2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The full GNU General Public License is in this distribution in the file
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
37 * The PL080 has a dual bus master, PL081 has a single master.
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
45 * Raise terminal count interrupt
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
54 * ASSUMES default (little) endianness for DMA transfers
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
69 * Only the former works sanely with scatter lists, so we only implement
70 * the DMAC flow control method. However, peripherals which use the LBREQ
71 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
72 * these hardware restrictions prevents them from using scatter DMA.
75 * - Break out common code from arch/arm/mach-s3c64xx and share
77 #include <linux/device.h>
78 #include <linux/init.h>
79 #include <linux/module.h>
80 #include <linux/interrupt.h>
81 #include <linux/slab.h>
82 #include <linux/delay.h>
83 #include <linux/dmapool.h>
84 #include <linux/dmaengine.h>
85 #include <linux/amba/bus.h>
86 #include <linux/amba/pl08x.h>
87 #include <linux/debugfs.h>
88 #include <linux/seq_file.h>
90 #include <asm/hardware/pl080.h>
92 #define DRIVER_NAME "pl08xdmac"
95 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
96 * @channels: the number of channels available in this variant
97 * @dualmaster: whether this version supports dual AHB masters or not.
105 * PL08X private data structures
106 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
107 * start & end do not - their bus bit info is in cctl. Also note that these
108 * are fixed 32-bit quantities.
118 * struct pl08x_driver_data - the local state holder for the PL08x
119 * @slave: slave engine for this instance
120 * @memcpy: memcpy engine for this instance
121 * @base: virtual memory base (remapped) for the PL08x
122 * @adev: the corresponding AMBA (PrimeCell) bus entry
123 * @vd: vendor data for this PL08x variant
124 * @pd: platform data passed in from the platform/machine
125 * @phy_chans: array of data for the physical channels
126 * @pool: a pool for the LLI descriptors
127 * @pool_ctr: counter of LLIs in the pool
128 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
129 * @mem_buses: set to indicate memory transfers on AHB2.
130 * @lock: a spinlock for this struct
132 struct pl08x_driver_data
{
133 struct dma_device slave
;
134 struct dma_device memcpy
;
136 struct amba_device
*adev
;
137 const struct vendor_data
*vd
;
138 struct pl08x_platform_data
*pd
;
139 struct pl08x_phy_chan
*phy_chans
;
140 struct dma_pool
*pool
;
148 * PL08X specific defines
152 * Memory boundaries: the manual for PL08x says that the controller
153 * cannot read past a 1KiB boundary, so these defines are used to
154 * create transfer LLIs that do not cross such boundaries.
156 #define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
157 #define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
159 /* Minimum period between work queue runs */
160 #define PL08X_WQ_PERIODMIN 20
162 /* Size (bytes) of each LLI buffer allocated for one transfer */
163 # define PL08X_LLI_TSFR_SIZE 0x2000
165 /* Maximum times we call dma_pool_alloc on this pool without freeing */
166 #define PL08X_MAX_ALLOCS 0x40
167 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
168 #define PL08X_ALIGN 8
170 static inline struct pl08x_dma_chan
*to_pl08x_chan(struct dma_chan
*chan
)
172 return container_of(chan
, struct pl08x_dma_chan
, chan
);
175 static inline struct pl08x_txd
*to_pl08x_txd(struct dma_async_tx_descriptor
*tx
)
177 return container_of(tx
, struct pl08x_txd
, tx
);
181 * Physical channel handling
184 /* Whether a certain channel is busy or not */
185 static int pl08x_phy_channel_busy(struct pl08x_phy_chan
*ch
)
189 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
190 return val
& PL080_CONFIG_ACTIVE
;
194 * Set the initial DMA register values i.e. those for the first LLI
195 * The next LLI pointer and the configuration interrupt bit have
196 * been set when the LLIs were constructed. Poke them into the hardware
197 * and start the transfer.
199 static void pl08x_start_txd(struct pl08x_dma_chan
*plchan
,
200 struct pl08x_txd
*txd
)
202 struct pl08x_driver_data
*pl08x
= plchan
->host
;
203 struct pl08x_phy_chan
*phychan
= plchan
->phychan
;
204 struct pl08x_lli
*lli
= &txd
->llis_va
[0];
209 /* Wait for channel inactive */
210 while (pl08x_phy_channel_busy(phychan
))
213 dev_vdbg(&pl08x
->adev
->dev
,
214 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
215 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
216 phychan
->id
, lli
->src
, lli
->dst
, lli
->lli
, lli
->cctl
,
219 writel(lli
->src
, phychan
->base
+ PL080_CH_SRC_ADDR
);
220 writel(lli
->dst
, phychan
->base
+ PL080_CH_DST_ADDR
);
221 writel(lli
->lli
, phychan
->base
+ PL080_CH_LLI
);
222 writel(lli
->cctl
, phychan
->base
+ PL080_CH_CONTROL
);
223 writel(txd
->ccfg
, phychan
->base
+ PL080_CH_CONFIG
);
225 /* Enable the DMA channel */
226 /* Do not access config register until channel shows as disabled */
227 while (readl(pl08x
->base
+ PL080_EN_CHAN
) & (1 << phychan
->id
))
230 /* Do not access config register until channel shows as inactive */
231 val
= readl(phychan
->base
+ PL080_CH_CONFIG
);
232 while ((val
& PL080_CONFIG_ACTIVE
) || (val
& PL080_CONFIG_ENABLE
))
233 val
= readl(phychan
->base
+ PL080_CH_CONFIG
);
235 writel(val
| PL080_CONFIG_ENABLE
, phychan
->base
+ PL080_CH_CONFIG
);
239 * Pause the channel by setting the HALT bit.
241 * For M->P transfers, pause the DMAC first and then stop the peripheral -
242 * the FIFO can only drain if the peripheral is still requesting data.
243 * (note: this can still timeout if the DMAC FIFO never drains of data.)
245 * For P->M transfers, disable the peripheral first to stop it filling
246 * the DMAC FIFO, and then pause the DMAC.
248 static void pl08x_pause_phy_chan(struct pl08x_phy_chan
*ch
)
253 /* Set the HALT bit and wait for the FIFO to drain */
254 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
255 val
|= PL080_CONFIG_HALT
;
256 writel(val
, ch
->base
+ PL080_CH_CONFIG
);
258 /* Wait for channel inactive */
259 for (timeout
= 1000; timeout
; timeout
--) {
260 if (!pl08x_phy_channel_busy(ch
))
264 if (pl08x_phy_channel_busy(ch
))
265 pr_err("pl08x: channel%u timeout waiting for pause\n", ch
->id
);
268 static void pl08x_resume_phy_chan(struct pl08x_phy_chan
*ch
)
272 /* Clear the HALT bit */
273 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
274 val
&= ~PL080_CONFIG_HALT
;
275 writel(val
, ch
->base
+ PL080_CH_CONFIG
);
280 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
281 * clears any pending interrupt status. This should not be used for
282 * an on-going transfer, but as a method of shutting down a channel
283 * (eg, when it's no longer used) or terminating a transfer.
285 static void pl08x_terminate_phy_chan(struct pl08x_driver_data
*pl08x
,
286 struct pl08x_phy_chan
*ch
)
288 u32 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
290 val
&= ~(PL080_CONFIG_ENABLE
| PL080_CONFIG_ERR_IRQ_MASK
|
291 PL080_CONFIG_TC_IRQ_MASK
);
293 writel(val
, ch
->base
+ PL080_CH_CONFIG
);
295 writel(1 << ch
->id
, pl08x
->base
+ PL080_ERR_CLEAR
);
296 writel(1 << ch
->id
, pl08x
->base
+ PL080_TC_CLEAR
);
299 static inline u32
get_bytes_in_cctl(u32 cctl
)
301 /* The source width defines the number of bytes */
302 u32 bytes
= cctl
& PL080_CONTROL_TRANSFER_SIZE_MASK
;
304 switch (cctl
>> PL080_CONTROL_SWIDTH_SHIFT
) {
305 case PL080_WIDTH_8BIT
:
307 case PL080_WIDTH_16BIT
:
310 case PL080_WIDTH_32BIT
:
317 /* The channel should be paused when calling this */
318 static u32
pl08x_getbytes_chan(struct pl08x_dma_chan
*plchan
)
320 struct pl08x_phy_chan
*ch
;
321 struct pl08x_txd
*txd
;
325 spin_lock_irqsave(&plchan
->lock
, flags
);
326 ch
= plchan
->phychan
;
330 * Follow the LLIs to get the number of remaining
331 * bytes in the currently active transaction.
334 u32 clli
= readl(ch
->base
+ PL080_CH_LLI
) & ~PL080_LLI_LM_AHB2
;
336 /* First get the remaining bytes in the active transfer */
337 bytes
= get_bytes_in_cctl(readl(ch
->base
+ PL080_CH_CONTROL
));
340 struct pl08x_lli
*llis_va
= txd
->llis_va
;
341 dma_addr_t llis_bus
= txd
->llis_bus
;
344 BUG_ON(clli
< llis_bus
|| clli
>= llis_bus
+
345 sizeof(struct pl08x_lli
) * MAX_NUM_TSFR_LLIS
);
348 * Locate the next LLI - as this is an array,
349 * it's simple maths to find.
351 index
= (clli
- llis_bus
) / sizeof(struct pl08x_lli
);
353 for (; index
< MAX_NUM_TSFR_LLIS
; index
++) {
354 bytes
+= get_bytes_in_cctl(llis_va
[index
].cctl
);
357 * A LLI pointer of 0 terminates the LLI list
359 if (!llis_va
[index
].lli
)
365 /* Sum up all queued transactions */
366 if (!list_empty(&plchan
->pend_list
)) {
367 struct pl08x_txd
*txdi
;
368 list_for_each_entry(txdi
, &plchan
->pend_list
, node
) {
373 spin_unlock_irqrestore(&plchan
->lock
, flags
);
379 * Allocate a physical channel for a virtual channel
381 * Try to locate a physical channel to be used for this transfer. If all
382 * are taken return NULL and the requester will have to cope by using
383 * some fallback PIO mode or retrying later.
385 static struct pl08x_phy_chan
*
386 pl08x_get_phy_channel(struct pl08x_driver_data
*pl08x
,
387 struct pl08x_dma_chan
*virt_chan
)
389 struct pl08x_phy_chan
*ch
= NULL
;
393 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
394 ch
= &pl08x
->phy_chans
[i
];
396 spin_lock_irqsave(&ch
->lock
, flags
);
399 ch
->serving
= virt_chan
;
401 spin_unlock_irqrestore(&ch
->lock
, flags
);
405 spin_unlock_irqrestore(&ch
->lock
, flags
);
408 if (i
== pl08x
->vd
->channels
) {
409 /* No physical channel available, cope with it */
416 static inline void pl08x_put_phy_channel(struct pl08x_driver_data
*pl08x
,
417 struct pl08x_phy_chan
*ch
)
421 spin_lock_irqsave(&ch
->lock
, flags
);
423 /* Stop the channel and clear its interrupts */
424 pl08x_terminate_phy_chan(pl08x
, ch
);
426 /* Mark it as free */
428 spin_unlock_irqrestore(&ch
->lock
, flags
);
435 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded
)
438 case PL080_WIDTH_8BIT
:
440 case PL080_WIDTH_16BIT
:
442 case PL080_WIDTH_32BIT
:
451 static inline u32
pl08x_cctl_bits(u32 cctl
, u8 srcwidth
, u8 dstwidth
,
456 /* Remove all src, dst and transfer size bits */
457 retbits
&= ~PL080_CONTROL_DWIDTH_MASK
;
458 retbits
&= ~PL080_CONTROL_SWIDTH_MASK
;
459 retbits
&= ~PL080_CONTROL_TRANSFER_SIZE_MASK
;
461 /* Then set the bits according to the parameters */
464 retbits
|= PL080_WIDTH_8BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
467 retbits
|= PL080_WIDTH_16BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
470 retbits
|= PL080_WIDTH_32BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
479 retbits
|= PL080_WIDTH_8BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
482 retbits
|= PL080_WIDTH_16BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
485 retbits
|= PL080_WIDTH_32BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
492 retbits
|= tsize
<< PL080_CONTROL_TRANSFER_SIZE_SHIFT
;
496 struct pl08x_lli_build_data
{
497 struct pl08x_txd
*txd
;
498 struct pl08x_driver_data
*pl08x
;
499 struct pl08x_bus_data srcbus
;
500 struct pl08x_bus_data dstbus
;
505 * Autoselect a master bus to use for the transfer this prefers the
506 * destination bus if both available if fixed address on one bus the
507 * other will be chosen
509 static void pl08x_choose_master_bus(struct pl08x_lli_build_data
*bd
,
510 struct pl08x_bus_data
**mbus
, struct pl08x_bus_data
**sbus
, u32 cctl
)
512 if (!(cctl
& PL080_CONTROL_DST_INCR
)) {
515 } else if (!(cctl
& PL080_CONTROL_SRC_INCR
)) {
519 if (bd
->dstbus
.buswidth
== 4) {
522 } else if (bd
->srcbus
.buswidth
== 4) {
525 } else if (bd
->dstbus
.buswidth
== 2) {
528 } else if (bd
->srcbus
.buswidth
== 2) {
532 /* bd->srcbus.buswidth == 1 */
540 * Fills in one LLI for a certain transfer descriptor and advance the counter
542 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data
*bd
,
543 int num_llis
, int len
, u32 cctl
)
545 struct pl08x_lli
*llis_va
= bd
->txd
->llis_va
;
546 dma_addr_t llis_bus
= bd
->txd
->llis_bus
;
548 BUG_ON(num_llis
>= MAX_NUM_TSFR_LLIS
);
550 llis_va
[num_llis
].cctl
= cctl
;
551 llis_va
[num_llis
].src
= bd
->srcbus
.addr
;
552 llis_va
[num_llis
].dst
= bd
->dstbus
.addr
;
553 llis_va
[num_llis
].lli
= llis_bus
+ (num_llis
+ 1) * sizeof(struct pl08x_lli
);
554 if (bd
->pl08x
->lli_buses
& PL08X_AHB2
)
555 llis_va
[num_llis
].lli
|= PL080_LLI_LM_AHB2
;
557 if (cctl
& PL080_CONTROL_SRC_INCR
)
558 bd
->srcbus
.addr
+= len
;
559 if (cctl
& PL080_CONTROL_DST_INCR
)
560 bd
->dstbus
.addr
+= len
;
562 BUG_ON(bd
->remainder
< len
);
564 bd
->remainder
-= len
;
568 * Return number of bytes to fill to boundary, or len.
569 * This calculation works for any value of addr.
571 static inline size_t pl08x_pre_boundary(u32 addr
, size_t len
)
573 size_t boundary_len
= PL08X_BOUNDARY_SIZE
-
574 (addr
& (PL08X_BOUNDARY_SIZE
- 1));
576 return min(boundary_len
, len
);
580 * This fills in the table of LLIs for the transfer descriptor
581 * Note that we assume we never have to change the burst sizes
584 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data
*pl08x
,
585 struct pl08x_txd
*txd
)
587 struct pl08x_bus_data
*mbus
, *sbus
;
588 struct pl08x_lli_build_data bd
;
591 size_t max_bytes_per_lli
;
592 size_t total_bytes
= 0;
593 struct pl08x_lli
*llis_va
;
595 txd
->llis_va
= dma_pool_alloc(pl08x
->pool
, GFP_NOWAIT
,
598 dev_err(&pl08x
->adev
->dev
, "%s no memory for llis\n", __func__
);
604 /* Get the default CCTL */
609 bd
.srcbus
.addr
= txd
->src_addr
;
610 bd
.dstbus
.addr
= txd
->dst_addr
;
612 /* Find maximum width of the source bus */
614 pl08x_get_bytes_for_cctl((cctl
& PL080_CONTROL_SWIDTH_MASK
) >>
615 PL080_CONTROL_SWIDTH_SHIFT
);
617 /* Find maximum width of the destination bus */
619 pl08x_get_bytes_for_cctl((cctl
& PL080_CONTROL_DWIDTH_MASK
) >>
620 PL080_CONTROL_DWIDTH_SHIFT
);
622 /* Set up the bus widths to the maximum */
623 bd
.srcbus
.buswidth
= bd
.srcbus
.maxwidth
;
624 bd
.dstbus
.buswidth
= bd
.dstbus
.maxwidth
;
625 dev_vdbg(&pl08x
->adev
->dev
,
626 "%s source bus is %d bytes wide, dest bus is %d bytes wide\n",
627 __func__
, bd
.srcbus
.buswidth
, bd
.dstbus
.buswidth
);
631 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
633 max_bytes_per_lli
= min(bd
.srcbus
.buswidth
, bd
.dstbus
.buswidth
) *
634 PL080_CONTROL_TRANSFER_SIZE_MASK
;
635 dev_vdbg(&pl08x
->adev
->dev
,
636 "%s max bytes per lli = %zu\n",
637 __func__
, max_bytes_per_lli
);
639 /* We need to count this down to zero */
640 bd
.remainder
= txd
->len
;
641 dev_vdbg(&pl08x
->adev
->dev
,
642 "%s remainder = %zu\n",
643 __func__
, bd
.remainder
);
646 * Choose bus to align to
647 * - prefers destination bus if both available
648 * - if fixed address on one bus chooses other
650 pl08x_choose_master_bus(&bd
, &mbus
, &sbus
, cctl
);
652 if (txd
->len
< mbus
->buswidth
) {
653 /* Less than a bus width available - send as single bytes */
654 while (bd
.remainder
) {
655 dev_vdbg(&pl08x
->adev
->dev
,
656 "%s single byte LLIs for a transfer of "
657 "less than a bus width (remain 0x%08x)\n",
658 __func__
, bd
.remainder
);
659 cctl
= pl08x_cctl_bits(cctl
, 1, 1, 1);
660 pl08x_fill_lli_for_desc(&bd
, num_llis
++, 1, cctl
);
664 /* Make one byte LLIs until master bus is aligned */
665 while ((mbus
->addr
) % (mbus
->buswidth
)) {
666 dev_vdbg(&pl08x
->adev
->dev
,
667 "%s adjustment lli for less than bus width "
669 __func__
, bd
.remainder
);
670 cctl
= pl08x_cctl_bits(cctl
, 1, 1, 1);
671 pl08x_fill_lli_for_desc(&bd
, num_llis
++, 1, cctl
);
677 * - if slave is not then we must set its width down
679 if (sbus
->addr
% sbus
->buswidth
) {
680 dev_dbg(&pl08x
->adev
->dev
,
681 "%s set down bus width to one byte\n",
688 * Make largest possible LLIs until less than one bus
691 while (bd
.remainder
> (mbus
->buswidth
- 1)) {
692 size_t lli_len
, target_len
, tsize
, odd_bytes
;
695 * If enough left try to send max possible,
696 * otherwise try to send the remainder
698 target_len
= min(bd
.remainder
, max_bytes_per_lli
);
701 * Set bus lengths for incrementing buses to the
702 * number of bytes which fill to next memory boundary,
703 * limiting on the target length calculated above.
705 if (cctl
& PL080_CONTROL_SRC_INCR
)
706 bd
.srcbus
.fill_bytes
=
707 pl08x_pre_boundary(bd
.srcbus
.addr
,
710 bd
.srcbus
.fill_bytes
= target_len
;
712 if (cctl
& PL080_CONTROL_DST_INCR
)
713 bd
.dstbus
.fill_bytes
=
714 pl08x_pre_boundary(bd
.dstbus
.addr
,
717 bd
.dstbus
.fill_bytes
= target_len
;
719 /* Find the nearest */
720 lli_len
= min(bd
.srcbus
.fill_bytes
,
721 bd
.dstbus
.fill_bytes
);
723 BUG_ON(lli_len
> bd
.remainder
);
726 dev_err(&pl08x
->adev
->dev
,
727 "%s lli_len is %zu, <= 0\n",
732 if (lli_len
== target_len
) {
734 * Can send what we wanted.
737 lli_len
= (lli_len
/mbus
->buswidth
) *
742 * So now we know how many bytes to transfer
743 * to get to the nearest boundary. The next
744 * LLI will past the boundary. However, we
745 * may be working to a boundary on the slave
746 * bus. We need to ensure the master stays
747 * aligned, and that we are working in
748 * multiples of the bus widths.
750 odd_bytes
= lli_len
% mbus
->buswidth
;
751 lli_len
-= odd_bytes
;
757 * Check against minimum bus alignment:
758 * Calculate actual transfer size in relation
759 * to bus width an get a maximum remainder of
760 * the smallest bus width - 1
762 /* FIXME: use round_down()? */
763 tsize
= lli_len
/ min(mbus
->buswidth
,
765 lli_len
= tsize
* min(mbus
->buswidth
,
768 if (target_len
!= lli_len
) {
769 dev_vdbg(&pl08x
->adev
->dev
,
770 "%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
771 __func__
, target_len
, lli_len
, txd
->len
);
774 cctl
= pl08x_cctl_bits(cctl
,
779 dev_vdbg(&pl08x
->adev
->dev
,
780 "%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
781 __func__
, lli_len
, bd
.remainder
);
782 pl08x_fill_lli_for_desc(&bd
, num_llis
++,
784 total_bytes
+= lli_len
;
790 * Creep past the boundary, maintaining
794 for (j
= 0; (j
< mbus
->buswidth
)
795 && (bd
.remainder
); j
++) {
796 cctl
= pl08x_cctl_bits(cctl
, 1, 1, 1);
797 dev_vdbg(&pl08x
->adev
->dev
,
798 "%s align with boundary, single byte (remain 0x%08zx)\n",
799 __func__
, bd
.remainder
);
800 pl08x_fill_lli_for_desc(&bd
,
801 num_llis
++, 1, cctl
);
810 while (bd
.remainder
) {
811 cctl
= pl08x_cctl_bits(cctl
, 1, 1, 1);
812 dev_vdbg(&pl08x
->adev
->dev
,
813 "%s align with boundary, single odd byte (remain %zu)\n",
814 __func__
, bd
.remainder
);
815 pl08x_fill_lli_for_desc(&bd
, num_llis
++, 1, cctl
);
819 if (total_bytes
!= txd
->len
) {
820 dev_err(&pl08x
->adev
->dev
,
821 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
822 __func__
, total_bytes
, txd
->len
);
826 if (num_llis
>= MAX_NUM_TSFR_LLIS
) {
827 dev_err(&pl08x
->adev
->dev
,
828 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
829 __func__
, (u32
) MAX_NUM_TSFR_LLIS
);
833 llis_va
= txd
->llis_va
;
834 /* The final LLI terminates the LLI. */
835 llis_va
[num_llis
- 1].lli
= 0;
836 /* The final LLI element shall also fire an interrupt. */
837 llis_va
[num_llis
- 1].cctl
|= PL080_CONTROL_TC_IRQ_EN
;
843 for (i
= 0; i
< num_llis
; i
++) {
844 dev_vdbg(&pl08x
->adev
->dev
,
845 "lli %d @%p: csrc=0x%08x, cdst=0x%08x, cctl=0x%08x, clli=0x%08x\n",
860 /* You should call this with the struct pl08x lock held */
861 static void pl08x_free_txd(struct pl08x_driver_data
*pl08x
,
862 struct pl08x_txd
*txd
)
865 dma_pool_free(pl08x
->pool
, txd
->llis_va
, txd
->llis_bus
);
872 static void pl08x_free_txd_list(struct pl08x_driver_data
*pl08x
,
873 struct pl08x_dma_chan
*plchan
)
875 struct pl08x_txd
*txdi
= NULL
;
876 struct pl08x_txd
*next
;
878 if (!list_empty(&plchan
->pend_list
)) {
879 list_for_each_entry_safe(txdi
,
880 next
, &plchan
->pend_list
, node
) {
881 list_del(&txdi
->node
);
882 pl08x_free_txd(pl08x
, txdi
);
890 static int pl08x_alloc_chan_resources(struct dma_chan
*chan
)
895 static void pl08x_free_chan_resources(struct dma_chan
*chan
)
900 * This should be called with the channel plchan->lock held
902 static int prep_phy_channel(struct pl08x_dma_chan
*plchan
,
903 struct pl08x_txd
*txd
)
905 struct pl08x_driver_data
*pl08x
= plchan
->host
;
906 struct pl08x_phy_chan
*ch
;
909 /* Check if we already have a channel */
913 ch
= pl08x_get_phy_channel(pl08x
, plchan
);
915 /* No physical channel available, cope with it */
916 dev_dbg(&pl08x
->adev
->dev
, "no physical channel available for xfer on %s\n", plchan
->name
);
921 * OK we have a physical channel: for memcpy() this is all we
922 * need, but for slaves the physical signals may be muxed!
923 * Can the platform allow us to use this channel?
927 pl08x
->pd
->get_signal
) {
928 ret
= pl08x
->pd
->get_signal(plchan
);
930 dev_dbg(&pl08x
->adev
->dev
,
931 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
932 ch
->id
, plchan
->name
);
933 /* Release physical channel & return */
934 pl08x_put_phy_channel(pl08x
, ch
);
939 /* Assign the flow control signal to this channel */
940 if (txd
->direction
== DMA_TO_DEVICE
)
941 txd
->ccfg
|= ch
->signal
<< PL080_CONFIG_DST_SEL_SHIFT
;
942 else if (txd
->direction
== DMA_FROM_DEVICE
)
943 txd
->ccfg
|= ch
->signal
<< PL080_CONFIG_SRC_SEL_SHIFT
;
946 dev_dbg(&pl08x
->adev
->dev
, "allocated physical channel %d and signal %d for xfer on %s\n",
951 plchan
->phychan_hold
++;
952 plchan
->phychan
= ch
;
957 static void release_phy_channel(struct pl08x_dma_chan
*plchan
)
959 struct pl08x_driver_data
*pl08x
= plchan
->host
;
961 if ((plchan
->phychan
->signal
>= 0) && pl08x
->pd
->put_signal
) {
962 pl08x
->pd
->put_signal(plchan
);
963 plchan
->phychan
->signal
= -1;
965 pl08x_put_phy_channel(pl08x
, plchan
->phychan
);
966 plchan
->phychan
= NULL
;
969 static dma_cookie_t
pl08x_tx_submit(struct dma_async_tx_descriptor
*tx
)
971 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(tx
->chan
);
972 struct pl08x_txd
*txd
= to_pl08x_txd(tx
);
975 spin_lock_irqsave(&plchan
->lock
, flags
);
977 plchan
->chan
.cookie
+= 1;
978 if (plchan
->chan
.cookie
< 0)
979 plchan
->chan
.cookie
= 1;
980 tx
->cookie
= plchan
->chan
.cookie
;
982 /* Put this onto the pending list */
983 list_add_tail(&txd
->node
, &plchan
->pend_list
);
986 * If there was no physical channel available for this memcpy,
987 * stack the request up and indicate that the channel is waiting
988 * for a free physical channel.
990 if (!plchan
->slave
&& !plchan
->phychan
) {
991 /* Do this memcpy whenever there is a channel ready */
992 plchan
->state
= PL08X_CHAN_WAITING
;
993 plchan
->waiting
= txd
;
995 plchan
->phychan_hold
--;
998 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1003 static struct dma_async_tx_descriptor
*pl08x_prep_dma_interrupt(
1004 struct dma_chan
*chan
, unsigned long flags
)
1006 struct dma_async_tx_descriptor
*retval
= NULL
;
1012 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1013 * If slaves are relying on interrupts to signal completion this function
1014 * must not be called with interrupts disabled.
1016 static enum dma_status
1017 pl08x_dma_tx_status(struct dma_chan
*chan
,
1018 dma_cookie_t cookie
,
1019 struct dma_tx_state
*txstate
)
1021 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1022 dma_cookie_t last_used
;
1023 dma_cookie_t last_complete
;
1024 enum dma_status ret
;
1027 last_used
= plchan
->chan
.cookie
;
1028 last_complete
= plchan
->lc
;
1030 ret
= dma_async_is_complete(cookie
, last_complete
, last_used
);
1031 if (ret
== DMA_SUCCESS
) {
1032 dma_set_tx_state(txstate
, last_complete
, last_used
, 0);
1037 * This cookie not complete yet
1039 last_used
= plchan
->chan
.cookie
;
1040 last_complete
= plchan
->lc
;
1042 /* Get number of bytes left in the active transactions and queue */
1043 bytesleft
= pl08x_getbytes_chan(plchan
);
1045 dma_set_tx_state(txstate
, last_complete
, last_used
,
1048 if (plchan
->state
== PL08X_CHAN_PAUSED
)
1051 /* Whether waiting or running, we're in progress */
1052 return DMA_IN_PROGRESS
;
1055 /* PrimeCell DMA extension */
1056 struct burst_table
{
1061 static const struct burst_table burst_sizes
[] = {
1064 .reg
= (PL080_BSIZE_256
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1065 (PL080_BSIZE_256
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1069 .reg
= (PL080_BSIZE_128
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1070 (PL080_BSIZE_128
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1074 .reg
= (PL080_BSIZE_64
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1075 (PL080_BSIZE_64
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1079 .reg
= (PL080_BSIZE_32
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1080 (PL080_BSIZE_32
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1084 .reg
= (PL080_BSIZE_16
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1085 (PL080_BSIZE_16
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1089 .reg
= (PL080_BSIZE_8
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1090 (PL080_BSIZE_8
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1094 .reg
= (PL080_BSIZE_4
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1095 (PL080_BSIZE_4
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1099 .reg
= (PL080_BSIZE_1
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1100 (PL080_BSIZE_1
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1104 static int dma_set_runtime_config(struct dma_chan
*chan
,
1105 struct dma_slave_config
*config
)
1107 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1108 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1109 struct pl08x_channel_data
*cd
= plchan
->cd
;
1110 enum dma_slave_buswidth addr_width
;
1119 /* Transfer direction */
1120 plchan
->runtime_direction
= config
->direction
;
1121 if (config
->direction
== DMA_TO_DEVICE
) {
1122 addr
= config
->dst_addr
;
1123 addr_width
= config
->dst_addr_width
;
1124 maxburst
= config
->dst_maxburst
;
1125 } else if (config
->direction
== DMA_FROM_DEVICE
) {
1126 addr
= config
->src_addr
;
1127 addr_width
= config
->src_addr_width
;
1128 maxburst
= config
->src_maxburst
;
1130 dev_err(&pl08x
->adev
->dev
,
1131 "bad runtime_config: alien transfer direction\n");
1135 switch (addr_width
) {
1136 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
1137 cctl
|= (PL080_WIDTH_8BIT
<< PL080_CONTROL_SWIDTH_SHIFT
) |
1138 (PL080_WIDTH_8BIT
<< PL080_CONTROL_DWIDTH_SHIFT
);
1140 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
1141 cctl
|= (PL080_WIDTH_16BIT
<< PL080_CONTROL_SWIDTH_SHIFT
) |
1142 (PL080_WIDTH_16BIT
<< PL080_CONTROL_DWIDTH_SHIFT
);
1144 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
1145 cctl
|= (PL080_WIDTH_32BIT
<< PL080_CONTROL_SWIDTH_SHIFT
) |
1146 (PL080_WIDTH_32BIT
<< PL080_CONTROL_DWIDTH_SHIFT
);
1149 dev_err(&pl08x
->adev
->dev
,
1150 "bad runtime_config: alien address width\n");
1155 * Now decide on a maxburst:
1156 * If this channel will only request single transfers, set this
1157 * down to ONE element. Also select one element if no maxburst
1160 if (plchan
->cd
->single
|| maxburst
== 0) {
1161 cctl
|= (PL080_BSIZE_1
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1162 (PL080_BSIZE_1
<< PL080_CONTROL_DB_SIZE_SHIFT
);
1164 for (i
= 0; i
< ARRAY_SIZE(burst_sizes
); i
++)
1165 if (burst_sizes
[i
].burstwords
<= maxburst
)
1167 cctl
|= burst_sizes
[i
].reg
;
1170 plchan
->runtime_addr
= addr
;
1172 /* Modify the default channel data to fit PrimeCell request */
1175 dev_dbg(&pl08x
->adev
->dev
,
1176 "configured channel %s (%s) for %s, data width %d, "
1177 "maxburst %d words, LE, CCTL=0x%08x\n",
1178 dma_chan_name(chan
), plchan
->name
,
1179 (config
->direction
== DMA_FROM_DEVICE
) ? "RX" : "TX",
1188 * Slave transactions callback to the slave device to allow
1189 * synchronization of slave DMA signals with the DMAC enable
1191 static void pl08x_issue_pending(struct dma_chan
*chan
)
1193 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1194 unsigned long flags
;
1196 spin_lock_irqsave(&plchan
->lock
, flags
);
1197 /* Something is already active, or we're waiting for a channel... */
1198 if (plchan
->at
|| plchan
->state
== PL08X_CHAN_WAITING
) {
1199 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1203 /* Take the first element in the queue and execute it */
1204 if (!list_empty(&plchan
->pend_list
)) {
1205 struct pl08x_txd
*next
;
1207 next
= list_first_entry(&plchan
->pend_list
,
1210 list_del(&next
->node
);
1211 plchan
->state
= PL08X_CHAN_RUNNING
;
1213 pl08x_start_txd(plchan
, next
);
1216 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1219 static int pl08x_prep_channel_resources(struct pl08x_dma_chan
*plchan
,
1220 struct pl08x_txd
*txd
)
1222 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1223 unsigned long flags
;
1226 num_llis
= pl08x_fill_llis_for_desc(pl08x
, txd
);
1232 spin_lock_irqsave(&plchan
->lock
, flags
);
1235 * See if we already have a physical channel allocated,
1236 * else this is the time to try to get one.
1238 ret
= prep_phy_channel(plchan
, txd
);
1241 * No physical channel was available.
1243 * memcpy transfers can be sorted out at submission time.
1245 * Slave transfers may have been denied due to platform
1246 * channel muxing restrictions. Since there is no guarantee
1247 * that this will ever be resolved, and the signal must be
1248 * acquired AFTER acquiring the physical channel, we will let
1249 * them be NACK:ed with -EBUSY here. The drivers can retry
1250 * the prep() call if they are eager on doing this using DMA.
1252 if (plchan
->slave
) {
1253 pl08x_free_txd_list(pl08x
, plchan
);
1254 pl08x_free_txd(pl08x
, txd
);
1255 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1260 * Else we're all set, paused and ready to roll, status
1261 * will switch to PL08X_CHAN_RUNNING when we call
1262 * issue_pending(). If there is something running on the
1263 * channel already we don't change its state.
1265 if (plchan
->state
== PL08X_CHAN_IDLE
)
1266 plchan
->state
= PL08X_CHAN_PAUSED
;
1268 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1274 * Given the source and destination available bus masks, select which
1275 * will be routed to each port. We try to have source and destination
1276 * on separate ports, but always respect the allowable settings.
1278 static u32
pl08x_select_bus(struct pl08x_driver_data
*pl08x
, u8 src
, u8 dst
)
1282 if (!(dst
& PL08X_AHB1
) || ((dst
& PL08X_AHB2
) && (src
& PL08X_AHB1
)))
1283 cctl
|= PL080_CONTROL_DST_AHB2
;
1284 if (!(src
& PL08X_AHB1
) || ((src
& PL08X_AHB2
) && !(dst
& PL08X_AHB2
)))
1285 cctl
|= PL080_CONTROL_SRC_AHB2
;
1290 static struct pl08x_txd
*pl08x_get_txd(struct pl08x_dma_chan
*plchan
,
1291 unsigned long flags
)
1293 struct pl08x_txd
*txd
= kzalloc(sizeof(struct pl08x_txd
), GFP_NOWAIT
);
1296 dma_async_tx_descriptor_init(&txd
->tx
, &plchan
->chan
);
1297 txd
->tx
.flags
= flags
;
1298 txd
->tx
.tx_submit
= pl08x_tx_submit
;
1299 INIT_LIST_HEAD(&txd
->node
);
1301 /* Always enable error and terminal interrupts */
1302 txd
->ccfg
= PL080_CONFIG_ERR_IRQ_MASK
|
1303 PL080_CONFIG_TC_IRQ_MASK
;
1309 * Initialize a descriptor to be used by memcpy submit
1311 static struct dma_async_tx_descriptor
*pl08x_prep_dma_memcpy(
1312 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
1313 size_t len
, unsigned long flags
)
1315 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1316 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1317 struct pl08x_txd
*txd
;
1320 txd
= pl08x_get_txd(plchan
, flags
);
1322 dev_err(&pl08x
->adev
->dev
,
1323 "%s no memory for descriptor\n", __func__
);
1327 txd
->direction
= DMA_NONE
;
1328 txd
->src_addr
= src
;
1329 txd
->dst_addr
= dest
;
1332 /* Set platform data for m2m */
1333 txd
->ccfg
|= PL080_FLOW_MEM2MEM
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1334 txd
->cctl
= pl08x
->pd
->memcpy_channel
.cctl
&
1335 ~(PL080_CONTROL_DST_AHB2
| PL080_CONTROL_SRC_AHB2
);
1337 /* Both to be incremented or the code will break */
1338 txd
->cctl
|= PL080_CONTROL_SRC_INCR
| PL080_CONTROL_DST_INCR
;
1340 if (pl08x
->vd
->dualmaster
)
1341 txd
->cctl
|= pl08x_select_bus(pl08x
,
1342 pl08x
->mem_buses
, pl08x
->mem_buses
);
1344 ret
= pl08x_prep_channel_resources(plchan
, txd
);
1351 static struct dma_async_tx_descriptor
*pl08x_prep_slave_sg(
1352 struct dma_chan
*chan
, struct scatterlist
*sgl
,
1353 unsigned int sg_len
, enum dma_data_direction direction
,
1354 unsigned long flags
)
1356 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1357 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1358 struct pl08x_txd
*txd
;
1359 u8 src_buses
, dst_buses
;
1363 * Current implementation ASSUMES only one sg
1366 dev_err(&pl08x
->adev
->dev
, "%s prepared too long sglist\n",
1371 dev_dbg(&pl08x
->adev
->dev
, "%s prepare transaction of %d bytes from %s\n",
1372 __func__
, sgl
->length
, plchan
->name
);
1374 txd
= pl08x_get_txd(plchan
, flags
);
1376 dev_err(&pl08x
->adev
->dev
, "%s no txd\n", __func__
);
1380 if (direction
!= plchan
->runtime_direction
)
1381 dev_err(&pl08x
->adev
->dev
, "%s DMA setup does not match "
1382 "the direction configured for the PrimeCell\n",
1386 * Set up addresses, the PrimeCell configured address
1387 * will take precedence since this may configure the
1388 * channel target address dynamically at runtime.
1390 txd
->direction
= direction
;
1391 txd
->len
= sgl
->length
;
1393 txd
->cctl
= plchan
->cd
->cctl
&
1394 ~(PL080_CONTROL_SRC_AHB2
| PL080_CONTROL_DST_AHB2
|
1395 PL080_CONTROL_SRC_INCR
| PL080_CONTROL_DST_INCR
|
1396 PL080_CONTROL_PROT_MASK
);
1398 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1399 txd
->cctl
|= PL080_CONTROL_PROT_SYS
;
1401 if (direction
== DMA_TO_DEVICE
) {
1402 txd
->ccfg
|= PL080_FLOW_MEM2PER
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1403 txd
->cctl
|= PL080_CONTROL_SRC_INCR
;
1404 txd
->src_addr
= sgl
->dma_address
;
1405 if (plchan
->runtime_addr
)
1406 txd
->dst_addr
= plchan
->runtime_addr
;
1408 txd
->dst_addr
= plchan
->cd
->addr
;
1409 src_buses
= pl08x
->mem_buses
;
1410 dst_buses
= plchan
->cd
->periph_buses
;
1411 } else if (direction
== DMA_FROM_DEVICE
) {
1412 txd
->ccfg
|= PL080_FLOW_PER2MEM
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1413 txd
->cctl
|= PL080_CONTROL_DST_INCR
;
1414 if (plchan
->runtime_addr
)
1415 txd
->src_addr
= plchan
->runtime_addr
;
1417 txd
->src_addr
= plchan
->cd
->addr
;
1418 txd
->dst_addr
= sgl
->dma_address
;
1419 src_buses
= plchan
->cd
->periph_buses
;
1420 dst_buses
= pl08x
->mem_buses
;
1422 dev_err(&pl08x
->adev
->dev
,
1423 "%s direction unsupported\n", __func__
);
1427 txd
->cctl
|= pl08x_select_bus(pl08x
, src_buses
, dst_buses
);
1429 ret
= pl08x_prep_channel_resources(plchan
, txd
);
1436 static int pl08x_control(struct dma_chan
*chan
, enum dma_ctrl_cmd cmd
,
1439 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1440 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1441 unsigned long flags
;
1444 /* Controls applicable to inactive channels */
1445 if (cmd
== DMA_SLAVE_CONFIG
) {
1446 return dma_set_runtime_config(chan
,
1447 (struct dma_slave_config
*)arg
);
1451 * Anything succeeds on channels with no physical allocation and
1452 * no queued transfers.
1454 spin_lock_irqsave(&plchan
->lock
, flags
);
1455 if (!plchan
->phychan
&& !plchan
->at
) {
1456 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1461 case DMA_TERMINATE_ALL
:
1462 plchan
->state
= PL08X_CHAN_IDLE
;
1464 if (plchan
->phychan
) {
1465 pl08x_terminate_phy_chan(pl08x
, plchan
->phychan
);
1468 * Mark physical channel as free and free any slave
1471 release_phy_channel(plchan
);
1473 /* Dequeue jobs and free LLIs */
1475 pl08x_free_txd(pl08x
, plchan
->at
);
1478 /* Dequeue jobs not yet fired as well */
1479 pl08x_free_txd_list(pl08x
, plchan
);
1482 pl08x_pause_phy_chan(plchan
->phychan
);
1483 plchan
->state
= PL08X_CHAN_PAUSED
;
1486 pl08x_resume_phy_chan(plchan
->phychan
);
1487 plchan
->state
= PL08X_CHAN_RUNNING
;
1490 /* Unknown command */
1495 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1500 bool pl08x_filter_id(struct dma_chan
*chan
, void *chan_id
)
1502 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1503 char *name
= chan_id
;
1505 /* Check that the channel is not taken! */
1506 if (!strcmp(plchan
->name
, name
))
1513 * Just check that the device is there and active
1514 * TODO: turn this bit on/off depending on the number of physical channels
1515 * actually used, if it is zero... well shut it off. That will save some
1516 * power. Cut the clock at the same time.
1518 static void pl08x_ensure_on(struct pl08x_driver_data
*pl08x
)
1522 val
= readl(pl08x
->base
+ PL080_CONFIG
);
1523 val
&= ~(PL080_CONFIG_M2_BE
| PL080_CONFIG_M1_BE
| PL080_CONFIG_ENABLE
);
1524 /* We implicitly clear bit 1 and that means little-endian mode */
1525 val
|= PL080_CONFIG_ENABLE
;
1526 writel(val
, pl08x
->base
+ PL080_CONFIG
);
1529 static void pl08x_unmap_buffers(struct pl08x_txd
*txd
)
1531 struct device
*dev
= txd
->tx
.chan
->device
->dev
;
1533 if (!(txd
->tx
.flags
& DMA_COMPL_SKIP_SRC_UNMAP
)) {
1534 if (txd
->tx
.flags
& DMA_COMPL_SRC_UNMAP_SINGLE
)
1535 dma_unmap_single(dev
, txd
->src_addr
, txd
->len
,
1538 dma_unmap_page(dev
, txd
->src_addr
, txd
->len
,
1541 if (!(txd
->tx
.flags
& DMA_COMPL_SKIP_DEST_UNMAP
)) {
1542 if (txd
->tx
.flags
& DMA_COMPL_DEST_UNMAP_SINGLE
)
1543 dma_unmap_single(dev
, txd
->dst_addr
, txd
->len
,
1546 dma_unmap_page(dev
, txd
->dst_addr
, txd
->len
,
1551 static void pl08x_tasklet(unsigned long data
)
1553 struct pl08x_dma_chan
*plchan
= (struct pl08x_dma_chan
*) data
;
1554 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1555 struct pl08x_txd
*txd
;
1556 unsigned long flags
;
1558 spin_lock_irqsave(&plchan
->lock
, flags
);
1564 /* Update last completed */
1565 plchan
->lc
= txd
->tx
.cookie
;
1568 /* If a new descriptor is queued, set it up plchan->at is NULL here */
1569 if (!list_empty(&plchan
->pend_list
)) {
1570 struct pl08x_txd
*next
;
1572 next
= list_first_entry(&plchan
->pend_list
,
1575 list_del(&next
->node
);
1577 pl08x_start_txd(plchan
, next
);
1578 } else if (plchan
->phychan_hold
) {
1580 * This channel is still in use - we have a new txd being
1581 * prepared and will soon be queued. Don't give up the
1585 struct pl08x_dma_chan
*waiting
= NULL
;
1588 * No more jobs, so free up the physical channel
1589 * Free any allocated signal on slave transfers too
1591 release_phy_channel(plchan
);
1592 plchan
->state
= PL08X_CHAN_IDLE
;
1595 * And NOW before anyone else can grab that free:d up
1596 * physical channel, see if there is some memcpy pending
1597 * that seriously needs to start because of being stacked
1598 * up while we were choking the physical channels with data.
1600 list_for_each_entry(waiting
, &pl08x
->memcpy
.channels
,
1602 if (waiting
->state
== PL08X_CHAN_WAITING
&&
1603 waiting
->waiting
!= NULL
) {
1606 /* This should REALLY not fail now */
1607 ret
= prep_phy_channel(waiting
,
1610 waiting
->phychan_hold
--;
1611 waiting
->state
= PL08X_CHAN_RUNNING
;
1612 waiting
->waiting
= NULL
;
1613 pl08x_issue_pending(&waiting
->chan
);
1619 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1622 dma_async_tx_callback callback
= txd
->tx
.callback
;
1623 void *callback_param
= txd
->tx
.callback_param
;
1625 /* Don't try to unmap buffers on slave channels */
1627 pl08x_unmap_buffers(txd
);
1629 /* Free the descriptor */
1630 spin_lock_irqsave(&plchan
->lock
, flags
);
1631 pl08x_free_txd(pl08x
, txd
);
1632 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1634 /* Callback to signal completion */
1636 callback(callback_param
);
1640 static irqreturn_t
pl08x_irq(int irq
, void *dev
)
1642 struct pl08x_driver_data
*pl08x
= dev
;
1647 val
= readl(pl08x
->base
+ PL080_ERR_STATUS
);
1649 /* An error interrupt (on one or more channels) */
1650 dev_err(&pl08x
->adev
->dev
,
1651 "%s error interrupt, register value 0x%08x\n",
1654 * Simply clear ALL PL08X error interrupts,
1655 * regardless of channel and cause
1656 * FIXME: should be 0x00000003 on PL081 really.
1658 writel(0x000000FF, pl08x
->base
+ PL080_ERR_CLEAR
);
1660 val
= readl(pl08x
->base
+ PL080_INT_STATUS
);
1661 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
1662 if ((1 << i
) & val
) {
1663 /* Locate physical channel */
1664 struct pl08x_phy_chan
*phychan
= &pl08x
->phy_chans
[i
];
1665 struct pl08x_dma_chan
*plchan
= phychan
->serving
;
1667 /* Schedule tasklet on this channel */
1668 tasklet_schedule(&plchan
->tasklet
);
1673 /* Clear only the terminal interrupts on channels we processed */
1674 writel(mask
, pl08x
->base
+ PL080_TC_CLEAR
);
1676 return mask
? IRQ_HANDLED
: IRQ_NONE
;
1680 * Initialise the DMAC memcpy/slave channels.
1681 * Make a local wrapper to hold required data
1683 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data
*pl08x
,
1684 struct dma_device
*dmadev
,
1685 unsigned int channels
,
1688 struct pl08x_dma_chan
*chan
;
1691 INIT_LIST_HEAD(&dmadev
->channels
);
1694 * Register as many many memcpy as we have physical channels,
1695 * we won't always be able to use all but the code will have
1696 * to cope with that situation.
1698 for (i
= 0; i
< channels
; i
++) {
1699 chan
= kzalloc(sizeof(struct pl08x_dma_chan
), GFP_KERNEL
);
1701 dev_err(&pl08x
->adev
->dev
,
1702 "%s no memory for channel\n", __func__
);
1707 chan
->state
= PL08X_CHAN_IDLE
;
1711 chan
->name
= pl08x
->pd
->slave_channels
[i
].bus_id
;
1712 chan
->cd
= &pl08x
->pd
->slave_channels
[i
];
1714 chan
->cd
= &pl08x
->pd
->memcpy_channel
;
1715 chan
->name
= kasprintf(GFP_KERNEL
, "memcpy%d", i
);
1721 if (chan
->cd
->circular_buffer
) {
1722 dev_err(&pl08x
->adev
->dev
,
1723 "channel %s: circular buffers not supported\n",
1728 dev_info(&pl08x
->adev
->dev
,
1729 "initialize virtual channel \"%s\"\n",
1732 chan
->chan
.device
= dmadev
;
1733 chan
->chan
.cookie
= 0;
1736 spin_lock_init(&chan
->lock
);
1737 INIT_LIST_HEAD(&chan
->pend_list
);
1738 tasklet_init(&chan
->tasklet
, pl08x_tasklet
,
1739 (unsigned long) chan
);
1741 list_add_tail(&chan
->chan
.device_node
, &dmadev
->channels
);
1743 dev_info(&pl08x
->adev
->dev
, "initialized %d virtual %s channels\n",
1744 i
, slave
? "slave" : "memcpy");
1748 static void pl08x_free_virtual_channels(struct dma_device
*dmadev
)
1750 struct pl08x_dma_chan
*chan
= NULL
;
1751 struct pl08x_dma_chan
*next
;
1753 list_for_each_entry_safe(chan
,
1754 next
, &dmadev
->channels
, chan
.device_node
) {
1755 list_del(&chan
->chan
.device_node
);
1760 #ifdef CONFIG_DEBUG_FS
1761 static const char *pl08x_state_str(enum pl08x_dma_chan_state state
)
1764 case PL08X_CHAN_IDLE
:
1766 case PL08X_CHAN_RUNNING
:
1768 case PL08X_CHAN_PAUSED
:
1770 case PL08X_CHAN_WAITING
:
1775 return "UNKNOWN STATE";
1778 static int pl08x_debugfs_show(struct seq_file
*s
, void *data
)
1780 struct pl08x_driver_data
*pl08x
= s
->private;
1781 struct pl08x_dma_chan
*chan
;
1782 struct pl08x_phy_chan
*ch
;
1783 unsigned long flags
;
1786 seq_printf(s
, "PL08x physical channels:\n");
1787 seq_printf(s
, "CHANNEL:\tUSER:\n");
1788 seq_printf(s
, "--------\t-----\n");
1789 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
1790 struct pl08x_dma_chan
*virt_chan
;
1792 ch
= &pl08x
->phy_chans
[i
];
1794 spin_lock_irqsave(&ch
->lock
, flags
);
1795 virt_chan
= ch
->serving
;
1797 seq_printf(s
, "%d\t\t%s\n",
1798 ch
->id
, virt_chan
? virt_chan
->name
: "(none)");
1800 spin_unlock_irqrestore(&ch
->lock
, flags
);
1803 seq_printf(s
, "\nPL08x virtual memcpy channels:\n");
1804 seq_printf(s
, "CHANNEL:\tSTATE:\n");
1805 seq_printf(s
, "--------\t------\n");
1806 list_for_each_entry(chan
, &pl08x
->memcpy
.channels
, chan
.device_node
) {
1807 seq_printf(s
, "%s\t\t%s\n", chan
->name
,
1808 pl08x_state_str(chan
->state
));
1811 seq_printf(s
, "\nPL08x virtual slave channels:\n");
1812 seq_printf(s
, "CHANNEL:\tSTATE:\n");
1813 seq_printf(s
, "--------\t------\n");
1814 list_for_each_entry(chan
, &pl08x
->slave
.channels
, chan
.device_node
) {
1815 seq_printf(s
, "%s\t\t%s\n", chan
->name
,
1816 pl08x_state_str(chan
->state
));
1822 static int pl08x_debugfs_open(struct inode
*inode
, struct file
*file
)
1824 return single_open(file
, pl08x_debugfs_show
, inode
->i_private
);
1827 static const struct file_operations pl08x_debugfs_operations
= {
1828 .open
= pl08x_debugfs_open
,
1830 .llseek
= seq_lseek
,
1831 .release
= single_release
,
1834 static void init_pl08x_debugfs(struct pl08x_driver_data
*pl08x
)
1836 /* Expose a simple debugfs interface to view all clocks */
1837 (void) debugfs_create_file(dev_name(&pl08x
->adev
->dev
), S_IFREG
| S_IRUGO
,
1839 &pl08x_debugfs_operations
);
1843 static inline void init_pl08x_debugfs(struct pl08x_driver_data
*pl08x
)
1848 static int pl08x_probe(struct amba_device
*adev
, const struct amba_id
*id
)
1850 struct pl08x_driver_data
*pl08x
;
1851 const struct vendor_data
*vd
= id
->data
;
1855 ret
= amba_request_regions(adev
, NULL
);
1859 /* Create the driver state holder */
1860 pl08x
= kzalloc(sizeof(struct pl08x_driver_data
), GFP_KERNEL
);
1866 /* Initialize memcpy engine */
1867 dma_cap_set(DMA_MEMCPY
, pl08x
->memcpy
.cap_mask
);
1868 pl08x
->memcpy
.dev
= &adev
->dev
;
1869 pl08x
->memcpy
.device_alloc_chan_resources
= pl08x_alloc_chan_resources
;
1870 pl08x
->memcpy
.device_free_chan_resources
= pl08x_free_chan_resources
;
1871 pl08x
->memcpy
.device_prep_dma_memcpy
= pl08x_prep_dma_memcpy
;
1872 pl08x
->memcpy
.device_prep_dma_interrupt
= pl08x_prep_dma_interrupt
;
1873 pl08x
->memcpy
.device_tx_status
= pl08x_dma_tx_status
;
1874 pl08x
->memcpy
.device_issue_pending
= pl08x_issue_pending
;
1875 pl08x
->memcpy
.device_control
= pl08x_control
;
1877 /* Initialize slave engine */
1878 dma_cap_set(DMA_SLAVE
, pl08x
->slave
.cap_mask
);
1879 pl08x
->slave
.dev
= &adev
->dev
;
1880 pl08x
->slave
.device_alloc_chan_resources
= pl08x_alloc_chan_resources
;
1881 pl08x
->slave
.device_free_chan_resources
= pl08x_free_chan_resources
;
1882 pl08x
->slave
.device_prep_dma_interrupt
= pl08x_prep_dma_interrupt
;
1883 pl08x
->slave
.device_tx_status
= pl08x_dma_tx_status
;
1884 pl08x
->slave
.device_issue_pending
= pl08x_issue_pending
;
1885 pl08x
->slave
.device_prep_slave_sg
= pl08x_prep_slave_sg
;
1886 pl08x
->slave
.device_control
= pl08x_control
;
1888 /* Get the platform data */
1889 pl08x
->pd
= dev_get_platdata(&adev
->dev
);
1891 dev_err(&adev
->dev
, "no platform data supplied\n");
1892 goto out_no_platdata
;
1895 /* Assign useful pointers to the driver state */
1899 /* By default, AHB1 only. If dualmaster, from platform */
1900 pl08x
->lli_buses
= PL08X_AHB1
;
1901 pl08x
->mem_buses
= PL08X_AHB1
;
1902 if (pl08x
->vd
->dualmaster
) {
1903 pl08x
->lli_buses
= pl08x
->pd
->lli_buses
;
1904 pl08x
->mem_buses
= pl08x
->pd
->mem_buses
;
1907 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1908 pl08x
->pool
= dma_pool_create(DRIVER_NAME
, &pl08x
->adev
->dev
,
1909 PL08X_LLI_TSFR_SIZE
, PL08X_ALIGN
, 0);
1912 goto out_no_lli_pool
;
1915 spin_lock_init(&pl08x
->lock
);
1917 pl08x
->base
= ioremap(adev
->res
.start
, resource_size(&adev
->res
));
1920 goto out_no_ioremap
;
1923 /* Turn on the PL08x */
1924 pl08x_ensure_on(pl08x
);
1926 /* Attach the interrupt handler */
1927 writel(0x000000FF, pl08x
->base
+ PL080_ERR_CLEAR
);
1928 writel(0x000000FF, pl08x
->base
+ PL080_TC_CLEAR
);
1930 ret
= request_irq(adev
->irq
[0], pl08x_irq
, IRQF_DISABLED
,
1931 DRIVER_NAME
, pl08x
);
1933 dev_err(&adev
->dev
, "%s failed to request interrupt %d\n",
1934 __func__
, adev
->irq
[0]);
1938 /* Initialize physical channels */
1939 pl08x
->phy_chans
= kmalloc((vd
->channels
* sizeof(struct pl08x_phy_chan
)),
1941 if (!pl08x
->phy_chans
) {
1942 dev_err(&adev
->dev
, "%s failed to allocate "
1943 "physical channel holders\n",
1945 goto out_no_phychans
;
1948 for (i
= 0; i
< vd
->channels
; i
++) {
1949 struct pl08x_phy_chan
*ch
= &pl08x
->phy_chans
[i
];
1952 ch
->base
= pl08x
->base
+ PL080_Cx_BASE(i
);
1953 spin_lock_init(&ch
->lock
);
1956 dev_info(&adev
->dev
,
1957 "physical channel %d is %s\n", i
,
1958 pl08x_phy_channel_busy(ch
) ? "BUSY" : "FREE");
1961 /* Register as many memcpy channels as there are physical channels */
1962 ret
= pl08x_dma_init_virtual_channels(pl08x
, &pl08x
->memcpy
,
1963 pl08x
->vd
->channels
, false);
1965 dev_warn(&pl08x
->adev
->dev
,
1966 "%s failed to enumerate memcpy channels - %d\n",
1970 pl08x
->memcpy
.chancnt
= ret
;
1972 /* Register slave channels */
1973 ret
= pl08x_dma_init_virtual_channels(pl08x
, &pl08x
->slave
,
1974 pl08x
->pd
->num_slave_channels
,
1977 dev_warn(&pl08x
->adev
->dev
,
1978 "%s failed to enumerate slave channels - %d\n",
1982 pl08x
->slave
.chancnt
= ret
;
1984 ret
= dma_async_device_register(&pl08x
->memcpy
);
1986 dev_warn(&pl08x
->adev
->dev
,
1987 "%s failed to register memcpy as an async device - %d\n",
1989 goto out_no_memcpy_reg
;
1992 ret
= dma_async_device_register(&pl08x
->slave
);
1994 dev_warn(&pl08x
->adev
->dev
,
1995 "%s failed to register slave as an async device - %d\n",
1997 goto out_no_slave_reg
;
2000 amba_set_drvdata(adev
, pl08x
);
2001 init_pl08x_debugfs(pl08x
);
2002 dev_info(&pl08x
->adev
->dev
, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2003 amba_part(adev
), amba_rev(adev
),
2004 (unsigned long long)adev
->res
.start
, adev
->irq
[0]);
2008 dma_async_device_unregister(&pl08x
->memcpy
);
2010 pl08x_free_virtual_channels(&pl08x
->slave
);
2012 pl08x_free_virtual_channels(&pl08x
->memcpy
);
2014 kfree(pl08x
->phy_chans
);
2016 free_irq(adev
->irq
[0], pl08x
);
2018 iounmap(pl08x
->base
);
2020 dma_pool_destroy(pl08x
->pool
);
2025 amba_release_regions(adev
);
2029 /* PL080 has 8 channels and the PL080 have just 2 */
2030 static struct vendor_data vendor_pl080
= {
2035 static struct vendor_data vendor_pl081
= {
2037 .dualmaster
= false,
2040 static struct amba_id pl08x_ids
[] = {
2045 .data
= &vendor_pl080
,
2051 .data
= &vendor_pl081
,
2053 /* Nomadik 8815 PL080 variant */
2057 .data
= &vendor_pl080
,
2062 static struct amba_driver pl08x_amba_driver
= {
2063 .drv
.name
= DRIVER_NAME
,
2064 .id_table
= pl08x_ids
,
2065 .probe
= pl08x_probe
,
2068 static int __init
pl08x_init(void)
2071 retval
= amba_driver_register(&pl08x_amba_driver
);
2073 printk(KERN_WARNING DRIVER_NAME
2074 "failed to register as an AMBA device (%d)\n",
2078 subsys_initcall(pl08x_init
);