 return -ENODEV;
943 info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
944 if (!info)
945 return -ENOMEM;
947 platform_set_drvdata(pdev, info);
949 spin_lock_init(&info->controller.lock);
950 init_waitqueue_head(&info->controller.wq);
952 info->pdev = pdev;
954 info->gpmc_cs = pdata->cs;
955 info->phys_base = pdata->phys_base;
957 info->mtd.priv = &info->nand;
958 info->mtd.name = dev_name(&pdev->dev);
959 info->mtd.owner = THIS_MODULE;
961 info->nand.options = pdata->devsize;
962 info->nand.options |= NAND_SKIP_BBTSCAN;
964 /* NAND write protect off */
965 gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
967 if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
968 pdev->dev.driver->name)) {
969 err = -EBUSY;
970 goto out_free_info;
973 info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
974 if (!info->nand.IO_ADDR_R) {
975 err = -ENOMEM;
976 goto out_release_mem_region;
979 info->nand.controller = &info->controller;
981 info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
982 info->nand.cmd_ctrl = omap_hwcontrol;
985 * If RDY/BSY line is connected to OMAP then use the omap ready
986 * funcrtion and the generic nand_wait function which reads the status
987 * register after monitoring the RDY/BSY line.Otherwise use a standard
988 * chip delay which is slightly more than tR (AC Timing) of the NAND
989 * device and read status register until you get a failure or success
991 if (pdata->dev_ready) {
992 info->nand.dev_ready = omap_dev_ready;
993 info->nand.chip_delay = 0;
994 } else {
995 info->nand.waitfunc = omap_wait;
996 info->nand.chip_delay = 50;
999 switch (pdata->xfer_type) {
1000 case NAND_OMAP_PREFETCH_POLLED:
1001 info->nand.read_buf = omap_read_buf_pref;
1002 info->nand.write_buf = omap_write_buf_pref;
1003 break;
1005 case NAND_OMAP_POLLED:
1006 if (info->nand.options & NAND_BUSWIDTH_16) {
1007 info->nand.read_buf = omap_read_buf16;
1008 info->nand.write_buf = omap_write_buf16;
1009 } else {
1010 info->nand.read_buf = omap_read_buf8;
1011 info->nand.write_buf = omap_write_buf8;
1013 break;
1015 case NAND_OMAP_PREFETCH_DMA:
1016 err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
1017 omap_nand_dma_cb, &info->comp, &info->dma_ch);
1018 if (err < 0) {
1019 info->dma_ch = -1;
1020 dev_err(&pdev->dev, "DMA request failed!\n");
1021 goto out_release_mem_region;
1022 } else {
1023 omap_set_dma_dest_burst_mode(info->dma_ch,
1024 OMAP_DMA_DATA_BURST_16);
1025 omap_set_dma_src_burst_mode(info->dma_ch,
1026 OMAP_DMA_DATA_BURST_16);
1028 info->nand.read_buf = omap_read_buf_dma_pref;
1029 info->nand.write_buf = omap_write_buf_dma_pref;
1031 break;
1033 case NAND_OMAP_PREFETCH_IRQ:
1034 err = request_irq(pdata->gpmc_irq,
1035 omap_nand_irq, IRQF_SHARED, "gpmc-nand", info);
1036 if (err) {
1037 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1038 pdata->gpmc_irq, err);
1039 goto out_release_mem_region;
1040 } else {
1041 info->gpmc_irq = pdata->gpmc_irq;
1042 info->nand.read_buf = omap_read_buf_irq_pref;
1043 info->nand.write_buf = omap_write_buf_irq_pref;
1045 break;
1047 default:
1048 dev_err(&pdev->dev,
1049 "xfer_type(%d) not supported!\n", pdata->xfer_type);
1050 err = -EINVAL;
1051 goto out_release_mem_region;
1054 info->nand.verify_buf = omap_verify_buf;
1056 /* selsect the ecc type */
1057 if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
1058 info->nand.ecc.mode = NAND_ECC_SOFT;
1059 else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
1060 (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1061 info->nand.ecc.bytes = 3;
1062 info->nand.ecc.size = 512;
1063 info->nand.ecc.calculate = omap_calculate_ecc;
1064 info->nand.ecc.hwctl = omap_enable_hwecc;
1065 info->nand.ecc.correct = omap_correct_data;
1066 info->nand.ecc.mode = NAND_ECC_HW;
1069 /* DIP switches on some boards change between 8 and 16 bit
1070 * bus widths for flash. Try the other width if the first try fails.
1072 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1073 info->nand.options ^= NAND_BUSWIDTH_16;
1074 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1075 err = -ENXIO;
1076 goto out_release_mem_region;
1080 /* rom code layout */
1081 if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
1083 if (info->nand.options & NAND_BUSWIDTH_16)
1084 offset = 2;
1085 else {
1086 offset = 1;
1087 info->nand.badblock_pattern = &bb_descrip_flashbased;
1089 omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
1090 for (i = 0; i < omap_oobinfo.eccbytes; i++)
1091 omap_oobinfo.eccpos[i] = i+offset;
1093 omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
1094 omap_oobinfo.oobfree->length = info->mtd.oobsize -
1095 (offset + omap_oobinfo.eccbytes);
1097 info->nand.ecc.layout = &omap_oobinfo;
1100 /* second phase scan */
1101 if (nand_scan_tail(&info->mtd)) {
1102 err = -ENXIO;
1103 goto out_release_mem_region;
1106 err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
1107 if (err > 0)
1108 mtd_device_register(&info->mtd, info->parts, err);
1109 else if (pdata->parts)
1110 mtd_device_register(&info->mtd, pdata->parts, pdata->nr_parts);
1111 else
1112 mtd_device_register(&info->mtd, NULL, 0);
1114 platform_set_drvdata(pdev, &info->mtd);
1116 return 0;
1118 out_release_mem_region:
1119 release_mem_region(info->phys_base, NAND_IO_SIZE);
1120 out_free_info:
1121 kfree(info);
1123 return err;
1126 static int omap_nand_remove(struct platform_device *pdev)
1128 struct mtd_info *mtd = platform_get_drvdata(pdev);
1129 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1130 mtd);
1132 platform_set_drvdata(pdev, NULL);
1133 if (info->dma_ch != -1)
1134 omap_free_dma(info->dma_ch);
1136 if (info->gpmc_irq)
1137 free_irq(info->gpmc_irq, info);
1139 /* Release NAND device, its internal structures and partitions */
1140 nand_release(&info->mtd);
1141 iounmap(info->nand.IO_ADDR_R);
1142 kfree(&info->mtd);
1143 return 0;
1146 static struct platform_driver omap_nand_driver = {
1147 .probe = omap_nand_probe,
1148 .remove = omap_nand_remove,
1149 .driver = {
1150 .name = DRIVER_NAME,
1151 .owner = THIS_MODULE,
1155 static int __init omap_nand_init(void)
1157 pr_info("%s driver initializing\n", DRIVER_NAME);
1159 return platform_driver_register(&omap_nand_driver);
1162 static void __exit omap_nand_exit(void)
1164 platform_driver_unregister(&omap_nand_driver);
1167 module_init(omap_nand_init);
1168 module_exit(omap_nand_exit);
1170 MODULE_ALIAS("platform:" DRIVER_NAME);
1171 MODULE_LICENSE("GPL");
1172 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");