acpi-cpufreq: Cleanup: Use printk_once
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / cpu / cpufreq / acpi-cpufreq.c
blob4eab747a8966eb33c6f025c8f1bbf3dfdede0283
1 /*
2 * acpi-cpufreq.c - ACPI Processor P-States Driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <trace/power.h>
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
43 #include <acpi/processor.h>
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
49 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, \
50 "acpi-cpufreq", msg)
52 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
53 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
54 MODULE_LICENSE("GPL");
56 enum {
57 UNDEFINED_CAPABLE = 0,
58 SYSTEM_INTEL_MSR_CAPABLE,
59 SYSTEM_IO_CAPABLE,
62 #define INTEL_MSR_RANGE (0xffff)
63 #define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1)
65 struct acpi_cpufreq_data {
66 struct acpi_processor_performance *acpi_data;
67 struct cpufreq_frequency_table *freq_table;
68 unsigned int max_freq;
69 unsigned int resume;
70 unsigned int cpu_feature;
73 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
75 struct acpi_msr_data {
76 u64 saved_aperf, saved_mperf;
79 static DEFINE_PER_CPU(struct acpi_msr_data, msr_data);
81 DEFINE_TRACE(power_mark);
83 /* acpi_perf_data is a pointer to percpu data. */
84 static struct acpi_processor_performance *acpi_perf_data;
86 static struct cpufreq_driver acpi_cpufreq_driver;
88 static unsigned int acpi_pstate_strict;
90 static int check_est_cpu(unsigned int cpuid)
92 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
94 if (cpu->x86_vendor != X86_VENDOR_INTEL ||
95 !cpu_has(cpu, X86_FEATURE_EST))
96 return 0;
98 return 1;
101 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
103 struct acpi_processor_performance *perf;
104 int i;
106 perf = data->acpi_data;
108 for (i = 0; i < perf->state_count; i++) {
109 if (value == perf->states[i].status)
110 return data->freq_table[i].frequency;
112 return 0;
115 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
117 int i;
118 struct acpi_processor_performance *perf;
120 msr &= INTEL_MSR_RANGE;
121 perf = data->acpi_data;
123 for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
124 if (msr == perf->states[data->freq_table[i].index].status)
125 return data->freq_table[i].frequency;
127 return data->freq_table[0].frequency;
130 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
132 switch (data->cpu_feature) {
133 case SYSTEM_INTEL_MSR_CAPABLE:
134 return extract_msr(val, data);
135 case SYSTEM_IO_CAPABLE:
136 return extract_io(val, data);
137 default:
138 return 0;
142 struct msr_addr {
143 u32 reg;
146 struct io_addr {
147 u16 port;
148 u8 bit_width;
151 struct drv_cmd {
152 unsigned int type;
153 const struct cpumask *mask;
154 union {
155 struct msr_addr msr;
156 struct io_addr io;
157 } addr;
158 u32 val;
161 /* Called via smp_call_function_single(), on the target CPU */
162 static void do_drv_read(void *_cmd)
164 struct drv_cmd *cmd = _cmd;
165 u32 h;
167 switch (cmd->type) {
168 case SYSTEM_INTEL_MSR_CAPABLE:
169 rdmsr(cmd->addr.msr.reg, cmd->val, h);
170 break;
171 case SYSTEM_IO_CAPABLE:
172 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
173 &cmd->val,
174 (u32)cmd->addr.io.bit_width);
175 break;
176 default:
177 break;
181 /* Called via smp_call_function_many(), on the target CPUs */
182 static void do_drv_write(void *_cmd)
184 struct drv_cmd *cmd = _cmd;
185 u32 lo, hi;
187 switch (cmd->type) {
188 case SYSTEM_INTEL_MSR_CAPABLE:
189 rdmsr(cmd->addr.msr.reg, lo, hi);
190 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
191 wrmsr(cmd->addr.msr.reg, lo, hi);
192 break;
193 case SYSTEM_IO_CAPABLE:
194 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
195 cmd->val,
196 (u32)cmd->addr.io.bit_width);
197 break;
198 default:
199 break;
203 static void drv_read(struct drv_cmd *cmd)
205 cmd->val = 0;
207 smp_call_function_single(cpumask_any(cmd->mask), do_drv_read, cmd, 1);
210 static void drv_write(struct drv_cmd *cmd)
212 int this_cpu;
214 this_cpu = get_cpu();
215 if (cpumask_test_cpu(this_cpu, cmd->mask))
216 do_drv_write(cmd);
217 smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
218 put_cpu();
221 static u32 get_cur_val(const struct cpumask *mask)
223 struct acpi_processor_performance *perf;
224 struct drv_cmd cmd;
226 if (unlikely(cpumask_empty(mask)))
227 return 0;
229 switch (per_cpu(drv_data, cpumask_first(mask))->cpu_feature) {
230 case SYSTEM_INTEL_MSR_CAPABLE:
231 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
232 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
233 break;
234 case SYSTEM_IO_CAPABLE:
235 cmd.type = SYSTEM_IO_CAPABLE;
236 perf = per_cpu(drv_data, cpumask_first(mask))->acpi_data;
237 cmd.addr.io.port = perf->control_register.address;
238 cmd.addr.io.bit_width = perf->control_register.bit_width;
239 break;
240 default:
241 return 0;
244 cmd.mask = mask;
245 drv_read(&cmd);
247 dprintk("get_cur_val = %u\n", cmd.val);
249 return cmd.val;
252 struct perf_pair {
253 union {
254 struct {
255 u32 lo;
256 u32 hi;
257 } split;
258 u64 whole;
259 } aperf, mperf;
262 /* Called via smp_call_function_single(), on the target CPU */
263 static void read_measured_perf_ctrs(void *_cur)
265 struct perf_pair *cur = _cur;
267 rdmsr(MSR_IA32_APERF, cur->aperf.split.lo, cur->aperf.split.hi);
268 rdmsr(MSR_IA32_MPERF, cur->mperf.split.lo, cur->mperf.split.hi);
272 * Return the measured active (C0) frequency on this CPU since last call
273 * to this function.
274 * Input: cpu number
275 * Return: Average CPU frequency in terms of max frequency (zero on error)
277 * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
278 * over a period of time, while CPU is in C0 state.
279 * IA32_MPERF counts at the rate of max advertised frequency
280 * IA32_APERF counts at the rate of actual CPU frequency
281 * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
282 * no meaning should be associated with absolute values of these MSRs.
284 static unsigned int get_measured_perf(struct cpufreq_policy *policy,
285 unsigned int cpu)
287 struct perf_pair readin, cur;
288 unsigned int perf_percent;
289 unsigned int retval;
291 if (smp_call_function_single(cpu, read_measured_perf_ctrs, &readin, 1))
292 return 0;
294 cur.aperf.whole = readin.aperf.whole -
295 per_cpu(msr_data, cpu).saved_aperf;
296 cur.mperf.whole = readin.mperf.whole -
297 per_cpu(msr_data, cpu).saved_mperf;
298 per_cpu(msr_data, cpu).saved_aperf = readin.aperf.whole;
299 per_cpu(msr_data, cpu).saved_mperf = readin.mperf.whole;
301 #ifdef __i386__
303 * We dont want to do 64 bit divide with 32 bit kernel
304 * Get an approximate value. Return failure in case we cannot get
305 * an approximate value.
307 if (unlikely(cur.aperf.split.hi || cur.mperf.split.hi)) {
308 int shift_count;
309 u32 h;
311 h = max_t(u32, cur.aperf.split.hi, cur.mperf.split.hi);
312 shift_count = fls(h);
314 cur.aperf.whole >>= shift_count;
315 cur.mperf.whole >>= shift_count;
318 if (((unsigned long)(-1) / 100) < cur.aperf.split.lo) {
319 int shift_count = 7;
320 cur.aperf.split.lo >>= shift_count;
321 cur.mperf.split.lo >>= shift_count;
324 if (cur.aperf.split.lo && cur.mperf.split.lo)
325 perf_percent = (cur.aperf.split.lo * 100) / cur.mperf.split.lo;
326 else
327 perf_percent = 0;
329 #else
330 if (unlikely(((unsigned long)(-1) / 100) < cur.aperf.whole)) {
331 int shift_count = 7;
332 cur.aperf.whole >>= shift_count;
333 cur.mperf.whole >>= shift_count;
336 if (cur.aperf.whole && cur.mperf.whole)
337 perf_percent = (cur.aperf.whole * 100) / cur.mperf.whole;
338 else
339 perf_percent = 0;
341 #endif
343 retval = per_cpu(drv_data, policy->cpu)->max_freq * perf_percent / 100;
345 return retval;
348 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
350 struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
351 unsigned int freq;
352 unsigned int cached_freq;
354 dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
356 if (unlikely(data == NULL ||
357 data->acpi_data == NULL || data->freq_table == NULL)) {
358 return 0;
361 cached_freq = data->freq_table[data->acpi_data->state].frequency;
362 freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
363 if (freq != cached_freq) {
365 * The dreaded BIOS frequency change behind our back.
366 * Force set the frequency on next target call.
368 data->resume = 1;
371 dprintk("cur freq = %u\n", freq);
373 return freq;
376 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
377 struct acpi_cpufreq_data *data)
379 unsigned int cur_freq;
380 unsigned int i;
382 for (i = 0; i < 100; i++) {
383 cur_freq = extract_freq(get_cur_val(mask), data);
384 if (cur_freq == freq)
385 return 1;
386 udelay(10);
388 return 0;
391 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
392 unsigned int target_freq, unsigned int relation)
394 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
395 struct acpi_processor_performance *perf;
396 struct cpufreq_freqs freqs;
397 struct drv_cmd cmd;
398 unsigned int next_state = 0; /* Index into freq_table */
399 unsigned int next_perf_state = 0; /* Index into perf table */
400 unsigned int i;
401 int result = 0;
402 struct power_trace it;
404 dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
406 if (unlikely(data == NULL ||
407 data->acpi_data == NULL || data->freq_table == NULL)) {
408 return -ENODEV;
411 perf = data->acpi_data;
412 result = cpufreq_frequency_table_target(policy,
413 data->freq_table,
414 target_freq,
415 relation, &next_state);
416 if (unlikely(result)) {
417 result = -ENODEV;
418 goto out;
421 next_perf_state = data->freq_table[next_state].index;
422 if (perf->state == next_perf_state) {
423 if (unlikely(data->resume)) {
424 dprintk("Called after resume, resetting to P%d\n",
425 next_perf_state);
426 data->resume = 0;
427 } else {
428 dprintk("Already at target state (P%d)\n",
429 next_perf_state);
430 goto out;
434 trace_power_mark(&it, POWER_PSTATE, next_perf_state);
436 switch (data->cpu_feature) {
437 case SYSTEM_INTEL_MSR_CAPABLE:
438 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
439 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
440 cmd.val = (u32) perf->states[next_perf_state].control;
441 break;
442 case SYSTEM_IO_CAPABLE:
443 cmd.type = SYSTEM_IO_CAPABLE;
444 cmd.addr.io.port = perf->control_register.address;
445 cmd.addr.io.bit_width = perf->control_register.bit_width;
446 cmd.val = (u32) perf->states[next_perf_state].control;
447 break;
448 default:
449 result = -ENODEV;
450 goto out;
453 /* cpufreq holds the hotplug lock, so we are safe from here on */
454 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
455 cmd.mask = policy->cpus;
456 else
457 cmd.mask = cpumask_of(policy->cpu);
459 freqs.old = perf->states[perf->state].core_frequency * 1000;
460 freqs.new = data->freq_table[next_state].frequency;
461 for_each_cpu(i, cmd.mask) {
462 freqs.cpu = i;
463 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
466 drv_write(&cmd);
468 if (acpi_pstate_strict) {
469 if (!check_freqs(cmd.mask, freqs.new, data)) {
470 dprintk("acpi_cpufreq_target failed (%d)\n",
471 policy->cpu);
472 result = -EAGAIN;
473 goto out;
477 for_each_cpu(i, cmd.mask) {
478 freqs.cpu = i;
479 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
481 perf->state = next_perf_state;
483 out:
484 return result;
487 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
489 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
491 dprintk("acpi_cpufreq_verify\n");
493 return cpufreq_frequency_table_verify(policy, data->freq_table);
496 static unsigned long
497 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
499 struct acpi_processor_performance *perf = data->acpi_data;
501 if (cpu_khz) {
502 /* search the closest match to cpu_khz */
503 unsigned int i;
504 unsigned long freq;
505 unsigned long freqn = perf->states[0].core_frequency * 1000;
507 for (i = 0; i < (perf->state_count-1); i++) {
508 freq = freqn;
509 freqn = perf->states[i+1].core_frequency * 1000;
510 if ((2 * cpu_khz) > (freqn + freq)) {
511 perf->state = i;
512 return freq;
515 perf->state = perf->state_count-1;
516 return freqn;
517 } else {
518 /* assume CPU is at P0... */
519 perf->state = 0;
520 return perf->states[0].core_frequency * 1000;
524 static void free_acpi_perf_data(void)
526 unsigned int i;
528 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
529 for_each_possible_cpu(i)
530 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
531 ->shared_cpu_map);
532 free_percpu(acpi_perf_data);
536 * acpi_cpufreq_early_init - initialize ACPI P-States library
538 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
539 * in order to determine correct frequency and voltage pairings. We can
540 * do _PDC and _PSD and find out the processor dependency for the
541 * actual init that will happen later...
543 static int __init acpi_cpufreq_early_init(void)
545 unsigned int i;
546 dprintk("acpi_cpufreq_early_init\n");
548 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
549 if (!acpi_perf_data) {
550 dprintk("Memory allocation error for acpi_perf_data.\n");
551 return -ENOMEM;
553 for_each_possible_cpu(i) {
554 if (!alloc_cpumask_var_node(
555 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
556 GFP_KERNEL, cpu_to_node(i))) {
558 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
559 free_acpi_perf_data();
560 return -ENOMEM;
564 /* Do initialization in ACPI core */
565 acpi_processor_preregister_performance(acpi_perf_data);
566 return 0;
569 #ifdef CONFIG_SMP
571 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
572 * or do it in BIOS firmware and won't inform about it to OS. If not
573 * detected, this has a side effect of making CPU run at a different speed
574 * than OS intended it to run at. Detect it and handle it cleanly.
576 static int bios_with_sw_any_bug;
578 static int sw_any_bug_found(const struct dmi_system_id *d)
580 bios_with_sw_any_bug = 1;
581 return 0;
584 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
586 .callback = sw_any_bug_found,
587 .ident = "Supermicro Server X6DLP",
588 .matches = {
589 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
590 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
591 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
596 #endif
598 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
600 unsigned int i;
601 unsigned int valid_states = 0;
602 unsigned int cpu = policy->cpu;
603 struct acpi_cpufreq_data *data;
604 unsigned int result = 0;
605 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
606 struct acpi_processor_performance *perf;
608 dprintk("acpi_cpufreq_cpu_init\n");
610 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
611 if (!data)
612 return -ENOMEM;
614 data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
615 per_cpu(drv_data, cpu) = data;
617 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
618 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
620 result = acpi_processor_register_performance(data->acpi_data, cpu);
621 if (result)
622 goto err_free;
624 perf = data->acpi_data;
625 policy->shared_type = perf->shared_type;
628 * Will let policy->cpus know about dependency only when software
629 * coordination is required.
631 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
632 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
633 cpumask_copy(policy->cpus, perf->shared_cpu_map);
635 cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
637 #ifdef CONFIG_SMP
638 dmi_check_system(sw_any_bug_dmi_table);
639 if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
640 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
641 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
643 #endif
645 /* capability check */
646 if (perf->state_count <= 1) {
647 dprintk("No P-States\n");
648 result = -ENODEV;
649 goto err_unreg;
652 if (perf->control_register.space_id != perf->status_register.space_id) {
653 result = -ENODEV;
654 goto err_unreg;
657 switch (perf->control_register.space_id) {
658 case ACPI_ADR_SPACE_SYSTEM_IO:
659 dprintk("SYSTEM IO addr space\n");
660 data->cpu_feature = SYSTEM_IO_CAPABLE;
661 break;
662 case ACPI_ADR_SPACE_FIXED_HARDWARE:
663 dprintk("HARDWARE addr space\n");
664 if (!check_est_cpu(cpu)) {
665 result = -ENODEV;
666 goto err_unreg;
668 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
669 break;
670 default:
671 dprintk("Unknown addr space %d\n",
672 (u32) (perf->control_register.space_id));
673 result = -ENODEV;
674 goto err_unreg;
677 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
678 (perf->state_count+1), GFP_KERNEL);
679 if (!data->freq_table) {
680 result = -ENOMEM;
681 goto err_unreg;
684 /* detect transition latency */
685 policy->cpuinfo.transition_latency = 0;
686 for (i = 0; i < perf->state_count; i++) {
687 if ((perf->states[i].transition_latency * 1000) >
688 policy->cpuinfo.transition_latency)
689 policy->cpuinfo.transition_latency =
690 perf->states[i].transition_latency * 1000;
693 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
694 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
695 policy->cpuinfo.transition_latency > 20 * 1000) {
696 policy->cpuinfo.transition_latency = 20 * 1000;
697 printk_once(KERN_INFO "Capping off P-state tranision"
698 " latency at 20 uS\n");
701 data->max_freq = perf->states[0].core_frequency * 1000;
702 /* table init */
703 for (i = 0; i < perf->state_count; i++) {
704 if (i > 0 && perf->states[i].core_frequency >=
705 data->freq_table[valid_states-1].frequency / 1000)
706 continue;
708 data->freq_table[valid_states].index = i;
709 data->freq_table[valid_states].frequency =
710 perf->states[i].core_frequency * 1000;
711 valid_states++;
713 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
714 perf->state = 0;
716 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
717 if (result)
718 goto err_freqfree;
720 switch (perf->control_register.space_id) {
721 case ACPI_ADR_SPACE_SYSTEM_IO:
722 /* Current speed is unknown and not detectable by IO port */
723 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
724 break;
725 case ACPI_ADR_SPACE_FIXED_HARDWARE:
726 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
727 policy->cur = get_cur_freq_on_cpu(cpu);
728 break;
729 default:
730 break;
733 /* notify BIOS that we exist */
734 acpi_processor_notify_smm(THIS_MODULE);
736 /* Check for APERF/MPERF support in hardware */
737 if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
738 unsigned int ecx;
739 ecx = cpuid_ecx(6);
740 if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
741 acpi_cpufreq_driver.getavg = get_measured_perf;
744 dprintk("CPU%u - ACPI performance management activated.\n", cpu);
745 for (i = 0; i < perf->state_count; i++)
746 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
747 (i == perf->state ? '*' : ' '), i,
748 (u32) perf->states[i].core_frequency,
749 (u32) perf->states[i].power,
750 (u32) perf->states[i].transition_latency);
752 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
755 * the first call to ->target() should result in us actually
756 * writing something to the appropriate registers.
758 data->resume = 1;
760 return result;
762 err_freqfree:
763 kfree(data->freq_table);
764 err_unreg:
765 acpi_processor_unregister_performance(perf, cpu);
766 err_free:
767 kfree(data);
768 per_cpu(drv_data, cpu) = NULL;
770 return result;
773 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
775 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
777 dprintk("acpi_cpufreq_cpu_exit\n");
779 if (data) {
780 cpufreq_frequency_table_put_attr(policy->cpu);
781 per_cpu(drv_data, policy->cpu) = NULL;
782 acpi_processor_unregister_performance(data->acpi_data,
783 policy->cpu);
784 kfree(data);
787 return 0;
790 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
792 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
794 dprintk("acpi_cpufreq_resume\n");
796 data->resume = 1;
798 return 0;
801 static struct freq_attr *acpi_cpufreq_attr[] = {
802 &cpufreq_freq_attr_scaling_available_freqs,
803 NULL,
806 static struct cpufreq_driver acpi_cpufreq_driver = {
807 .verify = acpi_cpufreq_verify,
808 .target = acpi_cpufreq_target,
809 .init = acpi_cpufreq_cpu_init,
810 .exit = acpi_cpufreq_cpu_exit,
811 .resume = acpi_cpufreq_resume,
812 .name = "acpi-cpufreq",
813 .owner = THIS_MODULE,
814 .attr = acpi_cpufreq_attr,
817 static int __init acpi_cpufreq_init(void)
819 int ret;
821 if (acpi_disabled)
822 return 0;
824 dprintk("acpi_cpufreq_init\n");
826 ret = acpi_cpufreq_early_init();
827 if (ret)
828 return ret;
830 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
831 if (ret)
832 free_acpi_perf_data();
834 return ret;
837 static void __exit acpi_cpufreq_exit(void)
839 dprintk("acpi_cpufreq_exit\n");
841 cpufreq_unregister_driver(&acpi_cpufreq_driver);
843 free_percpu(acpi_perf_data);
846 module_param(acpi_pstate_strict, uint, 0644);
847 MODULE_PARM_DESC(acpi_pstate_strict,
848 "value 0 or non-zero. non-zero -> strict ACPI checks are "
849 "performed during frequency changes.");
851 late_initcall(acpi_cpufreq_init);
852 module_exit(acpi_cpufreq_exit);
854 MODULE_ALIAS("acpi");