2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
26 * RAID10 provides a combination of RAID0 and RAID1 functionality.
27 * The layout of data is defined by
30 * near_copies (stored in low byte of layout)
31 * far_copies (stored in second byte of layout)
32 * far_offset (stored in bit 16 of layout )
34 * The data to be stored is divided into chunks using chunksize.
35 * Each device is divided into far_copies sections.
36 * In each section, chunks are laid out in a style similar to raid0, but
37 * near_copies copies of each chunk is stored (each on a different drive).
38 * The starting device for each section is offset near_copies from the starting
39 * device of the previous section.
40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
42 * near_copies and far_copies must be at least one, and their product is at most
45 * If far_offset is true, then the far_copies are handled a bit differently.
46 * The copies are still in different stripes, but instead of be very far apart
47 * on disk, there are adjacent stripes.
51 * Number of guaranteed r10bios in case of extreme VM load:
53 #define NR_RAID10_BIOS 256
55 static void unplug_slaves(mddev_t
*mddev
);
57 static void allow_barrier(conf_t
*conf
);
58 static void lower_barrier(conf_t
*conf
);
60 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
64 int size
= offsetof(struct r10bio_s
, devs
[conf
->copies
]);
66 /* allocate a r10bio with room for raid_disks entries in the bios array */
67 r10_bio
= kzalloc(size
, gfp_flags
);
69 unplug_slaves(conf
->mddev
);
74 static void r10bio_pool_free(void *r10_bio
, void *data
)
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
86 * When performing a resync, we need to read and compare, so
87 * we need as many pages are there are copies.
88 * When performing a recovery, we need 2 bios, one for read,
89 * one for write (we recover only one drive per r10buf)
92 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
101 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
103 unplug_slaves(conf
->mddev
);
107 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
108 nalloc
= conf
->copies
; /* resync */
110 nalloc
= 2; /* recovery */
115 for (j
= nalloc
; j
-- ; ) {
116 bio
= bio_alloc(gfp_flags
, RESYNC_PAGES
);
119 r10_bio
->devs
[j
].bio
= bio
;
122 * Allocate RESYNC_PAGES data pages and attach them
125 for (j
= 0 ; j
< nalloc
; j
++) {
126 bio
= r10_bio
->devs
[j
].bio
;
127 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
128 page
= alloc_page(gfp_flags
);
132 bio
->bi_io_vec
[i
].bv_page
= page
;
140 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
142 for (i
= 0; i
< RESYNC_PAGES
; i
++)
143 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
146 while ( ++j
< nalloc
)
147 bio_put(r10_bio
->devs
[j
].bio
);
148 r10bio_pool_free(r10_bio
, conf
);
152 static void r10buf_pool_free(void *__r10_bio
, void *data
)
156 r10bio_t
*r10bio
= __r10_bio
;
159 for (j
=0; j
< conf
->copies
; j
++) {
160 struct bio
*bio
= r10bio
->devs
[j
].bio
;
162 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
163 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
164 bio
->bi_io_vec
[i
].bv_page
= NULL
;
169 r10bio_pool_free(r10bio
, conf
);
172 static void put_all_bios(conf_t
*conf
, r10bio_t
*r10_bio
)
176 for (i
= 0; i
< conf
->copies
; i
++) {
177 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
178 if (*bio
&& *bio
!= IO_BLOCKED
)
184 static void free_r10bio(r10bio_t
*r10_bio
)
186 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
189 * Wake up any possible resync thread that waits for the device
194 put_all_bios(conf
, r10_bio
);
195 mempool_free(r10_bio
, conf
->r10bio_pool
);
198 static void put_buf(r10bio_t
*r10_bio
)
200 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
202 mempool_free(r10_bio
, conf
->r10buf_pool
);
207 static void reschedule_retry(r10bio_t
*r10_bio
)
210 mddev_t
*mddev
= r10_bio
->mddev
;
211 conf_t
*conf
= mddev_to_conf(mddev
);
213 spin_lock_irqsave(&conf
->device_lock
, flags
);
214 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
216 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
218 md_wakeup_thread(mddev
->thread
);
222 * raid_end_bio_io() is called when we have finished servicing a mirrored
223 * operation and are ready to return a success/failure code to the buffer
226 static void raid_end_bio_io(r10bio_t
*r10_bio
)
228 struct bio
*bio
= r10_bio
->master_bio
;
231 test_bit(R10BIO_Uptodate
, &r10_bio
->state
) ? 0 : -EIO
);
232 free_r10bio(r10_bio
);
236 * Update disk head position estimator based on IRQ completion info.
238 static inline void update_head_pos(int slot
, r10bio_t
*r10_bio
)
240 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
242 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
243 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
246 static void raid10_end_read_request(struct bio
*bio
, int error
)
248 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
249 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
251 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
254 slot
= r10_bio
->read_slot
;
255 dev
= r10_bio
->devs
[slot
].devnum
;
257 * this branch is our 'one mirror IO has finished' event handler:
259 update_head_pos(slot
, r10_bio
);
263 * Set R10BIO_Uptodate in our master bio, so that
264 * we will return a good error code to the higher
265 * levels even if IO on some other mirrored buffer fails.
267 * The 'master' represents the composite IO operation to
268 * user-side. So if something waits for IO, then it will
269 * wait for the 'master' bio.
271 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
272 raid_end_bio_io(r10_bio
);
277 char b
[BDEVNAME_SIZE
];
278 if (printk_ratelimit())
279 printk(KERN_ERR
"raid10: %s: rescheduling sector %llu\n",
280 bdevname(conf
->mirrors
[dev
].rdev
->bdev
,b
), (unsigned long long)r10_bio
->sector
);
281 reschedule_retry(r10_bio
);
284 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
287 static void raid10_end_write_request(struct bio
*bio
, int error
)
289 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
290 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
292 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
294 for (slot
= 0; slot
< conf
->copies
; slot
++)
295 if (r10_bio
->devs
[slot
].bio
== bio
)
297 dev
= r10_bio
->devs
[slot
].devnum
;
300 * this branch is our 'one mirror IO has finished' event handler:
303 md_error(r10_bio
->mddev
, conf
->mirrors
[dev
].rdev
);
304 /* an I/O failed, we can't clear the bitmap */
305 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
308 * Set R10BIO_Uptodate in our master bio, so that
309 * we will return a good error code for to the higher
310 * levels even if IO on some other mirrored buffer fails.
312 * The 'master' represents the composite IO operation to
313 * user-side. So if something waits for IO, then it will
314 * wait for the 'master' bio.
316 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
318 update_head_pos(slot
, r10_bio
);
322 * Let's see if all mirrored write operations have finished
325 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
326 /* clear the bitmap if all writes complete successfully */
327 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
329 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
331 md_write_end(r10_bio
->mddev
);
332 raid_end_bio_io(r10_bio
);
335 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
340 * RAID10 layout manager
341 * Aswell as the chunksize and raid_disks count, there are two
342 * parameters: near_copies and far_copies.
343 * near_copies * far_copies must be <= raid_disks.
344 * Normally one of these will be 1.
345 * If both are 1, we get raid0.
346 * If near_copies == raid_disks, we get raid1.
348 * Chunks are layed out in raid0 style with near_copies copies of the
349 * first chunk, followed by near_copies copies of the next chunk and
351 * If far_copies > 1, then after 1/far_copies of the array has been assigned
352 * as described above, we start again with a device offset of near_copies.
353 * So we effectively have another copy of the whole array further down all
354 * the drives, but with blocks on different drives.
355 * With this layout, and block is never stored twice on the one device.
357 * raid10_find_phys finds the sector offset of a given virtual sector
358 * on each device that it is on.
360 * raid10_find_virt does the reverse mapping, from a device and a
361 * sector offset to a virtual address
364 static void raid10_find_phys(conf_t
*conf
, r10bio_t
*r10bio
)
374 /* now calculate first sector/dev */
375 chunk
= r10bio
->sector
>> conf
->chunk_shift
;
376 sector
= r10bio
->sector
& conf
->chunk_mask
;
378 chunk
*= conf
->near_copies
;
380 dev
= sector_div(stripe
, conf
->raid_disks
);
381 if (conf
->far_offset
)
382 stripe
*= conf
->far_copies
;
384 sector
+= stripe
<< conf
->chunk_shift
;
386 /* and calculate all the others */
387 for (n
=0; n
< conf
->near_copies
; n
++) {
390 r10bio
->devs
[slot
].addr
= sector
;
391 r10bio
->devs
[slot
].devnum
= d
;
394 for (f
= 1; f
< conf
->far_copies
; f
++) {
395 d
+= conf
->near_copies
;
396 if (d
>= conf
->raid_disks
)
397 d
-= conf
->raid_disks
;
399 r10bio
->devs
[slot
].devnum
= d
;
400 r10bio
->devs
[slot
].addr
= s
;
404 if (dev
>= conf
->raid_disks
) {
406 sector
+= (conf
->chunk_mask
+ 1);
409 BUG_ON(slot
!= conf
->copies
);
412 static sector_t
raid10_find_virt(conf_t
*conf
, sector_t sector
, int dev
)
414 sector_t offset
, chunk
, vchunk
;
416 offset
= sector
& conf
->chunk_mask
;
417 if (conf
->far_offset
) {
419 chunk
= sector
>> conf
->chunk_shift
;
420 fc
= sector_div(chunk
, conf
->far_copies
);
421 dev
-= fc
* conf
->near_copies
;
423 dev
+= conf
->raid_disks
;
425 while (sector
>= conf
->stride
) {
426 sector
-= conf
->stride
;
427 if (dev
< conf
->near_copies
)
428 dev
+= conf
->raid_disks
- conf
->near_copies
;
430 dev
-= conf
->near_copies
;
432 chunk
= sector
>> conf
->chunk_shift
;
434 vchunk
= chunk
* conf
->raid_disks
+ dev
;
435 sector_div(vchunk
, conf
->near_copies
);
436 return (vchunk
<< conf
->chunk_shift
) + offset
;
440 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
442 * @bio: the buffer head that's been built up so far
443 * @biovec: the request that could be merged to it.
445 * Return amount of bytes we can accept at this offset
446 * If near_copies == raid_disk, there are no striping issues,
447 * but in that case, the function isn't called at all.
449 static int raid10_mergeable_bvec(struct request_queue
*q
, struct bio
*bio
,
450 struct bio_vec
*bio_vec
)
452 mddev_t
*mddev
= q
->queuedata
;
453 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
455 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
456 unsigned int bio_sectors
= bio
->bi_size
>> 9;
458 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
459 if (max
< 0) max
= 0; /* bio_add cannot handle a negative return */
460 if (max
<= bio_vec
->bv_len
&& bio_sectors
== 0)
461 return bio_vec
->bv_len
;
467 * This routine returns the disk from which the requested read should
468 * be done. There is a per-array 'next expected sequential IO' sector
469 * number - if this matches on the next IO then we use the last disk.
470 * There is also a per-disk 'last know head position' sector that is
471 * maintained from IRQ contexts, both the normal and the resync IO
472 * completion handlers update this position correctly. If there is no
473 * perfect sequential match then we pick the disk whose head is closest.
475 * If there are 2 mirrors in the same 2 devices, performance degrades
476 * because position is mirror, not device based.
478 * The rdev for the device selected will have nr_pending incremented.
482 * FIXME: possibly should rethink readbalancing and do it differently
483 * depending on near_copies / far_copies geometry.
485 static int read_balance(conf_t
*conf
, r10bio_t
*r10_bio
)
487 const unsigned long this_sector
= r10_bio
->sector
;
488 int disk
, slot
, nslot
;
489 const int sectors
= r10_bio
->sectors
;
490 sector_t new_distance
, current_distance
;
493 raid10_find_phys(conf
, r10_bio
);
496 * Check if we can balance. We can balance on the whole
497 * device if no resync is going on (recovery is ok), or below
498 * the resync window. We take the first readable disk when
499 * above the resync window.
501 if (conf
->mddev
->recovery_cp
< MaxSector
502 && (this_sector
+ sectors
>= conf
->next_resync
)) {
503 /* make sure that disk is operational */
505 disk
= r10_bio
->devs
[slot
].devnum
;
507 while ((rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
)) == NULL
||
508 r10_bio
->devs
[slot
].bio
== IO_BLOCKED
||
509 !test_bit(In_sync
, &rdev
->flags
)) {
511 if (slot
== conf
->copies
) {
516 disk
= r10_bio
->devs
[slot
].devnum
;
522 /* make sure the disk is operational */
524 disk
= r10_bio
->devs
[slot
].devnum
;
525 while ((rdev
=rcu_dereference(conf
->mirrors
[disk
].rdev
)) == NULL
||
526 r10_bio
->devs
[slot
].bio
== IO_BLOCKED
||
527 !test_bit(In_sync
, &rdev
->flags
)) {
529 if (slot
== conf
->copies
) {
533 disk
= r10_bio
->devs
[slot
].devnum
;
537 current_distance
= abs(r10_bio
->devs
[slot
].addr
-
538 conf
->mirrors
[disk
].head_position
);
540 /* Find the disk whose head is closest,
541 * or - for far > 1 - find the closest to partition beginning */
543 for (nslot
= slot
; nslot
< conf
->copies
; nslot
++) {
544 int ndisk
= r10_bio
->devs
[nslot
].devnum
;
547 if ((rdev
=rcu_dereference(conf
->mirrors
[ndisk
].rdev
)) == NULL
||
548 r10_bio
->devs
[nslot
].bio
== IO_BLOCKED
||
549 !test_bit(In_sync
, &rdev
->flags
))
552 /* This optimisation is debatable, and completely destroys
553 * sequential read speed for 'far copies' arrays. So only
554 * keep it for 'near' arrays, and review those later.
556 if (conf
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
)) {
562 /* for far > 1 always use the lowest address */
563 if (conf
->far_copies
> 1)
564 new_distance
= r10_bio
->devs
[nslot
].addr
;
566 new_distance
= abs(r10_bio
->devs
[nslot
].addr
-
567 conf
->mirrors
[ndisk
].head_position
);
568 if (new_distance
< current_distance
) {
569 current_distance
= new_distance
;
576 r10_bio
->read_slot
= slot
;
577 /* conf->next_seq_sect = this_sector + sectors;*/
579 if (disk
>= 0 && (rdev
=rcu_dereference(conf
->mirrors
[disk
].rdev
))!= NULL
)
580 atomic_inc(&conf
->mirrors
[disk
].rdev
->nr_pending
);
588 static void unplug_slaves(mddev_t
*mddev
)
590 conf_t
*conf
= mddev_to_conf(mddev
);
594 for (i
=0; i
<mddev
->raid_disks
; i
++) {
595 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
596 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
597 struct request_queue
*r_queue
= bdev_get_queue(rdev
->bdev
);
599 atomic_inc(&rdev
->nr_pending
);
604 rdev_dec_pending(rdev
, mddev
);
611 static void raid10_unplug(struct request_queue
*q
)
613 mddev_t
*mddev
= q
->queuedata
;
615 unplug_slaves(q
->queuedata
);
616 md_wakeup_thread(mddev
->thread
);
619 static int raid10_congested(void *data
, int bits
)
621 mddev_t
*mddev
= data
;
622 conf_t
*conf
= mddev_to_conf(mddev
);
626 for (i
= 0; i
< mddev
->raid_disks
&& ret
== 0; i
++) {
627 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
628 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
629 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
631 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
638 static int flush_pending_writes(conf_t
*conf
)
640 /* Any writes that have been queued but are awaiting
641 * bitmap updates get flushed here.
642 * We return 1 if any requests were actually submitted.
646 spin_lock_irq(&conf
->device_lock
);
648 if (conf
->pending_bio_list
.head
) {
650 bio
= bio_list_get(&conf
->pending_bio_list
);
651 blk_remove_plug(conf
->mddev
->queue
);
652 spin_unlock_irq(&conf
->device_lock
);
653 /* flush any pending bitmap writes to disk
654 * before proceeding w/ I/O */
655 bitmap_unplug(conf
->mddev
->bitmap
);
657 while (bio
) { /* submit pending writes */
658 struct bio
*next
= bio
->bi_next
;
660 generic_make_request(bio
);
665 spin_unlock_irq(&conf
->device_lock
);
669 * Sometimes we need to suspend IO while we do something else,
670 * either some resync/recovery, or reconfigure the array.
671 * To do this we raise a 'barrier'.
672 * The 'barrier' is a counter that can be raised multiple times
673 * to count how many activities are happening which preclude
675 * We can only raise the barrier if there is no pending IO.
676 * i.e. if nr_pending == 0.
677 * We choose only to raise the barrier if no-one is waiting for the
678 * barrier to go down. This means that as soon as an IO request
679 * is ready, no other operations which require a barrier will start
680 * until the IO request has had a chance.
682 * So: regular IO calls 'wait_barrier'. When that returns there
683 * is no backgroup IO happening, It must arrange to call
684 * allow_barrier when it has finished its IO.
685 * backgroup IO calls must call raise_barrier. Once that returns
686 * there is no normal IO happeing. It must arrange to call
687 * lower_barrier when the particular background IO completes.
689 #define RESYNC_DEPTH 32
691 static void raise_barrier(conf_t
*conf
, int force
)
693 BUG_ON(force
&& !conf
->barrier
);
694 spin_lock_irq(&conf
->resync_lock
);
696 /* Wait until no block IO is waiting (unless 'force') */
697 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
699 raid10_unplug(conf
->mddev
->queue
));
701 /* block any new IO from starting */
704 /* No wait for all pending IO to complete */
705 wait_event_lock_irq(conf
->wait_barrier
,
706 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
708 raid10_unplug(conf
->mddev
->queue
));
710 spin_unlock_irq(&conf
->resync_lock
);
713 static void lower_barrier(conf_t
*conf
)
716 spin_lock_irqsave(&conf
->resync_lock
, flags
);
718 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
719 wake_up(&conf
->wait_barrier
);
722 static void wait_barrier(conf_t
*conf
)
724 spin_lock_irq(&conf
->resync_lock
);
727 wait_event_lock_irq(conf
->wait_barrier
, !conf
->barrier
,
729 raid10_unplug(conf
->mddev
->queue
));
733 spin_unlock_irq(&conf
->resync_lock
);
736 static void allow_barrier(conf_t
*conf
)
739 spin_lock_irqsave(&conf
->resync_lock
, flags
);
741 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
742 wake_up(&conf
->wait_barrier
);
745 static void freeze_array(conf_t
*conf
)
747 /* stop syncio and normal IO and wait for everything to
749 * We increment barrier and nr_waiting, and then
750 * wait until nr_pending match nr_queued+1
751 * This is called in the context of one normal IO request
752 * that has failed. Thus any sync request that might be pending
753 * will be blocked by nr_pending, and we need to wait for
754 * pending IO requests to complete or be queued for re-try.
755 * Thus the number queued (nr_queued) plus this request (1)
756 * must match the number of pending IOs (nr_pending) before
759 spin_lock_irq(&conf
->resync_lock
);
762 wait_event_lock_irq(conf
->wait_barrier
,
763 conf
->nr_pending
== conf
->nr_queued
+1,
765 ({ flush_pending_writes(conf
);
766 raid10_unplug(conf
->mddev
->queue
); }));
767 spin_unlock_irq(&conf
->resync_lock
);
770 static void unfreeze_array(conf_t
*conf
)
772 /* reverse the effect of the freeze */
773 spin_lock_irq(&conf
->resync_lock
);
776 wake_up(&conf
->wait_barrier
);
777 spin_unlock_irq(&conf
->resync_lock
);
780 static int make_request(struct request_queue
*q
, struct bio
* bio
)
782 mddev_t
*mddev
= q
->queuedata
;
783 conf_t
*conf
= mddev_to_conf(mddev
);
784 mirror_info_t
*mirror
;
786 struct bio
*read_bio
;
788 int chunk_sects
= conf
->chunk_mask
+ 1;
789 const int rw
= bio_data_dir(bio
);
790 const int do_sync
= bio_sync(bio
);
794 if (unlikely(bio_barrier(bio
))) {
795 bio_endio(bio
, -EOPNOTSUPP
);
799 /* If this request crosses a chunk boundary, we need to
800 * split it. This will only happen for 1 PAGE (or less) requests.
802 if (unlikely( (bio
->bi_sector
& conf
->chunk_mask
) + (bio
->bi_size
>> 9)
804 conf
->near_copies
< conf
->raid_disks
)) {
806 /* Sanity check -- queue functions should prevent this happening */
807 if (bio
->bi_vcnt
!= 1 ||
810 /* This is a one page bio that upper layers
811 * refuse to split for us, so we need to split it.
813 bp
= bio_split(bio
, bio_split_pool
,
814 chunk_sects
- (bio
->bi_sector
& (chunk_sects
- 1)) );
815 if (make_request(q
, &bp
->bio1
))
816 generic_make_request(&bp
->bio1
);
817 if (make_request(q
, &bp
->bio2
))
818 generic_make_request(&bp
->bio2
);
820 bio_pair_release(bp
);
823 printk("raid10_make_request bug: can't convert block across chunks"
824 " or bigger than %dk %llu %d\n", chunk_sects
/2,
825 (unsigned long long)bio
->bi_sector
, bio
->bi_size
>> 10);
831 md_write_start(mddev
, bio
);
834 * Register the new request and wait if the reconstruction
835 * thread has put up a bar for new requests.
836 * Continue immediately if no resync is active currently.
840 disk_stat_inc(mddev
->gendisk
, ios
[rw
]);
841 disk_stat_add(mddev
->gendisk
, sectors
[rw
], bio_sectors(bio
));
843 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
845 r10_bio
->master_bio
= bio
;
846 r10_bio
->sectors
= bio
->bi_size
>> 9;
848 r10_bio
->mddev
= mddev
;
849 r10_bio
->sector
= bio
->bi_sector
;
854 * read balancing logic:
856 int disk
= read_balance(conf
, r10_bio
);
857 int slot
= r10_bio
->read_slot
;
859 raid_end_bio_io(r10_bio
);
862 mirror
= conf
->mirrors
+ disk
;
864 read_bio
= bio_clone(bio
, GFP_NOIO
);
866 r10_bio
->devs
[slot
].bio
= read_bio
;
868 read_bio
->bi_sector
= r10_bio
->devs
[slot
].addr
+
869 mirror
->rdev
->data_offset
;
870 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
871 read_bio
->bi_end_io
= raid10_end_read_request
;
872 read_bio
->bi_rw
= READ
| do_sync
;
873 read_bio
->bi_private
= r10_bio
;
875 generic_make_request(read_bio
);
882 /* first select target devices under spinlock and
883 * inc refcount on their rdev. Record them by setting
886 raid10_find_phys(conf
, r10_bio
);
888 for (i
= 0; i
< conf
->copies
; i
++) {
889 int d
= r10_bio
->devs
[i
].devnum
;
890 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
892 !test_bit(Faulty
, &rdev
->flags
)) {
893 atomic_inc(&rdev
->nr_pending
);
894 r10_bio
->devs
[i
].bio
= bio
;
896 r10_bio
->devs
[i
].bio
= NULL
;
897 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
902 atomic_set(&r10_bio
->remaining
, 0);
905 for (i
= 0; i
< conf
->copies
; i
++) {
907 int d
= r10_bio
->devs
[i
].devnum
;
908 if (!r10_bio
->devs
[i
].bio
)
911 mbio
= bio_clone(bio
, GFP_NOIO
);
912 r10_bio
->devs
[i
].bio
= mbio
;
914 mbio
->bi_sector
= r10_bio
->devs
[i
].addr
+
915 conf
->mirrors
[d
].rdev
->data_offset
;
916 mbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
917 mbio
->bi_end_io
= raid10_end_write_request
;
918 mbio
->bi_rw
= WRITE
| do_sync
;
919 mbio
->bi_private
= r10_bio
;
921 atomic_inc(&r10_bio
->remaining
);
922 bio_list_add(&bl
, mbio
);
925 if (unlikely(!atomic_read(&r10_bio
->remaining
))) {
926 /* the array is dead */
928 raid_end_bio_io(r10_bio
);
932 bitmap_startwrite(mddev
->bitmap
, bio
->bi_sector
, r10_bio
->sectors
, 0);
933 spin_lock_irqsave(&conf
->device_lock
, flags
);
934 bio_list_merge(&conf
->pending_bio_list
, &bl
);
935 blk_plug_device(mddev
->queue
);
936 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
938 /* In case raid10d snuck in to freeze_array */
939 wake_up(&conf
->wait_barrier
);
942 md_wakeup_thread(mddev
->thread
);
947 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
949 conf_t
*conf
= mddev_to_conf(mddev
);
952 if (conf
->near_copies
< conf
->raid_disks
)
953 seq_printf(seq
, " %dK chunks", mddev
->chunk_size
/1024);
954 if (conf
->near_copies
> 1)
955 seq_printf(seq
, " %d near-copies", conf
->near_copies
);
956 if (conf
->far_copies
> 1) {
957 if (conf
->far_offset
)
958 seq_printf(seq
, " %d offset-copies", conf
->far_copies
);
960 seq_printf(seq
, " %d far-copies", conf
->far_copies
);
962 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
963 conf
->raid_disks
- mddev
->degraded
);
964 for (i
= 0; i
< conf
->raid_disks
; i
++)
965 seq_printf(seq
, "%s",
966 conf
->mirrors
[i
].rdev
&&
967 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ? "U" : "_");
968 seq_printf(seq
, "]");
971 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
973 char b
[BDEVNAME_SIZE
];
974 conf_t
*conf
= mddev_to_conf(mddev
);
977 * If it is not operational, then we have already marked it as dead
978 * else if it is the last working disks, ignore the error, let the
979 * next level up know.
980 * else mark the drive as failed
982 if (test_bit(In_sync
, &rdev
->flags
)
983 && conf
->raid_disks
-mddev
->degraded
== 1)
985 * Don't fail the drive, just return an IO error.
986 * The test should really be more sophisticated than
987 * "working_disks == 1", but it isn't critical, and
988 * can wait until we do more sophisticated "is the drive
989 * really dead" tests...
992 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
994 spin_lock_irqsave(&conf
->device_lock
, flags
);
996 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
998 * if recovery is running, make sure it aborts.
1000 set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
);
1002 set_bit(Faulty
, &rdev
->flags
);
1003 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1004 printk(KERN_ALERT
"raid10: Disk failure on %s, disabling device. \n"
1005 " Operation continuing on %d devices\n",
1006 bdevname(rdev
->bdev
,b
), conf
->raid_disks
- mddev
->degraded
);
1009 static void print_conf(conf_t
*conf
)
1014 printk("RAID10 conf printout:\n");
1016 printk("(!conf)\n");
1019 printk(" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1022 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1023 char b
[BDEVNAME_SIZE
];
1024 tmp
= conf
->mirrors
+ i
;
1026 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1027 i
, !test_bit(In_sync
, &tmp
->rdev
->flags
),
1028 !test_bit(Faulty
, &tmp
->rdev
->flags
),
1029 bdevname(tmp
->rdev
->bdev
,b
));
1033 static void close_sync(conf_t
*conf
)
1036 allow_barrier(conf
);
1038 mempool_destroy(conf
->r10buf_pool
);
1039 conf
->r10buf_pool
= NULL
;
1042 /* check if there are enough drives for
1043 * every block to appear on atleast one
1045 static int enough(conf_t
*conf
)
1050 int n
= conf
->copies
;
1053 if (conf
->mirrors
[first
].rdev
)
1055 first
= (first
+1) % conf
->raid_disks
;
1059 } while (first
!= 0);
1063 static int raid10_spare_active(mddev_t
*mddev
)
1066 conf_t
*conf
= mddev
->private;
1070 * Find all non-in_sync disks within the RAID10 configuration
1071 * and mark them in_sync
1073 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1074 tmp
= conf
->mirrors
+ i
;
1076 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1077 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1078 unsigned long flags
;
1079 spin_lock_irqsave(&conf
->device_lock
, flags
);
1081 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1090 static int raid10_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1092 conf_t
*conf
= mddev
->private;
1097 if (mddev
->recovery_cp
< MaxSector
)
1098 /* only hot-add to in-sync arrays, as recovery is
1099 * very different from resync
1105 if (rdev
->saved_raid_disk
>= 0 &&
1106 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1107 mirror
= rdev
->saved_raid_disk
;
1110 for ( ; mirror
< mddev
->raid_disks
; mirror
++)
1111 if ( !(p
=conf
->mirrors
+mirror
)->rdev
) {
1113 blk_queue_stack_limits(mddev
->queue
,
1114 rdev
->bdev
->bd_disk
->queue
);
1115 /* as we don't honour merge_bvec_fn, we must never risk
1116 * violating it, so limit ->max_sector to one PAGE, as
1117 * a one page request is never in violation.
1119 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
&&
1120 mddev
->queue
->max_sectors
> (PAGE_SIZE
>>9))
1121 mddev
->queue
->max_sectors
= (PAGE_SIZE
>>9);
1123 p
->head_position
= 0;
1124 rdev
->raid_disk
= mirror
;
1126 if (rdev
->saved_raid_disk
!= mirror
)
1128 rcu_assign_pointer(p
->rdev
, rdev
);
1136 static int raid10_remove_disk(mddev_t
*mddev
, int number
)
1138 conf_t
*conf
= mddev
->private;
1141 mirror_info_t
*p
= conf
->mirrors
+ number
;
1146 if (test_bit(In_sync
, &rdev
->flags
) ||
1147 atomic_read(&rdev
->nr_pending
)) {
1153 if (atomic_read(&rdev
->nr_pending
)) {
1154 /* lost the race, try later */
1166 static void end_sync_read(struct bio
*bio
, int error
)
1168 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
1169 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
1172 for (i
=0; i
<conf
->copies
; i
++)
1173 if (r10_bio
->devs
[i
].bio
== bio
)
1175 BUG_ON(i
== conf
->copies
);
1176 update_head_pos(i
, r10_bio
);
1177 d
= r10_bio
->devs
[i
].devnum
;
1179 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1180 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1182 atomic_add(r10_bio
->sectors
,
1183 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1184 if (!test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
1185 md_error(r10_bio
->mddev
,
1186 conf
->mirrors
[d
].rdev
);
1189 /* for reconstruct, we always reschedule after a read.
1190 * for resync, only after all reads
1192 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1193 atomic_dec_and_test(&r10_bio
->remaining
)) {
1194 /* we have read all the blocks,
1195 * do the comparison in process context in raid10d
1197 reschedule_retry(r10_bio
);
1199 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1202 static void end_sync_write(struct bio
*bio
, int error
)
1204 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1205 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
1206 mddev_t
*mddev
= r10_bio
->mddev
;
1207 conf_t
*conf
= mddev_to_conf(mddev
);
1210 for (i
= 0; i
< conf
->copies
; i
++)
1211 if (r10_bio
->devs
[i
].bio
== bio
)
1213 d
= r10_bio
->devs
[i
].devnum
;
1216 md_error(mddev
, conf
->mirrors
[d
].rdev
);
1217 update_head_pos(i
, r10_bio
);
1219 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1220 if (r10_bio
->master_bio
== NULL
) {
1221 /* the primary of several recovery bios */
1222 md_done_sync(mddev
, r10_bio
->sectors
, 1);
1226 r10bio_t
*r10_bio2
= (r10bio_t
*)r10_bio
->master_bio
;
1231 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1235 * Note: sync and recover and handled very differently for raid10
1236 * This code is for resync.
1237 * For resync, we read through virtual addresses and read all blocks.
1238 * If there is any error, we schedule a write. The lowest numbered
1239 * drive is authoritative.
1240 * However requests come for physical address, so we need to map.
1241 * For every physical address there are raid_disks/copies virtual addresses,
1242 * which is always are least one, but is not necessarly an integer.
1243 * This means that a physical address can span multiple chunks, so we may
1244 * have to submit multiple io requests for a single sync request.
1247 * We check if all blocks are in-sync and only write to blocks that
1250 static void sync_request_write(mddev_t
*mddev
, r10bio_t
*r10_bio
)
1252 conf_t
*conf
= mddev_to_conf(mddev
);
1254 struct bio
*tbio
, *fbio
;
1256 atomic_set(&r10_bio
->remaining
, 1);
1258 /* find the first device with a block */
1259 for (i
=0; i
<conf
->copies
; i
++)
1260 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
))
1263 if (i
== conf
->copies
)
1267 fbio
= r10_bio
->devs
[i
].bio
;
1269 /* now find blocks with errors */
1270 for (i
=0 ; i
< conf
->copies
; i
++) {
1272 int vcnt
= r10_bio
->sectors
>> (PAGE_SHIFT
-9);
1274 tbio
= r10_bio
->devs
[i
].bio
;
1276 if (tbio
->bi_end_io
!= end_sync_read
)
1280 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
)) {
1281 /* We know that the bi_io_vec layout is the same for
1282 * both 'first' and 'i', so we just compare them.
1283 * All vec entries are PAGE_SIZE;
1285 for (j
= 0; j
< vcnt
; j
++)
1286 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
1287 page_address(tbio
->bi_io_vec
[j
].bv_page
),
1292 mddev
->resync_mismatches
+= r10_bio
->sectors
;
1294 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
1295 /* Don't fix anything. */
1297 /* Ok, we need to write this bio
1298 * First we need to fixup bv_offset, bv_len and
1299 * bi_vecs, as the read request might have corrupted these
1301 tbio
->bi_vcnt
= vcnt
;
1302 tbio
->bi_size
= r10_bio
->sectors
<< 9;
1304 tbio
->bi_phys_segments
= 0;
1305 tbio
->bi_hw_segments
= 0;
1306 tbio
->bi_hw_front_size
= 0;
1307 tbio
->bi_hw_back_size
= 0;
1308 tbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1309 tbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1310 tbio
->bi_next
= NULL
;
1311 tbio
->bi_rw
= WRITE
;
1312 tbio
->bi_private
= r10_bio
;
1313 tbio
->bi_sector
= r10_bio
->devs
[i
].addr
;
1315 for (j
=0; j
< vcnt
; j
++) {
1316 tbio
->bi_io_vec
[j
].bv_offset
= 0;
1317 tbio
->bi_io_vec
[j
].bv_len
= PAGE_SIZE
;
1319 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1320 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1323 tbio
->bi_end_io
= end_sync_write
;
1325 d
= r10_bio
->devs
[i
].devnum
;
1326 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1327 atomic_inc(&r10_bio
->remaining
);
1328 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, tbio
->bi_size
>> 9);
1330 tbio
->bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
1331 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1332 generic_make_request(tbio
);
1336 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
1337 md_done_sync(mddev
, r10_bio
->sectors
, 1);
1343 * Now for the recovery code.
1344 * Recovery happens across physical sectors.
1345 * We recover all non-is_sync drives by finding the virtual address of
1346 * each, and then choose a working drive that also has that virt address.
1347 * There is a separate r10_bio for each non-in_sync drive.
1348 * Only the first two slots are in use. The first for reading,
1349 * The second for writing.
1353 static void recovery_request_write(mddev_t
*mddev
, r10bio_t
*r10_bio
)
1355 conf_t
*conf
= mddev_to_conf(mddev
);
1357 struct bio
*bio
, *wbio
;
1360 /* move the pages across to the second bio
1361 * and submit the write request
1363 bio
= r10_bio
->devs
[0].bio
;
1364 wbio
= r10_bio
->devs
[1].bio
;
1365 for (i
=0; i
< wbio
->bi_vcnt
; i
++) {
1366 struct page
*p
= bio
->bi_io_vec
[i
].bv_page
;
1367 bio
->bi_io_vec
[i
].bv_page
= wbio
->bi_io_vec
[i
].bv_page
;
1368 wbio
->bi_io_vec
[i
].bv_page
= p
;
1370 d
= r10_bio
->devs
[1].devnum
;
1372 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1373 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, wbio
->bi_size
>> 9);
1374 if (test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
1375 generic_make_request(wbio
);
1377 bio_endio(wbio
, -EIO
);
1382 * This is a kernel thread which:
1384 * 1. Retries failed read operations on working mirrors.
1385 * 2. Updates the raid superblock when problems encounter.
1386 * 3. Performs writes following reads for array synchronising.
1389 static void fix_read_error(conf_t
*conf
, mddev_t
*mddev
, r10bio_t
*r10_bio
)
1391 int sect
= 0; /* Offset from r10_bio->sector */
1392 int sectors
= r10_bio
->sectors
;
1396 int sl
= r10_bio
->read_slot
;
1400 if (s
> (PAGE_SIZE
>>9))
1405 int d
= r10_bio
->devs
[sl
].devnum
;
1406 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1408 test_bit(In_sync
, &rdev
->flags
)) {
1409 atomic_inc(&rdev
->nr_pending
);
1411 success
= sync_page_io(rdev
->bdev
,
1412 r10_bio
->devs
[sl
].addr
+
1413 sect
+ rdev
->data_offset
,
1415 conf
->tmppage
, READ
);
1416 rdev_dec_pending(rdev
, mddev
);
1422 if (sl
== conf
->copies
)
1424 } while (!success
&& sl
!= r10_bio
->read_slot
);
1428 /* Cannot read from anywhere -- bye bye array */
1429 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
1430 md_error(mddev
, conf
->mirrors
[dn
].rdev
);
1435 /* write it back and re-read */
1437 while (sl
!= r10_bio
->read_slot
) {
1442 d
= r10_bio
->devs
[sl
].devnum
;
1443 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1445 test_bit(In_sync
, &rdev
->flags
)) {
1446 atomic_inc(&rdev
->nr_pending
);
1448 atomic_add(s
, &rdev
->corrected_errors
);
1449 if (sync_page_io(rdev
->bdev
,
1450 r10_bio
->devs
[sl
].addr
+
1451 sect
+ rdev
->data_offset
,
1452 s
<<9, conf
->tmppage
, WRITE
)
1454 /* Well, this device is dead */
1455 md_error(mddev
, rdev
);
1456 rdev_dec_pending(rdev
, mddev
);
1461 while (sl
!= r10_bio
->read_slot
) {
1466 d
= r10_bio
->devs
[sl
].devnum
;
1467 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1469 test_bit(In_sync
, &rdev
->flags
)) {
1470 char b
[BDEVNAME_SIZE
];
1471 atomic_inc(&rdev
->nr_pending
);
1473 if (sync_page_io(rdev
->bdev
,
1474 r10_bio
->devs
[sl
].addr
+
1475 sect
+ rdev
->data_offset
,
1476 s
<<9, conf
->tmppage
, READ
) == 0)
1477 /* Well, this device is dead */
1478 md_error(mddev
, rdev
);
1481 "raid10:%s: read error corrected"
1482 " (%d sectors at %llu on %s)\n",
1484 (unsigned long long)(sect
+
1486 bdevname(rdev
->bdev
, b
));
1488 rdev_dec_pending(rdev
, mddev
);
1499 static void raid10d(mddev_t
*mddev
)
1503 unsigned long flags
;
1504 conf_t
*conf
= mddev_to_conf(mddev
);
1505 struct list_head
*head
= &conf
->retry_list
;
1509 md_check_recovery(mddev
);
1512 char b
[BDEVNAME_SIZE
];
1514 unplug
+= flush_pending_writes(conf
);
1516 spin_lock_irqsave(&conf
->device_lock
, flags
);
1517 if (list_empty(head
)) {
1518 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1521 r10_bio
= list_entry(head
->prev
, r10bio_t
, retry_list
);
1522 list_del(head
->prev
);
1524 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1526 mddev
= r10_bio
->mddev
;
1527 conf
= mddev_to_conf(mddev
);
1528 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
)) {
1529 sync_request_write(mddev
, r10_bio
);
1531 } else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
1532 recovery_request_write(mddev
, r10_bio
);
1536 /* we got a read error. Maybe the drive is bad. Maybe just
1537 * the block and we can fix it.
1538 * We freeze all other IO, and try reading the block from
1539 * other devices. When we find one, we re-write
1540 * and check it that fixes the read error.
1541 * This is all done synchronously while the array is
1544 if (mddev
->ro
== 0) {
1546 fix_read_error(conf
, mddev
, r10_bio
);
1547 unfreeze_array(conf
);
1550 bio
= r10_bio
->devs
[r10_bio
->read_slot
].bio
;
1551 r10_bio
->devs
[r10_bio
->read_slot
].bio
=
1552 mddev
->ro
? IO_BLOCKED
: NULL
;
1553 mirror
= read_balance(conf
, r10_bio
);
1555 printk(KERN_ALERT
"raid10: %s: unrecoverable I/O"
1556 " read error for block %llu\n",
1557 bdevname(bio
->bi_bdev
,b
),
1558 (unsigned long long)r10_bio
->sector
);
1559 raid_end_bio_io(r10_bio
);
1562 const int do_sync
= bio_sync(r10_bio
->master_bio
);
1564 rdev
= conf
->mirrors
[mirror
].rdev
;
1565 if (printk_ratelimit())
1566 printk(KERN_ERR
"raid10: %s: redirecting sector %llu to"
1567 " another mirror\n",
1568 bdevname(rdev
->bdev
,b
),
1569 (unsigned long long)r10_bio
->sector
);
1570 bio
= bio_clone(r10_bio
->master_bio
, GFP_NOIO
);
1571 r10_bio
->devs
[r10_bio
->read_slot
].bio
= bio
;
1572 bio
->bi_sector
= r10_bio
->devs
[r10_bio
->read_slot
].addr
1573 + rdev
->data_offset
;
1574 bio
->bi_bdev
= rdev
->bdev
;
1575 bio
->bi_rw
= READ
| do_sync
;
1576 bio
->bi_private
= r10_bio
;
1577 bio
->bi_end_io
= raid10_end_read_request
;
1579 generic_make_request(bio
);
1584 unplug_slaves(mddev
);
1588 static int init_resync(conf_t
*conf
)
1592 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
1593 BUG_ON(conf
->r10buf_pool
);
1594 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
1595 if (!conf
->r10buf_pool
)
1597 conf
->next_resync
= 0;
1602 * perform a "sync" on one "block"
1604 * We need to make sure that no normal I/O request - particularly write
1605 * requests - conflict with active sync requests.
1607 * This is achieved by tracking pending requests and a 'barrier' concept
1608 * that can be installed to exclude normal IO requests.
1610 * Resync and recovery are handled very differently.
1611 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1613 * For resync, we iterate over virtual addresses, read all copies,
1614 * and update if there are differences. If only one copy is live,
1616 * For recovery, we iterate over physical addresses, read a good
1617 * value for each non-in_sync drive, and over-write.
1619 * So, for recovery we may have several outstanding complex requests for a
1620 * given address, one for each out-of-sync device. We model this by allocating
1621 * a number of r10_bio structures, one for each out-of-sync device.
1622 * As we setup these structures, we collect all bio's together into a list
1623 * which we then process collectively to add pages, and then process again
1624 * to pass to generic_make_request.
1626 * The r10_bio structures are linked using a borrowed master_bio pointer.
1627 * This link is counted in ->remaining. When the r10_bio that points to NULL
1628 * has its remaining count decremented to 0, the whole complex operation
1633 static sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
1635 conf_t
*conf
= mddev_to_conf(mddev
);
1637 struct bio
*biolist
= NULL
, *bio
;
1638 sector_t max_sector
, nr_sectors
;
1644 sector_t sectors_skipped
= 0;
1645 int chunks_skipped
= 0;
1647 if (!conf
->r10buf_pool
)
1648 if (init_resync(conf
))
1652 max_sector
= mddev
->size
<< 1;
1653 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
1654 max_sector
= mddev
->resync_max_sectors
;
1655 if (sector_nr
>= max_sector
) {
1656 /* If we aborted, we need to abort the
1657 * sync on the 'current' bitmap chucks (there can
1658 * be several when recovering multiple devices).
1659 * as we may have started syncing it but not finished.
1660 * We can find the current address in
1661 * mddev->curr_resync, but for recovery,
1662 * we need to convert that to several
1663 * virtual addresses.
1665 if (mddev
->curr_resync
< max_sector
) { /* aborted */
1666 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
1667 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
1669 else for (i
=0; i
<conf
->raid_disks
; i
++) {
1671 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
1672 bitmap_end_sync(mddev
->bitmap
, sect
,
1675 } else /* completed sync */
1678 bitmap_close_sync(mddev
->bitmap
);
1681 return sectors_skipped
;
1683 if (chunks_skipped
>= conf
->raid_disks
) {
1684 /* if there has been nothing to do on any drive,
1685 * then there is nothing to do at all..
1688 return (max_sector
- sector_nr
) + sectors_skipped
;
1691 if (max_sector
> mddev
->resync_max
)
1692 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
1694 /* make sure whole request will fit in a chunk - if chunks
1697 if (conf
->near_copies
< conf
->raid_disks
&&
1698 max_sector
> (sector_nr
| conf
->chunk_mask
))
1699 max_sector
= (sector_nr
| conf
->chunk_mask
) + 1;
1701 * If there is non-resync activity waiting for us then
1702 * put in a delay to throttle resync.
1704 if (!go_faster
&& conf
->nr_waiting
)
1705 msleep_interruptible(1000);
1707 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
1709 /* Again, very different code for resync and recovery.
1710 * Both must result in an r10bio with a list of bios that
1711 * have bi_end_io, bi_sector, bi_bdev set,
1712 * and bi_private set to the r10bio.
1713 * For recovery, we may actually create several r10bios
1714 * with 2 bios in each, that correspond to the bios in the main one.
1715 * In this case, the subordinate r10bios link back through a
1716 * borrowed master_bio pointer, and the counter in the master
1717 * includes a ref from each subordinate.
1719 /* First, we decide what to do and set ->bi_end_io
1720 * To end_sync_read if we want to read, and
1721 * end_sync_write if we will want to write.
1724 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
1725 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
1726 /* recovery... the complicated one */
1730 for (i
=0 ; i
<conf
->raid_disks
; i
++)
1731 if (conf
->mirrors
[i
].rdev
&&
1732 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
)) {
1733 int still_degraded
= 0;
1734 /* want to reconstruct this device */
1735 r10bio_t
*rb2
= r10_bio
;
1736 sector_t sect
= raid10_find_virt(conf
, sector_nr
, i
);
1738 /* Unless we are doing a full sync, we only need
1739 * to recover the block if it is set in the bitmap
1741 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
1743 if (sync_blocks
< max_sync
)
1744 max_sync
= sync_blocks
;
1747 /* yep, skip the sync_blocks here, but don't assume
1748 * that there will never be anything to do here
1750 chunks_skipped
= -1;
1754 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
1755 raise_barrier(conf
, rb2
!= NULL
);
1756 atomic_set(&r10_bio
->remaining
, 0);
1758 r10_bio
->master_bio
= (struct bio
*)rb2
;
1760 atomic_inc(&rb2
->remaining
);
1761 r10_bio
->mddev
= mddev
;
1762 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
1763 r10_bio
->sector
= sect
;
1765 raid10_find_phys(conf
, r10_bio
);
1766 /* Need to check if this section will still be
1769 for (j
=0; j
<conf
->copies
;j
++) {
1770 int d
= r10_bio
->devs
[j
].devnum
;
1771 if (conf
->mirrors
[d
].rdev
== NULL
||
1772 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
)) {
1777 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
1778 &sync_blocks
, still_degraded
);
1780 for (j
=0; j
<conf
->copies
;j
++) {
1781 int d
= r10_bio
->devs
[j
].devnum
;
1782 if (conf
->mirrors
[d
].rdev
&&
1783 test_bit(In_sync
, &conf
->mirrors
[d
].rdev
->flags
)) {
1784 /* This is where we read from */
1785 bio
= r10_bio
->devs
[0].bio
;
1786 bio
->bi_next
= biolist
;
1788 bio
->bi_private
= r10_bio
;
1789 bio
->bi_end_io
= end_sync_read
;
1791 bio
->bi_sector
= r10_bio
->devs
[j
].addr
+
1792 conf
->mirrors
[d
].rdev
->data_offset
;
1793 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1794 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1795 atomic_inc(&r10_bio
->remaining
);
1796 /* and we write to 'i' */
1798 for (k
=0; k
<conf
->copies
; k
++)
1799 if (r10_bio
->devs
[k
].devnum
== i
)
1801 BUG_ON(k
== conf
->copies
);
1802 bio
= r10_bio
->devs
[1].bio
;
1803 bio
->bi_next
= biolist
;
1805 bio
->bi_private
= r10_bio
;
1806 bio
->bi_end_io
= end_sync_write
;
1808 bio
->bi_sector
= r10_bio
->devs
[k
].addr
+
1809 conf
->mirrors
[i
].rdev
->data_offset
;
1810 bio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1812 r10_bio
->devs
[0].devnum
= d
;
1813 r10_bio
->devs
[1].devnum
= i
;
1818 if (j
== conf
->copies
) {
1819 /* Cannot recover, so abort the recovery */
1822 atomic_dec(&rb2
->remaining
);
1824 if (!test_and_set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
))
1825 printk(KERN_INFO
"raid10: %s: insufficient working devices for recovery.\n",
1830 if (biolist
== NULL
) {
1832 r10bio_t
*rb2
= r10_bio
;
1833 r10_bio
= (r10bio_t
*) rb2
->master_bio
;
1834 rb2
->master_bio
= NULL
;
1840 /* resync. Schedule a read for every block at this virt offset */
1843 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
1844 &sync_blocks
, mddev
->degraded
) &&
1845 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
1846 /* We can skip this block */
1848 return sync_blocks
+ sectors_skipped
;
1850 if (sync_blocks
< max_sync
)
1851 max_sync
= sync_blocks
;
1852 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
1854 r10_bio
->mddev
= mddev
;
1855 atomic_set(&r10_bio
->remaining
, 0);
1856 raise_barrier(conf
, 0);
1857 conf
->next_resync
= sector_nr
;
1859 r10_bio
->master_bio
= NULL
;
1860 r10_bio
->sector
= sector_nr
;
1861 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
1862 raid10_find_phys(conf
, r10_bio
);
1863 r10_bio
->sectors
= (sector_nr
| conf
->chunk_mask
) - sector_nr
+1;
1865 for (i
=0; i
<conf
->copies
; i
++) {
1866 int d
= r10_bio
->devs
[i
].devnum
;
1867 bio
= r10_bio
->devs
[i
].bio
;
1868 bio
->bi_end_io
= NULL
;
1869 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1870 if (conf
->mirrors
[d
].rdev
== NULL
||
1871 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
))
1873 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1874 atomic_inc(&r10_bio
->remaining
);
1875 bio
->bi_next
= biolist
;
1877 bio
->bi_private
= r10_bio
;
1878 bio
->bi_end_io
= end_sync_read
;
1880 bio
->bi_sector
= r10_bio
->devs
[i
].addr
+
1881 conf
->mirrors
[d
].rdev
->data_offset
;
1882 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1887 for (i
=0; i
<conf
->copies
; i
++) {
1888 int d
= r10_bio
->devs
[i
].devnum
;
1889 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
1890 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1898 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
1900 bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1902 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
1905 bio
->bi_phys_segments
= 0;
1906 bio
->bi_hw_segments
= 0;
1911 if (sector_nr
+ max_sync
< max_sector
)
1912 max_sector
= sector_nr
+ max_sync
;
1915 int len
= PAGE_SIZE
;
1917 if (sector_nr
+ (len
>>9) > max_sector
)
1918 len
= (max_sector
- sector_nr
) << 9;
1921 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
1922 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
1923 if (bio_add_page(bio
, page
, len
, 0) == 0) {
1926 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
1927 for (bio2
= biolist
; bio2
&& bio2
!= bio
; bio2
= bio2
->bi_next
) {
1928 /* remove last page from this bio */
1930 bio2
->bi_size
-= len
;
1931 bio2
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
1937 nr_sectors
+= len
>>9;
1938 sector_nr
+= len
>>9;
1939 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
1941 r10_bio
->sectors
= nr_sectors
;
1945 biolist
= biolist
->bi_next
;
1947 bio
->bi_next
= NULL
;
1948 r10_bio
= bio
->bi_private
;
1949 r10_bio
->sectors
= nr_sectors
;
1951 if (bio
->bi_end_io
== end_sync_read
) {
1952 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
1953 generic_make_request(bio
);
1957 if (sectors_skipped
)
1958 /* pretend they weren't skipped, it makes
1959 * no important difference in this case
1961 md_done_sync(mddev
, sectors_skipped
, 1);
1963 return sectors_skipped
+ nr_sectors
;
1965 /* There is nowhere to write, so all non-sync
1966 * drives must be failed, so try the next chunk...
1969 sector_t sec
= max_sector
- sector_nr
;
1970 sectors_skipped
+= sec
;
1972 sector_nr
= max_sector
;
1977 static int run(mddev_t
*mddev
)
1981 mirror_info_t
*disk
;
1983 struct list_head
*tmp
;
1985 sector_t stride
, size
;
1987 if (mddev
->chunk_size
== 0) {
1988 printk(KERN_ERR
"md/raid10: non-zero chunk size required.\n");
1992 nc
= mddev
->layout
& 255;
1993 fc
= (mddev
->layout
>> 8) & 255;
1994 fo
= mddev
->layout
& (1<<16);
1995 if ((nc
*fc
) <2 || (nc
*fc
) > mddev
->raid_disks
||
1996 (mddev
->layout
>> 17)) {
1997 printk(KERN_ERR
"raid10: %s: unsupported raid10 layout: 0x%8x\n",
1998 mdname(mddev
), mddev
->layout
);
2002 * copy the already verified devices into our private RAID10
2003 * bookkeeping area. [whatever we allocate in run(),
2004 * should be freed in stop()]
2006 conf
= kzalloc(sizeof(conf_t
), GFP_KERNEL
);
2007 mddev
->private = conf
;
2009 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
2013 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
2015 if (!conf
->mirrors
) {
2016 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
2021 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2025 conf
->mddev
= mddev
;
2026 conf
->raid_disks
= mddev
->raid_disks
;
2027 conf
->near_copies
= nc
;
2028 conf
->far_copies
= fc
;
2029 conf
->copies
= nc
*fc
;
2030 conf
->far_offset
= fo
;
2031 conf
->chunk_mask
= (sector_t
)(mddev
->chunk_size
>>9)-1;
2032 conf
->chunk_shift
= ffz(~mddev
->chunk_size
) - 9;
2033 size
= mddev
->size
>> (conf
->chunk_shift
-1);
2034 sector_div(size
, fc
);
2035 size
= size
* conf
->raid_disks
;
2036 sector_div(size
, nc
);
2037 /* 'size' is now the number of chunks in the array */
2038 /* calculate "used chunks per device" in 'stride' */
2039 stride
= size
* conf
->copies
;
2041 /* We need to round up when dividing by raid_disks to
2042 * get the stride size.
2044 stride
+= conf
->raid_disks
- 1;
2045 sector_div(stride
, conf
->raid_disks
);
2046 mddev
->size
= stride
<< (conf
->chunk_shift
-1);
2051 sector_div(stride
, fc
);
2052 conf
->stride
= stride
<< conf
->chunk_shift
;
2054 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
2055 r10bio_pool_free
, conf
);
2056 if (!conf
->r10bio_pool
) {
2057 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
2062 rdev_for_each(rdev
, tmp
, mddev
) {
2063 disk_idx
= rdev
->raid_disk
;
2064 if (disk_idx
>= mddev
->raid_disks
2067 disk
= conf
->mirrors
+ disk_idx
;
2071 blk_queue_stack_limits(mddev
->queue
,
2072 rdev
->bdev
->bd_disk
->queue
);
2073 /* as we don't honour merge_bvec_fn, we must never risk
2074 * violating it, so limit ->max_sector to one PAGE, as
2075 * a one page request is never in violation.
2077 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
&&
2078 mddev
->queue
->max_sectors
> (PAGE_SIZE
>>9))
2079 mddev
->queue
->max_sectors
= (PAGE_SIZE
>>9);
2081 disk
->head_position
= 0;
2083 spin_lock_init(&conf
->device_lock
);
2084 INIT_LIST_HEAD(&conf
->retry_list
);
2086 spin_lock_init(&conf
->resync_lock
);
2087 init_waitqueue_head(&conf
->wait_barrier
);
2089 /* need to check that every block has at least one working mirror */
2090 if (!enough(conf
)) {
2091 printk(KERN_ERR
"raid10: not enough operational mirrors for %s\n",
2096 mddev
->degraded
= 0;
2097 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2099 disk
= conf
->mirrors
+ i
;
2102 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2103 disk
->head_position
= 0;
2109 mddev
->thread
= md_register_thread(raid10d
, mddev
, "%s_raid10");
2110 if (!mddev
->thread
) {
2112 "raid10: couldn't allocate thread for %s\n",
2118 "raid10: raid set %s active with %d out of %d devices\n",
2119 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2122 * Ok, everything is just fine now
2124 mddev
->array_size
= size
<< (conf
->chunk_shift
-1);
2125 mddev
->resync_max_sectors
= size
<< conf
->chunk_shift
;
2127 mddev
->queue
->unplug_fn
= raid10_unplug
;
2128 mddev
->queue
->backing_dev_info
.congested_fn
= raid10_congested
;
2129 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2131 /* Calculate max read-ahead size.
2132 * We need to readahead at least twice a whole stripe....
2136 int stripe
= conf
->raid_disks
* (mddev
->chunk_size
/ PAGE_SIZE
);
2137 stripe
/= conf
->near_copies
;
2138 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2* stripe
)
2139 mddev
->queue
->backing_dev_info
.ra_pages
= 2* stripe
;
2142 if (conf
->near_copies
< mddev
->raid_disks
)
2143 blk_queue_merge_bvec(mddev
->queue
, raid10_mergeable_bvec
);
2147 if (conf
->r10bio_pool
)
2148 mempool_destroy(conf
->r10bio_pool
);
2149 safe_put_page(conf
->tmppage
);
2150 kfree(conf
->mirrors
);
2152 mddev
->private = NULL
;
2157 static int stop(mddev_t
*mddev
)
2159 conf_t
*conf
= mddev_to_conf(mddev
);
2161 md_unregister_thread(mddev
->thread
);
2162 mddev
->thread
= NULL
;
2163 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
2164 if (conf
->r10bio_pool
)
2165 mempool_destroy(conf
->r10bio_pool
);
2166 kfree(conf
->mirrors
);
2168 mddev
->private = NULL
;
2172 static void raid10_quiesce(mddev_t
*mddev
, int state
)
2174 conf_t
*conf
= mddev_to_conf(mddev
);
2178 raise_barrier(conf
, 0);
2181 lower_barrier(conf
);
2184 if (mddev
->thread
) {
2186 mddev
->thread
->timeout
= mddev
->bitmap
->daemon_sleep
* HZ
;
2188 mddev
->thread
->timeout
= MAX_SCHEDULE_TIMEOUT
;
2189 md_wakeup_thread(mddev
->thread
);
2193 static struct mdk_personality raid10_personality
=
2197 .owner
= THIS_MODULE
,
2198 .make_request
= make_request
,
2202 .error_handler
= error
,
2203 .hot_add_disk
= raid10_add_disk
,
2204 .hot_remove_disk
= raid10_remove_disk
,
2205 .spare_active
= raid10_spare_active
,
2206 .sync_request
= sync_request
,
2207 .quiesce
= raid10_quiesce
,
2210 static int __init
raid_init(void)
2212 return register_md_personality(&raid10_personality
);
2215 static void raid_exit(void)
2217 unregister_md_personality(&raid10_personality
);
2220 module_init(raid_init
);
2221 module_exit(raid_exit
);
2222 MODULE_LICENSE("GPL");
2223 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2224 MODULE_ALIAS("md-raid10");
2225 MODULE_ALIAS("md-level-10");