drivers/rtc/rtc-ds3232.c: fix time range difference between linux and RTC chip
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / eventpoll.c
blobbe029a41163a65c89789b2115e666a0f05c244be
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <asm/atomic.h>
43 * LOCKING:
44 * There are three level of locking required by epoll :
46 * 1) epmutex (mutex)
47 * 2) ep->mtx (mutex)
48 * 3) ep->lock (spinlock)
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a spinlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
72 * going to.
73 * It is possible to drop the "ep->mtx" and to use the global
74 * mutex "epmutex" (together with "ep->lock") to have it working,
75 * but having "ep->mtx" will make the interface more scalable.
76 * Events that require holding "epmutex" are very rare, while for
77 * normal operations the epoll private "ep->mtx" will guarantee
78 * a better scalability.
81 /* Epoll private bits inside the event mask */
82 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
84 /* Maximum number of nesting allowed inside epoll sets */
85 #define EP_MAX_NESTS 4
87 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
89 #define EP_UNACTIVE_PTR ((void *) -1L)
91 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
93 struct epoll_filefd {
94 struct file *file;
95 int fd;
99 * Structure used to track possible nested calls, for too deep recursions
100 * and loop cycles.
102 struct nested_call_node {
103 struct list_head llink;
104 void *cookie;
105 void *ctx;
109 * This structure is used as collector for nested calls, to check for
110 * maximum recursion dept and loop cycles.
112 struct nested_calls {
113 struct list_head tasks_call_list;
114 spinlock_t lock;
118 * Each file descriptor added to the eventpoll interface will
119 * have an entry of this type linked to the "rbr" RB tree.
121 struct epitem {
122 /* RB tree node used to link this structure to the eventpoll RB tree */
123 struct rb_node rbn;
125 /* List header used to link this structure to the eventpoll ready list */
126 struct list_head rdllink;
129 * Works together "struct eventpoll"->ovflist in keeping the
130 * single linked chain of items.
132 struct epitem *next;
134 /* The file descriptor information this item refers to */
135 struct epoll_filefd ffd;
137 /* Number of active wait queue attached to poll operations */
138 int nwait;
140 /* List containing poll wait queues */
141 struct list_head pwqlist;
143 /* The "container" of this item */
144 struct eventpoll *ep;
146 /* List header used to link this item to the "struct file" items list */
147 struct list_head fllink;
149 /* The structure that describe the interested events and the source fd */
150 struct epoll_event event;
154 * This structure is stored inside the "private_data" member of the file
155 * structure and rapresent the main data sructure for the eventpoll
156 * interface.
158 struct eventpoll {
159 /* Protect the this structure access */
160 spinlock_t lock;
163 * This mutex is used to ensure that files are not removed
164 * while epoll is using them. This is held during the event
165 * collection loop, the file cleanup path, the epoll file exit
166 * code and the ctl operations.
168 struct mutex mtx;
170 /* Wait queue used by sys_epoll_wait() */
171 wait_queue_head_t wq;
173 /* Wait queue used by file->poll() */
174 wait_queue_head_t poll_wait;
176 /* List of ready file descriptors */
177 struct list_head rdllist;
179 /* RB tree root used to store monitored fd structs */
180 struct rb_root rbr;
183 * This is a single linked list that chains all the "struct epitem" that
184 * happened while transfering ready events to userspace w/out
185 * holding ->lock.
187 struct epitem *ovflist;
189 /* The user that created the eventpoll descriptor */
190 struct user_struct *user;
193 /* Wait structure used by the poll hooks */
194 struct eppoll_entry {
195 /* List header used to link this structure to the "struct epitem" */
196 struct list_head llink;
198 /* The "base" pointer is set to the container "struct epitem" */
199 struct epitem *base;
202 * Wait queue item that will be linked to the target file wait
203 * queue head.
205 wait_queue_t wait;
207 /* The wait queue head that linked the "wait" wait queue item */
208 wait_queue_head_t *whead;
211 /* Wrapper struct used by poll queueing */
212 struct ep_pqueue {
213 poll_table pt;
214 struct epitem *epi;
217 /* Used by the ep_send_events() function as callback private data */
218 struct ep_send_events_data {
219 int maxevents;
220 struct epoll_event __user *events;
224 * Configuration options available inside /proc/sys/fs/epoll/
226 /* Maximum number of epoll watched descriptors, per user */
227 static int max_user_watches __read_mostly;
230 * This mutex is used to serialize ep_free() and eventpoll_release_file().
232 static DEFINE_MUTEX(epmutex);
234 /* Used to check for epoll file descriptor inclusion loops */
235 static struct nested_calls poll_loop_ncalls;
237 /* Used for safe wake up implementation */
238 static struct nested_calls poll_safewake_ncalls;
240 /* Used to call file's f_op->poll() under the nested calls boundaries */
241 static struct nested_calls poll_readywalk_ncalls;
243 /* Slab cache used to allocate "struct epitem" */
244 static struct kmem_cache *epi_cache __read_mostly;
246 /* Slab cache used to allocate "struct eppoll_entry" */
247 static struct kmem_cache *pwq_cache __read_mostly;
249 #ifdef CONFIG_SYSCTL
251 #include <linux/sysctl.h>
253 static int zero;
255 ctl_table epoll_table[] = {
257 .procname = "max_user_watches",
258 .data = &max_user_watches,
259 .maxlen = sizeof(int),
260 .mode = 0644,
261 .proc_handler = proc_dointvec_minmax,
262 .extra1 = &zero,
266 #endif /* CONFIG_SYSCTL */
269 /* Setup the structure that is used as key for the RB tree */
270 static inline void ep_set_ffd(struct epoll_filefd *ffd,
271 struct file *file, int fd)
273 ffd->file = file;
274 ffd->fd = fd;
277 /* Compare RB tree keys */
278 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
279 struct epoll_filefd *p2)
281 return (p1->file > p2->file ? +1:
282 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
285 /* Tells us if the item is currently linked */
286 static inline int ep_is_linked(struct list_head *p)
288 return !list_empty(p);
291 /* Get the "struct epitem" from a wait queue pointer */
292 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
294 return container_of(p, struct eppoll_entry, wait)->base;
297 /* Get the "struct epitem" from an epoll queue wrapper */
298 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
300 return container_of(p, struct ep_pqueue, pt)->epi;
303 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
304 static inline int ep_op_has_event(int op)
306 return op != EPOLL_CTL_DEL;
309 /* Initialize the poll safe wake up structure */
310 static void ep_nested_calls_init(struct nested_calls *ncalls)
312 INIT_LIST_HEAD(&ncalls->tasks_call_list);
313 spin_lock_init(&ncalls->lock);
317 * ep_call_nested - Perform a bound (possibly) nested call, by checking
318 * that the recursion limit is not exceeded, and that
319 * the same nested call (by the meaning of same cookie) is
320 * no re-entered.
322 * @ncalls: Pointer to the nested_calls structure to be used for this call.
323 * @max_nests: Maximum number of allowed nesting calls.
324 * @nproc: Nested call core function pointer.
325 * @priv: Opaque data to be passed to the @nproc callback.
326 * @cookie: Cookie to be used to identify this nested call.
327 * @ctx: This instance context.
329 * Returns: Returns the code returned by the @nproc callback, or -1 if
330 * the maximum recursion limit has been exceeded.
332 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
333 int (*nproc)(void *, void *, int), void *priv,
334 void *cookie, void *ctx)
336 int error, call_nests = 0;
337 unsigned long flags;
338 struct list_head *lsthead = &ncalls->tasks_call_list;
339 struct nested_call_node *tncur;
340 struct nested_call_node tnode;
342 spin_lock_irqsave(&ncalls->lock, flags);
345 * Try to see if the current task is already inside this wakeup call.
346 * We use a list here, since the population inside this set is always
347 * very much limited.
349 list_for_each_entry(tncur, lsthead, llink) {
350 if (tncur->ctx == ctx &&
351 (tncur->cookie == cookie || ++call_nests > max_nests)) {
353 * Ops ... loop detected or maximum nest level reached.
354 * We abort this wake by breaking the cycle itself.
356 error = -1;
357 goto out_unlock;
361 /* Add the current task and cookie to the list */
362 tnode.ctx = ctx;
363 tnode.cookie = cookie;
364 list_add(&tnode.llink, lsthead);
366 spin_unlock_irqrestore(&ncalls->lock, flags);
368 /* Call the nested function */
369 error = (*nproc)(priv, cookie, call_nests);
371 /* Remove the current task from the list */
372 spin_lock_irqsave(&ncalls->lock, flags);
373 list_del(&tnode.llink);
374 out_unlock:
375 spin_unlock_irqrestore(&ncalls->lock, flags);
377 return error;
380 #ifdef CONFIG_DEBUG_LOCK_ALLOC
381 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
382 unsigned long events, int subclass)
384 unsigned long flags;
386 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
387 wake_up_locked_poll(wqueue, events);
388 spin_unlock_irqrestore(&wqueue->lock, flags);
390 #else
391 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
392 unsigned long events, int subclass)
394 wake_up_poll(wqueue, events);
396 #endif
398 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
400 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
401 1 + call_nests);
402 return 0;
406 * Perform a safe wake up of the poll wait list. The problem is that
407 * with the new callback'd wake up system, it is possible that the
408 * poll callback is reentered from inside the call to wake_up() done
409 * on the poll wait queue head. The rule is that we cannot reenter the
410 * wake up code from the same task more than EP_MAX_NESTS times,
411 * and we cannot reenter the same wait queue head at all. This will
412 * enable to have a hierarchy of epoll file descriptor of no more than
413 * EP_MAX_NESTS deep.
415 static void ep_poll_safewake(wait_queue_head_t *wq)
417 int this_cpu = get_cpu();
419 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
420 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
422 put_cpu();
426 * This function unregisters poll callbacks from the associated file
427 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
428 * ep_free).
430 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
432 struct list_head *lsthead = &epi->pwqlist;
433 struct eppoll_entry *pwq;
435 while (!list_empty(lsthead)) {
436 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
438 list_del(&pwq->llink);
439 remove_wait_queue(pwq->whead, &pwq->wait);
440 kmem_cache_free(pwq_cache, pwq);
445 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
446 * the scan code, to call f_op->poll(). Also allows for
447 * O(NumReady) performance.
449 * @ep: Pointer to the epoll private data structure.
450 * @sproc: Pointer to the scan callback.
451 * @priv: Private opaque data passed to the @sproc callback.
453 * Returns: The same integer error code returned by the @sproc callback.
455 static int ep_scan_ready_list(struct eventpoll *ep,
456 int (*sproc)(struct eventpoll *,
457 struct list_head *, void *),
458 void *priv)
460 int error, pwake = 0;
461 unsigned long flags;
462 struct epitem *epi, *nepi;
463 LIST_HEAD(txlist);
466 * We need to lock this because we could be hit by
467 * eventpoll_release_file() and epoll_ctl().
469 mutex_lock(&ep->mtx);
472 * Steal the ready list, and re-init the original one to the
473 * empty list. Also, set ep->ovflist to NULL so that events
474 * happening while looping w/out locks, are not lost. We cannot
475 * have the poll callback to queue directly on ep->rdllist,
476 * because we want the "sproc" callback to be able to do it
477 * in a lockless way.
479 spin_lock_irqsave(&ep->lock, flags);
480 list_splice_init(&ep->rdllist, &txlist);
481 ep->ovflist = NULL;
482 spin_unlock_irqrestore(&ep->lock, flags);
485 * Now call the callback function.
487 error = (*sproc)(ep, &txlist, priv);
489 spin_lock_irqsave(&ep->lock, flags);
491 * During the time we spent inside the "sproc" callback, some
492 * other events might have been queued by the poll callback.
493 * We re-insert them inside the main ready-list here.
495 for (nepi = ep->ovflist; (epi = nepi) != NULL;
496 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
498 * We need to check if the item is already in the list.
499 * During the "sproc" callback execution time, items are
500 * queued into ->ovflist but the "txlist" might already
501 * contain them, and the list_splice() below takes care of them.
503 if (!ep_is_linked(&epi->rdllink))
504 list_add_tail(&epi->rdllink, &ep->rdllist);
507 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
508 * releasing the lock, events will be queued in the normal way inside
509 * ep->rdllist.
511 ep->ovflist = EP_UNACTIVE_PTR;
514 * Quickly re-inject items left on "txlist".
516 list_splice(&txlist, &ep->rdllist);
518 if (!list_empty(&ep->rdllist)) {
520 * Wake up (if active) both the eventpoll wait list and
521 * the ->poll() wait list (delayed after we release the lock).
523 if (waitqueue_active(&ep->wq))
524 wake_up_locked(&ep->wq);
525 if (waitqueue_active(&ep->poll_wait))
526 pwake++;
528 spin_unlock_irqrestore(&ep->lock, flags);
530 mutex_unlock(&ep->mtx);
532 /* We have to call this outside the lock */
533 if (pwake)
534 ep_poll_safewake(&ep->poll_wait);
536 return error;
540 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
541 * all the associated resources. Must be called with "mtx" held.
543 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
545 unsigned long flags;
546 struct file *file = epi->ffd.file;
549 * Removes poll wait queue hooks. We _have_ to do this without holding
550 * the "ep->lock" otherwise a deadlock might occur. This because of the
551 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
552 * queue head lock when unregistering the wait queue. The wakeup callback
553 * will run by holding the wait queue head lock and will call our callback
554 * that will try to get "ep->lock".
556 ep_unregister_pollwait(ep, epi);
558 /* Remove the current item from the list of epoll hooks */
559 spin_lock(&file->f_lock);
560 if (ep_is_linked(&epi->fllink))
561 list_del_init(&epi->fllink);
562 spin_unlock(&file->f_lock);
564 rb_erase(&epi->rbn, &ep->rbr);
566 spin_lock_irqsave(&ep->lock, flags);
567 if (ep_is_linked(&epi->rdllink))
568 list_del_init(&epi->rdllink);
569 spin_unlock_irqrestore(&ep->lock, flags);
571 /* At this point it is safe to free the eventpoll item */
572 kmem_cache_free(epi_cache, epi);
574 atomic_dec(&ep->user->epoll_watches);
576 return 0;
579 static void ep_free(struct eventpoll *ep)
581 struct rb_node *rbp;
582 struct epitem *epi;
584 /* We need to release all tasks waiting for these file */
585 if (waitqueue_active(&ep->poll_wait))
586 ep_poll_safewake(&ep->poll_wait);
589 * We need to lock this because we could be hit by
590 * eventpoll_release_file() while we're freeing the "struct eventpoll".
591 * We do not need to hold "ep->mtx" here because the epoll file
592 * is on the way to be removed and no one has references to it
593 * anymore. The only hit might come from eventpoll_release_file() but
594 * holding "epmutex" is sufficent here.
596 mutex_lock(&epmutex);
599 * Walks through the whole tree by unregistering poll callbacks.
601 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
602 epi = rb_entry(rbp, struct epitem, rbn);
604 ep_unregister_pollwait(ep, epi);
608 * Walks through the whole tree by freeing each "struct epitem". At this
609 * point we are sure no poll callbacks will be lingering around, and also by
610 * holding "epmutex" we can be sure that no file cleanup code will hit
611 * us during this operation. So we can avoid the lock on "ep->lock".
613 while ((rbp = rb_first(&ep->rbr)) != NULL) {
614 epi = rb_entry(rbp, struct epitem, rbn);
615 ep_remove(ep, epi);
618 mutex_unlock(&epmutex);
619 mutex_destroy(&ep->mtx);
620 free_uid(ep->user);
621 kfree(ep);
624 static int ep_eventpoll_release(struct inode *inode, struct file *file)
626 struct eventpoll *ep = file->private_data;
628 if (ep)
629 ep_free(ep);
631 return 0;
634 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
635 void *priv)
637 struct epitem *epi, *tmp;
639 list_for_each_entry_safe(epi, tmp, head, rdllink) {
640 if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
641 epi->event.events)
642 return POLLIN | POLLRDNORM;
643 else {
645 * Item has been dropped into the ready list by the poll
646 * callback, but it's not actually ready, as far as
647 * caller requested events goes. We can remove it here.
649 list_del_init(&epi->rdllink);
653 return 0;
656 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
658 return ep_scan_ready_list(priv, ep_read_events_proc, NULL);
661 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
663 int pollflags;
664 struct eventpoll *ep = file->private_data;
666 /* Insert inside our poll wait queue */
667 poll_wait(file, &ep->poll_wait, wait);
670 * Proceed to find out if wanted events are really available inside
671 * the ready list. This need to be done under ep_call_nested()
672 * supervision, since the call to f_op->poll() done on listed files
673 * could re-enter here.
675 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
676 ep_poll_readyevents_proc, ep, ep, current);
678 return pollflags != -1 ? pollflags : 0;
681 /* File callbacks that implement the eventpoll file behaviour */
682 static const struct file_operations eventpoll_fops = {
683 .release = ep_eventpoll_release,
684 .poll = ep_eventpoll_poll,
685 .llseek = noop_llseek,
688 /* Fast test to see if the file is an evenpoll file */
689 static inline int is_file_epoll(struct file *f)
691 return f->f_op == &eventpoll_fops;
695 * This is called from eventpoll_release() to unlink files from the eventpoll
696 * interface. We need to have this facility to cleanup correctly files that are
697 * closed without being removed from the eventpoll interface.
699 void eventpoll_release_file(struct file *file)
701 struct list_head *lsthead = &file->f_ep_links;
702 struct eventpoll *ep;
703 struct epitem *epi;
706 * We don't want to get "file->f_lock" because it is not
707 * necessary. It is not necessary because we're in the "struct file"
708 * cleanup path, and this means that noone is using this file anymore.
709 * So, for example, epoll_ctl() cannot hit here since if we reach this
710 * point, the file counter already went to zero and fget() would fail.
711 * The only hit might come from ep_free() but by holding the mutex
712 * will correctly serialize the operation. We do need to acquire
713 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
714 * from anywhere but ep_free().
716 * Besides, ep_remove() acquires the lock, so we can't hold it here.
718 mutex_lock(&epmutex);
720 while (!list_empty(lsthead)) {
721 epi = list_first_entry(lsthead, struct epitem, fllink);
723 ep = epi->ep;
724 list_del_init(&epi->fllink);
725 mutex_lock(&ep->mtx);
726 ep_remove(ep, epi);
727 mutex_unlock(&ep->mtx);
730 mutex_unlock(&epmutex);
733 static int ep_alloc(struct eventpoll **pep)
735 int error;
736 struct user_struct *user;
737 struct eventpoll *ep;
739 user = get_current_user();
740 error = -ENOMEM;
741 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
742 if (unlikely(!ep))
743 goto free_uid;
745 spin_lock_init(&ep->lock);
746 mutex_init(&ep->mtx);
747 init_waitqueue_head(&ep->wq);
748 init_waitqueue_head(&ep->poll_wait);
749 INIT_LIST_HEAD(&ep->rdllist);
750 ep->rbr = RB_ROOT;
751 ep->ovflist = EP_UNACTIVE_PTR;
752 ep->user = user;
754 *pep = ep;
756 return 0;
758 free_uid:
759 free_uid(user);
760 return error;
764 * Search the file inside the eventpoll tree. The RB tree operations
765 * are protected by the "mtx" mutex, and ep_find() must be called with
766 * "mtx" held.
768 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
770 int kcmp;
771 struct rb_node *rbp;
772 struct epitem *epi, *epir = NULL;
773 struct epoll_filefd ffd;
775 ep_set_ffd(&ffd, file, fd);
776 for (rbp = ep->rbr.rb_node; rbp; ) {
777 epi = rb_entry(rbp, struct epitem, rbn);
778 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
779 if (kcmp > 0)
780 rbp = rbp->rb_right;
781 else if (kcmp < 0)
782 rbp = rbp->rb_left;
783 else {
784 epir = epi;
785 break;
789 return epir;
793 * This is the callback that is passed to the wait queue wakeup
794 * machanism. It is called by the stored file descriptors when they
795 * have events to report.
797 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
799 int pwake = 0;
800 unsigned long flags;
801 struct epitem *epi = ep_item_from_wait(wait);
802 struct eventpoll *ep = epi->ep;
804 spin_lock_irqsave(&ep->lock, flags);
807 * If the event mask does not contain any poll(2) event, we consider the
808 * descriptor to be disabled. This condition is likely the effect of the
809 * EPOLLONESHOT bit that disables the descriptor when an event is received,
810 * until the next EPOLL_CTL_MOD will be issued.
812 if (!(epi->event.events & ~EP_PRIVATE_BITS))
813 goto out_unlock;
816 * Check the events coming with the callback. At this stage, not
817 * every device reports the events in the "key" parameter of the
818 * callback. We need to be able to handle both cases here, hence the
819 * test for "key" != NULL before the event match test.
821 if (key && !((unsigned long) key & epi->event.events))
822 goto out_unlock;
825 * If we are trasfering events to userspace, we can hold no locks
826 * (because we're accessing user memory, and because of linux f_op->poll()
827 * semantics). All the events that happens during that period of time are
828 * chained in ep->ovflist and requeued later on.
830 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
831 if (epi->next == EP_UNACTIVE_PTR) {
832 epi->next = ep->ovflist;
833 ep->ovflist = epi;
835 goto out_unlock;
838 /* If this file is already in the ready list we exit soon */
839 if (!ep_is_linked(&epi->rdllink))
840 list_add_tail(&epi->rdllink, &ep->rdllist);
843 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
844 * wait list.
846 if (waitqueue_active(&ep->wq))
847 wake_up_locked(&ep->wq);
848 if (waitqueue_active(&ep->poll_wait))
849 pwake++;
851 out_unlock:
852 spin_unlock_irqrestore(&ep->lock, flags);
854 /* We have to call this outside the lock */
855 if (pwake)
856 ep_poll_safewake(&ep->poll_wait);
858 return 1;
862 * This is the callback that is used to add our wait queue to the
863 * target file wakeup lists.
865 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
866 poll_table *pt)
868 struct epitem *epi = ep_item_from_epqueue(pt);
869 struct eppoll_entry *pwq;
871 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
872 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
873 pwq->whead = whead;
874 pwq->base = epi;
875 add_wait_queue(whead, &pwq->wait);
876 list_add_tail(&pwq->llink, &epi->pwqlist);
877 epi->nwait++;
878 } else {
879 /* We have to signal that an error occurred */
880 epi->nwait = -1;
884 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
886 int kcmp;
887 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
888 struct epitem *epic;
890 while (*p) {
891 parent = *p;
892 epic = rb_entry(parent, struct epitem, rbn);
893 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
894 if (kcmp > 0)
895 p = &parent->rb_right;
896 else
897 p = &parent->rb_left;
899 rb_link_node(&epi->rbn, parent, p);
900 rb_insert_color(&epi->rbn, &ep->rbr);
904 * Must be called with "mtx" held.
906 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
907 struct file *tfile, int fd)
909 int error, revents, pwake = 0;
910 unsigned long flags;
911 struct epitem *epi;
912 struct ep_pqueue epq;
914 if (unlikely(atomic_read(&ep->user->epoll_watches) >=
915 max_user_watches))
916 return -ENOSPC;
917 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
918 return -ENOMEM;
920 /* Item initialization follow here ... */
921 INIT_LIST_HEAD(&epi->rdllink);
922 INIT_LIST_HEAD(&epi->fllink);
923 INIT_LIST_HEAD(&epi->pwqlist);
924 epi->ep = ep;
925 ep_set_ffd(&epi->ffd, tfile, fd);
926 epi->event = *event;
927 epi->nwait = 0;
928 epi->next = EP_UNACTIVE_PTR;
930 /* Initialize the poll table using the queue callback */
931 epq.epi = epi;
932 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
935 * Attach the item to the poll hooks and get current event bits.
936 * We can safely use the file* here because its usage count has
937 * been increased by the caller of this function. Note that after
938 * this operation completes, the poll callback can start hitting
939 * the new item.
941 revents = tfile->f_op->poll(tfile, &epq.pt);
944 * We have to check if something went wrong during the poll wait queue
945 * install process. Namely an allocation for a wait queue failed due
946 * high memory pressure.
948 error = -ENOMEM;
949 if (epi->nwait < 0)
950 goto error_unregister;
952 /* Add the current item to the list of active epoll hook for this file */
953 spin_lock(&tfile->f_lock);
954 list_add_tail(&epi->fllink, &tfile->f_ep_links);
955 spin_unlock(&tfile->f_lock);
958 * Add the current item to the RB tree. All RB tree operations are
959 * protected by "mtx", and ep_insert() is called with "mtx" held.
961 ep_rbtree_insert(ep, epi);
963 /* We have to drop the new item inside our item list to keep track of it */
964 spin_lock_irqsave(&ep->lock, flags);
966 /* If the file is already "ready" we drop it inside the ready list */
967 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
968 list_add_tail(&epi->rdllink, &ep->rdllist);
970 /* Notify waiting tasks that events are available */
971 if (waitqueue_active(&ep->wq))
972 wake_up_locked(&ep->wq);
973 if (waitqueue_active(&ep->poll_wait))
974 pwake++;
977 spin_unlock_irqrestore(&ep->lock, flags);
979 atomic_inc(&ep->user->epoll_watches);
981 /* We have to call this outside the lock */
982 if (pwake)
983 ep_poll_safewake(&ep->poll_wait);
985 return 0;
987 error_unregister:
988 ep_unregister_pollwait(ep, epi);
991 * We need to do this because an event could have been arrived on some
992 * allocated wait queue. Note that we don't care about the ep->ovflist
993 * list, since that is used/cleaned only inside a section bound by "mtx".
994 * And ep_insert() is called with "mtx" held.
996 spin_lock_irqsave(&ep->lock, flags);
997 if (ep_is_linked(&epi->rdllink))
998 list_del_init(&epi->rdllink);
999 spin_unlock_irqrestore(&ep->lock, flags);
1001 kmem_cache_free(epi_cache, epi);
1003 return error;
1007 * Modify the interest event mask by dropping an event if the new mask
1008 * has a match in the current file status. Must be called with "mtx" held.
1010 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1012 int pwake = 0;
1013 unsigned int revents;
1016 * Set the new event interest mask before calling f_op->poll();
1017 * otherwise we might miss an event that happens between the
1018 * f_op->poll() call and the new event set registering.
1020 epi->event.events = event->events;
1021 epi->event.data = event->data; /* protected by mtx */
1024 * Get current event bits. We can safely use the file* here because
1025 * its usage count has been increased by the caller of this function.
1027 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1030 * If the item is "hot" and it is not registered inside the ready
1031 * list, push it inside.
1033 if (revents & event->events) {
1034 spin_lock_irq(&ep->lock);
1035 if (!ep_is_linked(&epi->rdllink)) {
1036 list_add_tail(&epi->rdllink, &ep->rdllist);
1038 /* Notify waiting tasks that events are available */
1039 if (waitqueue_active(&ep->wq))
1040 wake_up_locked(&ep->wq);
1041 if (waitqueue_active(&ep->poll_wait))
1042 pwake++;
1044 spin_unlock_irq(&ep->lock);
1047 /* We have to call this outside the lock */
1048 if (pwake)
1049 ep_poll_safewake(&ep->poll_wait);
1051 return 0;
1054 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1055 void *priv)
1057 struct ep_send_events_data *esed = priv;
1058 int eventcnt;
1059 unsigned int revents;
1060 struct epitem *epi;
1061 struct epoll_event __user *uevent;
1064 * We can loop without lock because we are passed a task private list.
1065 * Items cannot vanish during the loop because ep_scan_ready_list() is
1066 * holding "mtx" during this call.
1068 for (eventcnt = 0, uevent = esed->events;
1069 !list_empty(head) && eventcnt < esed->maxevents;) {
1070 epi = list_first_entry(head, struct epitem, rdllink);
1072 list_del_init(&epi->rdllink);
1074 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
1075 epi->event.events;
1078 * If the event mask intersect the caller-requested one,
1079 * deliver the event to userspace. Again, ep_scan_ready_list()
1080 * is holding "mtx", so no operations coming from userspace
1081 * can change the item.
1083 if (revents) {
1084 if (__put_user(revents, &uevent->events) ||
1085 __put_user(epi->event.data, &uevent->data)) {
1086 list_add(&epi->rdllink, head);
1087 return eventcnt ? eventcnt : -EFAULT;
1089 eventcnt++;
1090 uevent++;
1091 if (epi->event.events & EPOLLONESHOT)
1092 epi->event.events &= EP_PRIVATE_BITS;
1093 else if (!(epi->event.events & EPOLLET)) {
1095 * If this file has been added with Level
1096 * Trigger mode, we need to insert back inside
1097 * the ready list, so that the next call to
1098 * epoll_wait() will check again the events
1099 * availability. At this point, noone can insert
1100 * into ep->rdllist besides us. The epoll_ctl()
1101 * callers are locked out by
1102 * ep_scan_ready_list() holding "mtx" and the
1103 * poll callback will queue them in ep->ovflist.
1105 list_add_tail(&epi->rdllink, &ep->rdllist);
1110 return eventcnt;
1113 static int ep_send_events(struct eventpoll *ep,
1114 struct epoll_event __user *events, int maxevents)
1116 struct ep_send_events_data esed;
1118 esed.maxevents = maxevents;
1119 esed.events = events;
1121 return ep_scan_ready_list(ep, ep_send_events_proc, &esed);
1124 static inline struct timespec ep_set_mstimeout(long ms)
1126 struct timespec now, ts = {
1127 .tv_sec = ms / MSEC_PER_SEC,
1128 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1131 ktime_get_ts(&now);
1132 return timespec_add_safe(now, ts);
1135 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1136 int maxevents, long timeout)
1138 int res, eavail, timed_out = 0;
1139 unsigned long flags;
1140 long slack;
1141 wait_queue_t wait;
1142 ktime_t expires, *to = NULL;
1144 if (timeout > 0) {
1145 struct timespec end_time = ep_set_mstimeout(timeout);
1147 slack = select_estimate_accuracy(&end_time);
1148 to = &expires;
1149 *to = timespec_to_ktime(end_time);
1150 } else if (timeout == 0) {
1151 timed_out = 1;
1154 retry:
1155 spin_lock_irqsave(&ep->lock, flags);
1157 res = 0;
1158 if (list_empty(&ep->rdllist)) {
1160 * We don't have any available event to return to the caller.
1161 * We need to sleep here, and we will be wake up by
1162 * ep_poll_callback() when events will become available.
1164 init_waitqueue_entry(&wait, current);
1165 __add_wait_queue_exclusive(&ep->wq, &wait);
1167 for (;;) {
1169 * We don't want to sleep if the ep_poll_callback() sends us
1170 * a wakeup in between. That's why we set the task state
1171 * to TASK_INTERRUPTIBLE before doing the checks.
1173 set_current_state(TASK_INTERRUPTIBLE);
1174 if (!list_empty(&ep->rdllist) || timed_out)
1175 break;
1176 if (signal_pending(current)) {
1177 res = -EINTR;
1178 break;
1181 spin_unlock_irqrestore(&ep->lock, flags);
1182 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1183 timed_out = 1;
1185 spin_lock_irqsave(&ep->lock, flags);
1187 __remove_wait_queue(&ep->wq, &wait);
1189 set_current_state(TASK_RUNNING);
1191 /* Is it worth to try to dig for events ? */
1192 eavail = !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
1194 spin_unlock_irqrestore(&ep->lock, flags);
1197 * Try to transfer events to user space. In case we get 0 events and
1198 * there's still timeout left over, we go trying again in search of
1199 * more luck.
1201 if (!res && eavail &&
1202 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1203 goto retry;
1205 return res;
1209 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1210 * API, to verify that adding an epoll file inside another
1211 * epoll structure, does not violate the constraints, in
1212 * terms of closed loops, or too deep chains (which can
1213 * result in excessive stack usage).
1215 * @priv: Pointer to the epoll file to be currently checked.
1216 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1217 * data structure pointer.
1218 * @call_nests: Current dept of the @ep_call_nested() call stack.
1220 * Returns: Returns zero if adding the epoll @file inside current epoll
1221 * structure @ep does not violate the constraints, or -1 otherwise.
1223 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1225 int error = 0;
1226 struct file *file = priv;
1227 struct eventpoll *ep = file->private_data;
1228 struct rb_node *rbp;
1229 struct epitem *epi;
1231 mutex_lock(&ep->mtx);
1232 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1233 epi = rb_entry(rbp, struct epitem, rbn);
1234 if (unlikely(is_file_epoll(epi->ffd.file))) {
1235 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1236 ep_loop_check_proc, epi->ffd.file,
1237 epi->ffd.file->private_data, current);
1238 if (error != 0)
1239 break;
1242 mutex_unlock(&ep->mtx);
1244 return error;
1248 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1249 * another epoll file (represented by @ep) does not create
1250 * closed loops or too deep chains.
1252 * @ep: Pointer to the epoll private data structure.
1253 * @file: Pointer to the epoll file to be checked.
1255 * Returns: Returns zero if adding the epoll @file inside current epoll
1256 * structure @ep does not violate the constraints, or -1 otherwise.
1258 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1260 return ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1261 ep_loop_check_proc, file, ep, current);
1265 * Open an eventpoll file descriptor.
1267 SYSCALL_DEFINE1(epoll_create1, int, flags)
1269 int error;
1270 struct eventpoll *ep = NULL;
1272 /* Check the EPOLL_* constant for consistency. */
1273 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1275 if (flags & ~EPOLL_CLOEXEC)
1276 return -EINVAL;
1278 * Create the internal data structure ("struct eventpoll").
1280 error = ep_alloc(&ep);
1281 if (error < 0)
1282 return error;
1284 * Creates all the items needed to setup an eventpoll file. That is,
1285 * a file structure and a free file descriptor.
1287 error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep,
1288 O_RDWR | (flags & O_CLOEXEC));
1289 if (error < 0)
1290 ep_free(ep);
1292 return error;
1295 SYSCALL_DEFINE1(epoll_create, int, size)
1297 if (size <= 0)
1298 return -EINVAL;
1300 return sys_epoll_create1(0);
1304 * The following function implements the controller interface for
1305 * the eventpoll file that enables the insertion/removal/change of
1306 * file descriptors inside the interest set.
1308 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1309 struct epoll_event __user *, event)
1311 int error;
1312 int did_lock_epmutex = 0;
1313 struct file *file, *tfile;
1314 struct eventpoll *ep;
1315 struct epitem *epi;
1316 struct epoll_event epds;
1318 error = -EFAULT;
1319 if (ep_op_has_event(op) &&
1320 copy_from_user(&epds, event, sizeof(struct epoll_event)))
1321 goto error_return;
1323 /* Get the "struct file *" for the eventpoll file */
1324 error = -EBADF;
1325 file = fget(epfd);
1326 if (!file)
1327 goto error_return;
1329 /* Get the "struct file *" for the target file */
1330 tfile = fget(fd);
1331 if (!tfile)
1332 goto error_fput;
1334 /* The target file descriptor must support poll */
1335 error = -EPERM;
1336 if (!tfile->f_op || !tfile->f_op->poll)
1337 goto error_tgt_fput;
1340 * We have to check that the file structure underneath the file descriptor
1341 * the user passed to us _is_ an eventpoll file. And also we do not permit
1342 * adding an epoll file descriptor inside itself.
1344 error = -EINVAL;
1345 if (file == tfile || !is_file_epoll(file))
1346 goto error_tgt_fput;
1349 * At this point it is safe to assume that the "private_data" contains
1350 * our own data structure.
1352 ep = file->private_data;
1355 * When we insert an epoll file descriptor, inside another epoll file
1356 * descriptor, there is the change of creating closed loops, which are
1357 * better be handled here, than in more critical paths.
1359 * We hold epmutex across the loop check and the insert in this case, in
1360 * order to prevent two separate inserts from racing and each doing the
1361 * insert "at the same time" such that ep_loop_check passes on both
1362 * before either one does the insert, thereby creating a cycle.
1364 if (unlikely(is_file_epoll(tfile) && op == EPOLL_CTL_ADD)) {
1365 mutex_lock(&epmutex);
1366 did_lock_epmutex = 1;
1367 error = -ELOOP;
1368 if (ep_loop_check(ep, tfile) != 0)
1369 goto error_tgt_fput;
1373 mutex_lock(&ep->mtx);
1376 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1377 * above, we can be sure to be able to use the item looked up by
1378 * ep_find() till we release the mutex.
1380 epi = ep_find(ep, tfile, fd);
1382 error = -EINVAL;
1383 switch (op) {
1384 case EPOLL_CTL_ADD:
1385 if (!epi) {
1386 epds.events |= POLLERR | POLLHUP;
1387 error = ep_insert(ep, &epds, tfile, fd);
1388 } else
1389 error = -EEXIST;
1390 break;
1391 case EPOLL_CTL_DEL:
1392 if (epi)
1393 error = ep_remove(ep, epi);
1394 else
1395 error = -ENOENT;
1396 break;
1397 case EPOLL_CTL_MOD:
1398 if (epi) {
1399 epds.events |= POLLERR | POLLHUP;
1400 error = ep_modify(ep, epi, &epds);
1401 } else
1402 error = -ENOENT;
1403 break;
1405 mutex_unlock(&ep->mtx);
1407 error_tgt_fput:
1408 if (unlikely(did_lock_epmutex))
1409 mutex_unlock(&epmutex);
1411 fput(tfile);
1412 error_fput:
1413 fput(file);
1414 error_return:
1416 return error;
1420 * Implement the event wait interface for the eventpoll file. It is the kernel
1421 * part of the user space epoll_wait(2).
1423 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1424 int, maxevents, int, timeout)
1426 int error;
1427 struct file *file;
1428 struct eventpoll *ep;
1430 /* The maximum number of event must be greater than zero */
1431 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1432 return -EINVAL;
1434 /* Verify that the area passed by the user is writeable */
1435 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1436 error = -EFAULT;
1437 goto error_return;
1440 /* Get the "struct file *" for the eventpoll file */
1441 error = -EBADF;
1442 file = fget(epfd);
1443 if (!file)
1444 goto error_return;
1447 * We have to check that the file structure underneath the fd
1448 * the user passed to us _is_ an eventpoll file.
1450 error = -EINVAL;
1451 if (!is_file_epoll(file))
1452 goto error_fput;
1455 * At this point it is safe to assume that the "private_data" contains
1456 * our own data structure.
1458 ep = file->private_data;
1460 /* Time to fish for events ... */
1461 error = ep_poll(ep, events, maxevents, timeout);
1463 error_fput:
1464 fput(file);
1465 error_return:
1467 return error;
1470 #ifdef HAVE_SET_RESTORE_SIGMASK
1473 * Implement the event wait interface for the eventpoll file. It is the kernel
1474 * part of the user space epoll_pwait(2).
1476 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1477 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1478 size_t, sigsetsize)
1480 int error;
1481 sigset_t ksigmask, sigsaved;
1484 * If the caller wants a certain signal mask to be set during the wait,
1485 * we apply it here.
1487 if (sigmask) {
1488 if (sigsetsize != sizeof(sigset_t))
1489 return -EINVAL;
1490 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1491 return -EFAULT;
1492 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1493 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1496 error = sys_epoll_wait(epfd, events, maxevents, timeout);
1499 * If we changed the signal mask, we need to restore the original one.
1500 * In case we've got a signal while waiting, we do not restore the
1501 * signal mask yet, and we allow do_signal() to deliver the signal on
1502 * the way back to userspace, before the signal mask is restored.
1504 if (sigmask) {
1505 if (error == -EINTR) {
1506 memcpy(&current->saved_sigmask, &sigsaved,
1507 sizeof(sigsaved));
1508 set_restore_sigmask();
1509 } else
1510 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1513 return error;
1516 #endif /* HAVE_SET_RESTORE_SIGMASK */
1518 static int __init eventpoll_init(void)
1520 struct sysinfo si;
1522 si_meminfo(&si);
1524 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1526 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1527 EP_ITEM_COST;
1530 * Initialize the structure used to perform epoll file descriptor
1531 * inclusion loops checks.
1533 ep_nested_calls_init(&poll_loop_ncalls);
1535 /* Initialize the structure used to perform safe poll wait head wake ups */
1536 ep_nested_calls_init(&poll_safewake_ncalls);
1538 /* Initialize the structure used to perform file's f_op->poll() calls */
1539 ep_nested_calls_init(&poll_readywalk_ncalls);
1541 /* Allocates slab cache used to allocate "struct epitem" items */
1542 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1543 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1545 /* Allocates slab cache used to allocate "struct eppoll_entry" */
1546 pwq_cache = kmem_cache_create("eventpoll_pwq",
1547 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1549 return 0;
1551 fs_initcall(eventpoll_init);