dm io: rename error to error_bits
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / dm-raid1.c
blobc4ce01180b6fc2ca02d7c8c4bb8edce9248bcfcc
1 /*
2 * Copyright (C) 2003 Sistina Software Limited.
4 * This file is released under the GPL.
5 */
7 #include "dm.h"
8 #include "dm-bio-list.h"
9 #include "dm-bio-record.h"
10 #include "dm-io.h"
11 #include "dm-log.h"
12 #include "kcopyd.h"
14 #include <linux/ctype.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/pagemap.h>
19 #include <linux/slab.h>
20 #include <linux/time.h>
21 #include <linux/vmalloc.h>
22 #include <linux/workqueue.h>
23 #include <linux/log2.h>
24 #include <linux/hardirq.h>
26 #define DM_MSG_PREFIX "raid1"
27 #define DM_IO_PAGES 64
29 #define DM_RAID1_HANDLE_ERRORS 0x01
30 #define errors_handled(p) ((p)->features & DM_RAID1_HANDLE_ERRORS)
32 static DECLARE_WAIT_QUEUE_HEAD(_kmirrord_recovery_stopped);
34 /*-----------------------------------------------------------------
35 * Region hash
37 * The mirror splits itself up into discrete regions. Each
38 * region can be in one of three states: clean, dirty,
39 * nosync. There is no need to put clean regions in the hash.
41 * In addition to being present in the hash table a region _may_
42 * be present on one of three lists.
44 * clean_regions: Regions on this list have no io pending to
45 * them, they are in sync, we are no longer interested in them,
46 * they are dull. rh_update_states() will remove them from the
47 * hash table.
49 * quiesced_regions: These regions have been spun down, ready
50 * for recovery. rh_recovery_start() will remove regions from
51 * this list and hand them to kmirrord, which will schedule the
52 * recovery io with kcopyd.
54 * recovered_regions: Regions that kcopyd has successfully
55 * recovered. rh_update_states() will now schedule any delayed
56 * io, up the recovery_count, and remove the region from the
57 * hash.
59 * There are 2 locks:
60 * A rw spin lock 'hash_lock' protects just the hash table,
61 * this is never held in write mode from interrupt context,
62 * which I believe means that we only have to disable irqs when
63 * doing a write lock.
65 * An ordinary spin lock 'region_lock' that protects the three
66 * lists in the region_hash, with the 'state', 'list' and
67 * 'bhs_delayed' fields of the regions. This is used from irq
68 * context, so all other uses will have to suspend local irqs.
69 *---------------------------------------------------------------*/
70 struct mirror_set;
71 struct region_hash {
72 struct mirror_set *ms;
73 uint32_t region_size;
74 unsigned region_shift;
76 /* holds persistent region state */
77 struct dirty_log *log;
79 /* hash table */
80 rwlock_t hash_lock;
81 mempool_t *region_pool;
82 unsigned int mask;
83 unsigned int nr_buckets;
84 struct list_head *buckets;
86 spinlock_t region_lock;
87 atomic_t recovery_in_flight;
88 struct semaphore recovery_count;
89 struct list_head clean_regions;
90 struct list_head quiesced_regions;
91 struct list_head recovered_regions;
92 struct list_head failed_recovered_regions;
95 enum {
96 RH_CLEAN,
97 RH_DIRTY,
98 RH_NOSYNC,
99 RH_RECOVERING
102 struct region {
103 struct region_hash *rh; /* FIXME: can we get rid of this ? */
104 region_t key;
105 int state;
107 struct list_head hash_list;
108 struct list_head list;
110 atomic_t pending;
111 struct bio_list delayed_bios;
115 /*-----------------------------------------------------------------
116 * Mirror set structures.
117 *---------------------------------------------------------------*/
118 enum dm_raid1_error {
119 DM_RAID1_WRITE_ERROR,
120 DM_RAID1_SYNC_ERROR,
121 DM_RAID1_READ_ERROR
124 struct mirror {
125 struct mirror_set *ms;
126 atomic_t error_count;
127 unsigned long error_type;
128 struct dm_dev *dev;
129 sector_t offset;
132 struct mirror_set {
133 struct dm_target *ti;
134 struct list_head list;
135 struct region_hash rh;
136 struct kcopyd_client *kcopyd_client;
137 uint64_t features;
139 spinlock_t lock; /* protects the lists */
140 struct bio_list reads;
141 struct bio_list writes;
142 struct bio_list failures;
144 struct dm_io_client *io_client;
145 mempool_t *read_record_pool;
147 /* recovery */
148 region_t nr_regions;
149 int in_sync;
150 int log_failure;
151 atomic_t suspend;
153 atomic_t default_mirror; /* Default mirror */
155 struct workqueue_struct *kmirrord_wq;
156 struct work_struct kmirrord_work;
157 struct work_struct trigger_event;
159 unsigned int nr_mirrors;
160 struct mirror mirror[0];
164 * Conversion fns
166 static inline region_t bio_to_region(struct region_hash *rh, struct bio *bio)
168 return (bio->bi_sector - rh->ms->ti->begin) >> rh->region_shift;
171 static inline sector_t region_to_sector(struct region_hash *rh, region_t region)
173 return region << rh->region_shift;
176 static void wake(struct mirror_set *ms)
178 queue_work(ms->kmirrord_wq, &ms->kmirrord_work);
181 /* FIXME move this */
182 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw);
184 #define MIN_REGIONS 64
185 #define MAX_RECOVERY 1
186 static int rh_init(struct region_hash *rh, struct mirror_set *ms,
187 struct dirty_log *log, uint32_t region_size,
188 region_t nr_regions)
190 unsigned int nr_buckets, max_buckets;
191 size_t i;
194 * Calculate a suitable number of buckets for our hash
195 * table.
197 max_buckets = nr_regions >> 6;
198 for (nr_buckets = 128u; nr_buckets < max_buckets; nr_buckets <<= 1)
200 nr_buckets >>= 1;
202 rh->ms = ms;
203 rh->log = log;
204 rh->region_size = region_size;
205 rh->region_shift = ffs(region_size) - 1;
206 rwlock_init(&rh->hash_lock);
207 rh->mask = nr_buckets - 1;
208 rh->nr_buckets = nr_buckets;
210 rh->buckets = vmalloc(nr_buckets * sizeof(*rh->buckets));
211 if (!rh->buckets) {
212 DMERR("unable to allocate region hash memory");
213 return -ENOMEM;
216 for (i = 0; i < nr_buckets; i++)
217 INIT_LIST_HEAD(rh->buckets + i);
219 spin_lock_init(&rh->region_lock);
220 sema_init(&rh->recovery_count, 0);
221 atomic_set(&rh->recovery_in_flight, 0);
222 INIT_LIST_HEAD(&rh->clean_regions);
223 INIT_LIST_HEAD(&rh->quiesced_regions);
224 INIT_LIST_HEAD(&rh->recovered_regions);
225 INIT_LIST_HEAD(&rh->failed_recovered_regions);
227 rh->region_pool = mempool_create_kmalloc_pool(MIN_REGIONS,
228 sizeof(struct region));
229 if (!rh->region_pool) {
230 vfree(rh->buckets);
231 rh->buckets = NULL;
232 return -ENOMEM;
235 return 0;
238 static void rh_exit(struct region_hash *rh)
240 unsigned int h;
241 struct region *reg, *nreg;
243 BUG_ON(!list_empty(&rh->quiesced_regions));
244 for (h = 0; h < rh->nr_buckets; h++) {
245 list_for_each_entry_safe(reg, nreg, rh->buckets + h, hash_list) {
246 BUG_ON(atomic_read(&reg->pending));
247 mempool_free(reg, rh->region_pool);
251 if (rh->log)
252 dm_destroy_dirty_log(rh->log);
253 if (rh->region_pool)
254 mempool_destroy(rh->region_pool);
255 vfree(rh->buckets);
258 #define RH_HASH_MULT 2654435387U
260 static inline unsigned int rh_hash(struct region_hash *rh, region_t region)
262 return (unsigned int) ((region * RH_HASH_MULT) >> 12) & rh->mask;
265 static struct region *__rh_lookup(struct region_hash *rh, region_t region)
267 struct region *reg;
269 list_for_each_entry (reg, rh->buckets + rh_hash(rh, region), hash_list)
270 if (reg->key == region)
271 return reg;
273 return NULL;
276 static void __rh_insert(struct region_hash *rh, struct region *reg)
278 unsigned int h = rh_hash(rh, reg->key);
279 list_add(&reg->hash_list, rh->buckets + h);
282 static struct region *__rh_alloc(struct region_hash *rh, region_t region)
284 struct region *reg, *nreg;
286 read_unlock(&rh->hash_lock);
287 nreg = mempool_alloc(rh->region_pool, GFP_ATOMIC);
288 if (unlikely(!nreg))
289 nreg = kmalloc(sizeof(struct region), GFP_NOIO);
290 nreg->state = rh->log->type->in_sync(rh->log, region, 1) ?
291 RH_CLEAN : RH_NOSYNC;
292 nreg->rh = rh;
293 nreg->key = region;
295 INIT_LIST_HEAD(&nreg->list);
297 atomic_set(&nreg->pending, 0);
298 bio_list_init(&nreg->delayed_bios);
299 write_lock_irq(&rh->hash_lock);
301 reg = __rh_lookup(rh, region);
302 if (reg)
303 /* we lost the race */
304 mempool_free(nreg, rh->region_pool);
306 else {
307 __rh_insert(rh, nreg);
308 if (nreg->state == RH_CLEAN) {
309 spin_lock(&rh->region_lock);
310 list_add(&nreg->list, &rh->clean_regions);
311 spin_unlock(&rh->region_lock);
313 reg = nreg;
315 write_unlock_irq(&rh->hash_lock);
316 read_lock(&rh->hash_lock);
318 return reg;
321 static inline struct region *__rh_find(struct region_hash *rh, region_t region)
323 struct region *reg;
325 reg = __rh_lookup(rh, region);
326 if (!reg)
327 reg = __rh_alloc(rh, region);
329 return reg;
332 static int rh_state(struct region_hash *rh, region_t region, int may_block)
334 int r;
335 struct region *reg;
337 read_lock(&rh->hash_lock);
338 reg = __rh_lookup(rh, region);
339 read_unlock(&rh->hash_lock);
341 if (reg)
342 return reg->state;
345 * The region wasn't in the hash, so we fall back to the
346 * dirty log.
348 r = rh->log->type->in_sync(rh->log, region, may_block);
351 * Any error from the dirty log (eg. -EWOULDBLOCK) gets
352 * taken as a RH_NOSYNC
354 return r == 1 ? RH_CLEAN : RH_NOSYNC;
357 static inline int rh_in_sync(struct region_hash *rh,
358 region_t region, int may_block)
360 int state = rh_state(rh, region, may_block);
361 return state == RH_CLEAN || state == RH_DIRTY;
364 static void dispatch_bios(struct mirror_set *ms, struct bio_list *bio_list)
366 struct bio *bio;
368 while ((bio = bio_list_pop(bio_list))) {
369 queue_bio(ms, bio, WRITE);
373 static void complete_resync_work(struct region *reg, int success)
375 struct region_hash *rh = reg->rh;
377 rh->log->type->set_region_sync(rh->log, reg->key, success);
380 * Dispatch the bios before we call 'wake_up_all'.
381 * This is important because if we are suspending,
382 * we want to know that recovery is complete and
383 * the work queue is flushed. If we wake_up_all
384 * before we dispatch_bios (queue bios and call wake()),
385 * then we risk suspending before the work queue
386 * has been properly flushed.
388 dispatch_bios(rh->ms, &reg->delayed_bios);
389 if (atomic_dec_and_test(&rh->recovery_in_flight))
390 wake_up_all(&_kmirrord_recovery_stopped);
391 up(&rh->recovery_count);
394 static void rh_update_states(struct region_hash *rh)
396 struct region *reg, *next;
398 LIST_HEAD(clean);
399 LIST_HEAD(recovered);
400 LIST_HEAD(failed_recovered);
403 * Quickly grab the lists.
405 write_lock_irq(&rh->hash_lock);
406 spin_lock(&rh->region_lock);
407 if (!list_empty(&rh->clean_regions)) {
408 list_splice_init(&rh->clean_regions, &clean);
410 list_for_each_entry(reg, &clean, list)
411 list_del(&reg->hash_list);
414 if (!list_empty(&rh->recovered_regions)) {
415 list_splice_init(&rh->recovered_regions, &recovered);
417 list_for_each_entry (reg, &recovered, list)
418 list_del(&reg->hash_list);
421 if (!list_empty(&rh->failed_recovered_regions)) {
422 list_splice_init(&rh->failed_recovered_regions,
423 &failed_recovered);
425 list_for_each_entry(reg, &failed_recovered, list)
426 list_del(&reg->hash_list);
429 spin_unlock(&rh->region_lock);
430 write_unlock_irq(&rh->hash_lock);
433 * All the regions on the recovered and clean lists have
434 * now been pulled out of the system, so no need to do
435 * any more locking.
437 list_for_each_entry_safe (reg, next, &recovered, list) {
438 rh->log->type->clear_region(rh->log, reg->key);
439 complete_resync_work(reg, 1);
440 mempool_free(reg, rh->region_pool);
443 list_for_each_entry_safe(reg, next, &failed_recovered, list) {
444 complete_resync_work(reg, errors_handled(rh->ms) ? 0 : 1);
445 mempool_free(reg, rh->region_pool);
448 list_for_each_entry_safe(reg, next, &clean, list) {
449 rh->log->type->clear_region(rh->log, reg->key);
450 mempool_free(reg, rh->region_pool);
453 rh->log->type->flush(rh->log);
456 static void rh_inc(struct region_hash *rh, region_t region)
458 struct region *reg;
460 read_lock(&rh->hash_lock);
461 reg = __rh_find(rh, region);
463 spin_lock_irq(&rh->region_lock);
464 atomic_inc(&reg->pending);
466 if (reg->state == RH_CLEAN) {
467 reg->state = RH_DIRTY;
468 list_del_init(&reg->list); /* take off the clean list */
469 spin_unlock_irq(&rh->region_lock);
471 rh->log->type->mark_region(rh->log, reg->key);
472 } else
473 spin_unlock_irq(&rh->region_lock);
476 read_unlock(&rh->hash_lock);
479 static void rh_inc_pending(struct region_hash *rh, struct bio_list *bios)
481 struct bio *bio;
483 for (bio = bios->head; bio; bio = bio->bi_next)
484 rh_inc(rh, bio_to_region(rh, bio));
487 static void rh_dec(struct region_hash *rh, region_t region)
489 unsigned long flags;
490 struct region *reg;
491 int should_wake = 0;
493 read_lock(&rh->hash_lock);
494 reg = __rh_lookup(rh, region);
495 read_unlock(&rh->hash_lock);
497 spin_lock_irqsave(&rh->region_lock, flags);
498 if (atomic_dec_and_test(&reg->pending)) {
500 * There is no pending I/O for this region.
501 * We can move the region to corresponding list for next action.
502 * At this point, the region is not yet connected to any list.
504 * If the state is RH_NOSYNC, the region should be kept off
505 * from clean list.
506 * The hash entry for RH_NOSYNC will remain in memory
507 * until the region is recovered or the map is reloaded.
510 /* do nothing for RH_NOSYNC */
511 if (reg->state == RH_RECOVERING) {
512 list_add_tail(&reg->list, &rh->quiesced_regions);
513 } else if (reg->state == RH_DIRTY) {
514 reg->state = RH_CLEAN;
515 list_add(&reg->list, &rh->clean_regions);
517 should_wake = 1;
519 spin_unlock_irqrestore(&rh->region_lock, flags);
521 if (should_wake)
522 wake(rh->ms);
526 * Starts quiescing a region in preparation for recovery.
528 static int __rh_recovery_prepare(struct region_hash *rh)
530 int r;
531 struct region *reg;
532 region_t region;
535 * Ask the dirty log what's next.
537 r = rh->log->type->get_resync_work(rh->log, &region);
538 if (r <= 0)
539 return r;
542 * Get this region, and start it quiescing by setting the
543 * recovering flag.
545 read_lock(&rh->hash_lock);
546 reg = __rh_find(rh, region);
547 read_unlock(&rh->hash_lock);
549 spin_lock_irq(&rh->region_lock);
550 reg->state = RH_RECOVERING;
552 /* Already quiesced ? */
553 if (atomic_read(&reg->pending))
554 list_del_init(&reg->list);
555 else
556 list_move(&reg->list, &rh->quiesced_regions);
558 spin_unlock_irq(&rh->region_lock);
560 return 1;
563 static void rh_recovery_prepare(struct region_hash *rh)
565 /* Extra reference to avoid race with rh_stop_recovery */
566 atomic_inc(&rh->recovery_in_flight);
568 while (!down_trylock(&rh->recovery_count)) {
569 atomic_inc(&rh->recovery_in_flight);
570 if (__rh_recovery_prepare(rh) <= 0) {
571 atomic_dec(&rh->recovery_in_flight);
572 up(&rh->recovery_count);
573 break;
577 /* Drop the extra reference */
578 if (atomic_dec_and_test(&rh->recovery_in_flight))
579 wake_up_all(&_kmirrord_recovery_stopped);
583 * Returns any quiesced regions.
585 static struct region *rh_recovery_start(struct region_hash *rh)
587 struct region *reg = NULL;
589 spin_lock_irq(&rh->region_lock);
590 if (!list_empty(&rh->quiesced_regions)) {
591 reg = list_entry(rh->quiesced_regions.next,
592 struct region, list);
593 list_del_init(&reg->list); /* remove from the quiesced list */
595 spin_unlock_irq(&rh->region_lock);
597 return reg;
600 static void rh_recovery_end(struct region *reg, int success)
602 struct region_hash *rh = reg->rh;
604 spin_lock_irq(&rh->region_lock);
605 if (success)
606 list_add(&reg->list, &reg->rh->recovered_regions);
607 else {
608 reg->state = RH_NOSYNC;
609 list_add(&reg->list, &reg->rh->failed_recovered_regions);
611 spin_unlock_irq(&rh->region_lock);
613 wake(rh->ms);
616 static int rh_flush(struct region_hash *rh)
618 return rh->log->type->flush(rh->log);
621 static void rh_delay(struct region_hash *rh, struct bio *bio)
623 struct region *reg;
625 read_lock(&rh->hash_lock);
626 reg = __rh_find(rh, bio_to_region(rh, bio));
627 bio_list_add(&reg->delayed_bios, bio);
628 read_unlock(&rh->hash_lock);
631 static void rh_stop_recovery(struct region_hash *rh)
633 int i;
635 /* wait for any recovering regions */
636 for (i = 0; i < MAX_RECOVERY; i++)
637 down(&rh->recovery_count);
640 static void rh_start_recovery(struct region_hash *rh)
642 int i;
644 for (i = 0; i < MAX_RECOVERY; i++)
645 up(&rh->recovery_count);
647 wake(rh->ms);
650 #define MIN_READ_RECORDS 20
651 struct dm_raid1_read_record {
652 struct mirror *m;
653 struct dm_bio_details details;
657 * Every mirror should look like this one.
659 #define DEFAULT_MIRROR 0
662 * This is yucky. We squirrel the mirror struct away inside
663 * bi_next for read/write buffers. This is safe since the bh
664 * doesn't get submitted to the lower levels of block layer.
666 static struct mirror *bio_get_m(struct bio *bio)
668 return (struct mirror *) bio->bi_next;
671 static void bio_set_m(struct bio *bio, struct mirror *m)
673 bio->bi_next = (struct bio *) m;
676 static struct mirror *get_default_mirror(struct mirror_set *ms)
678 return &ms->mirror[atomic_read(&ms->default_mirror)];
681 static void set_default_mirror(struct mirror *m)
683 struct mirror_set *ms = m->ms;
684 struct mirror *m0 = &(ms->mirror[0]);
686 atomic_set(&ms->default_mirror, m - m0);
689 /* fail_mirror
690 * @m: mirror device to fail
691 * @error_type: one of the enum's, DM_RAID1_*_ERROR
693 * If errors are being handled, record the type of
694 * error encountered for this device. If this type
695 * of error has already been recorded, we can return;
696 * otherwise, we must signal userspace by triggering
697 * an event. Additionally, if the device is the
698 * primary device, we must choose a new primary, but
699 * only if the mirror is in-sync.
701 * This function must not block.
703 static void fail_mirror(struct mirror *m, enum dm_raid1_error error_type)
705 struct mirror_set *ms = m->ms;
706 struct mirror *new;
708 if (!errors_handled(ms))
709 return;
712 * error_count is used for nothing more than a
713 * simple way to tell if a device has encountered
714 * errors.
716 atomic_inc(&m->error_count);
718 if (test_and_set_bit(error_type, &m->error_type))
719 return;
721 if (m != get_default_mirror(ms))
722 goto out;
724 if (!ms->in_sync) {
726 * Better to issue requests to same failing device
727 * than to risk returning corrupt data.
729 DMERR("Primary mirror (%s) failed while out-of-sync: "
730 "Reads may fail.", m->dev->name);
731 goto out;
734 for (new = ms->mirror; new < ms->mirror + ms->nr_mirrors; new++)
735 if (!atomic_read(&new->error_count)) {
736 set_default_mirror(new);
737 break;
740 if (unlikely(new == ms->mirror + ms->nr_mirrors))
741 DMWARN("All sides of mirror have failed.");
743 out:
744 schedule_work(&ms->trigger_event);
747 /*-----------------------------------------------------------------
748 * Recovery.
750 * When a mirror is first activated we may find that some regions
751 * are in the no-sync state. We have to recover these by
752 * recopying from the default mirror to all the others.
753 *---------------------------------------------------------------*/
754 static void recovery_complete(int read_err, unsigned long write_err,
755 void *context)
757 struct region *reg = (struct region *)context;
758 struct mirror_set *ms = reg->rh->ms;
759 int m, bit = 0;
761 if (read_err) {
762 /* Read error means the failure of default mirror. */
763 DMERR_LIMIT("Unable to read primary mirror during recovery");
764 fail_mirror(get_default_mirror(ms), DM_RAID1_SYNC_ERROR);
767 if (write_err) {
768 DMERR_LIMIT("Write error during recovery (error = 0x%lx)",
769 write_err);
771 * Bits correspond to devices (excluding default mirror).
772 * The default mirror cannot change during recovery.
774 for (m = 0; m < ms->nr_mirrors; m++) {
775 if (&ms->mirror[m] == get_default_mirror(ms))
776 continue;
777 if (test_bit(bit, &write_err))
778 fail_mirror(ms->mirror + m,
779 DM_RAID1_SYNC_ERROR);
780 bit++;
784 rh_recovery_end(reg, !(read_err || write_err));
787 static int recover(struct mirror_set *ms, struct region *reg)
789 int r;
790 unsigned int i;
791 struct io_region from, to[KCOPYD_MAX_REGIONS], *dest;
792 struct mirror *m;
793 unsigned long flags = 0;
795 /* fill in the source */
796 m = get_default_mirror(ms);
797 from.bdev = m->dev->bdev;
798 from.sector = m->offset + region_to_sector(reg->rh, reg->key);
799 if (reg->key == (ms->nr_regions - 1)) {
801 * The final region may be smaller than
802 * region_size.
804 from.count = ms->ti->len & (reg->rh->region_size - 1);
805 if (!from.count)
806 from.count = reg->rh->region_size;
807 } else
808 from.count = reg->rh->region_size;
810 /* fill in the destinations */
811 for (i = 0, dest = to; i < ms->nr_mirrors; i++) {
812 if (&ms->mirror[i] == get_default_mirror(ms))
813 continue;
815 m = ms->mirror + i;
816 dest->bdev = m->dev->bdev;
817 dest->sector = m->offset + region_to_sector(reg->rh, reg->key);
818 dest->count = from.count;
819 dest++;
822 /* hand to kcopyd */
823 set_bit(KCOPYD_IGNORE_ERROR, &flags);
824 r = kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to, flags,
825 recovery_complete, reg);
827 return r;
830 static void do_recovery(struct mirror_set *ms)
832 int r;
833 struct region *reg;
834 struct dirty_log *log = ms->rh.log;
837 * Start quiescing some regions.
839 rh_recovery_prepare(&ms->rh);
842 * Copy any already quiesced regions.
844 while ((reg = rh_recovery_start(&ms->rh))) {
845 r = recover(ms, reg);
846 if (r)
847 rh_recovery_end(reg, 0);
851 * Update the in sync flag.
853 if (!ms->in_sync &&
854 (log->type->get_sync_count(log) == ms->nr_regions)) {
855 /* the sync is complete */
856 dm_table_event(ms->ti->table);
857 ms->in_sync = 1;
861 /*-----------------------------------------------------------------
862 * Reads
863 *---------------------------------------------------------------*/
864 static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector)
866 struct mirror *m = get_default_mirror(ms);
868 do {
869 if (likely(!atomic_read(&m->error_count)))
870 return m;
872 if (m-- == ms->mirror)
873 m += ms->nr_mirrors;
874 } while (m != get_default_mirror(ms));
876 return NULL;
879 static int default_ok(struct mirror *m)
881 struct mirror *default_mirror = get_default_mirror(m->ms);
883 return !atomic_read(&default_mirror->error_count);
886 static int mirror_available(struct mirror_set *ms, struct bio *bio)
888 region_t region = bio_to_region(&ms->rh, bio);
890 if (ms->rh.log->type->in_sync(ms->rh.log, region, 0))
891 return choose_mirror(ms, bio->bi_sector) ? 1 : 0;
893 return 0;
897 * remap a buffer to a particular mirror.
899 static sector_t map_sector(struct mirror *m, struct bio *bio)
901 return m->offset + (bio->bi_sector - m->ms->ti->begin);
904 static void map_bio(struct mirror *m, struct bio *bio)
906 bio->bi_bdev = m->dev->bdev;
907 bio->bi_sector = map_sector(m, bio);
910 static void map_region(struct io_region *io, struct mirror *m,
911 struct bio *bio)
913 io->bdev = m->dev->bdev;
914 io->sector = map_sector(m, bio);
915 io->count = bio->bi_size >> 9;
918 /*-----------------------------------------------------------------
919 * Reads
920 *---------------------------------------------------------------*/
921 static void read_callback(unsigned long error, void *context)
923 struct bio *bio = context;
924 struct mirror *m;
926 m = bio_get_m(bio);
927 bio_set_m(bio, NULL);
929 if (likely(!error)) {
930 bio_endio(bio, 0);
931 return;
934 fail_mirror(m, DM_RAID1_READ_ERROR);
936 if (likely(default_ok(m)) || mirror_available(m->ms, bio)) {
937 DMWARN_LIMIT("Read failure on mirror device %s. "
938 "Trying alternative device.",
939 m->dev->name);
940 queue_bio(m->ms, bio, bio_rw(bio));
941 return;
944 DMERR_LIMIT("Read failure on mirror device %s. Failing I/O.",
945 m->dev->name);
946 bio_endio(bio, -EIO);
949 /* Asynchronous read. */
950 static void read_async_bio(struct mirror *m, struct bio *bio)
952 struct io_region io;
953 struct dm_io_request io_req = {
954 .bi_rw = READ,
955 .mem.type = DM_IO_BVEC,
956 .mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx,
957 .notify.fn = read_callback,
958 .notify.context = bio,
959 .client = m->ms->io_client,
962 map_region(&io, m, bio);
963 bio_set_m(bio, m);
964 (void) dm_io(&io_req, 1, &io, NULL);
967 static void do_reads(struct mirror_set *ms, struct bio_list *reads)
969 region_t region;
970 struct bio *bio;
971 struct mirror *m;
973 while ((bio = bio_list_pop(reads))) {
974 region = bio_to_region(&ms->rh, bio);
975 m = get_default_mirror(ms);
978 * We can only read balance if the region is in sync.
980 if (likely(rh_in_sync(&ms->rh, region, 1)))
981 m = choose_mirror(ms, bio->bi_sector);
982 else if (m && atomic_read(&m->error_count))
983 m = NULL;
985 if (likely(m))
986 read_async_bio(m, bio);
987 else
988 bio_endio(bio, -EIO);
992 /*-----------------------------------------------------------------
993 * Writes.
995 * We do different things with the write io depending on the
996 * state of the region that it's in:
998 * SYNC: increment pending, use kcopyd to write to *all* mirrors
999 * RECOVERING: delay the io until recovery completes
1000 * NOSYNC: increment pending, just write to the default mirror
1001 *---------------------------------------------------------------*/
1003 /* __bio_mark_nosync
1004 * @ms
1005 * @bio
1006 * @done
1007 * @error
1009 * The bio was written on some mirror(s) but failed on other mirror(s).
1010 * We can successfully endio the bio but should avoid the region being
1011 * marked clean by setting the state RH_NOSYNC.
1013 * This function is _not_ safe in interrupt context!
1015 static void __bio_mark_nosync(struct mirror_set *ms,
1016 struct bio *bio, unsigned done, int error)
1018 unsigned long flags;
1019 struct region_hash *rh = &ms->rh;
1020 struct dirty_log *log = ms->rh.log;
1021 struct region *reg;
1022 region_t region = bio_to_region(rh, bio);
1023 int recovering = 0;
1025 /* We must inform the log that the sync count has changed. */
1026 log->type->set_region_sync(log, region, 0);
1027 ms->in_sync = 0;
1029 read_lock(&rh->hash_lock);
1030 reg = __rh_find(rh, region);
1031 read_unlock(&rh->hash_lock);
1033 /* region hash entry should exist because write was in-flight */
1034 BUG_ON(!reg);
1035 BUG_ON(!list_empty(&reg->list));
1037 spin_lock_irqsave(&rh->region_lock, flags);
1039 * Possible cases:
1040 * 1) RH_DIRTY
1041 * 2) RH_NOSYNC: was dirty, other preceeding writes failed
1042 * 3) RH_RECOVERING: flushing pending writes
1043 * Either case, the region should have not been connected to list.
1045 recovering = (reg->state == RH_RECOVERING);
1046 reg->state = RH_NOSYNC;
1047 BUG_ON(!list_empty(&reg->list));
1048 spin_unlock_irqrestore(&rh->region_lock, flags);
1050 bio_endio(bio, error);
1051 if (recovering)
1052 complete_resync_work(reg, 0);
1055 static void write_callback(unsigned long error, void *context)
1057 unsigned i, ret = 0;
1058 struct bio *bio = (struct bio *) context;
1059 struct mirror_set *ms;
1060 int uptodate = 0;
1061 int should_wake = 0;
1062 unsigned long flags;
1064 ms = bio_get_m(bio)->ms;
1065 bio_set_m(bio, NULL);
1068 * NOTE: We don't decrement the pending count here,
1069 * instead it is done by the targets endio function.
1070 * This way we handle both writes to SYNC and NOSYNC
1071 * regions with the same code.
1073 if (likely(!error))
1074 goto out;
1076 for (i = 0; i < ms->nr_mirrors; i++)
1077 if (test_bit(i, &error))
1078 fail_mirror(ms->mirror + i, DM_RAID1_WRITE_ERROR);
1079 else
1080 uptodate = 1;
1082 if (unlikely(!uptodate)) {
1083 DMERR("All replicated volumes dead, failing I/O");
1084 /* None of the writes succeeded, fail the I/O. */
1085 ret = -EIO;
1086 } else if (errors_handled(ms)) {
1088 * Need to raise event. Since raising
1089 * events can block, we need to do it in
1090 * the main thread.
1092 spin_lock_irqsave(&ms->lock, flags);
1093 if (!ms->failures.head)
1094 should_wake = 1;
1095 bio_list_add(&ms->failures, bio);
1096 spin_unlock_irqrestore(&ms->lock, flags);
1097 if (should_wake)
1098 wake(ms);
1099 return;
1101 out:
1102 bio_endio(bio, ret);
1105 static void do_write(struct mirror_set *ms, struct bio *bio)
1107 unsigned int i;
1108 struct io_region io[ms->nr_mirrors], *dest = io;
1109 struct mirror *m;
1110 struct dm_io_request io_req = {
1111 .bi_rw = WRITE,
1112 .mem.type = DM_IO_BVEC,
1113 .mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx,
1114 .notify.fn = write_callback,
1115 .notify.context = bio,
1116 .client = ms->io_client,
1119 for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++)
1120 map_region(dest++, m, bio);
1123 * Use default mirror because we only need it to retrieve the reference
1124 * to the mirror set in write_callback().
1126 bio_set_m(bio, get_default_mirror(ms));
1128 (void) dm_io(&io_req, ms->nr_mirrors, io, NULL);
1131 static void do_writes(struct mirror_set *ms, struct bio_list *writes)
1133 int state;
1134 struct bio *bio;
1135 struct bio_list sync, nosync, recover, *this_list = NULL;
1137 if (!writes->head)
1138 return;
1141 * Classify each write.
1143 bio_list_init(&sync);
1144 bio_list_init(&nosync);
1145 bio_list_init(&recover);
1147 while ((bio = bio_list_pop(writes))) {
1148 state = rh_state(&ms->rh, bio_to_region(&ms->rh, bio), 1);
1149 switch (state) {
1150 case RH_CLEAN:
1151 case RH_DIRTY:
1152 this_list = &sync;
1153 break;
1155 case RH_NOSYNC:
1156 this_list = &nosync;
1157 break;
1159 case RH_RECOVERING:
1160 this_list = &recover;
1161 break;
1164 bio_list_add(this_list, bio);
1168 * Increment the pending counts for any regions that will
1169 * be written to (writes to recover regions are going to
1170 * be delayed).
1172 rh_inc_pending(&ms->rh, &sync);
1173 rh_inc_pending(&ms->rh, &nosync);
1174 ms->log_failure = rh_flush(&ms->rh) ? 1 : 0;
1177 * Dispatch io.
1179 if (unlikely(ms->log_failure)) {
1180 spin_lock_irq(&ms->lock);
1181 bio_list_merge(&ms->failures, &sync);
1182 spin_unlock_irq(&ms->lock);
1183 } else
1184 while ((bio = bio_list_pop(&sync)))
1185 do_write(ms, bio);
1187 while ((bio = bio_list_pop(&recover)))
1188 rh_delay(&ms->rh, bio);
1190 while ((bio = bio_list_pop(&nosync))) {
1191 map_bio(get_default_mirror(ms), bio);
1192 generic_make_request(bio);
1196 static void do_failures(struct mirror_set *ms, struct bio_list *failures)
1198 struct bio *bio;
1200 if (!failures->head)
1201 return;
1203 if (!ms->log_failure) {
1204 while ((bio = bio_list_pop(failures)))
1205 __bio_mark_nosync(ms, bio, bio->bi_size, 0);
1206 return;
1210 * If the log has failed, unattempted writes are being
1211 * put on the failures list. We can't issue those writes
1212 * until a log has been marked, so we must store them.
1214 * If a 'noflush' suspend is in progress, we can requeue
1215 * the I/O's to the core. This give userspace a chance
1216 * to reconfigure the mirror, at which point the core
1217 * will reissue the writes. If the 'noflush' flag is
1218 * not set, we have no choice but to return errors.
1220 * Some writes on the failures list may have been
1221 * submitted before the log failure and represent a
1222 * failure to write to one of the devices. It is ok
1223 * for us to treat them the same and requeue them
1224 * as well.
1226 if (dm_noflush_suspending(ms->ti)) {
1227 while ((bio = bio_list_pop(failures)))
1228 bio_endio(bio, DM_ENDIO_REQUEUE);
1229 return;
1232 if (atomic_read(&ms->suspend)) {
1233 while ((bio = bio_list_pop(failures)))
1234 bio_endio(bio, -EIO);
1235 return;
1238 spin_lock_irq(&ms->lock);
1239 bio_list_merge(&ms->failures, failures);
1240 spin_unlock_irq(&ms->lock);
1242 wake(ms);
1245 static void trigger_event(struct work_struct *work)
1247 struct mirror_set *ms =
1248 container_of(work, struct mirror_set, trigger_event);
1250 dm_table_event(ms->ti->table);
1253 /*-----------------------------------------------------------------
1254 * kmirrord
1255 *---------------------------------------------------------------*/
1256 static int _do_mirror(struct work_struct *work)
1258 struct mirror_set *ms =container_of(work, struct mirror_set,
1259 kmirrord_work);
1260 struct bio_list reads, writes, failures;
1261 unsigned long flags;
1263 spin_lock_irqsave(&ms->lock, flags);
1264 reads = ms->reads;
1265 writes = ms->writes;
1266 failures = ms->failures;
1267 bio_list_init(&ms->reads);
1268 bio_list_init(&ms->writes);
1269 bio_list_init(&ms->failures);
1270 spin_unlock_irqrestore(&ms->lock, flags);
1272 rh_update_states(&ms->rh);
1273 do_recovery(ms);
1274 do_reads(ms, &reads);
1275 do_writes(ms, &writes);
1276 do_failures(ms, &failures);
1278 return (ms->failures.head) ? 1 : 0;
1281 static void do_mirror(struct work_struct *work)
1284 * If _do_mirror returns 1, we give it
1285 * another shot. This helps for cases like
1286 * 'suspend' where we call flush_workqueue
1287 * and expect all work to be finished. If
1288 * a failure happens during a suspend, we
1289 * couldn't issue a 'wake' because it would
1290 * not be honored. Therefore, we return '1'
1291 * from _do_mirror, and retry here.
1293 while (_do_mirror(work))
1294 schedule();
1298 /*-----------------------------------------------------------------
1299 * Target functions
1300 *---------------------------------------------------------------*/
1301 static struct mirror_set *alloc_context(unsigned int nr_mirrors,
1302 uint32_t region_size,
1303 struct dm_target *ti,
1304 struct dirty_log *dl)
1306 size_t len;
1307 struct mirror_set *ms = NULL;
1309 if (array_too_big(sizeof(*ms), sizeof(ms->mirror[0]), nr_mirrors))
1310 return NULL;
1312 len = sizeof(*ms) + (sizeof(ms->mirror[0]) * nr_mirrors);
1314 ms = kzalloc(len, GFP_KERNEL);
1315 if (!ms) {
1316 ti->error = "Cannot allocate mirror context";
1317 return NULL;
1320 spin_lock_init(&ms->lock);
1322 ms->ti = ti;
1323 ms->nr_mirrors = nr_mirrors;
1324 ms->nr_regions = dm_sector_div_up(ti->len, region_size);
1325 ms->in_sync = 0;
1326 ms->log_failure = 0;
1327 atomic_set(&ms->suspend, 0);
1328 atomic_set(&ms->default_mirror, DEFAULT_MIRROR);
1330 len = sizeof(struct dm_raid1_read_record);
1331 ms->read_record_pool = mempool_create_kmalloc_pool(MIN_READ_RECORDS,
1332 len);
1333 if (!ms->read_record_pool) {
1334 ti->error = "Error creating mirror read_record_pool";
1335 kfree(ms);
1336 return NULL;
1339 ms->io_client = dm_io_client_create(DM_IO_PAGES);
1340 if (IS_ERR(ms->io_client)) {
1341 ti->error = "Error creating dm_io client";
1342 mempool_destroy(ms->read_record_pool);
1343 kfree(ms);
1344 return NULL;
1347 if (rh_init(&ms->rh, ms, dl, region_size, ms->nr_regions)) {
1348 ti->error = "Error creating dirty region hash";
1349 dm_io_client_destroy(ms->io_client);
1350 mempool_destroy(ms->read_record_pool);
1351 kfree(ms);
1352 return NULL;
1355 return ms;
1358 static void free_context(struct mirror_set *ms, struct dm_target *ti,
1359 unsigned int m)
1361 while (m--)
1362 dm_put_device(ti, ms->mirror[m].dev);
1364 dm_io_client_destroy(ms->io_client);
1365 rh_exit(&ms->rh);
1366 mempool_destroy(ms->read_record_pool);
1367 kfree(ms);
1370 static inline int _check_region_size(struct dm_target *ti, uint32_t size)
1372 return !(size % (PAGE_SIZE >> 9) || !is_power_of_2(size) ||
1373 size > ti->len);
1376 static int get_mirror(struct mirror_set *ms, struct dm_target *ti,
1377 unsigned int mirror, char **argv)
1379 unsigned long long offset;
1381 if (sscanf(argv[1], "%llu", &offset) != 1) {
1382 ti->error = "Invalid offset";
1383 return -EINVAL;
1386 if (dm_get_device(ti, argv[0], offset, ti->len,
1387 dm_table_get_mode(ti->table),
1388 &ms->mirror[mirror].dev)) {
1389 ti->error = "Device lookup failure";
1390 return -ENXIO;
1393 ms->mirror[mirror].ms = ms;
1394 atomic_set(&(ms->mirror[mirror].error_count), 0);
1395 ms->mirror[mirror].error_type = 0;
1396 ms->mirror[mirror].offset = offset;
1398 return 0;
1402 * Create dirty log: log_type #log_params <log_params>
1404 static struct dirty_log *create_dirty_log(struct dm_target *ti,
1405 unsigned int argc, char **argv,
1406 unsigned int *args_used)
1408 unsigned int param_count;
1409 struct dirty_log *dl;
1411 if (argc < 2) {
1412 ti->error = "Insufficient mirror log arguments";
1413 return NULL;
1416 if (sscanf(argv[1], "%u", &param_count) != 1) {
1417 ti->error = "Invalid mirror log argument count";
1418 return NULL;
1421 *args_used = 2 + param_count;
1423 if (argc < *args_used) {
1424 ti->error = "Insufficient mirror log arguments";
1425 return NULL;
1428 dl = dm_create_dirty_log(argv[0], ti, param_count, argv + 2);
1429 if (!dl) {
1430 ti->error = "Error creating mirror dirty log";
1431 return NULL;
1434 if (!_check_region_size(ti, dl->type->get_region_size(dl))) {
1435 ti->error = "Invalid region size";
1436 dm_destroy_dirty_log(dl);
1437 return NULL;
1440 return dl;
1443 static int parse_features(struct mirror_set *ms, unsigned argc, char **argv,
1444 unsigned *args_used)
1446 unsigned num_features;
1447 struct dm_target *ti = ms->ti;
1449 *args_used = 0;
1451 if (!argc)
1452 return 0;
1454 if (sscanf(argv[0], "%u", &num_features) != 1) {
1455 ti->error = "Invalid number of features";
1456 return -EINVAL;
1459 argc--;
1460 argv++;
1461 (*args_used)++;
1463 if (num_features > argc) {
1464 ti->error = "Not enough arguments to support feature count";
1465 return -EINVAL;
1468 if (!strcmp("handle_errors", argv[0]))
1469 ms->features |= DM_RAID1_HANDLE_ERRORS;
1470 else {
1471 ti->error = "Unrecognised feature requested";
1472 return -EINVAL;
1475 (*args_used)++;
1477 return 0;
1481 * Construct a mirror mapping:
1483 * log_type #log_params <log_params>
1484 * #mirrors [mirror_path offset]{2,}
1485 * [#features <features>]
1487 * log_type is "core" or "disk"
1488 * #log_params is between 1 and 3
1490 * If present, features must be "handle_errors".
1492 static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1494 int r;
1495 unsigned int nr_mirrors, m, args_used;
1496 struct mirror_set *ms;
1497 struct dirty_log *dl;
1499 dl = create_dirty_log(ti, argc, argv, &args_used);
1500 if (!dl)
1501 return -EINVAL;
1503 argv += args_used;
1504 argc -= args_used;
1506 if (!argc || sscanf(argv[0], "%u", &nr_mirrors) != 1 ||
1507 nr_mirrors < 2 || nr_mirrors > KCOPYD_MAX_REGIONS + 1) {
1508 ti->error = "Invalid number of mirrors";
1509 dm_destroy_dirty_log(dl);
1510 return -EINVAL;
1513 argv++, argc--;
1515 if (argc < nr_mirrors * 2) {
1516 ti->error = "Too few mirror arguments";
1517 dm_destroy_dirty_log(dl);
1518 return -EINVAL;
1521 ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl);
1522 if (!ms) {
1523 dm_destroy_dirty_log(dl);
1524 return -ENOMEM;
1527 /* Get the mirror parameter sets */
1528 for (m = 0; m < nr_mirrors; m++) {
1529 r = get_mirror(ms, ti, m, argv);
1530 if (r) {
1531 free_context(ms, ti, m);
1532 return r;
1534 argv += 2;
1535 argc -= 2;
1538 ti->private = ms;
1539 ti->split_io = ms->rh.region_size;
1541 ms->kmirrord_wq = create_singlethread_workqueue("kmirrord");
1542 if (!ms->kmirrord_wq) {
1543 DMERR("couldn't start kmirrord");
1544 r = -ENOMEM;
1545 goto err_free_context;
1547 INIT_WORK(&ms->kmirrord_work, do_mirror);
1548 INIT_WORK(&ms->trigger_event, trigger_event);
1550 r = parse_features(ms, argc, argv, &args_used);
1551 if (r)
1552 goto err_destroy_wq;
1554 argv += args_used;
1555 argc -= args_used;
1558 * Any read-balancing addition depends on the
1559 * DM_RAID1_HANDLE_ERRORS flag being present.
1560 * This is because the decision to balance depends
1561 * on the sync state of a region. If the above
1562 * flag is not present, we ignore errors; and
1563 * the sync state may be inaccurate.
1566 if (argc) {
1567 ti->error = "Too many mirror arguments";
1568 r = -EINVAL;
1569 goto err_destroy_wq;
1572 r = kcopyd_client_create(DM_IO_PAGES, &ms->kcopyd_client);
1573 if (r)
1574 goto err_destroy_wq;
1576 wake(ms);
1577 return 0;
1579 err_destroy_wq:
1580 destroy_workqueue(ms->kmirrord_wq);
1581 err_free_context:
1582 free_context(ms, ti, ms->nr_mirrors);
1583 return r;
1586 static void mirror_dtr(struct dm_target *ti)
1588 struct mirror_set *ms = (struct mirror_set *) ti->private;
1590 flush_workqueue(ms->kmirrord_wq);
1591 kcopyd_client_destroy(ms->kcopyd_client);
1592 destroy_workqueue(ms->kmirrord_wq);
1593 free_context(ms, ti, ms->nr_mirrors);
1596 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw)
1598 unsigned long flags;
1599 int should_wake = 0;
1600 struct bio_list *bl;
1602 bl = (rw == WRITE) ? &ms->writes : &ms->reads;
1603 spin_lock_irqsave(&ms->lock, flags);
1604 should_wake = !(bl->head);
1605 bio_list_add(bl, bio);
1606 spin_unlock_irqrestore(&ms->lock, flags);
1608 if (should_wake)
1609 wake(ms);
1613 * Mirror mapping function
1615 static int mirror_map(struct dm_target *ti, struct bio *bio,
1616 union map_info *map_context)
1618 int r, rw = bio_rw(bio);
1619 struct mirror *m;
1620 struct mirror_set *ms = ti->private;
1621 struct dm_raid1_read_record *read_record = NULL;
1623 if (rw == WRITE) {
1624 /* Save region for mirror_end_io() handler */
1625 map_context->ll = bio_to_region(&ms->rh, bio);
1626 queue_bio(ms, bio, rw);
1627 return DM_MAPIO_SUBMITTED;
1630 r = ms->rh.log->type->in_sync(ms->rh.log,
1631 bio_to_region(&ms->rh, bio), 0);
1632 if (r < 0 && r != -EWOULDBLOCK)
1633 return r;
1636 * If region is not in-sync queue the bio.
1638 if (!r || (r == -EWOULDBLOCK)) {
1639 if (rw == READA)
1640 return -EWOULDBLOCK;
1642 queue_bio(ms, bio, rw);
1643 return DM_MAPIO_SUBMITTED;
1647 * The region is in-sync and we can perform reads directly.
1648 * Store enough information so we can retry if it fails.
1650 m = choose_mirror(ms, bio->bi_sector);
1651 if (unlikely(!m))
1652 return -EIO;
1654 read_record = mempool_alloc(ms->read_record_pool, GFP_NOIO);
1655 if (likely(read_record)) {
1656 dm_bio_record(&read_record->details, bio);
1657 map_context->ptr = read_record;
1658 read_record->m = m;
1661 map_bio(m, bio);
1663 return DM_MAPIO_REMAPPED;
1666 static int mirror_end_io(struct dm_target *ti, struct bio *bio,
1667 int error, union map_info *map_context)
1669 int rw = bio_rw(bio);
1670 struct mirror_set *ms = (struct mirror_set *) ti->private;
1671 struct mirror *m = NULL;
1672 struct dm_bio_details *bd = NULL;
1673 struct dm_raid1_read_record *read_record = map_context->ptr;
1676 * We need to dec pending if this was a write.
1678 if (rw == WRITE) {
1679 rh_dec(&ms->rh, map_context->ll);
1680 return error;
1683 if (error == -EOPNOTSUPP)
1684 goto out;
1686 if ((error == -EWOULDBLOCK) && bio_rw_ahead(bio))
1687 goto out;
1689 if (unlikely(error)) {
1690 if (!read_record) {
1692 * There wasn't enough memory to record necessary
1693 * information for a retry or there was no other
1694 * mirror in-sync.
1696 DMERR_LIMIT("Mirror read failed.");
1697 return -EIO;
1700 m = read_record->m;
1702 DMERR("Mirror read failed from %s. Trying alternative device.",
1703 m->dev->name);
1705 fail_mirror(m, DM_RAID1_READ_ERROR);
1708 * A failed read is requeued for another attempt using an intact
1709 * mirror.
1711 if (default_ok(m) || mirror_available(ms, bio)) {
1712 bd = &read_record->details;
1714 dm_bio_restore(bd, bio);
1715 mempool_free(read_record, ms->read_record_pool);
1716 map_context->ptr = NULL;
1717 queue_bio(ms, bio, rw);
1718 return 1;
1720 DMERR("All replicated volumes dead, failing I/O");
1723 out:
1724 if (read_record) {
1725 mempool_free(read_record, ms->read_record_pool);
1726 map_context->ptr = NULL;
1729 return error;
1732 static void mirror_presuspend(struct dm_target *ti)
1734 struct mirror_set *ms = (struct mirror_set *) ti->private;
1735 struct dirty_log *log = ms->rh.log;
1737 atomic_set(&ms->suspend, 1);
1740 * We must finish up all the work that we've
1741 * generated (i.e. recovery work).
1743 rh_stop_recovery(&ms->rh);
1745 wait_event(_kmirrord_recovery_stopped,
1746 !atomic_read(&ms->rh.recovery_in_flight));
1748 if (log->type->presuspend && log->type->presuspend(log))
1749 /* FIXME: need better error handling */
1750 DMWARN("log presuspend failed");
1753 * Now that recovery is complete/stopped and the
1754 * delayed bios are queued, we need to wait for
1755 * the worker thread to complete. This way,
1756 * we know that all of our I/O has been pushed.
1758 flush_workqueue(ms->kmirrord_wq);
1761 static void mirror_postsuspend(struct dm_target *ti)
1763 struct mirror_set *ms = ti->private;
1764 struct dirty_log *log = ms->rh.log;
1766 if (log->type->postsuspend && log->type->postsuspend(log))
1767 /* FIXME: need better error handling */
1768 DMWARN("log postsuspend failed");
1771 static void mirror_resume(struct dm_target *ti)
1773 struct mirror_set *ms = ti->private;
1774 struct dirty_log *log = ms->rh.log;
1776 atomic_set(&ms->suspend, 0);
1777 if (log->type->resume && log->type->resume(log))
1778 /* FIXME: need better error handling */
1779 DMWARN("log resume failed");
1780 rh_start_recovery(&ms->rh);
1784 * device_status_char
1785 * @m: mirror device/leg we want the status of
1787 * We return one character representing the most severe error
1788 * we have encountered.
1789 * A => Alive - No failures
1790 * D => Dead - A write failure occurred leaving mirror out-of-sync
1791 * S => Sync - A sychronization failure occurred, mirror out-of-sync
1792 * R => Read - A read failure occurred, mirror data unaffected
1794 * Returns: <char>
1796 static char device_status_char(struct mirror *m)
1798 if (!atomic_read(&(m->error_count)))
1799 return 'A';
1801 return (test_bit(DM_RAID1_WRITE_ERROR, &(m->error_type))) ? 'D' :
1802 (test_bit(DM_RAID1_SYNC_ERROR, &(m->error_type))) ? 'S' :
1803 (test_bit(DM_RAID1_READ_ERROR, &(m->error_type))) ? 'R' : 'U';
1807 static int mirror_status(struct dm_target *ti, status_type_t type,
1808 char *result, unsigned int maxlen)
1810 unsigned int m, sz = 0;
1811 struct mirror_set *ms = (struct mirror_set *) ti->private;
1812 struct dirty_log *log = ms->rh.log;
1813 char buffer[ms->nr_mirrors + 1];
1815 switch (type) {
1816 case STATUSTYPE_INFO:
1817 DMEMIT("%d ", ms->nr_mirrors);
1818 for (m = 0; m < ms->nr_mirrors; m++) {
1819 DMEMIT("%s ", ms->mirror[m].dev->name);
1820 buffer[m] = device_status_char(&(ms->mirror[m]));
1822 buffer[m] = '\0';
1824 DMEMIT("%llu/%llu 1 %s ",
1825 (unsigned long long)log->type->get_sync_count(ms->rh.log),
1826 (unsigned long long)ms->nr_regions, buffer);
1828 sz += log->type->status(ms->rh.log, type, result+sz, maxlen-sz);
1830 break;
1832 case STATUSTYPE_TABLE:
1833 sz = log->type->status(ms->rh.log, type, result, maxlen);
1835 DMEMIT("%d", ms->nr_mirrors);
1836 for (m = 0; m < ms->nr_mirrors; m++)
1837 DMEMIT(" %s %llu", ms->mirror[m].dev->name,
1838 (unsigned long long)ms->mirror[m].offset);
1840 if (ms->features & DM_RAID1_HANDLE_ERRORS)
1841 DMEMIT(" 1 handle_errors");
1844 return 0;
1847 static struct target_type mirror_target = {
1848 .name = "mirror",
1849 .version = {1, 0, 20},
1850 .module = THIS_MODULE,
1851 .ctr = mirror_ctr,
1852 .dtr = mirror_dtr,
1853 .map = mirror_map,
1854 .end_io = mirror_end_io,
1855 .presuspend = mirror_presuspend,
1856 .postsuspend = mirror_postsuspend,
1857 .resume = mirror_resume,
1858 .status = mirror_status,
1861 static int __init dm_mirror_init(void)
1863 int r;
1865 r = dm_register_target(&mirror_target);
1866 if (r < 0)
1867 DMERR("Failed to register mirror target");
1869 return r;
1872 static void __exit dm_mirror_exit(void)
1874 int r;
1876 r = dm_unregister_target(&mirror_target);
1877 if (r < 0)
1878 DMERR("unregister failed %d", r);
1881 /* Module hooks */
1882 module_init(dm_mirror_init);
1883 module_exit(dm_mirror_exit);
1885 MODULE_DESCRIPTION(DM_NAME " mirror target");
1886 MODULE_AUTHOR("Joe Thornber");
1887 MODULE_LICENSE("GPL");