3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
7 * This code underwent a massive rewrite in order to solve some problems
8 * with the original code. In particular the original code failed to
9 * wake up processes that were waiting for semval to go to 0 if the
10 * value went to 0 and was then incremented rapidly enough. In solving
11 * this problem I have also modified the implementation so that it
12 * processes pending operations in a FIFO manner, thus give a guarantee
13 * that processes waiting for a lock on the semaphore won't starve
14 * unless another locking process fails to unlock.
15 * In addition the following two changes in behavior have been introduced:
16 * - The original implementation of semop returned the value
17 * last semaphore element examined on success. This does not
18 * match the manual page specifications, and effectively
19 * allows the user to read the semaphore even if they do not
20 * have read permissions. The implementation now returns 0
21 * on success as stated in the manual page.
22 * - There is some confusion over whether the set of undo adjustments
23 * to be performed at exit should be done in an atomic manner.
24 * That is, if we are attempting to decrement the semval should we queue
25 * up and wait until we can do so legally?
26 * The original implementation attempted to do this.
27 * The current implementation does not do so. This is because I don't
28 * think it is the right thing (TM) to do, and because I couldn't
29 * see a clean way to get the old behavior with the new design.
30 * The POSIX standard and SVID should be consulted to determine
31 * what behavior is mandated.
33 * Further notes on refinement (Christoph Rohland, December 1998):
34 * - The POSIX standard says, that the undo adjustments simply should
35 * redo. So the current implementation is o.K.
36 * - The previous code had two flaws:
37 * 1) It actively gave the semaphore to the next waiting process
38 * sleeping on the semaphore. Since this process did not have the
39 * cpu this led to many unnecessary context switches and bad
40 * performance. Now we only check which process should be able to
41 * get the semaphore and if this process wants to reduce some
42 * semaphore value we simply wake it up without doing the
43 * operation. So it has to try to get it later. Thus e.g. the
44 * running process may reacquire the semaphore during the current
45 * time slice. If it only waits for zero or increases the semaphore,
46 * we do the operation in advance and wake it up.
47 * 2) It did not wake up all zero waiting processes. We try to do
48 * better but only get the semops right which only wait for zero or
49 * increase. If there are decrement operations in the operations
50 * array we do the same as before.
52 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
53 * check/retry algorithm for waking up blocked processes as the new scheduler
54 * is better at handling thread switch than the old one.
56 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
58 * SMP-threaded, sysctl's added
59 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
60 * Enforced range limit on SEM_UNDO
61 * (c) 2001 Red Hat Inc <alan@redhat.com>
63 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
65 * support for audit of ipc object properties and permission changes
66 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
70 * Pavel Emelianov <xemul@openvz.org>
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/init.h>
76 #include <linux/proc_fs.h>
77 #include <linux/time.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/audit.h>
81 #include <linux/capability.h>
82 #include <linux/seq_file.h>
83 #include <linux/mutex.h>
84 #include <linux/nsproxy.h>
86 #include <asm/uaccess.h>
89 #define sem_ids(ns) (*((ns)->ids[IPC_SEM_IDS]))
91 #define sem_lock(ns, id) ((struct sem_array*)ipc_lock(&sem_ids(ns), id))
92 #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
93 #define sem_rmid(ns, id) ((struct sem_array*)ipc_rmid(&sem_ids(ns), id))
94 #define sem_checkid(ns, sma, semid) \
95 ipc_checkid(&sem_ids(ns),&sma->sem_perm,semid)
96 #define sem_buildid(ns, id, seq) \
97 ipc_buildid(&sem_ids(ns), id, seq)
99 static struct ipc_ids init_sem_ids
;
101 static int newary(struct ipc_namespace
*, key_t
, int, int);
102 static void freeary(struct ipc_namespace
*ns
, struct sem_array
*sma
, int id
);
103 #ifdef CONFIG_PROC_FS
104 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
);
107 #define SEMMSL_FAST 256 /* 512 bytes on stack */
108 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
111 * linked list protection:
113 * sem_array.sem_pending{,last},
114 * sem_array.sem_undo: sem_lock() for read/write
115 * sem_undo.proc_next: only "current" is allowed to read/write that field.
119 #define sc_semmsl sem_ctls[0]
120 #define sc_semmns sem_ctls[1]
121 #define sc_semopm sem_ctls[2]
122 #define sc_semmni sem_ctls[3]
124 static void __sem_init_ns(struct ipc_namespace
*ns
, struct ipc_ids
*ids
)
126 ns
->ids
[IPC_SEM_IDS
] = ids
;
127 ns
->sc_semmsl
= SEMMSL
;
128 ns
->sc_semmns
= SEMMNS
;
129 ns
->sc_semopm
= SEMOPM
;
130 ns
->sc_semmni
= SEMMNI
;
132 ipc_init_ids(ids
, ns
->sc_semmni
);
135 int sem_init_ns(struct ipc_namespace
*ns
)
139 ids
= kmalloc(sizeof(struct ipc_ids
), GFP_KERNEL
);
143 __sem_init_ns(ns
, ids
);
147 void sem_exit_ns(struct ipc_namespace
*ns
)
150 struct sem_array
*sma
;
152 mutex_lock(&sem_ids(ns
).mutex
);
153 for (i
= 0; i
<= sem_ids(ns
).max_id
; i
++) {
154 sma
= sem_lock(ns
, i
);
160 mutex_unlock(&sem_ids(ns
).mutex
);
162 ipc_fini_ids(ns
->ids
[IPC_SEM_IDS
]);
163 kfree(ns
->ids
[IPC_SEM_IDS
]);
164 ns
->ids
[IPC_SEM_IDS
] = NULL
;
167 void __init
sem_init (void)
169 __sem_init_ns(&init_ipc_ns
, &init_sem_ids
);
170 ipc_init_proc_interface("sysvipc/sem",
171 " key semid perms nsems uid gid cuid cgid otime ctime\n",
172 IPC_SEM_IDS
, sysvipc_sem_proc_show
);
176 * Lockless wakeup algorithm:
177 * Without the check/retry algorithm a lockless wakeup is possible:
178 * - queue.status is initialized to -EINTR before blocking.
179 * - wakeup is performed by
180 * * unlinking the queue entry from sma->sem_pending
181 * * setting queue.status to IN_WAKEUP
182 * This is the notification for the blocked thread that a
183 * result value is imminent.
184 * * call wake_up_process
185 * * set queue.status to the final value.
186 * - the previously blocked thread checks queue.status:
187 * * if it's IN_WAKEUP, then it must wait until the value changes
188 * * if it's not -EINTR, then the operation was completed by
189 * update_queue. semtimedop can return queue.status without
190 * performing any operation on the sem array.
191 * * otherwise it must acquire the spinlock and check what's up.
193 * The two-stage algorithm is necessary to protect against the following
195 * - if queue.status is set after wake_up_process, then the woken up idle
196 * thread could race forward and try (and fail) to acquire sma->lock
197 * before update_queue had a chance to set queue.status
198 * - if queue.status is written before wake_up_process and if the
199 * blocked process is woken up by a signal between writing
200 * queue.status and the wake_up_process, then the woken up
201 * process could return from semtimedop and die by calling
202 * sys_exit before wake_up_process is called. Then wake_up_process
203 * will oops, because the task structure is already invalid.
204 * (yes, this happened on s390 with sysv msg).
209 static int newary (struct ipc_namespace
*ns
, key_t key
, int nsems
, int semflg
)
213 struct sem_array
*sma
;
218 if (ns
->used_sems
+ nsems
> ns
->sc_semmns
)
221 size
= sizeof (*sma
) + nsems
* sizeof (struct sem
);
222 sma
= ipc_rcu_alloc(size
);
226 memset (sma
, 0, size
);
228 sma
->sem_perm
.mode
= (semflg
& S_IRWXUGO
);
229 sma
->sem_perm
.key
= key
;
231 sma
->sem_perm
.security
= NULL
;
232 retval
= security_sem_alloc(sma
);
238 id
= ipc_addid(&sem_ids(ns
), &sma
->sem_perm
, ns
->sc_semmni
);
240 security_sem_free(sma
);
244 ns
->used_sems
+= nsems
;
246 sma
->sem_id
= sem_buildid(ns
, id
, sma
->sem_perm
.seq
);
247 sma
->sem_base
= (struct sem
*) &sma
[1];
248 /* sma->sem_pending = NULL; */
249 sma
->sem_pending_last
= &sma
->sem_pending
;
250 /* sma->undo = NULL; */
251 sma
->sem_nsems
= nsems
;
252 sma
->sem_ctime
= get_seconds();
258 asmlinkage
long sys_semget (key_t key
, int nsems
, int semflg
)
260 int id
, err
= -EINVAL
;
261 struct sem_array
*sma
;
262 struct ipc_namespace
*ns
;
264 ns
= current
->nsproxy
->ipc_ns
;
266 if (nsems
< 0 || nsems
> ns
->sc_semmsl
)
268 mutex_lock(&sem_ids(ns
).mutex
);
270 if (key
== IPC_PRIVATE
) {
271 err
= newary(ns
, key
, nsems
, semflg
);
272 } else if ((id
= ipc_findkey(&sem_ids(ns
), key
)) == -1) { /* key not used */
273 if (!(semflg
& IPC_CREAT
))
276 err
= newary(ns
, key
, nsems
, semflg
);
277 } else if (semflg
& IPC_CREAT
&& semflg
& IPC_EXCL
) {
280 sma
= sem_lock(ns
, id
);
282 if (nsems
> sma
->sem_nsems
)
284 else if (ipcperms(&sma
->sem_perm
, semflg
))
287 int semid
= sem_buildid(ns
, id
, sma
->sem_perm
.seq
);
288 err
= security_sem_associate(sma
, semflg
);
295 mutex_unlock(&sem_ids(ns
).mutex
);
299 /* Manage the doubly linked list sma->sem_pending as a FIFO:
300 * insert new queue elements at the tail sma->sem_pending_last.
302 static inline void append_to_queue (struct sem_array
* sma
,
303 struct sem_queue
* q
)
305 *(q
->prev
= sma
->sem_pending_last
) = q
;
306 *(sma
->sem_pending_last
= &q
->next
) = NULL
;
309 static inline void prepend_to_queue (struct sem_array
* sma
,
310 struct sem_queue
* q
)
312 q
->next
= sma
->sem_pending
;
313 *(q
->prev
= &sma
->sem_pending
) = q
;
315 q
->next
->prev
= &q
->next
;
316 else /* sma->sem_pending_last == &sma->sem_pending */
317 sma
->sem_pending_last
= &q
->next
;
320 static inline void remove_from_queue (struct sem_array
* sma
,
321 struct sem_queue
* q
)
323 *(q
->prev
) = q
->next
;
325 q
->next
->prev
= q
->prev
;
326 else /* sma->sem_pending_last == &q->next */
327 sma
->sem_pending_last
= q
->prev
;
328 q
->prev
= NULL
; /* mark as removed */
332 * Determine whether a sequence of semaphore operations would succeed
333 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
336 static int try_atomic_semop (struct sem_array
* sma
, struct sembuf
* sops
,
337 int nsops
, struct sem_undo
*un
, int pid
)
343 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
344 curr
= sma
->sem_base
+ sop
->sem_num
;
345 sem_op
= sop
->sem_op
;
346 result
= curr
->semval
;
348 if (!sem_op
&& result
)
356 if (sop
->sem_flg
& SEM_UNDO
) {
357 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
359 * Exceeding the undo range is an error.
361 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
364 curr
->semval
= result
;
368 while (sop
>= sops
) {
369 sma
->sem_base
[sop
->sem_num
].sempid
= pid
;
370 if (sop
->sem_flg
& SEM_UNDO
)
371 un
->semadj
[sop
->sem_num
] -= sop
->sem_op
;
375 sma
->sem_otime
= get_seconds();
383 if (sop
->sem_flg
& IPC_NOWAIT
)
390 while (sop
>= sops
) {
391 sma
->sem_base
[sop
->sem_num
].semval
-= sop
->sem_op
;
398 /* Go through the pending queue for the indicated semaphore
399 * looking for tasks that can be completed.
401 static void update_queue (struct sem_array
* sma
)
404 struct sem_queue
* q
;
406 q
= sma
->sem_pending
;
408 error
= try_atomic_semop(sma
, q
->sops
, q
->nsops
,
411 /* Does q->sleeper still need to sleep? */
414 remove_from_queue(sma
,q
);
415 q
->status
= IN_WAKEUP
;
417 * Continue scanning. The next operation
418 * that must be checked depends on the type of the
419 * completed operation:
420 * - if the operation modified the array, then
421 * restart from the head of the queue and
422 * check for threads that might be waiting
423 * for semaphore values to become 0.
424 * - if the operation didn't modify the array,
425 * then just continue.
428 n
= sma
->sem_pending
;
431 wake_up_process(q
->sleeper
);
432 /* hands-off: q will disappear immediately after
444 /* The following counts are associated to each semaphore:
445 * semncnt number of tasks waiting on semval being nonzero
446 * semzcnt number of tasks waiting on semval being zero
447 * This model assumes that a task waits on exactly one semaphore.
448 * Since semaphore operations are to be performed atomically, tasks actually
449 * wait on a whole sequence of semaphores simultaneously.
450 * The counts we return here are a rough approximation, but still
451 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
453 static int count_semncnt (struct sem_array
* sma
, ushort semnum
)
456 struct sem_queue
* q
;
459 for (q
= sma
->sem_pending
; q
; q
= q
->next
) {
460 struct sembuf
* sops
= q
->sops
;
461 int nsops
= q
->nsops
;
463 for (i
= 0; i
< nsops
; i
++)
464 if (sops
[i
].sem_num
== semnum
465 && (sops
[i
].sem_op
< 0)
466 && !(sops
[i
].sem_flg
& IPC_NOWAIT
))
471 static int count_semzcnt (struct sem_array
* sma
, ushort semnum
)
474 struct sem_queue
* q
;
477 for (q
= sma
->sem_pending
; q
; q
= q
->next
) {
478 struct sembuf
* sops
= q
->sops
;
479 int nsops
= q
->nsops
;
481 for (i
= 0; i
< nsops
; i
++)
482 if (sops
[i
].sem_num
== semnum
483 && (sops
[i
].sem_op
== 0)
484 && !(sops
[i
].sem_flg
& IPC_NOWAIT
))
490 /* Free a semaphore set. freeary() is called with sem_ids.mutex locked and
491 * the spinlock for this semaphore set hold. sem_ids.mutex remains locked
494 static void freeary (struct ipc_namespace
*ns
, struct sem_array
*sma
, int id
)
500 /* Invalidate the existing undo structures for this semaphore set.
501 * (They will be freed without any further action in exit_sem()
502 * or during the next semop.)
504 for (un
= sma
->undo
; un
; un
= un
->id_next
)
507 /* Wake up all pending processes and let them fail with EIDRM. */
508 q
= sma
->sem_pending
;
511 /* lazy remove_from_queue: we are killing the whole queue */
514 q
->status
= IN_WAKEUP
;
515 wake_up_process(q
->sleeper
); /* doesn't sleep */
517 q
->status
= -EIDRM
; /* hands-off q */
521 /* Remove the semaphore set from the ID array*/
522 sma
= sem_rmid(ns
, id
);
525 ns
->used_sems
-= sma
->sem_nsems
;
526 size
= sizeof (*sma
) + sma
->sem_nsems
* sizeof (struct sem
);
527 security_sem_free(sma
);
531 static unsigned long copy_semid_to_user(void __user
*buf
, struct semid64_ds
*in
, int version
)
535 return copy_to_user(buf
, in
, sizeof(*in
));
540 ipc64_perm_to_ipc_perm(&in
->sem_perm
, &out
.sem_perm
);
542 out
.sem_otime
= in
->sem_otime
;
543 out
.sem_ctime
= in
->sem_ctime
;
544 out
.sem_nsems
= in
->sem_nsems
;
546 return copy_to_user(buf
, &out
, sizeof(out
));
553 static int semctl_nolock(struct ipc_namespace
*ns
, int semid
, int semnum
,
554 int cmd
, int version
, union semun arg
)
557 struct sem_array
*sma
;
563 struct seminfo seminfo
;
566 err
= security_sem_semctl(NULL
, cmd
);
570 memset(&seminfo
,0,sizeof(seminfo
));
571 seminfo
.semmni
= ns
->sc_semmni
;
572 seminfo
.semmns
= ns
->sc_semmns
;
573 seminfo
.semmsl
= ns
->sc_semmsl
;
574 seminfo
.semopm
= ns
->sc_semopm
;
575 seminfo
.semvmx
= SEMVMX
;
576 seminfo
.semmnu
= SEMMNU
;
577 seminfo
.semmap
= SEMMAP
;
578 seminfo
.semume
= SEMUME
;
579 mutex_lock(&sem_ids(ns
).mutex
);
580 if (cmd
== SEM_INFO
) {
581 seminfo
.semusz
= sem_ids(ns
).in_use
;
582 seminfo
.semaem
= ns
->used_sems
;
584 seminfo
.semusz
= SEMUSZ
;
585 seminfo
.semaem
= SEMAEM
;
587 max_id
= sem_ids(ns
).max_id
;
588 mutex_unlock(&sem_ids(ns
).mutex
);
589 if (copy_to_user (arg
.__buf
, &seminfo
, sizeof(struct seminfo
)))
591 return (max_id
< 0) ? 0: max_id
;
595 struct semid64_ds tbuf
;
598 if(semid
>= sem_ids(ns
).entries
->size
)
601 memset(&tbuf
,0,sizeof(tbuf
));
603 sma
= sem_lock(ns
, semid
);
608 if (ipcperms (&sma
->sem_perm
, S_IRUGO
))
611 err
= security_sem_semctl(sma
, cmd
);
615 id
= sem_buildid(ns
, semid
, sma
->sem_perm
.seq
);
617 kernel_to_ipc64_perm(&sma
->sem_perm
, &tbuf
.sem_perm
);
618 tbuf
.sem_otime
= sma
->sem_otime
;
619 tbuf
.sem_ctime
= sma
->sem_ctime
;
620 tbuf
.sem_nsems
= sma
->sem_nsems
;
622 if (copy_semid_to_user (arg
.buf
, &tbuf
, version
))
635 static int semctl_main(struct ipc_namespace
*ns
, int semid
, int semnum
,
636 int cmd
, int version
, union semun arg
)
638 struct sem_array
*sma
;
641 ushort fast_sem_io
[SEMMSL_FAST
];
642 ushort
* sem_io
= fast_sem_io
;
645 sma
= sem_lock(ns
, semid
);
649 nsems
= sma
->sem_nsems
;
652 if (sem_checkid(ns
,sma
,semid
))
656 if (ipcperms (&sma
->sem_perm
, (cmd
==SETVAL
||cmd
==SETALL
)?S_IWUGO
:S_IRUGO
))
659 err
= security_sem_semctl(sma
, cmd
);
667 ushort __user
*array
= arg
.array
;
670 if(nsems
> SEMMSL_FAST
) {
674 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
676 ipc_lock_by_ptr(&sma
->sem_perm
);
682 ipc_lock_by_ptr(&sma
->sem_perm
);
684 if (sma
->sem_perm
.deleted
) {
691 for (i
= 0; i
< sma
->sem_nsems
; i
++)
692 sem_io
[i
] = sma
->sem_base
[i
].semval
;
695 if(copy_to_user(array
, sem_io
, nsems
*sizeof(ushort
)))
707 if(nsems
> SEMMSL_FAST
) {
708 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
710 ipc_lock_by_ptr(&sma
->sem_perm
);
717 if (copy_from_user (sem_io
, arg
.array
, nsems
*sizeof(ushort
))) {
718 ipc_lock_by_ptr(&sma
->sem_perm
);
725 for (i
= 0; i
< nsems
; i
++) {
726 if (sem_io
[i
] > SEMVMX
) {
727 ipc_lock_by_ptr(&sma
->sem_perm
);
734 ipc_lock_by_ptr(&sma
->sem_perm
);
736 if (sma
->sem_perm
.deleted
) {
742 for (i
= 0; i
< nsems
; i
++)
743 sma
->sem_base
[i
].semval
= sem_io
[i
];
744 for (un
= sma
->undo
; un
; un
= un
->id_next
)
745 for (i
= 0; i
< nsems
; i
++)
747 sma
->sem_ctime
= get_seconds();
748 /* maybe some queued-up processes were waiting for this */
755 struct semid64_ds tbuf
;
756 memset(&tbuf
,0,sizeof(tbuf
));
757 kernel_to_ipc64_perm(&sma
->sem_perm
, &tbuf
.sem_perm
);
758 tbuf
.sem_otime
= sma
->sem_otime
;
759 tbuf
.sem_ctime
= sma
->sem_ctime
;
760 tbuf
.sem_nsems
= sma
->sem_nsems
;
762 if (copy_semid_to_user (arg
.buf
, &tbuf
, version
))
766 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
769 if(semnum
< 0 || semnum
>= nsems
)
772 curr
= &sma
->sem_base
[semnum
];
782 err
= count_semncnt(sma
,semnum
);
785 err
= count_semzcnt(sma
,semnum
);
792 if (val
> SEMVMX
|| val
< 0)
795 for (un
= sma
->undo
; un
; un
= un
->id_next
)
796 un
->semadj
[semnum
] = 0;
798 curr
->sempid
= current
->tgid
;
799 sma
->sem_ctime
= get_seconds();
800 /* maybe some queued-up processes were waiting for this */
809 if(sem_io
!= fast_sem_io
)
810 ipc_free(sem_io
, sizeof(ushort
)*nsems
);
820 static inline unsigned long copy_semid_from_user(struct sem_setbuf
*out
, void __user
*buf
, int version
)
825 struct semid64_ds tbuf
;
827 if(copy_from_user(&tbuf
, buf
, sizeof(tbuf
)))
830 out
->uid
= tbuf
.sem_perm
.uid
;
831 out
->gid
= tbuf
.sem_perm
.gid
;
832 out
->mode
= tbuf
.sem_perm
.mode
;
838 struct semid_ds tbuf_old
;
840 if(copy_from_user(&tbuf_old
, buf
, sizeof(tbuf_old
)))
843 out
->uid
= tbuf_old
.sem_perm
.uid
;
844 out
->gid
= tbuf_old
.sem_perm
.gid
;
845 out
->mode
= tbuf_old
.sem_perm
.mode
;
854 static int semctl_down(struct ipc_namespace
*ns
, int semid
, int semnum
,
855 int cmd
, int version
, union semun arg
)
857 struct sem_array
*sma
;
859 struct sem_setbuf
uninitialized_var(setbuf
);
860 struct kern_ipc_perm
*ipcp
;
863 if(copy_semid_from_user (&setbuf
, arg
.buf
, version
))
866 sma
= sem_lock(ns
, semid
);
870 if (sem_checkid(ns
,sma
,semid
)) {
874 ipcp
= &sma
->sem_perm
;
876 err
= audit_ipc_obj(ipcp
);
880 if (cmd
== IPC_SET
) {
881 err
= audit_ipc_set_perm(0, setbuf
.uid
, setbuf
.gid
, setbuf
.mode
);
885 if (current
->euid
!= ipcp
->cuid
&&
886 current
->euid
!= ipcp
->uid
&& !capable(CAP_SYS_ADMIN
)) {
891 err
= security_sem_semctl(sma
, cmd
);
897 freeary(ns
, sma
, semid
);
901 ipcp
->uid
= setbuf
.uid
;
902 ipcp
->gid
= setbuf
.gid
;
903 ipcp
->mode
= (ipcp
->mode
& ~S_IRWXUGO
)
904 | (setbuf
.mode
& S_IRWXUGO
);
905 sma
->sem_ctime
= get_seconds();
921 asmlinkage
long sys_semctl (int semid
, int semnum
, int cmd
, union semun arg
)
925 struct ipc_namespace
*ns
;
930 version
= ipc_parse_version(&cmd
);
931 ns
= current
->nsproxy
->ipc_ns
;
937 err
= semctl_nolock(ns
,semid
,semnum
,cmd
,version
,arg
);
947 err
= semctl_main(ns
,semid
,semnum
,cmd
,version
,arg
);
951 mutex_lock(&sem_ids(ns
).mutex
);
952 err
= semctl_down(ns
,semid
,semnum
,cmd
,version
,arg
);
953 mutex_unlock(&sem_ids(ns
).mutex
);
960 static inline void lock_semundo(void)
962 struct sem_undo_list
*undo_list
;
964 undo_list
= current
->sysvsem
.undo_list
;
966 spin_lock(&undo_list
->lock
);
969 /* This code has an interaction with copy_semundo().
970 * Consider; two tasks are sharing the undo_list. task1
971 * acquires the undo_list lock in lock_semundo(). If task2 now
972 * exits before task1 releases the lock (by calling
973 * unlock_semundo()), then task1 will never call spin_unlock().
974 * This leave the sem_undo_list in a locked state. If task1 now creats task3
975 * and once again shares the sem_undo_list, the sem_undo_list will still be
976 * locked, and future SEM_UNDO operations will deadlock. This case is
977 * dealt with in copy_semundo() by having it reinitialize the spin lock when
978 * the refcnt goes from 1 to 2.
980 static inline void unlock_semundo(void)
982 struct sem_undo_list
*undo_list
;
984 undo_list
= current
->sysvsem
.undo_list
;
986 spin_unlock(&undo_list
->lock
);
990 /* If the task doesn't already have a undo_list, then allocate one
991 * here. We guarantee there is only one thread using this undo list,
992 * and current is THE ONE
994 * If this allocation and assignment succeeds, but later
995 * portions of this code fail, there is no need to free the sem_undo_list.
996 * Just let it stay associated with the task, and it'll be freed later
999 * This can block, so callers must hold no locks.
1001 static inline int get_undo_list(struct sem_undo_list
**undo_listp
)
1003 struct sem_undo_list
*undo_list
;
1005 undo_list
= current
->sysvsem
.undo_list
;
1007 undo_list
= kzalloc(sizeof(*undo_list
), GFP_KERNEL
);
1008 if (undo_list
== NULL
)
1010 spin_lock_init(&undo_list
->lock
);
1011 atomic_set(&undo_list
->refcnt
, 1);
1012 current
->sysvsem
.undo_list
= undo_list
;
1014 *undo_listp
= undo_list
;
1018 static struct sem_undo
*lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1020 struct sem_undo
**last
, *un
;
1022 last
= &ulp
->proc_list
;
1025 if(un
->semid
==semid
)
1028 *last
=un
->proc_next
;
1031 last
=&un
->proc_next
;
1038 static struct sem_undo
*find_undo(struct ipc_namespace
*ns
, int semid
)
1040 struct sem_array
*sma
;
1041 struct sem_undo_list
*ulp
;
1042 struct sem_undo
*un
, *new;
1046 error
= get_undo_list(&ulp
);
1048 return ERR_PTR(error
);
1051 un
= lookup_undo(ulp
, semid
);
1053 if (likely(un
!=NULL
))
1056 /* no undo structure around - allocate one. */
1057 sma
= sem_lock(ns
, semid
);
1058 un
= ERR_PTR(-EINVAL
);
1061 un
= ERR_PTR(-EIDRM
);
1062 if (sem_checkid(ns
,sma
,semid
)) {
1066 nsems
= sma
->sem_nsems
;
1067 ipc_rcu_getref(sma
);
1070 new = kzalloc(sizeof(struct sem_undo
) + sizeof(short)*nsems
, GFP_KERNEL
);
1072 ipc_lock_by_ptr(&sma
->sem_perm
);
1073 ipc_rcu_putref(sma
);
1075 return ERR_PTR(-ENOMEM
);
1077 new->semadj
= (short *) &new[1];
1081 un
= lookup_undo(ulp
, semid
);
1085 ipc_lock_by_ptr(&sma
->sem_perm
);
1086 ipc_rcu_putref(sma
);
1090 ipc_lock_by_ptr(&sma
->sem_perm
);
1091 ipc_rcu_putref(sma
);
1092 if (sma
->sem_perm
.deleted
) {
1096 un
= ERR_PTR(-EIDRM
);
1099 new->proc_next
= ulp
->proc_list
;
1100 ulp
->proc_list
= new;
1101 new->id_next
= sma
->undo
;
1110 asmlinkage
long sys_semtimedop(int semid
, struct sembuf __user
*tsops
,
1111 unsigned nsops
, const struct timespec __user
*timeout
)
1113 int error
= -EINVAL
;
1114 struct sem_array
*sma
;
1115 struct sembuf fast_sops
[SEMOPM_FAST
];
1116 struct sembuf
* sops
= fast_sops
, *sop
;
1117 struct sem_undo
*un
;
1118 int undos
= 0, alter
= 0, max
;
1119 struct sem_queue queue
;
1120 unsigned long jiffies_left
= 0;
1121 struct ipc_namespace
*ns
;
1123 ns
= current
->nsproxy
->ipc_ns
;
1125 if (nsops
< 1 || semid
< 0)
1127 if (nsops
> ns
->sc_semopm
)
1129 if(nsops
> SEMOPM_FAST
) {
1130 sops
= kmalloc(sizeof(*sops
)*nsops
,GFP_KERNEL
);
1134 if (copy_from_user (sops
, tsops
, nsops
* sizeof(*tsops
))) {
1139 struct timespec _timeout
;
1140 if (copy_from_user(&_timeout
, timeout
, sizeof(*timeout
))) {
1144 if (_timeout
.tv_sec
< 0 || _timeout
.tv_nsec
< 0 ||
1145 _timeout
.tv_nsec
>= 1000000000L) {
1149 jiffies_left
= timespec_to_jiffies(&_timeout
);
1152 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
1153 if (sop
->sem_num
>= max
)
1155 if (sop
->sem_flg
& SEM_UNDO
)
1157 if (sop
->sem_op
!= 0)
1163 un
= find_undo(ns
, semid
);
1165 error
= PTR_ERR(un
);
1171 sma
= sem_lock(ns
, semid
);
1176 if (sem_checkid(ns
,sma
,semid
))
1177 goto out_unlock_free
;
1179 * semid identifies are not unique - find_undo may have
1180 * allocated an undo structure, it was invalidated by an RMID
1181 * and now a new array with received the same id. Check and retry.
1183 if (un
&& un
->semid
== -1) {
1188 if (max
>= sma
->sem_nsems
)
1189 goto out_unlock_free
;
1192 if (ipcperms(&sma
->sem_perm
, alter
? S_IWUGO
: S_IRUGO
))
1193 goto out_unlock_free
;
1195 error
= security_sem_semop(sma
, sops
, nsops
, alter
);
1197 goto out_unlock_free
;
1199 error
= try_atomic_semop (sma
, sops
, nsops
, un
, current
->tgid
);
1201 if (alter
&& error
== 0)
1203 goto out_unlock_free
;
1206 /* We need to sleep on this operation, so we put the current
1207 * task into the pending queue and go to sleep.
1212 queue
.nsops
= nsops
;
1214 queue
.pid
= current
->tgid
;
1216 queue
.alter
= alter
;
1218 append_to_queue(sma
,&queue
);
1220 prepend_to_queue(sma
,&queue
);
1222 queue
.status
= -EINTR
;
1223 queue
.sleeper
= current
;
1224 current
->state
= TASK_INTERRUPTIBLE
;
1228 jiffies_left
= schedule_timeout(jiffies_left
);
1232 error
= queue
.status
;
1233 while(unlikely(error
== IN_WAKEUP
)) {
1235 error
= queue
.status
;
1238 if (error
!= -EINTR
) {
1239 /* fast path: update_queue already obtained all requested
1244 sma
= sem_lock(ns
, semid
);
1246 BUG_ON(queue
.prev
!= NULL
);
1252 * If queue.status != -EINTR we are woken up by another process
1254 error
= queue
.status
;
1255 if (error
!= -EINTR
) {
1256 goto out_unlock_free
;
1260 * If an interrupt occurred we have to clean up the queue
1262 if (timeout
&& jiffies_left
== 0)
1264 remove_from_queue(sma
,&queue
);
1265 goto out_unlock_free
;
1270 if(sops
!= fast_sops
)
1275 asmlinkage
long sys_semop (int semid
, struct sembuf __user
*tsops
, unsigned nsops
)
1277 return sys_semtimedop(semid
, tsops
, nsops
, NULL
);
1280 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1281 * parent and child tasks.
1283 * See the notes above unlock_semundo() regarding the spin_lock_init()
1284 * in this code. Initialize the undo_list->lock here instead of get_undo_list()
1285 * because of the reasoning in the comment above unlock_semundo.
1288 int copy_semundo(unsigned long clone_flags
, struct task_struct
*tsk
)
1290 struct sem_undo_list
*undo_list
;
1293 if (clone_flags
& CLONE_SYSVSEM
) {
1294 error
= get_undo_list(&undo_list
);
1297 atomic_inc(&undo_list
->refcnt
);
1298 tsk
->sysvsem
.undo_list
= undo_list
;
1300 tsk
->sysvsem
.undo_list
= NULL
;
1306 * add semadj values to semaphores, free undo structures.
1307 * undo structures are not freed when semaphore arrays are destroyed
1308 * so some of them may be out of date.
1309 * IMPLEMENTATION NOTE: There is some confusion over whether the
1310 * set of adjustments that needs to be done should be done in an atomic
1311 * manner or not. That is, if we are attempting to decrement the semval
1312 * should we queue up and wait until we can do so legally?
1313 * The original implementation attempted to do this (queue and wait).
1314 * The current implementation does not do so. The POSIX standard
1315 * and SVID should be consulted to determine what behavior is mandated.
1317 void exit_sem(struct task_struct
*tsk
)
1319 struct sem_undo_list
*undo_list
;
1320 struct sem_undo
*u
, **up
;
1321 struct ipc_namespace
*ns
;
1323 undo_list
= tsk
->sysvsem
.undo_list
;
1327 if (!atomic_dec_and_test(&undo_list
->refcnt
))
1330 ns
= tsk
->nsproxy
->ipc_ns
;
1331 /* There's no need to hold the semundo list lock, as current
1332 * is the last task exiting for this undo list.
1334 for (up
= &undo_list
->proc_list
; (u
= *up
); *up
= u
->proc_next
, kfree(u
)) {
1335 struct sem_array
*sma
;
1337 struct sem_undo
*un
, **unp
;
1344 sma
= sem_lock(ns
, semid
);
1351 BUG_ON(sem_checkid(ns
,sma
,u
->semid
));
1353 /* remove u from the sma->undo list */
1354 for (unp
= &sma
->undo
; (un
= *unp
); unp
= &un
->id_next
) {
1358 printk ("exit_sem undo list error id=%d\n", u
->semid
);
1362 /* perform adjustments registered in u */
1363 nsems
= sma
->sem_nsems
;
1364 for (i
= 0; i
< nsems
; i
++) {
1365 struct sem
* semaphore
= &sma
->sem_base
[i
];
1367 semaphore
->semval
+= u
->semadj
[i
];
1369 * Range checks of the new semaphore value,
1370 * not defined by sus:
1371 * - Some unices ignore the undo entirely
1372 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1373 * - some cap the value (e.g. FreeBSD caps
1374 * at 0, but doesn't enforce SEMVMX)
1376 * Linux caps the semaphore value, both at 0
1379 * Manfred <manfred@colorfullife.com>
1381 if (semaphore
->semval
< 0)
1382 semaphore
->semval
= 0;
1383 if (semaphore
->semval
> SEMVMX
)
1384 semaphore
->semval
= SEMVMX
;
1385 semaphore
->sempid
= current
->tgid
;
1388 sma
->sem_otime
= get_seconds();
1389 /* maybe some queued-up processes were waiting for this */
1397 #ifdef CONFIG_PROC_FS
1398 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
)
1400 struct sem_array
*sma
= it
;
1402 return seq_printf(s
,
1403 "%10d %10d %4o %10lu %5u %5u %5u %5u %10lu %10lu\n",