2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
19 /* max queue in one round of service */
20 static const int cfq_quantum
= 4;
21 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max
= 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty
= 2;
26 static const int cfq_slice_sync
= HZ
/ 10;
27 static int cfq_slice_async
= HZ
/ 25;
28 static const int cfq_slice_async_rq
= 2;
29 static int cfq_slice_idle
= HZ
/ 125;
32 * offset from end of service tree
34 #define CFQ_IDLE_DELAY (HZ / 5)
37 * below this threshold, we consider thinktime immediate
39 #define CFQ_MIN_TT (2)
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
48 static struct kmem_cache
*cfq_pool
;
49 static struct kmem_cache
*cfq_ioc_pool
;
51 static DEFINE_PER_CPU(unsigned long, ioc_count
);
52 static struct completion
*ioc_gone
;
53 static DEFINE_SPINLOCK(ioc_gone_lock
);
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
62 #define sample_valid(samples) ((samples) > 80)
65 * Most of our rbtree usage is for sorting with min extraction, so
66 * if we cache the leftmost node we don't have to walk down the tree
67 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
68 * move this into the elevator for the rq sorting as well.
74 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
77 * Per block device queue structure
80 struct request_queue
*queue
;
83 * rr list of queues with requests and the count of them
85 struct cfq_rb_root service_tree
;
86 unsigned int busy_queues
;
88 * Used to track any pending rt requests so we can pre-empt current
89 * non-RT cfqq in service when this value is non-zero.
91 unsigned int busy_rt_queues
;
97 * queue-depth detection
102 int rq_in_driver_peak
;
105 * idle window management
107 struct timer_list idle_slice_timer
;
108 struct work_struct unplug_work
;
110 struct cfq_queue
*active_queue
;
111 struct cfq_io_context
*active_cic
;
114 * async queue for each priority case
116 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
117 struct cfq_queue
*async_idle_cfqq
;
119 sector_t last_position
;
120 unsigned long last_end_request
;
123 * tunables, see top of file
125 unsigned int cfq_quantum
;
126 unsigned int cfq_fifo_expire
[2];
127 unsigned int cfq_back_penalty
;
128 unsigned int cfq_back_max
;
129 unsigned int cfq_slice
[2];
130 unsigned int cfq_slice_async_rq
;
131 unsigned int cfq_slice_idle
;
133 struct list_head cic_list
;
137 * Per process-grouping structure
140 /* reference count */
142 /* various state flags, see below */
144 /* parent cfq_data */
145 struct cfq_data
*cfqd
;
146 /* service_tree member */
147 struct rb_node rb_node
;
148 /* service_tree key */
149 unsigned long rb_key
;
150 /* sorted list of pending requests */
151 struct rb_root sort_list
;
152 /* if fifo isn't expired, next request to serve */
153 struct request
*next_rq
;
154 /* requests queued in sort_list */
156 /* currently allocated requests */
158 /* fifo list of requests in sort_list */
159 struct list_head fifo
;
161 unsigned long slice_end
;
164 /* pending metadata requests */
166 /* number of requests that are on the dispatch list or inside driver */
169 /* io prio of this group */
170 unsigned short ioprio
, org_ioprio
;
171 unsigned short ioprio_class
, org_ioprio_class
;
176 enum cfqq_state_flags
{
177 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
178 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
179 CFQ_CFQQ_FLAG_must_alloc
, /* must be allowed rq alloc */
180 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
181 CFQ_CFQQ_FLAG_must_dispatch
, /* must dispatch, even if expired */
182 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
183 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
184 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
185 CFQ_CFQQ_FLAG_queue_new
, /* queue never been serviced */
186 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
187 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
190 #define CFQ_CFQQ_FNS(name) \
191 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
193 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
195 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
197 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
199 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
201 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
205 CFQ_CFQQ_FNS(wait_request
);
206 CFQ_CFQQ_FNS(must_alloc
);
207 CFQ_CFQQ_FNS(must_alloc_slice
);
208 CFQ_CFQQ_FNS(must_dispatch
);
209 CFQ_CFQQ_FNS(fifo_expire
);
210 CFQ_CFQQ_FNS(idle_window
);
211 CFQ_CFQQ_FNS(prio_changed
);
212 CFQ_CFQQ_FNS(queue_new
);
213 CFQ_CFQQ_FNS(slice_new
);
217 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
218 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
219 #define cfq_log(cfqd, fmt, args...) \
220 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
222 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
223 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, int,
224 struct io_context
*, gfp_t
);
225 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
226 struct io_context
*);
228 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
231 return cic
->cfqq
[!!is_sync
];
234 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
235 struct cfq_queue
*cfqq
, int is_sync
)
237 cic
->cfqq
[!!is_sync
] = cfqq
;
241 * We regard a request as SYNC, if it's either a read or has the SYNC bit
242 * set (in which case it could also be direct WRITE).
244 static inline int cfq_bio_sync(struct bio
*bio
)
246 if (bio_data_dir(bio
) == READ
|| bio_sync(bio
))
253 * scheduler run of queue, if there are requests pending and no one in the
254 * driver that will restart queueing
256 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
258 if (cfqd
->busy_queues
) {
259 cfq_log(cfqd
, "schedule dispatch");
260 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
264 static int cfq_queue_empty(struct request_queue
*q
)
266 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
268 return !cfqd
->busy_queues
;
272 * Scale schedule slice based on io priority. Use the sync time slice only
273 * if a queue is marked sync and has sync io queued. A sync queue with async
274 * io only, should not get full sync slice length.
276 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, int sync
,
279 const int base_slice
= cfqd
->cfq_slice
[sync
];
281 WARN_ON(prio
>= IOPRIO_BE_NR
);
283 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
287 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
289 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
293 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
295 cfqq
->slice_end
= cfq_prio_to_slice(cfqd
, cfqq
) + jiffies
;
296 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
300 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
301 * isn't valid until the first request from the dispatch is activated
302 * and the slice time set.
304 static inline int cfq_slice_used(struct cfq_queue
*cfqq
)
306 if (cfq_cfqq_slice_new(cfqq
))
308 if (time_before(jiffies
, cfqq
->slice_end
))
315 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
316 * We choose the request that is closest to the head right now. Distance
317 * behind the head is penalized and only allowed to a certain extent.
319 static struct request
*
320 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
)
322 sector_t last
, s1
, s2
, d1
= 0, d2
= 0;
323 unsigned long back_max
;
324 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
325 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
326 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
328 if (rq1
== NULL
|| rq1
== rq2
)
333 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
335 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
337 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
339 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
345 last
= cfqd
->last_position
;
348 * by definition, 1KiB is 2 sectors
350 back_max
= cfqd
->cfq_back_max
* 2;
353 * Strict one way elevator _except_ in the case where we allow
354 * short backward seeks which are biased as twice the cost of a
355 * similar forward seek.
359 else if (s1
+ back_max
>= last
)
360 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
362 wrap
|= CFQ_RQ1_WRAP
;
366 else if (s2
+ back_max
>= last
)
367 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
369 wrap
|= CFQ_RQ2_WRAP
;
371 /* Found required data */
374 * By doing switch() on the bit mask "wrap" we avoid having to
375 * check two variables for all permutations: --> faster!
378 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
394 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
397 * Since both rqs are wrapped,
398 * start with the one that's further behind head
399 * (--> only *one* back seek required),
400 * since back seek takes more time than forward.
410 * The below is leftmost cache rbtree addon
412 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
415 root
->left
= rb_first(&root
->rb
);
418 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
423 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
428 rb_erase(n
, &root
->rb
);
433 * would be nice to take fifo expire time into account as well
435 static struct request
*
436 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
437 struct request
*last
)
439 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
440 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
441 struct request
*next
= NULL
, *prev
= NULL
;
443 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
446 prev
= rb_entry_rq(rbprev
);
449 next
= rb_entry_rq(rbnext
);
451 rbnext
= rb_first(&cfqq
->sort_list
);
452 if (rbnext
&& rbnext
!= &last
->rb_node
)
453 next
= rb_entry_rq(rbnext
);
456 return cfq_choose_req(cfqd
, next
, prev
);
459 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
460 struct cfq_queue
*cfqq
)
463 * just an approximation, should be ok.
465 return (cfqd
->busy_queues
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
466 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
470 * The cfqd->service_tree holds all pending cfq_queue's that have
471 * requests waiting to be processed. It is sorted in the order that
472 * we will service the queues.
474 static void cfq_service_tree_add(struct cfq_data
*cfqd
,
475 struct cfq_queue
*cfqq
, int add_front
)
477 struct rb_node
**p
, *parent
;
478 struct cfq_queue
*__cfqq
;
479 unsigned long rb_key
;
482 if (cfq_class_idle(cfqq
)) {
483 rb_key
= CFQ_IDLE_DELAY
;
484 parent
= rb_last(&cfqd
->service_tree
.rb
);
485 if (parent
&& parent
!= &cfqq
->rb_node
) {
486 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
487 rb_key
+= __cfqq
->rb_key
;
490 } else if (!add_front
) {
491 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
492 rb_key
+= cfqq
->slice_resid
;
493 cfqq
->slice_resid
= 0;
497 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
499 * same position, nothing more to do
501 if (rb_key
== cfqq
->rb_key
)
504 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
509 p
= &cfqd
->service_tree
.rb
.rb_node
;
514 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
517 * sort RT queues first, we always want to give
518 * preference to them. IDLE queues goes to the back.
519 * after that, sort on the next service time.
521 if (cfq_class_rt(cfqq
) > cfq_class_rt(__cfqq
))
523 else if (cfq_class_rt(cfqq
) < cfq_class_rt(__cfqq
))
525 else if (cfq_class_idle(cfqq
) < cfq_class_idle(__cfqq
))
527 else if (cfq_class_idle(cfqq
) > cfq_class_idle(__cfqq
))
529 else if (rb_key
< __cfqq
->rb_key
)
534 if (n
== &(*p
)->rb_right
)
541 cfqd
->service_tree
.left
= &cfqq
->rb_node
;
543 cfqq
->rb_key
= rb_key
;
544 rb_link_node(&cfqq
->rb_node
, parent
, p
);
545 rb_insert_color(&cfqq
->rb_node
, &cfqd
->service_tree
.rb
);
549 * Update cfqq's position in the service tree.
551 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
554 * Resorting requires the cfqq to be on the RR list already.
556 if (cfq_cfqq_on_rr(cfqq
))
557 cfq_service_tree_add(cfqd
, cfqq
, 0);
561 * add to busy list of queues for service, trying to be fair in ordering
562 * the pending list according to last request service
564 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
566 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
567 BUG_ON(cfq_cfqq_on_rr(cfqq
));
568 cfq_mark_cfqq_on_rr(cfqq
);
570 if (cfq_class_rt(cfqq
))
571 cfqd
->busy_rt_queues
++;
573 cfq_resort_rr_list(cfqd
, cfqq
);
577 * Called when the cfqq no longer has requests pending, remove it from
580 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
582 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
583 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
584 cfq_clear_cfqq_on_rr(cfqq
);
586 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
587 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
589 BUG_ON(!cfqd
->busy_queues
);
591 if (cfq_class_rt(cfqq
))
592 cfqd
->busy_rt_queues
--;
596 * rb tree support functions
598 static void cfq_del_rq_rb(struct request
*rq
)
600 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
601 struct cfq_data
*cfqd
= cfqq
->cfqd
;
602 const int sync
= rq_is_sync(rq
);
604 BUG_ON(!cfqq
->queued
[sync
]);
605 cfqq
->queued
[sync
]--;
607 elv_rb_del(&cfqq
->sort_list
, rq
);
609 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
610 cfq_del_cfqq_rr(cfqd
, cfqq
);
613 static void cfq_add_rq_rb(struct request
*rq
)
615 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
616 struct cfq_data
*cfqd
= cfqq
->cfqd
;
617 struct request
*__alias
;
619 cfqq
->queued
[rq_is_sync(rq
)]++;
622 * looks a little odd, but the first insert might return an alias.
623 * if that happens, put the alias on the dispatch list
625 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
626 cfq_dispatch_insert(cfqd
->queue
, __alias
);
628 if (!cfq_cfqq_on_rr(cfqq
))
629 cfq_add_cfqq_rr(cfqd
, cfqq
);
632 * check if this request is a better next-serve candidate
634 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
);
635 BUG_ON(!cfqq
->next_rq
);
638 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
640 elv_rb_del(&cfqq
->sort_list
, rq
);
641 cfqq
->queued
[rq_is_sync(rq
)]--;
645 static struct request
*
646 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
648 struct task_struct
*tsk
= current
;
649 struct cfq_io_context
*cic
;
650 struct cfq_queue
*cfqq
;
652 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
656 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
658 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
660 return elv_rb_find(&cfqq
->sort_list
, sector
);
666 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
668 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
670 cfqd
->rq_in_driver
++;
671 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
674 cfqd
->last_position
= rq
->hard_sector
+ rq
->hard_nr_sectors
;
677 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
679 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
681 WARN_ON(!cfqd
->rq_in_driver
);
682 cfqd
->rq_in_driver
--;
683 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
687 static void cfq_remove_request(struct request
*rq
)
689 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
691 if (cfqq
->next_rq
== rq
)
692 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
694 list_del_init(&rq
->queuelist
);
697 cfqq
->cfqd
->rq_queued
--;
698 if (rq_is_meta(rq
)) {
699 WARN_ON(!cfqq
->meta_pending
);
700 cfqq
->meta_pending
--;
704 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
707 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
708 struct request
*__rq
;
710 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
711 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
713 return ELEVATOR_FRONT_MERGE
;
716 return ELEVATOR_NO_MERGE
;
719 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
722 if (type
== ELEVATOR_FRONT_MERGE
) {
723 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
725 cfq_reposition_rq_rb(cfqq
, req
);
730 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
731 struct request
*next
)
734 * reposition in fifo if next is older than rq
736 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
737 time_before(next
->start_time
, rq
->start_time
))
738 list_move(&rq
->queuelist
, &next
->queuelist
);
740 cfq_remove_request(next
);
743 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
746 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
747 struct cfq_io_context
*cic
;
748 struct cfq_queue
*cfqq
;
751 * Disallow merge of a sync bio into an async request.
753 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
757 * Lookup the cfqq that this bio will be queued with. Allow
758 * merge only if rq is queued there.
760 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
764 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
765 if (cfqq
== RQ_CFQQ(rq
))
771 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
772 struct cfq_queue
*cfqq
)
775 cfq_log_cfqq(cfqd
, cfqq
, "set_active");
777 cfq_clear_cfqq_must_alloc_slice(cfqq
);
778 cfq_clear_cfqq_fifo_expire(cfqq
);
779 cfq_mark_cfqq_slice_new(cfqq
);
780 cfq_clear_cfqq_queue_new(cfqq
);
783 cfqd
->active_queue
= cfqq
;
787 * current cfqq expired its slice (or was too idle), select new one
790 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
793 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
795 if (cfq_cfqq_wait_request(cfqq
))
796 del_timer(&cfqd
->idle_slice_timer
);
798 cfq_clear_cfqq_must_dispatch(cfqq
);
799 cfq_clear_cfqq_wait_request(cfqq
);
802 * store what was left of this slice, if the queue idled/timed out
804 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
805 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
806 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
809 cfq_resort_rr_list(cfqd
, cfqq
);
811 if (cfqq
== cfqd
->active_queue
)
812 cfqd
->active_queue
= NULL
;
814 if (cfqd
->active_cic
) {
815 put_io_context(cfqd
->active_cic
->ioc
);
816 cfqd
->active_cic
= NULL
;
820 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, int timed_out
)
822 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
825 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
829 * Get next queue for service. Unless we have a queue preemption,
830 * we'll simply select the first cfqq in the service tree.
832 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
834 if (RB_EMPTY_ROOT(&cfqd
->service_tree
.rb
))
837 return cfq_rb_first(&cfqd
->service_tree
);
841 * Get and set a new active queue for service.
843 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
)
845 struct cfq_queue
*cfqq
;
847 cfqq
= cfq_get_next_queue(cfqd
);
848 __cfq_set_active_queue(cfqd
, cfqq
);
852 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
855 if (rq
->sector
>= cfqd
->last_position
)
856 return rq
->sector
- cfqd
->last_position
;
858 return cfqd
->last_position
- rq
->sector
;
861 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct request
*rq
)
863 struct cfq_io_context
*cic
= cfqd
->active_cic
;
865 if (!sample_valid(cic
->seek_samples
))
868 return cfq_dist_from_last(cfqd
, rq
) <= cic
->seek_mean
;
871 static int cfq_close_cooperator(struct cfq_data
*cfq_data
,
872 struct cfq_queue
*cfqq
)
875 * We should notice if some of the queues are cooperating, eg
876 * working closely on the same area of the disk. In that case,
877 * we can group them together and don't waste time idling.
882 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
884 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
886 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
887 struct cfq_io_context
*cic
;
891 * SSD device without seek penalty, disable idling. But only do so
892 * for devices that support queuing, otherwise we still have a problem
893 * with sync vs async workloads.
895 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
898 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
899 WARN_ON(cfq_cfqq_slice_new(cfqq
));
902 * idle is disabled, either manually or by past process history
904 if (!cfqd
->cfq_slice_idle
|| !cfq_cfqq_idle_window(cfqq
))
908 * still requests with the driver, don't idle
910 if (cfqd
->rq_in_driver
)
914 * task has exited, don't wait
916 cic
= cfqd
->active_cic
;
917 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
921 * See if this prio level has a good candidate
923 if (cfq_close_cooperator(cfqd
, cfqq
) &&
924 (sample_valid(cic
->ttime_samples
) && cic
->ttime_mean
> 2))
927 cfq_mark_cfqq_must_dispatch(cfqq
);
928 cfq_mark_cfqq_wait_request(cfqq
);
931 * we don't want to idle for seeks, but we do want to allow
932 * fair distribution of slice time for a process doing back-to-back
933 * seeks. so allow a little bit of time for him to submit a new rq
935 sl
= cfqd
->cfq_slice_idle
;
936 if (sample_valid(cic
->seek_samples
) && CIC_SEEKY(cic
))
937 sl
= min(sl
, msecs_to_jiffies(CFQ_MIN_TT
));
939 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
940 cfq_log(cfqd
, "arm_idle: %lu", sl
);
944 * Move request from internal lists to the request queue dispatch list.
946 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
948 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
949 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
951 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
953 cfq_remove_request(rq
);
955 elv_dispatch_sort(q
, rq
);
957 if (cfq_cfqq_sync(cfqq
))
962 * return expired entry, or NULL to just start from scratch in rbtree
964 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
966 struct cfq_data
*cfqd
= cfqq
->cfqd
;
970 if (cfq_cfqq_fifo_expire(cfqq
))
973 cfq_mark_cfqq_fifo_expire(cfqq
);
975 if (list_empty(&cfqq
->fifo
))
978 fifo
= cfq_cfqq_sync(cfqq
);
979 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
981 if (time_before(jiffies
, rq
->start_time
+ cfqd
->cfq_fifo_expire
[fifo
]))
984 cfq_log_cfqq(cfqd
, cfqq
, "fifo=%p", rq
);
989 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
991 const int base_rq
= cfqd
->cfq_slice_async_rq
;
993 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
995 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
999 * Select a queue for service. If we have a current active queue,
1000 * check whether to continue servicing it, or retrieve and set a new one.
1002 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
1004 struct cfq_queue
*cfqq
;
1006 cfqq
= cfqd
->active_queue
;
1011 * The active queue has run out of time, expire it and select new.
1013 if (cfq_slice_used(cfqq
))
1017 * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1020 if (!cfq_class_rt(cfqq
) && cfqd
->busy_rt_queues
) {
1022 * We simulate this as cfqq timed out so that it gets to bank
1023 * the remaining of its time slice.
1025 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
1026 cfq_slice_expired(cfqd
, 1);
1031 * The active queue has requests and isn't expired, allow it to
1034 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
1038 * No requests pending. If the active queue still has requests in
1039 * flight or is idling for a new request, allow either of these
1040 * conditions to happen (or time out) before selecting a new queue.
1042 if (timer_pending(&cfqd
->idle_slice_timer
) ||
1043 (cfqq
->dispatched
&& cfq_cfqq_idle_window(cfqq
))) {
1049 cfq_slice_expired(cfqd
, 0);
1051 cfqq
= cfq_set_active_queue(cfqd
);
1057 * Dispatch some requests from cfqq, moving them to the request queue
1061 __cfq_dispatch_requests(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1066 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
1072 * follow expired path, else get first next available
1074 rq
= cfq_check_fifo(cfqq
);
1079 * finally, insert request into driver dispatch list
1081 cfq_dispatch_insert(cfqd
->queue
, rq
);
1085 if (!cfqd
->active_cic
) {
1086 atomic_inc(&RQ_CIC(rq
)->ioc
->refcount
);
1087 cfqd
->active_cic
= RQ_CIC(rq
);
1090 if (RB_EMPTY_ROOT(&cfqq
->sort_list
))
1094 * If there is a non-empty RT cfqq waiting for current
1095 * cfqq's timeslice to complete, pre-empt this cfqq
1097 if (!cfq_class_rt(cfqq
) && cfqd
->busy_rt_queues
)
1100 } while (dispatched
< max_dispatch
);
1103 * expire an async queue immediately if it has used up its slice. idle
1104 * queue always expire after 1 dispatch round.
1106 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
1107 dispatched
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
1108 cfq_class_idle(cfqq
))) {
1109 cfqq
->slice_end
= jiffies
+ 1;
1110 cfq_slice_expired(cfqd
, 0);
1116 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
1120 while (cfqq
->next_rq
) {
1121 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
1125 BUG_ON(!list_empty(&cfqq
->fifo
));
1130 * Drain our current requests. Used for barriers and when switching
1131 * io schedulers on-the-fly.
1133 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
1135 struct cfq_queue
*cfqq
;
1138 while ((cfqq
= cfq_rb_first(&cfqd
->service_tree
)) != NULL
)
1139 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
1141 cfq_slice_expired(cfqd
, 0);
1143 BUG_ON(cfqd
->busy_queues
);
1145 cfq_log(cfqd
, "forced_dispatch=%d\n", dispatched
);
1149 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
1151 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1152 struct cfq_queue
*cfqq
;
1155 if (!cfqd
->busy_queues
)
1158 if (unlikely(force
))
1159 return cfq_forced_dispatch(cfqd
);
1162 while ((cfqq
= cfq_select_queue(cfqd
)) != NULL
) {
1165 max_dispatch
= cfqd
->cfq_quantum
;
1166 if (cfq_class_idle(cfqq
))
1169 if (cfqq
->dispatched
>= max_dispatch
&& cfqd
->busy_queues
> 1)
1172 if (cfqd
->sync_flight
&& !cfq_cfqq_sync(cfqq
))
1175 cfq_clear_cfqq_must_dispatch(cfqq
);
1176 cfq_clear_cfqq_wait_request(cfqq
);
1177 del_timer(&cfqd
->idle_slice_timer
);
1179 dispatched
+= __cfq_dispatch_requests(cfqd
, cfqq
, max_dispatch
);
1182 cfq_log(cfqd
, "dispatched=%d", dispatched
);
1187 * task holds one reference to the queue, dropped when task exits. each rq
1188 * in-flight on this queue also holds a reference, dropped when rq is freed.
1190 * queue lock must be held here.
1192 static void cfq_put_queue(struct cfq_queue
*cfqq
)
1194 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1196 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
1198 if (!atomic_dec_and_test(&cfqq
->ref
))
1201 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
1202 BUG_ON(rb_first(&cfqq
->sort_list
));
1203 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
1204 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1206 if (unlikely(cfqd
->active_queue
== cfqq
)) {
1207 __cfq_slice_expired(cfqd
, cfqq
, 0);
1208 cfq_schedule_dispatch(cfqd
);
1211 kmem_cache_free(cfq_pool
, cfqq
);
1215 * Must always be called with the rcu_read_lock() held
1218 __call_for_each_cic(struct io_context
*ioc
,
1219 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1221 struct cfq_io_context
*cic
;
1222 struct hlist_node
*n
;
1224 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
1229 * Call func for each cic attached to this ioc.
1232 call_for_each_cic(struct io_context
*ioc
,
1233 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1236 __call_for_each_cic(ioc
, func
);
1240 static void cfq_cic_free_rcu(struct rcu_head
*head
)
1242 struct cfq_io_context
*cic
;
1244 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
1246 kmem_cache_free(cfq_ioc_pool
, cic
);
1247 elv_ioc_count_dec(ioc_count
);
1251 * CFQ scheduler is exiting, grab exit lock and check
1252 * the pending io context count. If it hits zero,
1253 * complete ioc_gone and set it back to NULL
1255 spin_lock(&ioc_gone_lock
);
1256 if (ioc_gone
&& !elv_ioc_count_read(ioc_count
)) {
1260 spin_unlock(&ioc_gone_lock
);
1264 static void cfq_cic_free(struct cfq_io_context
*cic
)
1266 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
1269 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1271 unsigned long flags
;
1273 BUG_ON(!cic
->dead_key
);
1275 spin_lock_irqsave(&ioc
->lock
, flags
);
1276 radix_tree_delete(&ioc
->radix_root
, cic
->dead_key
);
1277 hlist_del_rcu(&cic
->cic_list
);
1278 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1284 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1285 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1286 * and ->trim() which is called with the task lock held
1288 static void cfq_free_io_context(struct io_context
*ioc
)
1291 * ioc->refcount is zero here, or we are called from elv_unregister(),
1292 * so no more cic's are allowed to be linked into this ioc. So it
1293 * should be ok to iterate over the known list, we will see all cic's
1294 * since no new ones are added.
1296 __call_for_each_cic(ioc
, cic_free_func
);
1299 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1301 if (unlikely(cfqq
== cfqd
->active_queue
)) {
1302 __cfq_slice_expired(cfqd
, cfqq
, 0);
1303 cfq_schedule_dispatch(cfqd
);
1306 cfq_put_queue(cfqq
);
1309 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
1310 struct cfq_io_context
*cic
)
1312 struct io_context
*ioc
= cic
->ioc
;
1314 list_del_init(&cic
->queue_list
);
1317 * Make sure key == NULL is seen for dead queues
1320 cic
->dead_key
= (unsigned long) cic
->key
;
1323 if (ioc
->ioc_data
== cic
)
1324 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
1326 if (cic
->cfqq
[ASYNC
]) {
1327 cfq_exit_cfqq(cfqd
, cic
->cfqq
[ASYNC
]);
1328 cic
->cfqq
[ASYNC
] = NULL
;
1331 if (cic
->cfqq
[SYNC
]) {
1332 cfq_exit_cfqq(cfqd
, cic
->cfqq
[SYNC
]);
1333 cic
->cfqq
[SYNC
] = NULL
;
1337 static void cfq_exit_single_io_context(struct io_context
*ioc
,
1338 struct cfq_io_context
*cic
)
1340 struct cfq_data
*cfqd
= cic
->key
;
1343 struct request_queue
*q
= cfqd
->queue
;
1344 unsigned long flags
;
1346 spin_lock_irqsave(q
->queue_lock
, flags
);
1349 * Ensure we get a fresh copy of the ->key to prevent
1350 * race between exiting task and queue
1352 smp_read_barrier_depends();
1354 __cfq_exit_single_io_context(cfqd
, cic
);
1356 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1361 * The process that ioc belongs to has exited, we need to clean up
1362 * and put the internal structures we have that belongs to that process.
1364 static void cfq_exit_io_context(struct io_context
*ioc
)
1366 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
1369 static struct cfq_io_context
*
1370 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1372 struct cfq_io_context
*cic
;
1374 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
1377 cic
->last_end_request
= jiffies
;
1378 INIT_LIST_HEAD(&cic
->queue_list
);
1379 INIT_HLIST_NODE(&cic
->cic_list
);
1380 cic
->dtor
= cfq_free_io_context
;
1381 cic
->exit
= cfq_exit_io_context
;
1382 elv_ioc_count_inc(ioc_count
);
1388 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
1390 struct task_struct
*tsk
= current
;
1393 if (!cfq_cfqq_prio_changed(cfqq
))
1396 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
1397 switch (ioprio_class
) {
1399 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
1400 case IOPRIO_CLASS_NONE
:
1402 * no prio set, inherit CPU scheduling settings
1404 cfqq
->ioprio
= task_nice_ioprio(tsk
);
1405 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
1407 case IOPRIO_CLASS_RT
:
1408 cfqq
->ioprio
= task_ioprio(ioc
);
1409 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
1411 case IOPRIO_CLASS_BE
:
1412 cfqq
->ioprio
= task_ioprio(ioc
);
1413 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1415 case IOPRIO_CLASS_IDLE
:
1416 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
1418 cfq_clear_cfqq_idle_window(cfqq
);
1423 * keep track of original prio settings in case we have to temporarily
1424 * elevate the priority of this queue
1426 cfqq
->org_ioprio
= cfqq
->ioprio
;
1427 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
1428 cfq_clear_cfqq_prio_changed(cfqq
);
1431 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1433 struct cfq_data
*cfqd
= cic
->key
;
1434 struct cfq_queue
*cfqq
;
1435 unsigned long flags
;
1437 if (unlikely(!cfqd
))
1440 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1442 cfqq
= cic
->cfqq
[ASYNC
];
1444 struct cfq_queue
*new_cfqq
;
1445 new_cfqq
= cfq_get_queue(cfqd
, ASYNC
, cic
->ioc
, GFP_ATOMIC
);
1447 cic
->cfqq
[ASYNC
] = new_cfqq
;
1448 cfq_put_queue(cfqq
);
1452 cfqq
= cic
->cfqq
[SYNC
];
1454 cfq_mark_cfqq_prio_changed(cfqq
);
1456 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1459 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
1461 call_for_each_cic(ioc
, changed_ioprio
);
1462 ioc
->ioprio_changed
= 0;
1465 static struct cfq_queue
*
1466 cfq_find_alloc_queue(struct cfq_data
*cfqd
, int is_sync
,
1467 struct io_context
*ioc
, gfp_t gfp_mask
)
1469 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1470 struct cfq_io_context
*cic
;
1473 cic
= cfq_cic_lookup(cfqd
, ioc
);
1474 /* cic always exists here */
1475 cfqq
= cic_to_cfqq(cic
, is_sync
);
1481 } else if (gfp_mask
& __GFP_WAIT
) {
1483 * Inform the allocator of the fact that we will
1484 * just repeat this allocation if it fails, to allow
1485 * the allocator to do whatever it needs to attempt to
1488 spin_unlock_irq(cfqd
->queue
->queue_lock
);
1489 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
1490 gfp_mask
| __GFP_NOFAIL
| __GFP_ZERO
,
1492 spin_lock_irq(cfqd
->queue
->queue_lock
);
1495 cfqq
= kmem_cache_alloc_node(cfq_pool
,
1496 gfp_mask
| __GFP_ZERO
,
1502 RB_CLEAR_NODE(&cfqq
->rb_node
);
1503 INIT_LIST_HEAD(&cfqq
->fifo
);
1505 atomic_set(&cfqq
->ref
, 0);
1508 cfq_mark_cfqq_prio_changed(cfqq
);
1509 cfq_mark_cfqq_queue_new(cfqq
);
1511 cfq_init_prio_data(cfqq
, ioc
);
1514 if (!cfq_class_idle(cfqq
))
1515 cfq_mark_cfqq_idle_window(cfqq
);
1516 cfq_mark_cfqq_sync(cfqq
);
1518 cfqq
->pid
= current
->pid
;
1519 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
1523 kmem_cache_free(cfq_pool
, new_cfqq
);
1526 WARN_ON((gfp_mask
& __GFP_WAIT
) && !cfqq
);
1530 static struct cfq_queue
**
1531 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
1533 switch (ioprio_class
) {
1534 case IOPRIO_CLASS_RT
:
1535 return &cfqd
->async_cfqq
[0][ioprio
];
1536 case IOPRIO_CLASS_BE
:
1537 return &cfqd
->async_cfqq
[1][ioprio
];
1538 case IOPRIO_CLASS_IDLE
:
1539 return &cfqd
->async_idle_cfqq
;
1545 static struct cfq_queue
*
1546 cfq_get_queue(struct cfq_data
*cfqd
, int is_sync
, struct io_context
*ioc
,
1549 const int ioprio
= task_ioprio(ioc
);
1550 const int ioprio_class
= task_ioprio_class(ioc
);
1551 struct cfq_queue
**async_cfqq
= NULL
;
1552 struct cfq_queue
*cfqq
= NULL
;
1555 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
1560 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
1566 * pin the queue now that it's allocated, scheduler exit will prune it
1568 if (!is_sync
&& !(*async_cfqq
)) {
1569 atomic_inc(&cfqq
->ref
);
1573 atomic_inc(&cfqq
->ref
);
1578 * We drop cfq io contexts lazily, so we may find a dead one.
1581 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1582 struct cfq_io_context
*cic
)
1584 unsigned long flags
;
1586 WARN_ON(!list_empty(&cic
->queue_list
));
1588 spin_lock_irqsave(&ioc
->lock
, flags
);
1590 BUG_ON(ioc
->ioc_data
== cic
);
1592 radix_tree_delete(&ioc
->radix_root
, (unsigned long) cfqd
);
1593 hlist_del_rcu(&cic
->cic_list
);
1594 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1599 static struct cfq_io_context
*
1600 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
1602 struct cfq_io_context
*cic
;
1603 unsigned long flags
;
1612 * we maintain a last-hit cache, to avoid browsing over the tree
1614 cic
= rcu_dereference(ioc
->ioc_data
);
1615 if (cic
&& cic
->key
== cfqd
) {
1621 cic
= radix_tree_lookup(&ioc
->radix_root
, (unsigned long) cfqd
);
1625 /* ->key must be copied to avoid race with cfq_exit_queue() */
1628 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
1633 spin_lock_irqsave(&ioc
->lock
, flags
);
1634 rcu_assign_pointer(ioc
->ioc_data
, cic
);
1635 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1643 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1644 * the process specific cfq io context when entered from the block layer.
1645 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1647 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1648 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
1650 unsigned long flags
;
1653 ret
= radix_tree_preload(gfp_mask
);
1658 spin_lock_irqsave(&ioc
->lock
, flags
);
1659 ret
= radix_tree_insert(&ioc
->radix_root
,
1660 (unsigned long) cfqd
, cic
);
1662 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
1663 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1665 radix_tree_preload_end();
1668 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1669 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
1670 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1675 printk(KERN_ERR
"cfq: cic link failed!\n");
1681 * Setup general io context and cfq io context. There can be several cfq
1682 * io contexts per general io context, if this process is doing io to more
1683 * than one device managed by cfq.
1685 static struct cfq_io_context
*
1686 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1688 struct io_context
*ioc
= NULL
;
1689 struct cfq_io_context
*cic
;
1691 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1693 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
1697 cic
= cfq_cic_lookup(cfqd
, ioc
);
1701 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
1705 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
1709 smp_read_barrier_depends();
1710 if (unlikely(ioc
->ioprio_changed
))
1711 cfq_ioc_set_ioprio(ioc
);
1717 put_io_context(ioc
);
1722 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
1724 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
1725 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
1727 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
1728 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
1729 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
1733 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
1739 if (cic
->last_request_pos
< rq
->sector
)
1740 sdist
= rq
->sector
- cic
->last_request_pos
;
1742 sdist
= cic
->last_request_pos
- rq
->sector
;
1745 * Don't allow the seek distance to get too large from the
1746 * odd fragment, pagein, etc
1748 if (cic
->seek_samples
<= 60) /* second&third seek */
1749 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*1024);
1751 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*64);
1753 cic
->seek_samples
= (7*cic
->seek_samples
+ 256) / 8;
1754 cic
->seek_total
= (7*cic
->seek_total
+ (u64
)256*sdist
) / 8;
1755 total
= cic
->seek_total
+ (cic
->seek_samples
/2);
1756 do_div(total
, cic
->seek_samples
);
1757 cic
->seek_mean
= (sector_t
)total
;
1761 * Disable idle window if the process thinks too long or seeks so much that
1765 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1766 struct cfq_io_context
*cic
)
1768 int old_idle
, enable_idle
;
1771 * Don't idle for async or idle io prio class
1773 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
1776 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
1778 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
1779 (cfqd
->hw_tag
&& CIC_SEEKY(cic
)))
1781 else if (sample_valid(cic
->ttime_samples
)) {
1782 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
1788 if (old_idle
!= enable_idle
) {
1789 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
1791 cfq_mark_cfqq_idle_window(cfqq
);
1793 cfq_clear_cfqq_idle_window(cfqq
);
1798 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1799 * no or if we aren't sure, a 1 will cause a preempt.
1802 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
1805 struct cfq_queue
*cfqq
;
1807 cfqq
= cfqd
->active_queue
;
1811 if (cfq_slice_used(cfqq
))
1814 if (cfq_class_idle(new_cfqq
))
1817 if (cfq_class_idle(cfqq
))
1821 * if the new request is sync, but the currently running queue is
1822 * not, let the sync request have priority.
1824 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
1828 * So both queues are sync. Let the new request get disk time if
1829 * it's a metadata request and the current queue is doing regular IO.
1831 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
1835 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
1837 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
1840 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
1844 * if this request is as-good as one we would expect from the
1845 * current cfqq, let it preempt
1847 if (cfq_rq_close(cfqd
, rq
))
1854 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1855 * let it have half of its nominal slice.
1857 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1859 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
1860 cfq_slice_expired(cfqd
, 1);
1863 * Put the new queue at the front of the of the current list,
1864 * so we know that it will be selected next.
1866 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1868 cfq_service_tree_add(cfqd
, cfqq
, 1);
1870 cfqq
->slice_end
= 0;
1871 cfq_mark_cfqq_slice_new(cfqq
);
1875 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1876 * something we should do about it
1879 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1882 struct cfq_io_context
*cic
= RQ_CIC(rq
);
1886 cfqq
->meta_pending
++;
1888 cfq_update_io_thinktime(cfqd
, cic
);
1889 cfq_update_io_seektime(cfqd
, cic
, rq
);
1890 cfq_update_idle_window(cfqd
, cfqq
, cic
);
1892 cic
->last_request_pos
= rq
->sector
+ rq
->nr_sectors
;
1894 if (cfqq
== cfqd
->active_queue
) {
1896 * if we are waiting for a request for this queue, let it rip
1897 * immediately and flag that we must not expire this queue
1900 if (cfq_cfqq_wait_request(cfqq
)) {
1901 cfq_mark_cfqq_must_dispatch(cfqq
);
1902 del_timer(&cfqd
->idle_slice_timer
);
1903 blk_start_queueing(cfqd
->queue
);
1905 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
1907 * not the active queue - expire current slice if it is
1908 * idle and has expired it's mean thinktime or this new queue
1909 * has some old slice time left and is of higher priority or
1910 * this new queue is RT and the current one is BE
1912 cfq_preempt_queue(cfqd
, cfqq
);
1913 cfq_mark_cfqq_must_dispatch(cfqq
);
1914 blk_start_queueing(cfqd
->queue
);
1918 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
1920 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1921 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1923 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
1924 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
1928 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
1930 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
1934 * Update hw_tag based on peak queue depth over 50 samples under
1937 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
1939 if (cfqd
->rq_in_driver
> cfqd
->rq_in_driver_peak
)
1940 cfqd
->rq_in_driver_peak
= cfqd
->rq_in_driver
;
1942 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
1943 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
1946 if (cfqd
->hw_tag_samples
++ < 50)
1949 if (cfqd
->rq_in_driver_peak
>= CFQ_HW_QUEUE_MIN
)
1954 cfqd
->hw_tag_samples
= 0;
1955 cfqd
->rq_in_driver_peak
= 0;
1958 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
1960 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1961 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1962 const int sync
= rq_is_sync(rq
);
1966 cfq_log_cfqq(cfqd
, cfqq
, "complete");
1968 cfq_update_hw_tag(cfqd
);
1970 WARN_ON(!cfqd
->rq_in_driver
);
1971 WARN_ON(!cfqq
->dispatched
);
1972 cfqd
->rq_in_driver
--;
1975 if (cfq_cfqq_sync(cfqq
))
1976 cfqd
->sync_flight
--;
1978 if (!cfq_class_idle(cfqq
))
1979 cfqd
->last_end_request
= now
;
1982 RQ_CIC(rq
)->last_end_request
= now
;
1985 * If this is the active queue, check if it needs to be expired,
1986 * or if we want to idle in case it has no pending requests.
1988 if (cfqd
->active_queue
== cfqq
) {
1989 if (cfq_cfqq_slice_new(cfqq
)) {
1990 cfq_set_prio_slice(cfqd
, cfqq
);
1991 cfq_clear_cfqq_slice_new(cfqq
);
1993 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
1994 cfq_slice_expired(cfqd
, 1);
1995 else if (sync
&& RB_EMPTY_ROOT(&cfqq
->sort_list
))
1996 cfq_arm_slice_timer(cfqd
);
1999 if (!cfqd
->rq_in_driver
)
2000 cfq_schedule_dispatch(cfqd
);
2004 * we temporarily boost lower priority queues if they are holding fs exclusive
2005 * resources. they are boosted to normal prio (CLASS_BE/4)
2007 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
2009 if (has_fs_excl()) {
2011 * boost idle prio on transactions that would lock out other
2012 * users of the filesystem
2014 if (cfq_class_idle(cfqq
))
2015 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2016 if (cfqq
->ioprio
> IOPRIO_NORM
)
2017 cfqq
->ioprio
= IOPRIO_NORM
;
2020 * check if we need to unboost the queue
2022 if (cfqq
->ioprio_class
!= cfqq
->org_ioprio_class
)
2023 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
2024 if (cfqq
->ioprio
!= cfqq
->org_ioprio
)
2025 cfqq
->ioprio
= cfqq
->org_ioprio
;
2029 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
2031 if ((cfq_cfqq_wait_request(cfqq
) || cfq_cfqq_must_alloc(cfqq
)) &&
2032 !cfq_cfqq_must_alloc_slice(cfqq
)) {
2033 cfq_mark_cfqq_must_alloc_slice(cfqq
);
2034 return ELV_MQUEUE_MUST
;
2037 return ELV_MQUEUE_MAY
;
2040 static int cfq_may_queue(struct request_queue
*q
, int rw
)
2042 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2043 struct task_struct
*tsk
= current
;
2044 struct cfq_io_context
*cic
;
2045 struct cfq_queue
*cfqq
;
2048 * don't force setup of a queue from here, as a call to may_queue
2049 * does not necessarily imply that a request actually will be queued.
2050 * so just lookup a possibly existing queue, or return 'may queue'
2053 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
2055 return ELV_MQUEUE_MAY
;
2057 cfqq
= cic_to_cfqq(cic
, rw
& REQ_RW_SYNC
);
2059 cfq_init_prio_data(cfqq
, cic
->ioc
);
2060 cfq_prio_boost(cfqq
);
2062 return __cfq_may_queue(cfqq
);
2065 return ELV_MQUEUE_MAY
;
2069 * queue lock held here
2071 static void cfq_put_request(struct request
*rq
)
2073 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2076 const int rw
= rq_data_dir(rq
);
2078 BUG_ON(!cfqq
->allocated
[rw
]);
2079 cfqq
->allocated
[rw
]--;
2081 put_io_context(RQ_CIC(rq
)->ioc
);
2083 rq
->elevator_private
= NULL
;
2084 rq
->elevator_private2
= NULL
;
2086 cfq_put_queue(cfqq
);
2091 * Allocate cfq data structures associated with this request.
2094 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
2096 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2097 struct cfq_io_context
*cic
;
2098 const int rw
= rq_data_dir(rq
);
2099 const int is_sync
= rq_is_sync(rq
);
2100 struct cfq_queue
*cfqq
;
2101 unsigned long flags
;
2103 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2105 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
2107 spin_lock_irqsave(q
->queue_lock
, flags
);
2112 cfqq
= cic_to_cfqq(cic
, is_sync
);
2114 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
2119 cic_set_cfqq(cic
, cfqq
, is_sync
);
2122 cfqq
->allocated
[rw
]++;
2123 cfq_clear_cfqq_must_alloc(cfqq
);
2124 atomic_inc(&cfqq
->ref
);
2126 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2128 rq
->elevator_private
= cic
;
2129 rq
->elevator_private2
= cfqq
;
2134 put_io_context(cic
->ioc
);
2136 cfq_schedule_dispatch(cfqd
);
2137 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2138 cfq_log(cfqd
, "set_request fail");
2142 static void cfq_kick_queue(struct work_struct
*work
)
2144 struct cfq_data
*cfqd
=
2145 container_of(work
, struct cfq_data
, unplug_work
);
2146 struct request_queue
*q
= cfqd
->queue
;
2147 unsigned long flags
;
2149 spin_lock_irqsave(q
->queue_lock
, flags
);
2150 blk_start_queueing(q
);
2151 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2155 * Timer running if the active_queue is currently idling inside its time slice
2157 static void cfq_idle_slice_timer(unsigned long data
)
2159 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2160 struct cfq_queue
*cfqq
;
2161 unsigned long flags
;
2164 cfq_log(cfqd
, "idle timer fired");
2166 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2168 cfqq
= cfqd
->active_queue
;
2175 if (cfq_slice_used(cfqq
))
2179 * only expire and reinvoke request handler, if there are
2180 * other queues with pending requests
2182 if (!cfqd
->busy_queues
)
2186 * not expired and it has a request pending, let it dispatch
2188 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
2189 cfq_mark_cfqq_must_dispatch(cfqq
);
2194 cfq_slice_expired(cfqd
, timed_out
);
2196 cfq_schedule_dispatch(cfqd
);
2198 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2201 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
2203 del_timer_sync(&cfqd
->idle_slice_timer
);
2204 cancel_work_sync(&cfqd
->unplug_work
);
2207 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
2211 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
2212 if (cfqd
->async_cfqq
[0][i
])
2213 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
2214 if (cfqd
->async_cfqq
[1][i
])
2215 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
2218 if (cfqd
->async_idle_cfqq
)
2219 cfq_put_queue(cfqd
->async_idle_cfqq
);
2222 static void cfq_exit_queue(struct elevator_queue
*e
)
2224 struct cfq_data
*cfqd
= e
->elevator_data
;
2225 struct request_queue
*q
= cfqd
->queue
;
2227 cfq_shutdown_timer_wq(cfqd
);
2229 spin_lock_irq(q
->queue_lock
);
2231 if (cfqd
->active_queue
)
2232 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
2234 while (!list_empty(&cfqd
->cic_list
)) {
2235 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
2236 struct cfq_io_context
,
2239 __cfq_exit_single_io_context(cfqd
, cic
);
2242 cfq_put_async_queues(cfqd
);
2244 spin_unlock_irq(q
->queue_lock
);
2246 cfq_shutdown_timer_wq(cfqd
);
2251 static void *cfq_init_queue(struct request_queue
*q
)
2253 struct cfq_data
*cfqd
;
2255 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
2259 cfqd
->service_tree
= CFQ_RB_ROOT
;
2260 INIT_LIST_HEAD(&cfqd
->cic_list
);
2264 init_timer(&cfqd
->idle_slice_timer
);
2265 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
2266 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
2268 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
2270 cfqd
->last_end_request
= jiffies
;
2271 cfqd
->cfq_quantum
= cfq_quantum
;
2272 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
2273 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
2274 cfqd
->cfq_back_max
= cfq_back_max
;
2275 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
2276 cfqd
->cfq_slice
[0] = cfq_slice_async
;
2277 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
2278 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
2279 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
2285 static void cfq_slab_kill(void)
2288 * Caller already ensured that pending RCU callbacks are completed,
2289 * so we should have no busy allocations at this point.
2292 kmem_cache_destroy(cfq_pool
);
2294 kmem_cache_destroy(cfq_ioc_pool
);
2297 static int __init
cfq_slab_setup(void)
2299 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
2303 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
2314 * sysfs parts below -->
2317 cfq_var_show(unsigned int var
, char *page
)
2319 return sprintf(page
, "%d\n", var
);
2323 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
2325 char *p
= (char *) page
;
2327 *var
= simple_strtoul(p
, &p
, 10);
2331 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2332 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2334 struct cfq_data *cfqd = e->elevator_data; \
2335 unsigned int __data = __VAR; \
2337 __data = jiffies_to_msecs(__data); \
2338 return cfq_var_show(__data, (page)); \
2340 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
2341 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
2342 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
2343 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
2344 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
2345 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
2346 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
2347 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
2348 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
2349 #undef SHOW_FUNCTION
2351 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2352 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2354 struct cfq_data *cfqd = e->elevator_data; \
2355 unsigned int __data; \
2356 int ret = cfq_var_store(&__data, (page), count); \
2357 if (__data < (MIN)) \
2359 else if (__data > (MAX)) \
2362 *(__PTR) = msecs_to_jiffies(__data); \
2364 *(__PTR) = __data; \
2367 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
2368 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
2370 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
2372 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
2373 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
2375 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
2376 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
2377 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
2378 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
2380 #undef STORE_FUNCTION
2382 #define CFQ_ATTR(name) \
2383 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2385 static struct elv_fs_entry cfq_attrs
[] = {
2387 CFQ_ATTR(fifo_expire_sync
),
2388 CFQ_ATTR(fifo_expire_async
),
2389 CFQ_ATTR(back_seek_max
),
2390 CFQ_ATTR(back_seek_penalty
),
2391 CFQ_ATTR(slice_sync
),
2392 CFQ_ATTR(slice_async
),
2393 CFQ_ATTR(slice_async_rq
),
2394 CFQ_ATTR(slice_idle
),
2398 static struct elevator_type iosched_cfq
= {
2400 .elevator_merge_fn
= cfq_merge
,
2401 .elevator_merged_fn
= cfq_merged_request
,
2402 .elevator_merge_req_fn
= cfq_merged_requests
,
2403 .elevator_allow_merge_fn
= cfq_allow_merge
,
2404 .elevator_dispatch_fn
= cfq_dispatch_requests
,
2405 .elevator_add_req_fn
= cfq_insert_request
,
2406 .elevator_activate_req_fn
= cfq_activate_request
,
2407 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
2408 .elevator_queue_empty_fn
= cfq_queue_empty
,
2409 .elevator_completed_req_fn
= cfq_completed_request
,
2410 .elevator_former_req_fn
= elv_rb_former_request
,
2411 .elevator_latter_req_fn
= elv_rb_latter_request
,
2412 .elevator_set_req_fn
= cfq_set_request
,
2413 .elevator_put_req_fn
= cfq_put_request
,
2414 .elevator_may_queue_fn
= cfq_may_queue
,
2415 .elevator_init_fn
= cfq_init_queue
,
2416 .elevator_exit_fn
= cfq_exit_queue
,
2417 .trim
= cfq_free_io_context
,
2419 .elevator_attrs
= cfq_attrs
,
2420 .elevator_name
= "cfq",
2421 .elevator_owner
= THIS_MODULE
,
2424 static int __init
cfq_init(void)
2427 * could be 0 on HZ < 1000 setups
2429 if (!cfq_slice_async
)
2430 cfq_slice_async
= 1;
2431 if (!cfq_slice_idle
)
2434 if (cfq_slab_setup())
2437 elv_register(&iosched_cfq
);
2442 static void __exit
cfq_exit(void)
2444 DECLARE_COMPLETION_ONSTACK(all_gone
);
2445 elv_unregister(&iosched_cfq
);
2446 ioc_gone
= &all_gone
;
2447 /* ioc_gone's update must be visible before reading ioc_count */
2451 * this also protects us from entering cfq_slab_kill() with
2452 * pending RCU callbacks
2454 if (elv_ioc_count_read(ioc_count
))
2455 wait_for_completion(&all_gone
);
2459 module_init(cfq_init
);
2460 module_exit(cfq_exit
);
2462 MODULE_AUTHOR("Jens Axboe");
2463 MODULE_LICENSE("GPL");
2464 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");