clocksource, acpi_pm.c: use proper read function also in errata mode
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / scsi / sym53c8xx_2 / sym_hipd.c
blob98df1651404faff46e9241e7a776f4e69f45885f
1 /*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
6 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx>
8 * This driver is derived from the Linux sym53c8xx driver.
9 * Copyright (C) 1998-2000 Gerard Roudier
11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12 * a port of the FreeBSD ncr driver to Linux-1.2.13.
14 * The original ncr driver has been written for 386bsd and FreeBSD by
15 * Wolfgang Stanglmeier <wolf@cologne.de>
16 * Stefan Esser <se@mi.Uni-Koeln.de>
17 * Copyright (C) 1994 Wolfgang Stanglmeier
19 * Other major contributions:
21 * NVRAM detection and reading.
22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
24 *-----------------------------------------------------------------------------
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
41 #include <linux/slab.h>
42 #include <asm/param.h> /* for timeouts in units of HZ */
44 #include "sym_glue.h"
45 #include "sym_nvram.h"
47 #if 0
48 #define SYM_DEBUG_GENERIC_SUPPORT
49 #endif
52 * Needed function prototypes.
54 static void sym_int_ma (struct sym_hcb *np);
55 static void sym_int_sir(struct sym_hcb *);
56 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
57 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
58 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
59 static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
60 static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
61 static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
64 * Print a buffer in hexadecimal format with a ".\n" at end.
66 static void sym_printl_hex(u_char *p, int n)
68 while (n-- > 0)
69 printf (" %x", *p++);
70 printf (".\n");
73 static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
75 if (label)
76 sym_print_addr(cp->cmd, "%s: ", label);
77 else
78 sym_print_addr(cp->cmd, "");
80 spi_print_msg(msg);
81 printf("\n");
84 static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
86 struct sym_tcb *tp = &np->target[target];
87 dev_info(&tp->starget->dev, "%s: ", label);
89 spi_print_msg(msg);
90 printf("\n");
94 * Print something that tells about extended errors.
96 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
98 if (x_status & XE_PARITY_ERR) {
99 sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
101 if (x_status & XE_EXTRA_DATA) {
102 sym_print_addr(cmd, "extraneous data discarded.\n");
104 if (x_status & XE_BAD_PHASE) {
105 sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
107 if (x_status & XE_SODL_UNRUN) {
108 sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
110 if (x_status & XE_SWIDE_OVRUN) {
111 sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
116 * Return a string for SCSI BUS mode.
118 static char *sym_scsi_bus_mode(int mode)
120 switch(mode) {
121 case SMODE_HVD: return "HVD";
122 case SMODE_SE: return "SE";
123 case SMODE_LVD: return "LVD";
125 return "??";
129 * Soft reset the chip.
131 * Raising SRST when the chip is running may cause
132 * problems on dual function chips (see below).
133 * On the other hand, LVD devices need some delay
134 * to settle and report actual BUS mode in STEST4.
136 static void sym_chip_reset (struct sym_hcb *np)
138 OUTB(np, nc_istat, SRST);
139 INB(np, nc_mbox1);
140 udelay(10);
141 OUTB(np, nc_istat, 0);
142 INB(np, nc_mbox1);
143 udelay(2000); /* For BUS MODE to settle */
147 * Really soft reset the chip.:)
149 * Some 896 and 876 chip revisions may hang-up if we set
150 * the SRST (soft reset) bit at the wrong time when SCRIPTS
151 * are running.
152 * So, we need to abort the current operation prior to
153 * soft resetting the chip.
155 static void sym_soft_reset (struct sym_hcb *np)
157 u_char istat = 0;
158 int i;
160 if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
161 goto do_chip_reset;
163 OUTB(np, nc_istat, CABRT);
164 for (i = 100000 ; i ; --i) {
165 istat = INB(np, nc_istat);
166 if (istat & SIP) {
167 INW(np, nc_sist);
169 else if (istat & DIP) {
170 if (INB(np, nc_dstat) & ABRT)
171 break;
173 udelay(5);
175 OUTB(np, nc_istat, 0);
176 if (!i)
177 printf("%s: unable to abort current chip operation, "
178 "ISTAT=0x%02x.\n", sym_name(np), istat);
179 do_chip_reset:
180 sym_chip_reset(np);
184 * Start reset process.
186 * The interrupt handler will reinitialize the chip.
188 static void sym_start_reset(struct sym_hcb *np)
190 sym_reset_scsi_bus(np, 1);
193 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
195 u32 term;
196 int retv = 0;
198 sym_soft_reset(np); /* Soft reset the chip */
199 if (enab_int)
200 OUTW(np, nc_sien, RST);
202 * Enable Tolerant, reset IRQD if present and
203 * properly set IRQ mode, prior to resetting the bus.
205 OUTB(np, nc_stest3, TE);
206 OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
207 OUTB(np, nc_scntl1, CRST);
208 INB(np, nc_mbox1);
209 udelay(200);
211 if (!SYM_SETUP_SCSI_BUS_CHECK)
212 goto out;
214 * Check for no terminators or SCSI bus shorts to ground.
215 * Read SCSI data bus, data parity bits and control signals.
216 * We are expecting RESET to be TRUE and other signals to be
217 * FALSE.
219 term = INB(np, nc_sstat0);
220 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
221 term |= ((INB(np, nc_sstat2) & 0x01) << 26) | /* sdp1 */
222 ((INW(np, nc_sbdl) & 0xff) << 9) | /* d7-0 */
223 ((INW(np, nc_sbdl) & 0xff00) << 10) | /* d15-8 */
224 INB(np, nc_sbcl); /* req ack bsy sel atn msg cd io */
226 if (!np->maxwide)
227 term &= 0x3ffff;
229 if (term != (2<<7)) {
230 printf("%s: suspicious SCSI data while resetting the BUS.\n",
231 sym_name(np));
232 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
233 "0x%lx, expecting 0x%lx\n",
234 sym_name(np),
235 (np->features & FE_WIDE) ? "dp1,d15-8," : "",
236 (u_long)term, (u_long)(2<<7));
237 if (SYM_SETUP_SCSI_BUS_CHECK == 1)
238 retv = 1;
240 out:
241 OUTB(np, nc_scntl1, 0);
242 return retv;
246 * Select SCSI clock frequency
248 static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
251 * If multiplier not present or not selected, leave here.
253 if (np->multiplier <= 1) {
254 OUTB(np, nc_scntl3, scntl3);
255 return;
258 if (sym_verbose >= 2)
259 printf ("%s: enabling clock multiplier\n", sym_name(np));
261 OUTB(np, nc_stest1, DBLEN); /* Enable clock multiplier */
263 * Wait for the LCKFRQ bit to be set if supported by the chip.
264 * Otherwise wait 50 micro-seconds (at least).
266 if (np->features & FE_LCKFRQ) {
267 int i = 20;
268 while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
269 udelay(20);
270 if (!i)
271 printf("%s: the chip cannot lock the frequency\n",
272 sym_name(np));
273 } else {
274 INB(np, nc_mbox1);
275 udelay(50+10);
277 OUTB(np, nc_stest3, HSC); /* Halt the scsi clock */
278 OUTB(np, nc_scntl3, scntl3);
279 OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
280 OUTB(np, nc_stest3, 0x00); /* Restart scsi clock */
285 * Determine the chip's clock frequency.
287 * This is essential for the negotiation of the synchronous
288 * transfer rate.
290 * Note: we have to return the correct value.
291 * THERE IS NO SAFE DEFAULT VALUE.
293 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
294 * 53C860 and 53C875 rev. 1 support fast20 transfers but
295 * do not have a clock doubler and so are provided with a
296 * 80 MHz clock. All other fast20 boards incorporate a doubler
297 * and so should be delivered with a 40 MHz clock.
298 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
299 * clock and provide a clock quadrupler (160 Mhz).
303 * calculate SCSI clock frequency (in KHz)
305 static unsigned getfreq (struct sym_hcb *np, int gen)
307 unsigned int ms = 0;
308 unsigned int f;
311 * Measure GEN timer delay in order
312 * to calculate SCSI clock frequency
314 * This code will never execute too
315 * many loop iterations (if DELAY is
316 * reasonably correct). It could get
317 * too low a delay (too high a freq.)
318 * if the CPU is slow executing the
319 * loop for some reason (an NMI, for
320 * example). For this reason we will
321 * if multiple measurements are to be
322 * performed trust the higher delay
323 * (lower frequency returned).
325 OUTW(np, nc_sien, 0); /* mask all scsi interrupts */
326 INW(np, nc_sist); /* clear pending scsi interrupt */
327 OUTB(np, nc_dien, 0); /* mask all dma interrupts */
328 INW(np, nc_sist); /* another one, just to be sure :) */
330 * The C1010-33 core does not report GEN in SIST,
331 * if this interrupt is masked in SIEN.
332 * I don't know yet if the C1010-66 behaves the same way.
334 if (np->features & FE_C10) {
335 OUTW(np, nc_sien, GEN);
336 OUTB(np, nc_istat1, SIRQD);
338 OUTB(np, nc_scntl3, 4); /* set pre-scaler to divide by 3 */
339 OUTB(np, nc_stime1, 0); /* disable general purpose timer */
340 OUTB(np, nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
341 while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
342 udelay(1000/4); /* count in 1/4 of ms */
343 OUTB(np, nc_stime1, 0); /* disable general purpose timer */
345 * Undo C1010-33 specific settings.
347 if (np->features & FE_C10) {
348 OUTW(np, nc_sien, 0);
349 OUTB(np, nc_istat1, 0);
352 * set prescaler to divide by whatever 0 means
353 * 0 ought to choose divide by 2, but appears
354 * to set divide by 3.5 mode in my 53c810 ...
356 OUTB(np, nc_scntl3, 0);
359 * adjust for prescaler, and convert into KHz
361 f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
364 * The C1010-33 result is biased by a factor
365 * of 2/3 compared to earlier chips.
367 if (np->features & FE_C10)
368 f = (f * 2) / 3;
370 if (sym_verbose >= 2)
371 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
372 sym_name(np), gen, ms/4, f);
374 return f;
377 static unsigned sym_getfreq (struct sym_hcb *np)
379 u_int f1, f2;
380 int gen = 8;
382 getfreq (np, gen); /* throw away first result */
383 f1 = getfreq (np, gen);
384 f2 = getfreq (np, gen);
385 if (f1 > f2) f1 = f2; /* trust lower result */
386 return f1;
390 * Get/probe chip SCSI clock frequency
392 static void sym_getclock (struct sym_hcb *np, int mult)
394 unsigned char scntl3 = np->sv_scntl3;
395 unsigned char stest1 = np->sv_stest1;
396 unsigned f1;
398 np->multiplier = 1;
399 f1 = 40000;
401 * True with 875/895/896/895A with clock multiplier selected
403 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
404 if (sym_verbose >= 2)
405 printf ("%s: clock multiplier found\n", sym_name(np));
406 np->multiplier = mult;
410 * If multiplier not found or scntl3 not 7,5,3,
411 * reset chip and get frequency from general purpose timer.
412 * Otherwise trust scntl3 BIOS setting.
414 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
415 OUTB(np, nc_stest1, 0); /* make sure doubler is OFF */
416 f1 = sym_getfreq (np);
418 if (sym_verbose)
419 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
421 if (f1 < 45000) f1 = 40000;
422 else if (f1 < 55000) f1 = 50000;
423 else f1 = 80000;
425 if (f1 < 80000 && mult > 1) {
426 if (sym_verbose >= 2)
427 printf ("%s: clock multiplier assumed\n",
428 sym_name(np));
429 np->multiplier = mult;
431 } else {
432 if ((scntl3 & 7) == 3) f1 = 40000;
433 else if ((scntl3 & 7) == 5) f1 = 80000;
434 else f1 = 160000;
436 f1 /= np->multiplier;
440 * Compute controller synchronous parameters.
442 f1 *= np->multiplier;
443 np->clock_khz = f1;
447 * Get/probe PCI clock frequency
449 static int sym_getpciclock (struct sym_hcb *np)
451 int f = 0;
454 * For now, we only need to know about the actual
455 * PCI BUS clock frequency for C1010-66 chips.
457 #if 1
458 if (np->features & FE_66MHZ) {
459 #else
460 if (1) {
461 #endif
462 OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
463 f = sym_getfreq(np);
464 OUTB(np, nc_stest1, 0);
466 np->pciclk_khz = f;
468 return f;
472 * SYMBIOS chip clock divisor table.
474 * Divisors are multiplied by 10,000,000 in order to make
475 * calculations more simple.
477 #define _5M 5000000
478 static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
481 * Get clock factor and sync divisor for a given
482 * synchronous factor period.
484 static int
485 sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
487 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */
488 int div = np->clock_divn; /* Number of divisors supported */
489 u32 fak; /* Sync factor in sxfer */
490 u32 per; /* Period in tenths of ns */
491 u32 kpc; /* (per * clk) */
492 int ret;
495 * Compute the synchronous period in tenths of nano-seconds
497 if (dt && sfac <= 9) per = 125;
498 else if (sfac <= 10) per = 250;
499 else if (sfac == 11) per = 303;
500 else if (sfac == 12) per = 500;
501 else per = 40 * sfac;
502 ret = per;
504 kpc = per * clk;
505 if (dt)
506 kpc <<= 1;
509 * For earliest C10 revision 0, we cannot use extra
510 * clocks for the setting of the SCSI clocking.
511 * Note that this limits the lowest sync data transfer
512 * to 5 Mega-transfers per second and may result in
513 * using higher clock divisors.
515 #if 1
516 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
518 * Look for the lowest clock divisor that allows an
519 * output speed not faster than the period.
521 while (div > 0) {
522 --div;
523 if (kpc > (div_10M[div] << 2)) {
524 ++div;
525 break;
528 fak = 0; /* No extra clocks */
529 if (div == np->clock_divn) { /* Are we too fast ? */
530 ret = -1;
532 *divp = div;
533 *fakp = fak;
534 return ret;
536 #endif
539 * Look for the greatest clock divisor that allows an
540 * input speed faster than the period.
542 while (div-- > 0)
543 if (kpc >= (div_10M[div] << 2)) break;
546 * Calculate the lowest clock factor that allows an output
547 * speed not faster than the period, and the max output speed.
548 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
549 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
551 if (dt) {
552 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
553 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
554 } else {
555 fak = (kpc - 1) / div_10M[div] + 1 - 4;
556 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
560 * Check against our hardware limits, or bugs :).
562 if (fak > 2) {
563 fak = 2;
564 ret = -1;
568 * Compute and return sync parameters.
570 *divp = div;
571 *fakp = fak;
573 return ret;
577 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
578 * 128 transfers. All chips support at least 16 transfers
579 * bursts. The 825A, 875 and 895 chips support bursts of up
580 * to 128 transfers and the 895A and 896 support bursts of up
581 * to 64 transfers. All other chips support up to 16
582 * transfers bursts.
584 * For PCI 32 bit data transfers each transfer is a DWORD.
585 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
587 * We use log base 2 (burst length) as internal code, with
588 * value 0 meaning "burst disabled".
592 * Burst length from burst code.
594 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
597 * Burst code from io register bits.
599 #define burst_code(dmode, ctest4, ctest5) \
600 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
603 * Set initial io register bits from burst code.
605 static __inline void sym_init_burst(struct sym_hcb *np, u_char bc)
607 np->rv_ctest4 &= ~0x80;
608 np->rv_dmode &= ~(0x3 << 6);
609 np->rv_ctest5 &= ~0x4;
611 if (!bc) {
612 np->rv_ctest4 |= 0x80;
614 else {
615 --bc;
616 np->rv_dmode |= ((bc & 0x3) << 6);
617 np->rv_ctest5 |= (bc & 0x4);
622 * Save initial settings of some IO registers.
623 * Assumed to have been set by BIOS.
624 * We cannot reset the chip prior to reading the
625 * IO registers, since informations will be lost.
626 * Since the SCRIPTS processor may be running, this
627 * is not safe on paper, but it seems to work quite
628 * well. :)
630 static void sym_save_initial_setting (struct sym_hcb *np)
632 np->sv_scntl0 = INB(np, nc_scntl0) & 0x0a;
633 np->sv_scntl3 = INB(np, nc_scntl3) & 0x07;
634 np->sv_dmode = INB(np, nc_dmode) & 0xce;
635 np->sv_dcntl = INB(np, nc_dcntl) & 0xa8;
636 np->sv_ctest3 = INB(np, nc_ctest3) & 0x01;
637 np->sv_ctest4 = INB(np, nc_ctest4) & 0x80;
638 np->sv_gpcntl = INB(np, nc_gpcntl);
639 np->sv_stest1 = INB(np, nc_stest1);
640 np->sv_stest2 = INB(np, nc_stest2) & 0x20;
641 np->sv_stest4 = INB(np, nc_stest4);
642 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */
643 np->sv_scntl4 = INB(np, nc_scntl4);
644 np->sv_ctest5 = INB(np, nc_ctest5) & 0x04;
646 else
647 np->sv_ctest5 = INB(np, nc_ctest5) & 0x24;
651 * Set SCSI BUS mode.
652 * - LVD capable chips (895/895A/896/1010) report the current BUS mode
653 * through the STEST4 IO register.
654 * - For previous generation chips (825/825A/875), the user has to tell us
655 * how to check against HVD, since a 100% safe algorithm is not possible.
657 static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram)
659 if (np->scsi_mode)
660 return;
662 np->scsi_mode = SMODE_SE;
663 if (np->features & (FE_ULTRA2|FE_ULTRA3))
664 np->scsi_mode = (np->sv_stest4 & SMODE);
665 else if (np->features & FE_DIFF) {
666 if (SYM_SETUP_SCSI_DIFF == 1) {
667 if (np->sv_scntl3) {
668 if (np->sv_stest2 & 0x20)
669 np->scsi_mode = SMODE_HVD;
670 } else if (nvram->type == SYM_SYMBIOS_NVRAM) {
671 if (!(INB(np, nc_gpreg) & 0x08))
672 np->scsi_mode = SMODE_HVD;
674 } else if (SYM_SETUP_SCSI_DIFF == 2)
675 np->scsi_mode = SMODE_HVD;
677 if (np->scsi_mode == SMODE_HVD)
678 np->rv_stest2 |= 0x20;
682 * Prepare io register values used by sym_start_up()
683 * according to selected and supported features.
685 static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
687 struct sym_data *sym_data = shost_priv(shost);
688 struct pci_dev *pdev = sym_data->pdev;
689 u_char burst_max;
690 u32 period;
691 int i;
693 np->maxwide = (np->features & FE_WIDE) ? 1 : 0;
696 * Guess the frequency of the chip's clock.
698 if (np->features & (FE_ULTRA3 | FE_ULTRA2))
699 np->clock_khz = 160000;
700 else if (np->features & FE_ULTRA)
701 np->clock_khz = 80000;
702 else
703 np->clock_khz = 40000;
706 * Get the clock multiplier factor.
708 if (np->features & FE_QUAD)
709 np->multiplier = 4;
710 else if (np->features & FE_DBLR)
711 np->multiplier = 2;
712 else
713 np->multiplier = 1;
716 * Measure SCSI clock frequency for chips
717 * it may vary from assumed one.
719 if (np->features & FE_VARCLK)
720 sym_getclock(np, np->multiplier);
723 * Divisor to be used for async (timer pre-scaler).
725 i = np->clock_divn - 1;
726 while (--i >= 0) {
727 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
728 ++i;
729 break;
732 np->rv_scntl3 = i+1;
735 * The C1010 uses hardwired divisors for async.
736 * So, we just throw away, the async. divisor.:-)
738 if (np->features & FE_C10)
739 np->rv_scntl3 = 0;
742 * Minimum synchronous period factor supported by the chip.
743 * Btw, 'period' is in tenths of nanoseconds.
745 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
747 if (period <= 250) np->minsync = 10;
748 else if (period <= 303) np->minsync = 11;
749 else if (period <= 500) np->minsync = 12;
750 else np->minsync = (period + 40 - 1) / 40;
753 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
755 if (np->minsync < 25 &&
756 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
757 np->minsync = 25;
758 else if (np->minsync < 12 &&
759 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
760 np->minsync = 12;
763 * Maximum synchronous period factor supported by the chip.
765 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
766 np->maxsync = period > 2540 ? 254 : period / 10;
769 * If chip is a C1010, guess the sync limits in DT mode.
771 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
772 if (np->clock_khz == 160000) {
773 np->minsync_dt = 9;
774 np->maxsync_dt = 50;
775 np->maxoffs_dt = nvram->type ? 62 : 31;
780 * 64 bit addressing (895A/896/1010) ?
782 if (np->features & FE_DAC) {
783 if (!use_dac(np))
784 np->rv_ccntl1 |= (DDAC);
785 else if (SYM_CONF_DMA_ADDRESSING_MODE == 1)
786 np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
787 else if (SYM_CONF_DMA_ADDRESSING_MODE == 2)
788 np->rv_ccntl1 |= (0 | EXTIBMV);
792 * Phase mismatch handled by SCRIPTS (895A/896/1010) ?
794 if (np->features & FE_NOPM)
795 np->rv_ccntl0 |= (ENPMJ);
798 * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
799 * In dual channel mode, contention occurs if internal cycles
800 * are used. Disable internal cycles.
802 if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
803 pdev->revision < 0x1)
804 np->rv_ccntl0 |= DILS;
807 * Select burst length (dwords)
809 burst_max = SYM_SETUP_BURST_ORDER;
810 if (burst_max == 255)
811 burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
812 np->sv_ctest5);
813 if (burst_max > 7)
814 burst_max = 7;
815 if (burst_max > np->maxburst)
816 burst_max = np->maxburst;
819 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
820 * This chip and the 860 Rev 1 may wrongly use PCI cache line
821 * based transactions on LOAD/STORE instructions. So we have
822 * to prevent these chips from using such PCI transactions in
823 * this driver. The generic ncr driver that does not use
824 * LOAD/STORE instructions does not need this work-around.
826 if ((pdev->device == PCI_DEVICE_ID_NCR_53C810 &&
827 pdev->revision >= 0x10 && pdev->revision <= 0x11) ||
828 (pdev->device == PCI_DEVICE_ID_NCR_53C860 &&
829 pdev->revision <= 0x1))
830 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
833 * Select all supported special features.
834 * If we are using on-board RAM for scripts, prefetch (PFEN)
835 * does not help, but burst op fetch (BOF) does.
836 * Disabling PFEN makes sure BOF will be used.
838 if (np->features & FE_ERL)
839 np->rv_dmode |= ERL; /* Enable Read Line */
840 if (np->features & FE_BOF)
841 np->rv_dmode |= BOF; /* Burst Opcode Fetch */
842 if (np->features & FE_ERMP)
843 np->rv_dmode |= ERMP; /* Enable Read Multiple */
844 #if 1
845 if ((np->features & FE_PFEN) && !np->ram_ba)
846 #else
847 if (np->features & FE_PFEN)
848 #endif
849 np->rv_dcntl |= PFEN; /* Prefetch Enable */
850 if (np->features & FE_CLSE)
851 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
852 if (np->features & FE_WRIE)
853 np->rv_ctest3 |= WRIE; /* Write and Invalidate */
854 if (np->features & FE_DFS)
855 np->rv_ctest5 |= DFS; /* Dma Fifo Size */
858 * Select some other
860 np->rv_ctest4 |= MPEE; /* Master parity checking */
861 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
864 * Get parity checking, host ID and verbose mode from NVRAM
866 np->myaddr = 255;
867 np->scsi_mode = 0;
868 sym_nvram_setup_host(shost, np, nvram);
871 * Get SCSI addr of host adapter (set by bios?).
873 if (np->myaddr == 255) {
874 np->myaddr = INB(np, nc_scid) & 0x07;
875 if (!np->myaddr)
876 np->myaddr = SYM_SETUP_HOST_ID;
880 * Prepare initial io register bits for burst length
882 sym_init_burst(np, burst_max);
884 sym_set_bus_mode(np, nvram);
887 * Set LED support from SCRIPTS.
888 * Ignore this feature for boards known to use a
889 * specific GPIO wiring and for the 895A, 896
890 * and 1010 that drive the LED directly.
892 if ((SYM_SETUP_SCSI_LED ||
893 (nvram->type == SYM_SYMBIOS_NVRAM ||
894 (nvram->type == SYM_TEKRAM_NVRAM &&
895 pdev->device == PCI_DEVICE_ID_NCR_53C895))) &&
896 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
897 np->features |= FE_LED0;
900 * Set irq mode.
902 switch(SYM_SETUP_IRQ_MODE & 3) {
903 case 2:
904 np->rv_dcntl |= IRQM;
905 break;
906 case 1:
907 np->rv_dcntl |= (np->sv_dcntl & IRQM);
908 break;
909 default:
910 break;
914 * Configure targets according to driver setup.
915 * If NVRAM present get targets setup from NVRAM.
917 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
918 struct sym_tcb *tp = &np->target[i];
920 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
921 tp->usrtags = SYM_SETUP_MAX_TAG;
922 tp->usr_width = np->maxwide;
923 tp->usr_period = 9;
925 sym_nvram_setup_target(tp, i, nvram);
927 if (!tp->usrtags)
928 tp->usrflags &= ~SYM_TAGS_ENABLED;
932 * Let user know about the settings.
934 printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
935 sym_nvram_type(nvram), np->myaddr,
936 (np->features & FE_ULTRA3) ? 80 :
937 (np->features & FE_ULTRA2) ? 40 :
938 (np->features & FE_ULTRA) ? 20 : 10,
939 sym_scsi_bus_mode(np->scsi_mode),
940 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity");
942 * Tell him more on demand.
944 if (sym_verbose) {
945 printf("%s: %s IRQ line driver%s\n",
946 sym_name(np),
947 np->rv_dcntl & IRQM ? "totem pole" : "open drain",
948 np->ram_ba ? ", using on-chip SRAM" : "");
949 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
950 if (np->features & FE_NOPM)
951 printf("%s: handling phase mismatch from SCRIPTS.\n",
952 sym_name(np));
955 * And still more.
957 if (sym_verbose >= 2) {
958 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
959 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
960 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
961 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
963 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
964 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
965 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
966 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
969 return 0;
973 * Test the pci bus snoop logic :-(
975 * Has to be called with interrupts disabled.
977 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO
978 static int sym_regtest(struct sym_hcb *np)
980 register volatile u32 data;
982 * chip registers may NOT be cached.
983 * write 0xffffffff to a read only register area,
984 * and try to read it back.
986 data = 0xffffffff;
987 OUTL(np, nc_dstat, data);
988 data = INL(np, nc_dstat);
989 #if 1
990 if (data == 0xffffffff) {
991 #else
992 if ((data & 0xe2f0fffd) != 0x02000080) {
993 #endif
994 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
995 (unsigned) data);
996 return 0x10;
998 return 0;
1000 #else
1001 static inline int sym_regtest(struct sym_hcb *np)
1003 return 0;
1005 #endif
1007 static int sym_snooptest(struct sym_hcb *np)
1009 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
1010 int i, err;
1012 err = sym_regtest(np);
1013 if (err)
1014 return err;
1015 restart_test:
1017 * Enable Master Parity Checking as we intend
1018 * to enable it for normal operations.
1020 OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1022 * init
1024 pc = SCRIPTZ_BA(np, snooptest);
1025 host_wr = 1;
1026 sym_wr = 2;
1028 * Set memory and register.
1030 np->scratch = cpu_to_scr(host_wr);
1031 OUTL(np, nc_temp, sym_wr);
1033 * Start script (exchange values)
1035 OUTL(np, nc_dsa, np->hcb_ba);
1036 OUTL_DSP(np, pc);
1038 * Wait 'til done (with timeout)
1040 for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1041 if (INB(np, nc_istat) & (INTF|SIP|DIP))
1042 break;
1043 if (i>=SYM_SNOOP_TIMEOUT) {
1044 printf ("CACHE TEST FAILED: timeout.\n");
1045 return (0x20);
1048 * Check for fatal DMA errors.
1050 dstat = INB(np, nc_dstat);
1051 #if 1 /* Band aiding for broken hardwares that fail PCI parity */
1052 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1053 printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1054 "DISABLING MASTER DATA PARITY CHECKING.\n",
1055 sym_name(np));
1056 np->rv_ctest4 &= ~MPEE;
1057 goto restart_test;
1059 #endif
1060 if (dstat & (MDPE|BF|IID)) {
1061 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1062 return (0x80);
1065 * Save termination position.
1067 pc = INL(np, nc_dsp);
1069 * Read memory and register.
1071 host_rd = scr_to_cpu(np->scratch);
1072 sym_rd = INL(np, nc_scratcha);
1073 sym_bk = INL(np, nc_temp);
1075 * Check termination position.
1077 if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1078 printf ("CACHE TEST FAILED: script execution failed.\n");
1079 printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1080 (u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1081 (u_long) SCRIPTZ_BA(np, snoopend) +8);
1082 return (0x40);
1085 * Show results.
1087 if (host_wr != sym_rd) {
1088 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1089 (int) host_wr, (int) sym_rd);
1090 err |= 1;
1092 if (host_rd != sym_wr) {
1093 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1094 (int) sym_wr, (int) host_rd);
1095 err |= 2;
1097 if (sym_bk != sym_wr) {
1098 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1099 (int) sym_wr, (int) sym_bk);
1100 err |= 4;
1103 return err;
1107 * log message for real hard errors
1109 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1110 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1112 * exception register:
1113 * ds: dstat
1114 * si: sist
1116 * SCSI bus lines:
1117 * so: control lines as driven by chip.
1118 * si: control lines as seen by chip.
1119 * sd: scsi data lines as seen by chip.
1121 * wide/fastmode:
1122 * sx: sxfer (see the manual)
1123 * s3: scntl3 (see the manual)
1124 * s4: scntl4 (see the manual)
1126 * current script command:
1127 * dsp: script address (relative to start of script).
1128 * dbc: first word of script command.
1130 * First 24 register of the chip:
1131 * r0..rf
1133 static void sym_log_hard_error(struct Scsi_Host *shost, u_short sist, u_char dstat)
1135 struct sym_hcb *np = sym_get_hcb(shost);
1136 u32 dsp;
1137 int script_ofs;
1138 int script_size;
1139 char *script_name;
1140 u_char *script_base;
1141 int i;
1143 dsp = INL(np, nc_dsp);
1145 if (dsp > np->scripta_ba &&
1146 dsp <= np->scripta_ba + np->scripta_sz) {
1147 script_ofs = dsp - np->scripta_ba;
1148 script_size = np->scripta_sz;
1149 script_base = (u_char *) np->scripta0;
1150 script_name = "scripta";
1152 else if (np->scriptb_ba < dsp &&
1153 dsp <= np->scriptb_ba + np->scriptb_sz) {
1154 script_ofs = dsp - np->scriptb_ba;
1155 script_size = np->scriptb_sz;
1156 script_base = (u_char *) np->scriptb0;
1157 script_name = "scriptb";
1158 } else {
1159 script_ofs = dsp;
1160 script_size = 0;
1161 script_base = NULL;
1162 script_name = "mem";
1165 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1166 sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1167 (unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1168 (unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1169 (unsigned)INB(np, nc_scntl3),
1170 (np->features & FE_C10) ? (unsigned)INB(np, nc_scntl4) : 0,
1171 script_name, script_ofs, (unsigned)INL(np, nc_dbc));
1173 if (((script_ofs & 3) == 0) &&
1174 (unsigned)script_ofs < script_size) {
1175 printf ("%s: script cmd = %08x\n", sym_name(np),
1176 scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1179 printf("%s: regdump:", sym_name(np));
1180 for (i = 0; i < 24; i++)
1181 printf(" %02x", (unsigned)INB_OFF(np, i));
1182 printf(".\n");
1185 * PCI BUS error.
1187 if (dstat & (MDPE|BF))
1188 sym_log_bus_error(shost);
1191 void sym_dump_registers(struct Scsi_Host *shost)
1193 struct sym_hcb *np = sym_get_hcb(shost);
1194 u_short sist;
1195 u_char dstat;
1197 sist = INW(np, nc_sist);
1198 dstat = INB(np, nc_dstat);
1199 sym_log_hard_error(shost, sist, dstat);
1202 static struct sym_chip sym_dev_table[] = {
1203 {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1204 FE_ERL}
1206 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1207 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
1208 FE_BOF}
1210 #else
1211 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
1212 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1214 #endif
1215 {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4, 8, 4, 64,
1216 FE_BOF|FE_ERL}
1218 {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6, 8, 4, 64,
1219 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1221 {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6, 8, 4, 2,
1222 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1224 {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4, 8, 5, 1,
1225 FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1227 {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1228 FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1229 FE_RAM|FE_DIFF|FE_VARCLK}
1231 {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1232 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1233 FE_RAM|FE_DIFF|FE_VARCLK}
1235 {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1236 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1237 FE_RAM|FE_DIFF|FE_VARCLK}
1239 {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1240 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1241 FE_RAM|FE_DIFF|FE_VARCLK}
1243 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1244 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1245 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1246 FE_RAM|FE_LCKFRQ}
1248 #else
1249 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1250 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1251 FE_RAM|FE_LCKFRQ}
1253 #endif
1254 {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1255 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1256 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1258 {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1259 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1260 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1262 {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1263 FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1264 FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1266 {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1267 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1268 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1269 FE_C10}
1271 {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1272 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1273 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1274 FE_C10|FE_U3EN}
1276 {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1277 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1278 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1279 FE_C10|FE_U3EN}
1281 {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1282 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1283 FE_RAM|FE_IO256|FE_LEDC}
1286 #define sym_num_devs (ARRAY_SIZE(sym_dev_table))
1289 * Look up the chip table.
1291 * Return a pointer to the chip entry if found,
1292 * zero otherwise.
1294 struct sym_chip *
1295 sym_lookup_chip_table (u_short device_id, u_char revision)
1297 struct sym_chip *chip;
1298 int i;
1300 for (i = 0; i < sym_num_devs; i++) {
1301 chip = &sym_dev_table[i];
1302 if (device_id != chip->device_id)
1303 continue;
1304 if (revision > chip->revision_id)
1305 continue;
1306 return chip;
1309 return NULL;
1312 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1314 * Lookup the 64 bit DMA segments map.
1315 * This is only used if the direct mapping
1316 * has been unsuccessful.
1318 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1320 int i;
1322 if (!use_dac(np))
1323 goto weird;
1325 /* Look up existing mappings */
1326 for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1327 if (h == np->dmap_bah[i])
1328 return i;
1330 /* If direct mapping is free, get it */
1331 if (!np->dmap_bah[s])
1332 goto new;
1333 /* Collision -> lookup free mappings */
1334 for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1335 if (!np->dmap_bah[s])
1336 goto new;
1338 weird:
1339 panic("sym: ran out of 64 bit DMA segment registers");
1340 return -1;
1341 new:
1342 np->dmap_bah[s] = h;
1343 np->dmap_dirty = 1;
1344 return s;
1348 * Update IO registers scratch C..R so they will be
1349 * in sync. with queued CCB expectations.
1351 static void sym_update_dmap_regs(struct sym_hcb *np)
1353 int o, i;
1355 if (!np->dmap_dirty)
1356 return;
1357 o = offsetof(struct sym_reg, nc_scrx[0]);
1358 for (i = 0; i < SYM_DMAP_SIZE; i++) {
1359 OUTL_OFF(np, o, np->dmap_bah[i]);
1360 o += 4;
1362 np->dmap_dirty = 0;
1364 #endif
1366 /* Enforce all the fiddly SPI rules and the chip limitations */
1367 static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1368 struct sym_trans *goal)
1370 if (!spi_support_wide(starget))
1371 goal->width = 0;
1373 if (!spi_support_sync(starget)) {
1374 goal->iu = 0;
1375 goal->dt = 0;
1376 goal->qas = 0;
1377 goal->offset = 0;
1378 return;
1381 if (spi_support_dt(starget)) {
1382 if (spi_support_dt_only(starget))
1383 goal->dt = 1;
1385 if (goal->offset == 0)
1386 goal->dt = 0;
1387 } else {
1388 goal->dt = 0;
1391 /* Some targets fail to properly negotiate DT in SE mode */
1392 if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1393 goal->dt = 0;
1395 if (goal->dt) {
1396 /* all DT transfers must be wide */
1397 goal->width = 1;
1398 if (goal->offset > np->maxoffs_dt)
1399 goal->offset = np->maxoffs_dt;
1400 if (goal->period < np->minsync_dt)
1401 goal->period = np->minsync_dt;
1402 if (goal->period > np->maxsync_dt)
1403 goal->period = np->maxsync_dt;
1404 } else {
1405 goal->iu = goal->qas = 0;
1406 if (goal->offset > np->maxoffs)
1407 goal->offset = np->maxoffs;
1408 if (goal->period < np->minsync)
1409 goal->period = np->minsync;
1410 if (goal->period > np->maxsync)
1411 goal->period = np->maxsync;
1416 * Prepare the next negotiation message if needed.
1418 * Fill in the part of message buffer that contains the
1419 * negotiation and the nego_status field of the CCB.
1420 * Returns the size of the message in bytes.
1422 static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1424 struct sym_tcb *tp = &np->target[cp->target];
1425 struct scsi_target *starget = tp->starget;
1426 struct sym_trans *goal = &tp->tgoal;
1427 int msglen = 0;
1428 int nego;
1430 sym_check_goals(np, starget, goal);
1433 * Many devices implement PPR in a buggy way, so only use it if we
1434 * really want to.
1436 if (goal->offset &&
1437 (goal->iu || goal->dt || goal->qas || (goal->period < 0xa))) {
1438 nego = NS_PPR;
1439 } else if (spi_width(starget) != goal->width) {
1440 nego = NS_WIDE;
1441 } else if (spi_period(starget) != goal->period ||
1442 spi_offset(starget) != goal->offset) {
1443 nego = NS_SYNC;
1444 } else {
1445 goal->check_nego = 0;
1446 nego = 0;
1449 switch (nego) {
1450 case NS_SYNC:
1451 msglen += spi_populate_sync_msg(msgptr + msglen, goal->period,
1452 goal->offset);
1453 break;
1454 case NS_WIDE:
1455 msglen += spi_populate_width_msg(msgptr + msglen, goal->width);
1456 break;
1457 case NS_PPR:
1458 msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period,
1459 goal->offset, goal->width,
1460 (goal->iu ? PPR_OPT_IU : 0) |
1461 (goal->dt ? PPR_OPT_DT : 0) |
1462 (goal->qas ? PPR_OPT_QAS : 0));
1463 break;
1466 cp->nego_status = nego;
1468 if (nego) {
1469 tp->nego_cp = cp; /* Keep track a nego will be performed */
1470 if (DEBUG_FLAGS & DEBUG_NEGO) {
1471 sym_print_nego_msg(np, cp->target,
1472 nego == NS_SYNC ? "sync msgout" :
1473 nego == NS_WIDE ? "wide msgout" :
1474 "ppr msgout", msgptr);
1478 return msglen;
1482 * Insert a job into the start queue.
1484 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
1486 u_short qidx;
1488 #ifdef SYM_CONF_IARB_SUPPORT
1490 * If the previously queued CCB is not yet done,
1491 * set the IARB hint. The SCRIPTS will go with IARB
1492 * for this job when starting the previous one.
1493 * We leave devices a chance to win arbitration by
1494 * not using more than 'iarb_max' consecutive
1495 * immediate arbitrations.
1497 if (np->last_cp && np->iarb_count < np->iarb_max) {
1498 np->last_cp->host_flags |= HF_HINT_IARB;
1499 ++np->iarb_count;
1501 else
1502 np->iarb_count = 0;
1503 np->last_cp = cp;
1504 #endif
1506 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1508 * Make SCRIPTS aware of the 64 bit DMA
1509 * segment registers not being up-to-date.
1511 if (np->dmap_dirty)
1512 cp->host_xflags |= HX_DMAP_DIRTY;
1513 #endif
1516 * Insert first the idle task and then our job.
1517 * The MBs should ensure proper ordering.
1519 qidx = np->squeueput + 2;
1520 if (qidx >= MAX_QUEUE*2) qidx = 0;
1522 np->squeue [qidx] = cpu_to_scr(np->idletask_ba);
1523 MEMORY_WRITE_BARRIER();
1524 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1526 np->squeueput = qidx;
1528 if (DEBUG_FLAGS & DEBUG_QUEUE)
1529 scmd_printk(KERN_DEBUG, cp->cmd, "queuepos=%d\n",
1530 np->squeueput);
1533 * Script processor may be waiting for reselect.
1534 * Wake it up.
1536 MEMORY_WRITE_BARRIER();
1537 OUTB(np, nc_istat, SIGP|np->istat_sem);
1540 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1542 * Start next ready-to-start CCBs.
1544 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1546 SYM_QUEHEAD *qp;
1547 struct sym_ccb *cp;
1550 * Paranoia, as usual. :-)
1552 assert(!lp->started_tags || !lp->started_no_tag);
1555 * Try to start as many commands as asked by caller.
1556 * Prevent from having both tagged and untagged
1557 * commands queued to the device at the same time.
1559 while (maxn--) {
1560 qp = sym_remque_head(&lp->waiting_ccbq);
1561 if (!qp)
1562 break;
1563 cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1564 if (cp->tag != NO_TAG) {
1565 if (lp->started_no_tag ||
1566 lp->started_tags >= lp->started_max) {
1567 sym_insque_head(qp, &lp->waiting_ccbq);
1568 break;
1570 lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1571 lp->head.resel_sa =
1572 cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1573 ++lp->started_tags;
1574 } else {
1575 if (lp->started_no_tag || lp->started_tags) {
1576 sym_insque_head(qp, &lp->waiting_ccbq);
1577 break;
1579 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1580 lp->head.resel_sa =
1581 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1582 ++lp->started_no_tag;
1584 cp->started = 1;
1585 sym_insque_tail(qp, &lp->started_ccbq);
1586 sym_put_start_queue(np, cp);
1589 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1592 * The chip may have completed jobs. Look at the DONE QUEUE.
1594 * On paper, memory read barriers may be needed here to
1595 * prevent out of order LOADs by the CPU from having
1596 * prefetched stale data prior to DMA having occurred.
1598 static int sym_wakeup_done (struct sym_hcb *np)
1600 struct sym_ccb *cp;
1601 int i, n;
1602 u32 dsa;
1604 n = 0;
1605 i = np->dqueueget;
1607 /* MEMORY_READ_BARRIER(); */
1608 while (1) {
1609 dsa = scr_to_cpu(np->dqueue[i]);
1610 if (!dsa)
1611 break;
1612 np->dqueue[i] = 0;
1613 if ((i = i+2) >= MAX_QUEUE*2)
1614 i = 0;
1616 cp = sym_ccb_from_dsa(np, dsa);
1617 if (cp) {
1618 MEMORY_READ_BARRIER();
1619 sym_complete_ok (np, cp);
1620 ++n;
1622 else
1623 printf ("%s: bad DSA (%x) in done queue.\n",
1624 sym_name(np), (u_int) dsa);
1626 np->dqueueget = i;
1628 return n;
1632 * Complete all CCBs queued to the COMP queue.
1634 * These CCBs are assumed:
1635 * - Not to be referenced either by devices or
1636 * SCRIPTS-related queues and datas.
1637 * - To have to be completed with an error condition
1638 * or requeued.
1640 * The device queue freeze count is incremented
1641 * for each CCB that does not prevent this.
1642 * This function is called when all CCBs involved
1643 * in error handling/recovery have been reaped.
1645 static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1647 SYM_QUEHEAD *qp;
1648 struct sym_ccb *cp;
1650 while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
1651 struct scsi_cmnd *cmd;
1652 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1653 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1654 /* Leave quiet CCBs waiting for resources */
1655 if (cp->host_status == HS_WAIT)
1656 continue;
1657 cmd = cp->cmd;
1658 if (cam_status)
1659 sym_set_cam_status(cmd, cam_status);
1660 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1661 if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) {
1662 struct sym_tcb *tp = &np->target[cp->target];
1663 struct sym_lcb *lp = sym_lp(tp, cp->lun);
1664 if (lp) {
1665 sym_remque(&cp->link2_ccbq);
1666 sym_insque_tail(&cp->link2_ccbq,
1667 &lp->waiting_ccbq);
1668 if (cp->started) {
1669 if (cp->tag != NO_TAG)
1670 --lp->started_tags;
1671 else
1672 --lp->started_no_tag;
1675 cp->started = 0;
1676 continue;
1678 #endif
1679 sym_free_ccb(np, cp);
1680 sym_xpt_done(np, cmd);
1685 * Complete all active CCBs with error.
1686 * Used on CHIP/SCSI RESET.
1688 static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1691 * Move all active CCBs to the COMP queue
1692 * and flush this queue.
1694 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1695 sym_que_init(&np->busy_ccbq);
1696 sym_flush_comp_queue(np, cam_status);
1700 * Start chip.
1702 * 'reason' means:
1703 * 0: initialisation.
1704 * 1: SCSI BUS RESET delivered or received.
1705 * 2: SCSI BUS MODE changed.
1707 void sym_start_up(struct Scsi_Host *shost, int reason)
1709 struct sym_data *sym_data = shost_priv(shost);
1710 struct pci_dev *pdev = sym_data->pdev;
1711 struct sym_hcb *np = sym_data->ncb;
1712 int i;
1713 u32 phys;
1716 * Reset chip if asked, otherwise just clear fifos.
1718 if (reason == 1)
1719 sym_soft_reset(np);
1720 else {
1721 OUTB(np, nc_stest3, TE|CSF);
1722 OUTONB(np, nc_ctest3, CLF);
1726 * Clear Start Queue
1728 phys = np->squeue_ba;
1729 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1730 np->squeue[i] = cpu_to_scr(np->idletask_ba);
1731 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1733 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1736 * Start at first entry.
1738 np->squeueput = 0;
1741 * Clear Done Queue
1743 phys = np->dqueue_ba;
1744 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1745 np->dqueue[i] = 0;
1746 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1748 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1751 * Start at first entry.
1753 np->dqueueget = 0;
1756 * Install patches in scripts.
1757 * This also let point to first position the start
1758 * and done queue pointers used from SCRIPTS.
1760 np->fw_patch(shost);
1763 * Wakeup all pending jobs.
1765 sym_flush_busy_queue(np, DID_RESET);
1768 * Init chip.
1770 OUTB(np, nc_istat, 0x00); /* Remove Reset, abort */
1771 INB(np, nc_mbox1);
1772 udelay(2000); /* The 895 needs time for the bus mode to settle */
1774 OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1775 /* full arb., ena parity, par->ATN */
1776 OUTB(np, nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
1778 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
1780 OUTB(np, nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
1781 OUTW(np, nc_respid, 1ul<<np->myaddr); /* Id to respond to */
1782 OUTB(np, nc_istat , SIGP ); /* Signal Process */
1783 OUTB(np, nc_dmode , np->rv_dmode); /* Burst length, dma mode */
1784 OUTB(np, nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
1786 OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
1787 OUTB(np, nc_ctest3, np->rv_ctest3); /* Write and invalidate */
1788 OUTB(np, nc_ctest4, np->rv_ctest4); /* Master parity checking */
1790 /* Extended Sreq/Sack filtering not supported on the C10 */
1791 if (np->features & FE_C10)
1792 OUTB(np, nc_stest2, np->rv_stest2);
1793 else
1794 OUTB(np, nc_stest2, EXT|np->rv_stest2);
1796 OUTB(np, nc_stest3, TE); /* TolerANT enable */
1797 OUTB(np, nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */
1800 * For now, disable AIP generation on C1010-66.
1802 if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_66)
1803 OUTB(np, nc_aipcntl1, DISAIP);
1806 * C10101 rev. 0 errata.
1807 * Errant SGE's when in narrow. Write bits 4 & 5 of
1808 * STEST1 register to disable SGE. We probably should do
1809 * that from SCRIPTS for each selection/reselection, but
1810 * I just don't want. :)
1812 if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
1813 pdev->revision < 1)
1814 OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1817 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1818 * Disable overlapped arbitration for some dual function devices,
1819 * regardless revision id (kind of post-chip-design feature. ;-))
1821 if (pdev->device == PCI_DEVICE_ID_NCR_53C875)
1822 OUTB(np, nc_ctest0, (1<<5));
1823 else if (pdev->device == PCI_DEVICE_ID_NCR_53C896)
1824 np->rv_ccntl0 |= DPR;
1827 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1828 * and/or hardware phase mismatch, since only such chips
1829 * seem to support those IO registers.
1831 if (np->features & (FE_DAC|FE_NOPM)) {
1832 OUTB(np, nc_ccntl0, np->rv_ccntl0);
1833 OUTB(np, nc_ccntl1, np->rv_ccntl1);
1836 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1838 * Set up scratch C and DRS IO registers to map the 32 bit
1839 * DMA address range our data structures are located in.
1841 if (use_dac(np)) {
1842 np->dmap_bah[0] = 0; /* ??? */
1843 OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1844 OUTL(np, nc_drs, np->dmap_bah[0]);
1846 #endif
1849 * If phase mismatch handled by scripts (895A/896/1010),
1850 * set PM jump addresses.
1852 if (np->features & FE_NOPM) {
1853 OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1854 OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1858 * Enable GPIO0 pin for writing if LED support from SCRIPTS.
1859 * Also set GPIO5 and clear GPIO6 if hardware LED control.
1861 if (np->features & FE_LED0)
1862 OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1863 else if (np->features & FE_LEDC)
1864 OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1867 * enable ints
1869 OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1870 OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1873 * For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1874 * Try to eat the spurious SBMC interrupt that may occur when
1875 * we reset the chip but not the SCSI BUS (at initialization).
1877 if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1878 OUTONW(np, nc_sien, SBMC);
1879 if (reason == 0) {
1880 INB(np, nc_mbox1);
1881 mdelay(100);
1882 INW(np, nc_sist);
1884 np->scsi_mode = INB(np, nc_stest4) & SMODE;
1888 * Fill in target structure.
1889 * Reinitialize usrsync.
1890 * Reinitialize usrwide.
1891 * Prepare sync negotiation according to actual SCSI bus mode.
1893 for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1894 struct sym_tcb *tp = &np->target[i];
1896 tp->to_reset = 0;
1897 tp->head.sval = 0;
1898 tp->head.wval = np->rv_scntl3;
1899 tp->head.uval = 0;
1903 * Download SCSI SCRIPTS to on-chip RAM if present,
1904 * and start script processor.
1905 * We do the download preferently from the CPU.
1906 * For platforms that may not support PCI memory mapping,
1907 * we use simple SCRIPTS that performs MEMORY MOVEs.
1909 phys = SCRIPTA_BA(np, init);
1910 if (np->ram_ba) {
1911 if (sym_verbose >= 2)
1912 printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1913 memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
1914 if (np->features & FE_RAM8K) {
1915 memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1916 phys = scr_to_cpu(np->scr_ram_seg);
1917 OUTL(np, nc_mmws, phys);
1918 OUTL(np, nc_mmrs, phys);
1919 OUTL(np, nc_sfs, phys);
1920 phys = SCRIPTB_BA(np, start64);
1924 np->istat_sem = 0;
1926 OUTL(np, nc_dsa, np->hcb_ba);
1927 OUTL_DSP(np, phys);
1930 * Notify the XPT about the RESET condition.
1932 if (reason != 0)
1933 sym_xpt_async_bus_reset(np);
1937 * Switch trans mode for current job and its target.
1939 static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1940 u_char per, u_char wide, u_char div, u_char fak)
1942 SYM_QUEHEAD *qp;
1943 u_char sval, wval, uval;
1944 struct sym_tcb *tp = &np->target[target];
1946 assert(target == (INB(np, nc_sdid) & 0x0f));
1948 sval = tp->head.sval;
1949 wval = tp->head.wval;
1950 uval = tp->head.uval;
1952 #if 0
1953 printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1954 sval, wval, uval, np->rv_scntl3);
1955 #endif
1957 * Set the offset.
1959 if (!(np->features & FE_C10))
1960 sval = (sval & ~0x1f) | ofs;
1961 else
1962 sval = (sval & ~0x3f) | ofs;
1965 * Set the sync divisor and extra clock factor.
1967 if (ofs != 0) {
1968 wval = (wval & ~0x70) | ((div+1) << 4);
1969 if (!(np->features & FE_C10))
1970 sval = (sval & ~0xe0) | (fak << 5);
1971 else {
1972 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
1973 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
1974 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
1979 * Set the bus width.
1981 wval = wval & ~EWS;
1982 if (wide != 0)
1983 wval |= EWS;
1986 * Set misc. ultra enable bits.
1988 if (np->features & FE_C10) {
1989 uval = uval & ~(U3EN|AIPCKEN);
1990 if (opts) {
1991 assert(np->features & FE_U3EN);
1992 uval |= U3EN;
1994 } else {
1995 wval = wval & ~ULTRA;
1996 if (per <= 12) wval |= ULTRA;
2000 * Stop there if sync parameters are unchanged.
2002 if (tp->head.sval == sval &&
2003 tp->head.wval == wval &&
2004 tp->head.uval == uval)
2005 return;
2006 tp->head.sval = sval;
2007 tp->head.wval = wval;
2008 tp->head.uval = uval;
2011 * Disable extended Sreq/Sack filtering if per < 50.
2012 * Not supported on the C1010.
2014 if (per < 50 && !(np->features & FE_C10))
2015 OUTOFFB(np, nc_stest2, EXT);
2018 * set actual value and sync_status
2020 OUTB(np, nc_sxfer, tp->head.sval);
2021 OUTB(np, nc_scntl3, tp->head.wval);
2023 if (np->features & FE_C10) {
2024 OUTB(np, nc_scntl4, tp->head.uval);
2028 * patch ALL busy ccbs of this target.
2030 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2031 struct sym_ccb *cp;
2032 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2033 if (cp->target != target)
2034 continue;
2035 cp->phys.select.sel_scntl3 = tp->head.wval;
2036 cp->phys.select.sel_sxfer = tp->head.sval;
2037 if (np->features & FE_C10) {
2038 cp->phys.select.sel_scntl4 = tp->head.uval;
2044 * We received a WDTR.
2045 * Let everything be aware of the changes.
2047 static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2049 struct sym_tcb *tp = &np->target[target];
2050 struct scsi_target *starget = tp->starget;
2052 if (spi_width(starget) == wide)
2053 return;
2055 sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2057 tp->tgoal.width = wide;
2058 spi_offset(starget) = 0;
2059 spi_period(starget) = 0;
2060 spi_width(starget) = wide;
2061 spi_iu(starget) = 0;
2062 spi_dt(starget) = 0;
2063 spi_qas(starget) = 0;
2065 if (sym_verbose >= 3)
2066 spi_display_xfer_agreement(starget);
2070 * We received a SDTR.
2071 * Let everything be aware of the changes.
2073 static void
2074 sym_setsync(struct sym_hcb *np, int target,
2075 u_char ofs, u_char per, u_char div, u_char fak)
2077 struct sym_tcb *tp = &np->target[target];
2078 struct scsi_target *starget = tp->starget;
2079 u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2081 sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2083 spi_period(starget) = per;
2084 spi_offset(starget) = ofs;
2085 spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2087 if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2088 tp->tgoal.period = per;
2089 tp->tgoal.offset = ofs;
2090 tp->tgoal.check_nego = 0;
2093 spi_display_xfer_agreement(starget);
2097 * We received a PPR.
2098 * Let everything be aware of the changes.
2100 static void
2101 sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2102 u_char per, u_char wide, u_char div, u_char fak)
2104 struct sym_tcb *tp = &np->target[target];
2105 struct scsi_target *starget = tp->starget;
2107 sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2109 spi_width(starget) = tp->tgoal.width = wide;
2110 spi_period(starget) = tp->tgoal.period = per;
2111 spi_offset(starget) = tp->tgoal.offset = ofs;
2112 spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2113 spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2114 spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2115 tp->tgoal.check_nego = 0;
2117 spi_display_xfer_agreement(starget);
2121 * generic recovery from scsi interrupt
2123 * The doc says that when the chip gets an SCSI interrupt,
2124 * it tries to stop in an orderly fashion, by completing
2125 * an instruction fetch that had started or by flushing
2126 * the DMA fifo for a write to memory that was executing.
2127 * Such a fashion is not enough to know if the instruction
2128 * that was just before the current DSP value has been
2129 * executed or not.
2131 * There are some small SCRIPTS sections that deal with
2132 * the start queue and the done queue that may break any
2133 * assomption from the C code if we are interrupted
2134 * inside, so we reset if this happens. Btw, since these
2135 * SCRIPTS sections are executed while the SCRIPTS hasn't
2136 * started SCSI operations, it is very unlikely to happen.
2138 * All the driver data structures are supposed to be
2139 * allocated from the same 4 GB memory window, so there
2140 * is a 1 to 1 relationship between DSA and driver data
2141 * structures. Since we are careful :) to invalidate the
2142 * DSA when we complete a command or when the SCRIPTS
2143 * pushes a DSA into a queue, we can trust it when it
2144 * points to a CCB.
2146 static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2148 u32 dsp = INL(np, nc_dsp);
2149 u32 dsa = INL(np, nc_dsa);
2150 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
2153 * If we haven't been interrupted inside the SCRIPTS
2154 * critical pathes, we can safely restart the SCRIPTS
2155 * and trust the DSA value if it matches a CCB.
2157 if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2158 dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2159 (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2160 dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2161 (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2162 dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2163 (!(dsp > SCRIPTA_BA(np, done) &&
2164 dsp < SCRIPTA_BA(np, done_end) + 1))) {
2165 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2166 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
2168 * If we have a CCB, let the SCRIPTS call us back for
2169 * the handling of the error with SCRATCHA filled with
2170 * STARTPOS. This way, we will be able to freeze the
2171 * device queue and requeue awaiting IOs.
2173 if (cp) {
2174 cp->host_status = hsts;
2175 OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2178 * Otherwise just restart the SCRIPTS.
2180 else {
2181 OUTL(np, nc_dsa, 0xffffff);
2182 OUTL_DSP(np, SCRIPTA_BA(np, start));
2185 else
2186 goto reset_all;
2188 return;
2190 reset_all:
2191 sym_start_reset(np);
2195 * chip exception handler for selection timeout
2197 static void sym_int_sto (struct sym_hcb *np)
2199 u32 dsp = INL(np, nc_dsp);
2201 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2203 if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2204 sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2205 else
2206 sym_start_reset(np);
2210 * chip exception handler for unexpected disconnect
2212 static void sym_int_udc (struct sym_hcb *np)
2214 printf ("%s: unexpected disconnect\n", sym_name(np));
2215 sym_recover_scsi_int(np, HS_UNEXPECTED);
2219 * chip exception handler for SCSI bus mode change
2221 * spi2-r12 11.2.3 says a transceiver mode change must
2222 * generate a reset event and a device that detects a reset
2223 * event shall initiate a hard reset. It says also that a
2224 * device that detects a mode change shall set data transfer
2225 * mode to eight bit asynchronous, etc...
2226 * So, just reinitializing all except chip should be enough.
2228 static void sym_int_sbmc(struct Scsi_Host *shost)
2230 struct sym_hcb *np = sym_get_hcb(shost);
2231 u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2234 * Notify user.
2236 printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2237 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2240 * Should suspend command processing for a few seconds and
2241 * reinitialize all except the chip.
2243 sym_start_up(shost, 2);
2247 * chip exception handler for SCSI parity error.
2249 * When the chip detects a SCSI parity error and is
2250 * currently executing a (CH)MOV instruction, it does
2251 * not interrupt immediately, but tries to finish the
2252 * transfer of the current scatter entry before
2253 * interrupting. The following situations may occur:
2255 * - The complete scatter entry has been transferred
2256 * without the device having changed phase.
2257 * The chip will then interrupt with the DSP pointing
2258 * to the instruction that follows the MOV.
2260 * - A phase mismatch occurs before the MOV finished
2261 * and phase errors are to be handled by the C code.
2262 * The chip will then interrupt with both PAR and MA
2263 * conditions set.
2265 * - A phase mismatch occurs before the MOV finished and
2266 * phase errors are to be handled by SCRIPTS.
2267 * The chip will load the DSP with the phase mismatch
2268 * JUMP address and interrupt the host processor.
2270 static void sym_int_par (struct sym_hcb *np, u_short sist)
2272 u_char hsts = INB(np, HS_PRT);
2273 u32 dsp = INL(np, nc_dsp);
2274 u32 dbc = INL(np, nc_dbc);
2275 u32 dsa = INL(np, nc_dsa);
2276 u_char sbcl = INB(np, nc_sbcl);
2277 u_char cmd = dbc >> 24;
2278 int phase = cmd & 7;
2279 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
2281 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2282 sym_name(np), hsts, dbc, sbcl);
2285 * Check that the chip is connected to the SCSI BUS.
2287 if (!(INB(np, nc_scntl1) & ISCON)) {
2288 sym_recover_scsi_int(np, HS_UNEXPECTED);
2289 return;
2293 * If the nexus is not clearly identified, reset the bus.
2294 * We will try to do better later.
2296 if (!cp)
2297 goto reset_all;
2300 * Check instruction was a MOV, direction was INPUT and
2301 * ATN is asserted.
2303 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2304 goto reset_all;
2307 * Keep track of the parity error.
2309 OUTONB(np, HF_PRT, HF_EXT_ERR);
2310 cp->xerr_status |= XE_PARITY_ERR;
2313 * Prepare the message to send to the device.
2315 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2318 * If the old phase was DATA IN phase, we have to deal with
2319 * the 3 situations described above.
2320 * For other input phases (MSG IN and STATUS), the device
2321 * must resend the whole thing that failed parity checking
2322 * or signal error. So, jumping to dispatcher should be OK.
2324 if (phase == 1 || phase == 5) {
2325 /* Phase mismatch handled by SCRIPTS */
2326 if (dsp == SCRIPTB_BA(np, pm_handle))
2327 OUTL_DSP(np, dsp);
2328 /* Phase mismatch handled by the C code */
2329 else if (sist & MA)
2330 sym_int_ma (np);
2331 /* No phase mismatch occurred */
2332 else {
2333 sym_set_script_dp (np, cp, dsp);
2334 OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2337 else if (phase == 7) /* We definitely cannot handle parity errors */
2338 #if 1 /* in message-in phase due to the relection */
2339 goto reset_all; /* path and various message anticipations. */
2340 #else
2341 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2342 #endif
2343 else
2344 OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2345 return;
2347 reset_all:
2348 sym_start_reset(np);
2349 return;
2353 * chip exception handler for phase errors.
2355 * We have to construct a new transfer descriptor,
2356 * to transfer the rest of the current block.
2358 static void sym_int_ma (struct sym_hcb *np)
2360 u32 dbc;
2361 u32 rest;
2362 u32 dsp;
2363 u32 dsa;
2364 u32 nxtdsp;
2365 u32 *vdsp;
2366 u32 oadr, olen;
2367 u32 *tblp;
2368 u32 newcmd;
2369 u_int delta;
2370 u_char cmd;
2371 u_char hflags, hflags0;
2372 struct sym_pmc *pm;
2373 struct sym_ccb *cp;
2375 dsp = INL(np, nc_dsp);
2376 dbc = INL(np, nc_dbc);
2377 dsa = INL(np, nc_dsa);
2379 cmd = dbc >> 24;
2380 rest = dbc & 0xffffff;
2381 delta = 0;
2384 * locate matching cp if any.
2386 cp = sym_ccb_from_dsa(np, dsa);
2389 * Donnot take into account dma fifo and various buffers in
2390 * INPUT phase since the chip flushes everything before
2391 * raising the MA interrupt for interrupted INPUT phases.
2392 * For DATA IN phase, we will check for the SWIDE later.
2394 if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2395 u_char ss0, ss2;
2397 if (np->features & FE_DFBC)
2398 delta = INW(np, nc_dfbc);
2399 else {
2400 u32 dfifo;
2403 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2405 dfifo = INL(np, nc_dfifo);
2408 * Calculate remaining bytes in DMA fifo.
2409 * (CTEST5 = dfifo >> 16)
2411 if (dfifo & (DFS << 16))
2412 delta = ((((dfifo >> 8) & 0x300) |
2413 (dfifo & 0xff)) - rest) & 0x3ff;
2414 else
2415 delta = ((dfifo & 0xff) - rest) & 0x7f;
2419 * The data in the dma fifo has not been transfered to
2420 * the target -> add the amount to the rest
2421 * and clear the data.
2422 * Check the sstat2 register in case of wide transfer.
2424 rest += delta;
2425 ss0 = INB(np, nc_sstat0);
2426 if (ss0 & OLF) rest++;
2427 if (!(np->features & FE_C10))
2428 if (ss0 & ORF) rest++;
2429 if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2430 ss2 = INB(np, nc_sstat2);
2431 if (ss2 & OLF1) rest++;
2432 if (!(np->features & FE_C10))
2433 if (ss2 & ORF1) rest++;
2437 * Clear fifos.
2439 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */
2440 OUTB(np, nc_stest3, TE|CSF); /* scsi fifo */
2444 * log the information
2446 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2447 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2448 (unsigned) rest, (unsigned) delta);
2451 * try to find the interrupted script command,
2452 * and the address at which to continue.
2454 vdsp = NULL;
2455 nxtdsp = 0;
2456 if (dsp > np->scripta_ba &&
2457 dsp <= np->scripta_ba + np->scripta_sz) {
2458 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2459 nxtdsp = dsp;
2461 else if (dsp > np->scriptb_ba &&
2462 dsp <= np->scriptb_ba + np->scriptb_sz) {
2463 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2464 nxtdsp = dsp;
2468 * log the information
2470 if (DEBUG_FLAGS & DEBUG_PHASE) {
2471 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2472 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2475 if (!vdsp) {
2476 printf ("%s: interrupted SCRIPT address not found.\n",
2477 sym_name (np));
2478 goto reset_all;
2481 if (!cp) {
2482 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2483 sym_name (np));
2484 goto reset_all;
2488 * get old startaddress and old length.
2490 oadr = scr_to_cpu(vdsp[1]);
2492 if (cmd & 0x10) { /* Table indirect */
2493 tblp = (u32 *) ((char*) &cp->phys + oadr);
2494 olen = scr_to_cpu(tblp[0]);
2495 oadr = scr_to_cpu(tblp[1]);
2496 } else {
2497 tblp = (u32 *) 0;
2498 olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2501 if (DEBUG_FLAGS & DEBUG_PHASE) {
2502 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2503 (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2504 tblp,
2505 (unsigned) olen,
2506 (unsigned) oadr);
2510 * check cmd against assumed interrupted script command.
2511 * If dt data phase, the MOVE instruction hasn't bit 4 of
2512 * the phase.
2514 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2515 sym_print_addr(cp->cmd,
2516 "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2517 cmd, scr_to_cpu(vdsp[0]) >> 24);
2519 goto reset_all;
2523 * if old phase not dataphase, leave here.
2525 if (cmd & 2) {
2526 sym_print_addr(cp->cmd,
2527 "phase change %x-%x %d@%08x resid=%d.\n",
2528 cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2529 (unsigned)oadr, (unsigned)rest);
2530 goto unexpected_phase;
2534 * Choose the correct PM save area.
2536 * Look at the PM_SAVE SCRIPT if you want to understand
2537 * this stuff. The equivalent code is implemented in
2538 * SCRIPTS for the 895A, 896 and 1010 that are able to
2539 * handle PM from the SCRIPTS processor.
2541 hflags0 = INB(np, HF_PRT);
2542 hflags = hflags0;
2544 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2545 if (hflags & HF_IN_PM0)
2546 nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2547 else if (hflags & HF_IN_PM1)
2548 nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2550 if (hflags & HF_DP_SAVED)
2551 hflags ^= HF_ACT_PM;
2554 if (!(hflags & HF_ACT_PM)) {
2555 pm = &cp->phys.pm0;
2556 newcmd = SCRIPTA_BA(np, pm0_data);
2558 else {
2559 pm = &cp->phys.pm1;
2560 newcmd = SCRIPTA_BA(np, pm1_data);
2563 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2564 if (hflags != hflags0)
2565 OUTB(np, HF_PRT, hflags);
2568 * fillin the phase mismatch context
2570 pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2571 pm->sg.size = cpu_to_scr(rest);
2572 pm->ret = cpu_to_scr(nxtdsp);
2575 * If we have a SWIDE,
2576 * - prepare the address to write the SWIDE from SCRIPTS,
2577 * - compute the SCRIPTS address to restart from,
2578 * - move current data pointer context by one byte.
2580 nxtdsp = SCRIPTA_BA(np, dispatch);
2581 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2582 (INB(np, nc_scntl2) & WSR)) {
2583 u32 tmp;
2586 * Set up the table indirect for the MOVE
2587 * of the residual byte and adjust the data
2588 * pointer context.
2590 tmp = scr_to_cpu(pm->sg.addr);
2591 cp->phys.wresid.addr = cpu_to_scr(tmp);
2592 pm->sg.addr = cpu_to_scr(tmp + 1);
2593 tmp = scr_to_cpu(pm->sg.size);
2594 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2595 pm->sg.size = cpu_to_scr(tmp - 1);
2598 * If only the residual byte is to be moved,
2599 * no PM context is needed.
2601 if ((tmp&0xffffff) == 1)
2602 newcmd = pm->ret;
2605 * Prepare the address of SCRIPTS that will
2606 * move the residual byte to memory.
2608 nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2611 if (DEBUG_FLAGS & DEBUG_PHASE) {
2612 sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2613 hflags0, hflags, newcmd,
2614 (unsigned)scr_to_cpu(pm->sg.addr),
2615 (unsigned)scr_to_cpu(pm->sg.size),
2616 (unsigned)scr_to_cpu(pm->ret));
2620 * Restart the SCRIPTS processor.
2622 sym_set_script_dp (np, cp, newcmd);
2623 OUTL_DSP(np, nxtdsp);
2624 return;
2627 * Unexpected phase changes that occurs when the current phase
2628 * is not a DATA IN or DATA OUT phase are due to error conditions.
2629 * Such event may only happen when the SCRIPTS is using a
2630 * multibyte SCSI MOVE.
2632 * Phase change Some possible cause
2634 * COMMAND --> MSG IN SCSI parity error detected by target.
2635 * COMMAND --> STATUS Bad command or refused by target.
2636 * MSG OUT --> MSG IN Message rejected by target.
2637 * MSG OUT --> COMMAND Bogus target that discards extended
2638 * negotiation messages.
2640 * The code below does not care of the new phase and so
2641 * trusts the target. Why to annoy it ?
2642 * If the interrupted phase is COMMAND phase, we restart at
2643 * dispatcher.
2644 * If a target does not get all the messages after selection,
2645 * the code assumes blindly that the target discards extended
2646 * messages and clears the negotiation status.
2647 * If the target does not want all our response to negotiation,
2648 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2649 * bloat for such a should_not_happen situation).
2650 * In all other situation, we reset the BUS.
2651 * Are these assumptions reasonnable ? (Wait and see ...)
2653 unexpected_phase:
2654 dsp -= 8;
2655 nxtdsp = 0;
2657 switch (cmd & 7) {
2658 case 2: /* COMMAND phase */
2659 nxtdsp = SCRIPTA_BA(np, dispatch);
2660 break;
2661 #if 0
2662 case 3: /* STATUS phase */
2663 nxtdsp = SCRIPTA_BA(np, dispatch);
2664 break;
2665 #endif
2666 case 6: /* MSG OUT phase */
2668 * If the device may want to use untagged when we want
2669 * tagged, we prepare an IDENTIFY without disc. granted,
2670 * since we will not be able to handle reselect.
2671 * Otherwise, we just don't care.
2673 if (dsp == SCRIPTA_BA(np, send_ident)) {
2674 if (cp->tag != NO_TAG && olen - rest <= 3) {
2675 cp->host_status = HS_BUSY;
2676 np->msgout[0] = IDENTIFY(0, cp->lun);
2677 nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2679 else
2680 nxtdsp = SCRIPTB_BA(np, ident_break);
2682 else if (dsp == SCRIPTB_BA(np, send_wdtr) ||
2683 dsp == SCRIPTB_BA(np, send_sdtr) ||
2684 dsp == SCRIPTB_BA(np, send_ppr)) {
2685 nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2686 if (dsp == SCRIPTB_BA(np, send_ppr)) {
2687 struct scsi_device *dev = cp->cmd->device;
2688 dev->ppr = 0;
2691 break;
2692 #if 0
2693 case 7: /* MSG IN phase */
2694 nxtdsp = SCRIPTA_BA(np, clrack);
2695 break;
2696 #endif
2699 if (nxtdsp) {
2700 OUTL_DSP(np, nxtdsp);
2701 return;
2704 reset_all:
2705 sym_start_reset(np);
2709 * chip interrupt handler
2711 * In normal situations, interrupt conditions occur one at
2712 * a time. But when something bad happens on the SCSI BUS,
2713 * the chip may raise several interrupt flags before
2714 * stopping and interrupting the CPU. The additionnal
2715 * interrupt flags are stacked in some extra registers
2716 * after the SIP and/or DIP flag has been raised in the
2717 * ISTAT. After the CPU has read the interrupt condition
2718 * flag from SIST or DSTAT, the chip unstacks the other
2719 * interrupt flags and sets the corresponding bits in
2720 * SIST or DSTAT. Since the chip starts stacking once the
2721 * SIP or DIP flag is set, there is a small window of time
2722 * where the stacking does not occur.
2724 * Typically, multiple interrupt conditions may happen in
2725 * the following situations:
2727 * - SCSI parity error + Phase mismatch (PAR|MA)
2728 * When an parity error is detected in input phase
2729 * and the device switches to msg-in phase inside a
2730 * block MOV.
2731 * - SCSI parity error + Unexpected disconnect (PAR|UDC)
2732 * When a stupid device does not want to handle the
2733 * recovery of an SCSI parity error.
2734 * - Some combinations of STO, PAR, UDC, ...
2735 * When using non compliant SCSI stuff, when user is
2736 * doing non compliant hot tampering on the BUS, when
2737 * something really bad happens to a device, etc ...
2739 * The heuristic suggested by SYMBIOS to handle
2740 * multiple interrupts is to try unstacking all
2741 * interrupts conditions and to handle them on some
2742 * priority based on error severity.
2743 * This will work when the unstacking has been
2744 * successful, but we cannot be 100 % sure of that,
2745 * since the CPU may have been faster to unstack than
2746 * the chip is able to stack. Hmmm ... But it seems that
2747 * such a situation is very unlikely to happen.
2749 * If this happen, for example STO caught by the CPU
2750 * then UDC happenning before the CPU have restarted
2751 * the SCRIPTS, the driver may wrongly complete the
2752 * same command on UDC, since the SCRIPTS didn't restart
2753 * and the DSA still points to the same command.
2754 * We avoid this situation by setting the DSA to an
2755 * invalid value when the CCB is completed and before
2756 * restarting the SCRIPTS.
2758 * Another issue is that we need some section of our
2759 * recovery procedures to be somehow uninterruptible but
2760 * the SCRIPTS processor does not provides such a
2761 * feature. For this reason, we handle recovery preferently
2762 * from the C code and check against some SCRIPTS critical
2763 * sections from the C code.
2765 * Hopefully, the interrupt handling of the driver is now
2766 * able to resist to weird BUS error conditions, but donnot
2767 * ask me for any guarantee that it will never fail. :-)
2768 * Use at your own decision and risk.
2771 irqreturn_t sym_interrupt(struct Scsi_Host *shost)
2773 struct sym_data *sym_data = shost_priv(shost);
2774 struct sym_hcb *np = sym_data->ncb;
2775 struct pci_dev *pdev = sym_data->pdev;
2776 u_char istat, istatc;
2777 u_char dstat;
2778 u_short sist;
2781 * interrupt on the fly ?
2782 * (SCRIPTS may still be running)
2784 * A `dummy read' is needed to ensure that the
2785 * clear of the INTF flag reaches the device
2786 * and that posted writes are flushed to memory
2787 * before the scanning of the DONE queue.
2788 * Note that SCRIPTS also (dummy) read to memory
2789 * prior to deliver the INTF interrupt condition.
2791 istat = INB(np, nc_istat);
2792 if (istat & INTF) {
2793 OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2794 istat |= INB(np, nc_istat); /* DUMMY READ */
2795 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2796 sym_wakeup_done(np);
2799 if (!(istat & (SIP|DIP)))
2800 return (istat & INTF) ? IRQ_HANDLED : IRQ_NONE;
2802 #if 0 /* We should never get this one */
2803 if (istat & CABRT)
2804 OUTB(np, nc_istat, CABRT);
2805 #endif
2808 * PAR and MA interrupts may occur at the same time,
2809 * and we need to know of both in order to handle
2810 * this situation properly. We try to unstack SCSI
2811 * interrupts for that reason. BTW, I dislike a LOT
2812 * such a loop inside the interrupt routine.
2813 * Even if DMA interrupt stacking is very unlikely to
2814 * happen, we also try unstacking these ones, since
2815 * this has no performance impact.
2817 sist = 0;
2818 dstat = 0;
2819 istatc = istat;
2820 do {
2821 if (istatc & SIP)
2822 sist |= INW(np, nc_sist);
2823 if (istatc & DIP)
2824 dstat |= INB(np, nc_dstat);
2825 istatc = INB(np, nc_istat);
2826 istat |= istatc;
2828 /* Prevent deadlock waiting on a condition that may
2829 * never clear. */
2830 if (unlikely(sist == 0xffff && dstat == 0xff)) {
2831 if (pci_channel_offline(pdev))
2832 return IRQ_NONE;
2834 } while (istatc & (SIP|DIP));
2836 if (DEBUG_FLAGS & DEBUG_TINY)
2837 printf ("<%d|%x:%x|%x:%x>",
2838 (int)INB(np, nc_scr0),
2839 dstat,sist,
2840 (unsigned)INL(np, nc_dsp),
2841 (unsigned)INL(np, nc_dbc));
2843 * On paper, a memory read barrier may be needed here to
2844 * prevent out of order LOADs by the CPU from having
2845 * prefetched stale data prior to DMA having occurred.
2846 * And since we are paranoid ... :)
2848 MEMORY_READ_BARRIER();
2851 * First, interrupts we want to service cleanly.
2853 * Phase mismatch (MA) is the most frequent interrupt
2854 * for chip earlier than the 896 and so we have to service
2855 * it as quickly as possible.
2856 * A SCSI parity error (PAR) may be combined with a phase
2857 * mismatch condition (MA).
2858 * Programmed interrupts (SIR) are used to call the C code
2859 * from SCRIPTS.
2860 * The single step interrupt (SSI) is not used in this
2861 * driver.
2863 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2864 !(dstat & (MDPE|BF|ABRT|IID))) {
2865 if (sist & PAR) sym_int_par (np, sist);
2866 else if (sist & MA) sym_int_ma (np);
2867 else if (dstat & SIR) sym_int_sir(np);
2868 else if (dstat & SSI) OUTONB_STD();
2869 else goto unknown_int;
2870 return IRQ_HANDLED;
2874 * Now, interrupts that donnot happen in normal
2875 * situations and that we may need to recover from.
2877 * On SCSI RESET (RST), we reset everything.
2878 * On SCSI BUS MODE CHANGE (SBMC), we complete all
2879 * active CCBs with RESET status, prepare all devices
2880 * for negotiating again and restart the SCRIPTS.
2881 * On STO and UDC, we complete the CCB with the corres-
2882 * ponding status and restart the SCRIPTS.
2884 if (sist & RST) {
2885 printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2886 sym_start_up(shost, 1);
2887 return IRQ_HANDLED;
2890 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2891 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
2893 if (!(sist & (GEN|HTH|SGE)) &&
2894 !(dstat & (MDPE|BF|ABRT|IID))) {
2895 if (sist & SBMC) sym_int_sbmc(shost);
2896 else if (sist & STO) sym_int_sto (np);
2897 else if (sist & UDC) sym_int_udc (np);
2898 else goto unknown_int;
2899 return IRQ_HANDLED;
2903 * Now, interrupts we are not able to recover cleanly.
2905 * Log message for hard errors.
2906 * Reset everything.
2909 sym_log_hard_error(shost, sist, dstat);
2911 if ((sist & (GEN|HTH|SGE)) ||
2912 (dstat & (MDPE|BF|ABRT|IID))) {
2913 sym_start_reset(np);
2914 return IRQ_HANDLED;
2917 unknown_int:
2919 * We just miss the cause of the interrupt. :(
2920 * Print a message. The timeout will do the real work.
2922 printf( "%s: unknown interrupt(s) ignored, "
2923 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2924 sym_name(np), istat, dstat, sist);
2925 return IRQ_NONE;
2929 * Dequeue from the START queue all CCBs that match
2930 * a given target/lun/task condition (-1 means all),
2931 * and move them from the BUSY queue to the COMP queue
2932 * with DID_SOFT_ERROR status condition.
2933 * This function is used during error handling/recovery.
2934 * It is called with SCRIPTS not running.
2936 static int
2937 sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2939 int j;
2940 struct sym_ccb *cp;
2943 * Make sure the starting index is within range.
2945 assert((i >= 0) && (i < 2*MAX_QUEUE));
2948 * Walk until end of START queue and dequeue every job
2949 * that matches the target/lun/task condition.
2951 j = i;
2952 while (i != np->squeueput) {
2953 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2954 assert(cp);
2955 #ifdef SYM_CONF_IARB_SUPPORT
2956 /* Forget hints for IARB, they may be no longer relevant */
2957 cp->host_flags &= ~HF_HINT_IARB;
2958 #endif
2959 if ((target == -1 || cp->target == target) &&
2960 (lun == -1 || cp->lun == lun) &&
2961 (task == -1 || cp->tag == task)) {
2962 sym_set_cam_status(cp->cmd, DID_SOFT_ERROR);
2963 sym_remque(&cp->link_ccbq);
2964 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
2966 else {
2967 if (i != j)
2968 np->squeue[j] = np->squeue[i];
2969 if ((j += 2) >= MAX_QUEUE*2) j = 0;
2971 if ((i += 2) >= MAX_QUEUE*2) i = 0;
2973 if (i != j) /* Copy back the idle task if needed */
2974 np->squeue[j] = np->squeue[i];
2975 np->squeueput = j; /* Update our current start queue pointer */
2977 return (i - j) / 2;
2981 * chip handler for bad SCSI status condition
2983 * In case of bad SCSI status, we unqueue all the tasks
2984 * currently queued to the controller but not yet started
2985 * and then restart the SCRIPTS processor immediately.
2987 * QUEUE FULL and BUSY conditions are handled the same way.
2988 * Basically all the not yet started tasks are requeued in
2989 * device queue and the queue is frozen until a completion.
2991 * For CHECK CONDITION and COMMAND TERMINATED status, we use
2992 * the CCB of the failed command to prepare a REQUEST SENSE
2993 * SCSI command and queue it to the controller queue.
2995 * SCRATCHA is assumed to have been loaded with STARTPOS
2996 * before the SCRIPTS called the C code.
2998 static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
3000 u32 startp;
3001 u_char s_status = cp->ssss_status;
3002 u_char h_flags = cp->host_flags;
3003 int msglen;
3004 int i;
3007 * Compute the index of the next job to start from SCRIPTS.
3009 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3012 * The last CCB queued used for IARB hint may be
3013 * no longer relevant. Forget it.
3015 #ifdef SYM_CONF_IARB_SUPPORT
3016 if (np->last_cp)
3017 np->last_cp = 0;
3018 #endif
3021 * Now deal with the SCSI status.
3023 switch(s_status) {
3024 case S_BUSY:
3025 case S_QUEUE_FULL:
3026 if (sym_verbose >= 2) {
3027 sym_print_addr(cp->cmd, "%s\n",
3028 s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3030 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
3031 sym_complete_error (np, cp);
3032 break;
3033 case S_TERMINATED:
3034 case S_CHECK_COND:
3036 * If we get an SCSI error when requesting sense, give up.
3038 if (h_flags & HF_SENSE) {
3039 sym_complete_error (np, cp);
3040 break;
3044 * Dequeue all queued CCBs for that device not yet started,
3045 * and restart the SCRIPTS processor immediately.
3047 sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3048 OUTL_DSP(np, SCRIPTA_BA(np, start));
3051 * Save some info of the actual IO.
3052 * Compute the data residual.
3054 cp->sv_scsi_status = cp->ssss_status;
3055 cp->sv_xerr_status = cp->xerr_status;
3056 cp->sv_resid = sym_compute_residual(np, cp);
3059 * Prepare all needed data structures for
3060 * requesting sense data.
3063 cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3064 msglen = 1;
3067 * If we are currently using anything different from
3068 * async. 8 bit data transfers with that target,
3069 * start a negotiation, since the device may want
3070 * to report us a UNIT ATTENTION condition due to
3071 * a cause we currently ignore, and we donnot want
3072 * to be stuck with WIDE and/or SYNC data transfer.
3074 * cp->nego_status is filled by sym_prepare_nego().
3076 cp->nego_status = 0;
3077 msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3079 * Message table indirect structure.
3081 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg2);
3082 cp->phys.smsg.size = cpu_to_scr(msglen);
3085 * sense command
3087 cp->phys.cmd.addr = CCB_BA(cp, sensecmd);
3088 cp->phys.cmd.size = cpu_to_scr(6);
3091 * patch requested size into sense command
3093 cp->sensecmd[0] = REQUEST_SENSE;
3094 cp->sensecmd[1] = 0;
3095 if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3096 cp->sensecmd[1] = cp->lun << 5;
3097 cp->sensecmd[4] = SYM_SNS_BBUF_LEN;
3098 cp->data_len = SYM_SNS_BBUF_LEN;
3101 * sense data
3103 memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
3104 cp->phys.sense.addr = CCB_BA(cp, sns_bbuf);
3105 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN);
3108 * requeue the command.
3110 startp = SCRIPTB_BA(np, sdata_in);
3112 cp->phys.head.savep = cpu_to_scr(startp);
3113 cp->phys.head.lastp = cpu_to_scr(startp);
3114 cp->startp = cpu_to_scr(startp);
3115 cp->goalp = cpu_to_scr(startp + 16);
3117 cp->host_xflags = 0;
3118 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3119 cp->ssss_status = S_ILLEGAL;
3120 cp->host_flags = (HF_SENSE|HF_DATA_IN);
3121 cp->xerr_status = 0;
3122 cp->extra_bytes = 0;
3124 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3127 * Requeue the command.
3129 sym_put_start_queue(np, cp);
3132 * Give back to upper layer everything we have dequeued.
3134 sym_flush_comp_queue(np, 0);
3135 break;
3140 * After a device has accepted some management message
3141 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3142 * a device signals a UNIT ATTENTION condition, some
3143 * tasks are thrown away by the device. We are required
3144 * to reflect that on our tasks list since the device
3145 * will never complete these tasks.
3147 * This function move from the BUSY queue to the COMP
3148 * queue all disconnected CCBs for a given target that
3149 * match the following criteria:
3150 * - lun=-1 means any logical UNIT otherwise a given one.
3151 * - task=-1 means any task, otherwise a given one.
3153 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3155 SYM_QUEHEAD qtmp, *qp;
3156 int i = 0;
3157 struct sym_ccb *cp;
3160 * Move the entire BUSY queue to our temporary queue.
3162 sym_que_init(&qtmp);
3163 sym_que_splice(&np->busy_ccbq, &qtmp);
3164 sym_que_init(&np->busy_ccbq);
3167 * Put all CCBs that matches our criteria into
3168 * the COMP queue and put back other ones into
3169 * the BUSY queue.
3171 while ((qp = sym_remque_head(&qtmp)) != NULL) {
3172 struct scsi_cmnd *cmd;
3173 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3174 cmd = cp->cmd;
3175 if (cp->host_status != HS_DISCONNECT ||
3176 cp->target != target ||
3177 (lun != -1 && cp->lun != lun) ||
3178 (task != -1 &&
3179 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3180 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3181 continue;
3183 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3185 /* Preserve the software timeout condition */
3186 if (sym_get_cam_status(cmd) != DID_TIME_OUT)
3187 sym_set_cam_status(cmd, cam_status);
3188 ++i;
3189 #if 0
3190 printf("XXXX TASK @%p CLEARED\n", cp);
3191 #endif
3193 return i;
3197 * chip handler for TASKS recovery
3199 * We cannot safely abort a command, while the SCRIPTS
3200 * processor is running, since we just would be in race
3201 * with it.
3203 * As long as we have tasks to abort, we keep the SEM
3204 * bit set in the ISTAT. When this bit is set, the
3205 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3206 * each time it enters the scheduler.
3208 * If we have to reset a target, clear tasks of a unit,
3209 * or to perform the abort of a disconnected job, we
3210 * restart the SCRIPTS for selecting the target. Once
3211 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3212 * If it loses arbitration, the SCRIPTS will interrupt again
3213 * the next time it will enter its scheduler, and so on ...
3215 * On SIR_TARGET_SELECTED, we scan for the more
3216 * appropriate thing to do:
3218 * - If nothing, we just sent a M_ABORT message to the
3219 * target to get rid of the useless SCSI bus ownership.
3220 * According to the specs, no tasks shall be affected.
3221 * - If the target is to be reset, we send it a M_RESET
3222 * message.
3223 * - If a logical UNIT is to be cleared , we send the
3224 * IDENTIFY(lun) + M_ABORT.
3225 * - If an untagged task is to be aborted, we send the
3226 * IDENTIFY(lun) + M_ABORT.
3227 * - If a tagged task is to be aborted, we send the
3228 * IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3230 * Once our 'kiss of death' :) message has been accepted
3231 * by the target, the SCRIPTS interrupts again
3232 * (SIR_ABORT_SENT). On this interrupt, we complete
3233 * all the CCBs that should have been aborted by the
3234 * target according to our message.
3236 static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3238 SYM_QUEHEAD *qp;
3239 struct sym_ccb *cp;
3240 struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3241 struct scsi_target *starget;
3242 int target=-1, lun=-1, task;
3243 int i, k;
3245 switch(num) {
3247 * The SCRIPTS processor stopped before starting
3248 * the next command in order to allow us to perform
3249 * some task recovery.
3251 case SIR_SCRIPT_STOPPED:
3253 * Do we have any target to reset or unit to clear ?
3255 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3256 tp = &np->target[i];
3257 if (tp->to_reset ||
3258 (tp->lun0p && tp->lun0p->to_clear)) {
3259 target = i;
3260 break;
3262 if (!tp->lunmp)
3263 continue;
3264 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3265 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3266 target = i;
3267 break;
3270 if (target != -1)
3271 break;
3275 * If not, walk the busy queue for any
3276 * disconnected CCB to be aborted.
3278 if (target == -1) {
3279 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3280 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3281 if (cp->host_status != HS_DISCONNECT)
3282 continue;
3283 if (cp->to_abort) {
3284 target = cp->target;
3285 break;
3291 * If some target is to be selected,
3292 * prepare and start the selection.
3294 if (target != -1) {
3295 tp = &np->target[target];
3296 np->abrt_sel.sel_id = target;
3297 np->abrt_sel.sel_scntl3 = tp->head.wval;
3298 np->abrt_sel.sel_sxfer = tp->head.sval;
3299 OUTL(np, nc_dsa, np->hcb_ba);
3300 OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3301 return;
3305 * Now look for a CCB to abort that haven't started yet.
3306 * Btw, the SCRIPTS processor is still stopped, so
3307 * we are not in race.
3309 i = 0;
3310 cp = NULL;
3311 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3312 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3313 if (cp->host_status != HS_BUSY &&
3314 cp->host_status != HS_NEGOTIATE)
3315 continue;
3316 if (!cp->to_abort)
3317 continue;
3318 #ifdef SYM_CONF_IARB_SUPPORT
3320 * If we are using IMMEDIATE ARBITRATION, we donnot
3321 * want to cancel the last queued CCB, since the
3322 * SCRIPTS may have anticipated the selection.
3324 if (cp == np->last_cp) {
3325 cp->to_abort = 0;
3326 continue;
3328 #endif
3329 i = 1; /* Means we have found some */
3330 break;
3332 if (!i) {
3334 * We are done, so we donnot need
3335 * to synchronize with the SCRIPTS anylonger.
3336 * Remove the SEM flag from the ISTAT.
3338 np->istat_sem = 0;
3339 OUTB(np, nc_istat, SIGP);
3340 break;
3343 * Compute index of next position in the start
3344 * queue the SCRIPTS intends to start and dequeue
3345 * all CCBs for that device that haven't been started.
3347 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3348 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3351 * Make sure at least our IO to abort has been dequeued.
3353 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3354 assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR);
3355 #else
3356 sym_remque(&cp->link_ccbq);
3357 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3358 #endif
3360 * Keep track in cam status of the reason of the abort.
3362 if (cp->to_abort == 2)
3363 sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3364 else
3365 sym_set_cam_status(cp->cmd, DID_ABORT);
3368 * Complete with error everything that we have dequeued.
3370 sym_flush_comp_queue(np, 0);
3371 break;
3373 * The SCRIPTS processor has selected a target
3374 * we may have some manual recovery to perform for.
3376 case SIR_TARGET_SELECTED:
3377 target = INB(np, nc_sdid) & 0xf;
3378 tp = &np->target[target];
3380 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3383 * If the target is to be reset, prepare a
3384 * M_RESET message and clear the to_reset flag
3385 * since we donnot expect this operation to fail.
3387 if (tp->to_reset) {
3388 np->abrt_msg[0] = M_RESET;
3389 np->abrt_tbl.size = 1;
3390 tp->to_reset = 0;
3391 break;
3395 * Otherwise, look for some logical unit to be cleared.
3397 if (tp->lun0p && tp->lun0p->to_clear)
3398 lun = 0;
3399 else if (tp->lunmp) {
3400 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3401 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3402 lun = k;
3403 break;
3409 * If a logical unit is to be cleared, prepare
3410 * an IDENTIFY(lun) + ABORT MESSAGE.
3412 if (lun != -1) {
3413 struct sym_lcb *lp = sym_lp(tp, lun);
3414 lp->to_clear = 0; /* We don't expect to fail here */
3415 np->abrt_msg[0] = IDENTIFY(0, lun);
3416 np->abrt_msg[1] = M_ABORT;
3417 np->abrt_tbl.size = 2;
3418 break;
3422 * Otherwise, look for some disconnected job to
3423 * abort for this target.
3425 i = 0;
3426 cp = NULL;
3427 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3428 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3429 if (cp->host_status != HS_DISCONNECT)
3430 continue;
3431 if (cp->target != target)
3432 continue;
3433 if (!cp->to_abort)
3434 continue;
3435 i = 1; /* Means we have some */
3436 break;
3440 * If we have none, probably since the device has
3441 * completed the command before we won abitration,
3442 * send a M_ABORT message without IDENTIFY.
3443 * According to the specs, the device must just
3444 * disconnect the BUS and not abort any task.
3446 if (!i) {
3447 np->abrt_msg[0] = M_ABORT;
3448 np->abrt_tbl.size = 1;
3449 break;
3453 * We have some task to abort.
3454 * Set the IDENTIFY(lun)
3456 np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3459 * If we want to abort an untagged command, we
3460 * will send a IDENTIFY + M_ABORT.
3461 * Otherwise (tagged command), we will send
3462 * a IDENTITFY + task attributes + ABORT TAG.
3464 if (cp->tag == NO_TAG) {
3465 np->abrt_msg[1] = M_ABORT;
3466 np->abrt_tbl.size = 2;
3467 } else {
3468 np->abrt_msg[1] = cp->scsi_smsg[1];
3469 np->abrt_msg[2] = cp->scsi_smsg[2];
3470 np->abrt_msg[3] = M_ABORT_TAG;
3471 np->abrt_tbl.size = 4;
3474 * Keep track of software timeout condition, since the
3475 * peripheral driver may not count retries on abort
3476 * conditions not due to timeout.
3478 if (cp->to_abort == 2)
3479 sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3480 cp->to_abort = 0; /* We donnot expect to fail here */
3481 break;
3484 * The target has accepted our message and switched
3485 * to BUS FREE phase as we expected.
3487 case SIR_ABORT_SENT:
3488 target = INB(np, nc_sdid) & 0xf;
3489 tp = &np->target[target];
3490 starget = tp->starget;
3493 ** If we didn't abort anything, leave here.
3495 if (np->abrt_msg[0] == M_ABORT)
3496 break;
3499 * If we sent a M_RESET, then a hardware reset has
3500 * been performed by the target.
3501 * - Reset everything to async 8 bit
3502 * - Tell ourself to negotiate next time :-)
3503 * - Prepare to clear all disconnected CCBs for
3504 * this target from our task list (lun=task=-1)
3506 lun = -1;
3507 task = -1;
3508 if (np->abrt_msg[0] == M_RESET) {
3509 tp->head.sval = 0;
3510 tp->head.wval = np->rv_scntl3;
3511 tp->head.uval = 0;
3512 spi_period(starget) = 0;
3513 spi_offset(starget) = 0;
3514 spi_width(starget) = 0;
3515 spi_iu(starget) = 0;
3516 spi_dt(starget) = 0;
3517 spi_qas(starget) = 0;
3518 tp->tgoal.check_nego = 1;
3522 * Otherwise, check for the LUN and TASK(s)
3523 * concerned by the cancelation.
3524 * If it is not ABORT_TAG then it is CLEAR_QUEUE
3525 * or an ABORT message :-)
3527 else {
3528 lun = np->abrt_msg[0] & 0x3f;
3529 if (np->abrt_msg[1] == M_ABORT_TAG)
3530 task = np->abrt_msg[2];
3534 * Complete all the CCBs the device should have
3535 * aborted due to our 'kiss of death' message.
3537 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3538 sym_dequeue_from_squeue(np, i, target, lun, -1);
3539 sym_clear_tasks(np, DID_ABORT, target, lun, task);
3540 sym_flush_comp_queue(np, 0);
3543 * If we sent a BDR, make upper layer aware of that.
3545 if (np->abrt_msg[0] == M_RESET)
3546 starget_printk(KERN_NOTICE, starget,
3547 "has been reset\n");
3548 break;
3552 * Print to the log the message we intend to send.
3554 if (num == SIR_TARGET_SELECTED) {
3555 dev_info(&tp->starget->dev, "control msgout:");
3556 sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3557 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3561 * Let the SCRIPTS processor continue.
3563 OUTONB_STD();
3567 * Gerard's alchemy:) that deals with with the data
3568 * pointer for both MDP and the residual calculation.
3570 * I didn't want to bloat the code by more than 200
3571 * lines for the handling of both MDP and the residual.
3572 * This has been achieved by using a data pointer
3573 * representation consisting in an index in the data
3574 * array (dp_sg) and a negative offset (dp_ofs) that
3575 * have the following meaning:
3577 * - dp_sg = SYM_CONF_MAX_SG
3578 * we are at the end of the data script.
3579 * - dp_sg < SYM_CONF_MAX_SG
3580 * dp_sg points to the next entry of the scatter array
3581 * we want to transfer.
3582 * - dp_ofs < 0
3583 * dp_ofs represents the residual of bytes of the
3584 * previous entry scatter entry we will send first.
3585 * - dp_ofs = 0
3586 * no residual to send first.
3588 * The function sym_evaluate_dp() accepts an arbitray
3589 * offset (basically from the MDP message) and returns
3590 * the corresponding values of dp_sg and dp_ofs.
3593 static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3595 u32 dp_scr;
3596 int dp_ofs, dp_sg, dp_sgmin;
3597 int tmp;
3598 struct sym_pmc *pm;
3601 * Compute the resulted data pointer in term of a script
3602 * address within some DATA script and a signed byte offset.
3604 dp_scr = scr;
3605 dp_ofs = *ofs;
3606 if (dp_scr == SCRIPTA_BA(np, pm0_data))
3607 pm = &cp->phys.pm0;
3608 else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3609 pm = &cp->phys.pm1;
3610 else
3611 pm = NULL;
3613 if (pm) {
3614 dp_scr = scr_to_cpu(pm->ret);
3615 dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff;
3619 * If we are auto-sensing, then we are done.
3621 if (cp->host_flags & HF_SENSE) {
3622 *ofs = dp_ofs;
3623 return 0;
3627 * Deduce the index of the sg entry.
3628 * Keep track of the index of the first valid entry.
3629 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3630 * end of the data.
3632 tmp = scr_to_cpu(cp->goalp);
3633 dp_sg = SYM_CONF_MAX_SG;
3634 if (dp_scr != tmp)
3635 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3636 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3639 * Move to the sg entry the data pointer belongs to.
3641 * If we are inside the data area, we expect result to be:
3643 * Either,
3644 * dp_ofs = 0 and dp_sg is the index of the sg entry
3645 * the data pointer belongs to (or the end of the data)
3646 * Or,
3647 * dp_ofs < 0 and dp_sg is the index of the sg entry
3648 * the data pointer belongs to + 1.
3650 if (dp_ofs < 0) {
3651 int n;
3652 while (dp_sg > dp_sgmin) {
3653 --dp_sg;
3654 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3655 n = dp_ofs + (tmp & 0xffffff);
3656 if (n > 0) {
3657 ++dp_sg;
3658 break;
3660 dp_ofs = n;
3663 else if (dp_ofs > 0) {
3664 while (dp_sg < SYM_CONF_MAX_SG) {
3665 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3666 dp_ofs -= (tmp & 0xffffff);
3667 ++dp_sg;
3668 if (dp_ofs <= 0)
3669 break;
3674 * Make sure the data pointer is inside the data area.
3675 * If not, return some error.
3677 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3678 goto out_err;
3679 else if (dp_sg > SYM_CONF_MAX_SG ||
3680 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3681 goto out_err;
3684 * Save the extreme pointer if needed.
3686 if (dp_sg > cp->ext_sg ||
3687 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3688 cp->ext_sg = dp_sg;
3689 cp->ext_ofs = dp_ofs;
3693 * Return data.
3695 *ofs = dp_ofs;
3696 return dp_sg;
3698 out_err:
3699 return -1;
3703 * chip handler for MODIFY DATA POINTER MESSAGE
3705 * We also call this function on IGNORE WIDE RESIDUE
3706 * messages that do not match a SWIDE full condition.
3707 * Btw, we assume in that situation that such a message
3708 * is equivalent to a MODIFY DATA POINTER (offset=-1).
3711 static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3713 int dp_ofs = ofs;
3714 u32 dp_scr = sym_get_script_dp (np, cp);
3715 u32 dp_ret;
3716 u32 tmp;
3717 u_char hflags;
3718 int dp_sg;
3719 struct sym_pmc *pm;
3722 * Not supported for auto-sense.
3724 if (cp->host_flags & HF_SENSE)
3725 goto out_reject;
3728 * Apply our alchemy:) (see comments in sym_evaluate_dp()),
3729 * to the resulted data pointer.
3731 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3732 if (dp_sg < 0)
3733 goto out_reject;
3736 * And our alchemy:) allows to easily calculate the data
3737 * script address we want to return for the next data phase.
3739 dp_ret = cpu_to_scr(cp->goalp);
3740 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3743 * If offset / scatter entry is zero we donnot need
3744 * a context for the new current data pointer.
3746 if (dp_ofs == 0) {
3747 dp_scr = dp_ret;
3748 goto out_ok;
3752 * Get a context for the new current data pointer.
3754 hflags = INB(np, HF_PRT);
3756 if (hflags & HF_DP_SAVED)
3757 hflags ^= HF_ACT_PM;
3759 if (!(hflags & HF_ACT_PM)) {
3760 pm = &cp->phys.pm0;
3761 dp_scr = SCRIPTA_BA(np, pm0_data);
3763 else {
3764 pm = &cp->phys.pm1;
3765 dp_scr = SCRIPTA_BA(np, pm1_data);
3768 hflags &= ~(HF_DP_SAVED);
3770 OUTB(np, HF_PRT, hflags);
3773 * Set up the new current data pointer.
3774 * ofs < 0 there, and for the next data phase, we
3775 * want to transfer part of the data of the sg entry
3776 * corresponding to index dp_sg-1 prior to returning
3777 * to the main data script.
3779 pm->ret = cpu_to_scr(dp_ret);
3780 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3781 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3782 pm->sg.addr = cpu_to_scr(tmp);
3783 pm->sg.size = cpu_to_scr(-dp_ofs);
3785 out_ok:
3786 sym_set_script_dp (np, cp, dp_scr);
3787 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3788 return;
3790 out_reject:
3791 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3796 * chip calculation of the data residual.
3798 * As I used to say, the requirement of data residual
3799 * in SCSI is broken, useless and cannot be achieved
3800 * without huge complexity.
3801 * But most OSes and even the official CAM require it.
3802 * When stupidity happens to be so widely spread inside
3803 * a community, it gets hard to convince.
3805 * Anyway, I don't care, since I am not going to use
3806 * any software that considers this data residual as
3807 * a relevant information. :)
3810 int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3812 int dp_sg, dp_sgmin, resid = 0;
3813 int dp_ofs = 0;
3816 * Check for some data lost or just thrown away.
3817 * We are not required to be quite accurate in this
3818 * situation. Btw, if we are odd for output and the
3819 * device claims some more data, it may well happen
3820 * than our residual be zero. :-)
3822 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3823 if (cp->xerr_status & XE_EXTRA_DATA)
3824 resid -= cp->extra_bytes;
3825 if (cp->xerr_status & XE_SODL_UNRUN)
3826 ++resid;
3827 if (cp->xerr_status & XE_SWIDE_OVRUN)
3828 --resid;
3832 * If all data has been transferred,
3833 * there is no residual.
3835 if (cp->phys.head.lastp == cp->goalp)
3836 return resid;
3839 * If no data transfer occurs, or if the data
3840 * pointer is weird, return full residual.
3842 if (cp->startp == cp->phys.head.lastp ||
3843 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3844 &dp_ofs) < 0) {
3845 return cp->data_len - cp->odd_byte_adjustment;
3849 * If we were auto-sensing, then we are done.
3851 if (cp->host_flags & HF_SENSE) {
3852 return -dp_ofs;
3856 * We are now full comfortable in the computation
3857 * of the data residual (2's complement).
3859 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3860 resid = -cp->ext_ofs;
3861 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3862 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3863 resid += (tmp & 0xffffff);
3866 resid -= cp->odd_byte_adjustment;
3869 * Hopefully, the result is not too wrong.
3871 return resid;
3875 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3877 * When we try to negotiate, we append the negotiation message
3878 * to the identify and (maybe) simple tag message.
3879 * The host status field is set to HS_NEGOTIATE to mark this
3880 * situation.
3882 * If the target doesn't answer this message immediately
3883 * (as required by the standard), the SIR_NEGO_FAILED interrupt
3884 * will be raised eventually.
3885 * The handler removes the HS_NEGOTIATE status, and sets the
3886 * negotiated value to the default (async / nowide).
3888 * If we receive a matching answer immediately, we check it
3889 * for validity, and set the values.
3891 * If we receive a Reject message immediately, we assume the
3892 * negotiation has failed, and fall back to standard values.
3894 * If we receive a negotiation message while not in HS_NEGOTIATE
3895 * state, it's a target initiated negotiation. We prepare a
3896 * (hopefully) valid answer, set our parameters, and send back
3897 * this answer to the target.
3899 * If the target doesn't fetch the answer (no message out phase),
3900 * we assume the negotiation has failed, and fall back to default
3901 * settings (SIR_NEGO_PROTO interrupt).
3903 * When we set the values, we adjust them in all ccbs belonging
3904 * to this target, in the controller's register, and in the "phys"
3905 * field of the controller's struct sym_hcb.
3909 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3911 static int
3912 sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3914 int target = cp->target;
3915 u_char chg, ofs, per, fak, div;
3917 if (DEBUG_FLAGS & DEBUG_NEGO) {
3918 sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3922 * Get requested values.
3924 chg = 0;
3925 per = np->msgin[3];
3926 ofs = np->msgin[4];
3929 * Check values against our limits.
3931 if (ofs) {
3932 if (ofs > np->maxoffs)
3933 {chg = 1; ofs = np->maxoffs;}
3936 if (ofs) {
3937 if (per < np->minsync)
3938 {chg = 1; per = np->minsync;}
3942 * Get new chip synchronous parameters value.
3944 div = fak = 0;
3945 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3946 goto reject_it;
3948 if (DEBUG_FLAGS & DEBUG_NEGO) {
3949 sym_print_addr(cp->cmd,
3950 "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3951 ofs, per, div, fak, chg);
3955 * If it was an answer we want to change,
3956 * then it isn't acceptable. Reject it.
3958 if (!req && chg)
3959 goto reject_it;
3962 * Apply new values.
3964 sym_setsync (np, target, ofs, per, div, fak);
3967 * It was an answer. We are done.
3969 if (!req)
3970 return 0;
3973 * It was a request. Prepare an answer message.
3975 spi_populate_sync_msg(np->msgout, per, ofs);
3977 if (DEBUG_FLAGS & DEBUG_NEGO) {
3978 sym_print_nego_msg(np, target, "sync msgout", np->msgout);
3981 np->msgin [0] = M_NOOP;
3983 return 0;
3985 reject_it:
3986 sym_setsync (np, target, 0, 0, 0, 0);
3987 return -1;
3990 static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
3992 int req = 1;
3993 int result;
3996 * Request or answer ?
3998 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
3999 OUTB(np, HS_PRT, HS_BUSY);
4000 if (cp->nego_status && cp->nego_status != NS_SYNC)
4001 goto reject_it;
4002 req = 0;
4006 * Check and apply new values.
4008 result = sym_sync_nego_check(np, req, cp);
4009 if (result) /* Not acceptable, reject it */
4010 goto reject_it;
4011 if (req) { /* Was a request, send response. */
4012 cp->nego_status = NS_SYNC;
4013 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4015 else /* Was a response, we are done. */
4016 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4017 return;
4019 reject_it:
4020 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4024 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4026 static int
4027 sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
4029 struct sym_tcb *tp = &np->target[target];
4030 unsigned char fak, div;
4031 int dt, chg = 0;
4033 unsigned char per = np->msgin[3];
4034 unsigned char ofs = np->msgin[5];
4035 unsigned char wide = np->msgin[6];
4036 unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4038 if (DEBUG_FLAGS & DEBUG_NEGO) {
4039 sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4043 * Check values against our limits.
4045 if (wide > np->maxwide) {
4046 chg = 1;
4047 wide = np->maxwide;
4049 if (!wide || !(np->features & FE_U3EN))
4050 opts = 0;
4052 if (opts != (np->msgin[7] & PPR_OPT_MASK))
4053 chg = 1;
4055 dt = opts & PPR_OPT_DT;
4057 if (ofs) {
4058 unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4059 if (ofs > maxoffs) {
4060 chg = 1;
4061 ofs = maxoffs;
4065 if (ofs) {
4066 unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4067 if (per < minsync) {
4068 chg = 1;
4069 per = minsync;
4074 * Get new chip synchronous parameters value.
4076 div = fak = 0;
4077 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4078 goto reject_it;
4081 * If it was an answer we want to change,
4082 * then it isn't acceptable. Reject it.
4084 if (!req && chg)
4085 goto reject_it;
4088 * Apply new values.
4090 sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4093 * It was an answer. We are done.
4095 if (!req)
4096 return 0;
4099 * It was a request. Prepare an answer message.
4101 spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts);
4103 if (DEBUG_FLAGS & DEBUG_NEGO) {
4104 sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4107 np->msgin [0] = M_NOOP;
4109 return 0;
4111 reject_it:
4112 sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4114 * If it is a device response that should result in
4115 * ST, we may want to try a legacy negotiation later.
4117 if (!req && !opts) {
4118 tp->tgoal.period = per;
4119 tp->tgoal.offset = ofs;
4120 tp->tgoal.width = wide;
4121 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4122 tp->tgoal.check_nego = 1;
4124 return -1;
4127 static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4129 int req = 1;
4130 int result;
4133 * Request or answer ?
4135 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4136 OUTB(np, HS_PRT, HS_BUSY);
4137 if (cp->nego_status && cp->nego_status != NS_PPR)
4138 goto reject_it;
4139 req = 0;
4143 * Check and apply new values.
4145 result = sym_ppr_nego_check(np, req, cp->target);
4146 if (result) /* Not acceptable, reject it */
4147 goto reject_it;
4148 if (req) { /* Was a request, send response. */
4149 cp->nego_status = NS_PPR;
4150 OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4152 else /* Was a response, we are done. */
4153 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4154 return;
4156 reject_it:
4157 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4161 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4163 static int
4164 sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4166 int target = cp->target;
4167 u_char chg, wide;
4169 if (DEBUG_FLAGS & DEBUG_NEGO) {
4170 sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4174 * Get requested values.
4176 chg = 0;
4177 wide = np->msgin[3];
4180 * Check values against our limits.
4182 if (wide > np->maxwide) {
4183 chg = 1;
4184 wide = np->maxwide;
4187 if (DEBUG_FLAGS & DEBUG_NEGO) {
4188 sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4189 wide, chg);
4193 * If it was an answer we want to change,
4194 * then it isn't acceptable. Reject it.
4196 if (!req && chg)
4197 goto reject_it;
4200 * Apply new values.
4202 sym_setwide (np, target, wide);
4205 * It was an answer. We are done.
4207 if (!req)
4208 return 0;
4211 * It was a request. Prepare an answer message.
4213 spi_populate_width_msg(np->msgout, wide);
4215 np->msgin [0] = M_NOOP;
4217 if (DEBUG_FLAGS & DEBUG_NEGO) {
4218 sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4221 return 0;
4223 reject_it:
4224 return -1;
4227 static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4229 int req = 1;
4230 int result;
4233 * Request or answer ?
4235 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4236 OUTB(np, HS_PRT, HS_BUSY);
4237 if (cp->nego_status && cp->nego_status != NS_WIDE)
4238 goto reject_it;
4239 req = 0;
4243 * Check and apply new values.
4245 result = sym_wide_nego_check(np, req, cp);
4246 if (result) /* Not acceptable, reject it */
4247 goto reject_it;
4248 if (req) { /* Was a request, send response. */
4249 cp->nego_status = NS_WIDE;
4250 OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4251 } else { /* Was a response. */
4253 * Negotiate for SYNC immediately after WIDE response.
4254 * This allows to negotiate for both WIDE and SYNC on
4255 * a single SCSI command (Suggested by Justin Gibbs).
4257 if (tp->tgoal.offset) {
4258 spi_populate_sync_msg(np->msgout, tp->tgoal.period,
4259 tp->tgoal.offset);
4261 if (DEBUG_FLAGS & DEBUG_NEGO) {
4262 sym_print_nego_msg(np, cp->target,
4263 "sync msgout", np->msgout);
4266 cp->nego_status = NS_SYNC;
4267 OUTB(np, HS_PRT, HS_NEGOTIATE);
4268 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4269 return;
4270 } else
4271 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4274 return;
4276 reject_it:
4277 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4281 * Reset DT, SYNC or WIDE to default settings.
4283 * Called when a negotiation does not succeed either
4284 * on rejection or on protocol error.
4286 * A target that understands a PPR message should never
4287 * reject it, and messing with it is very unlikely.
4288 * So, if a PPR makes problems, we may just want to
4289 * try a legacy negotiation later.
4291 static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4293 switch (cp->nego_status) {
4294 case NS_PPR:
4295 #if 0
4296 sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4297 #else
4298 if (tp->tgoal.period < np->minsync)
4299 tp->tgoal.period = np->minsync;
4300 if (tp->tgoal.offset > np->maxoffs)
4301 tp->tgoal.offset = np->maxoffs;
4302 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4303 tp->tgoal.check_nego = 1;
4304 #endif
4305 break;
4306 case NS_SYNC:
4307 sym_setsync (np, cp->target, 0, 0, 0, 0);
4308 break;
4309 case NS_WIDE:
4310 sym_setwide (np, cp->target, 0);
4311 break;
4313 np->msgin [0] = M_NOOP;
4314 np->msgout[0] = M_NOOP;
4315 cp->nego_status = 0;
4319 * chip handler for MESSAGE REJECT received in response to
4320 * PPR, WIDE or SYNCHRONOUS negotiation.
4322 static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4324 sym_nego_default(np, tp, cp);
4325 OUTB(np, HS_PRT, HS_BUSY);
4329 * chip exception handler for programmed interrupts.
4331 static void sym_int_sir(struct sym_hcb *np)
4333 u_char num = INB(np, nc_dsps);
4334 u32 dsa = INL(np, nc_dsa);
4335 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
4336 u_char target = INB(np, nc_sdid) & 0x0f;
4337 struct sym_tcb *tp = &np->target[target];
4338 int tmp;
4340 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4342 switch (num) {
4343 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
4345 * SCRIPTS tell us that we may have to update
4346 * 64 bit DMA segment registers.
4348 case SIR_DMAP_DIRTY:
4349 sym_update_dmap_regs(np);
4350 goto out;
4351 #endif
4353 * Command has been completed with error condition
4354 * or has been auto-sensed.
4356 case SIR_COMPLETE_ERROR:
4357 sym_complete_error(np, cp);
4358 return;
4360 * The C code is currently trying to recover from something.
4361 * Typically, user want to abort some command.
4363 case SIR_SCRIPT_STOPPED:
4364 case SIR_TARGET_SELECTED:
4365 case SIR_ABORT_SENT:
4366 sym_sir_task_recovery(np, num);
4367 return;
4369 * The device didn't go to MSG OUT phase after having
4370 * been selected with ATN. We do not want to handle that.
4372 case SIR_SEL_ATN_NO_MSG_OUT:
4373 scmd_printk(KERN_WARNING, cp->cmd,
4374 "No MSG OUT phase after selection with ATN\n");
4375 goto out_stuck;
4377 * The device didn't switch to MSG IN phase after
4378 * having reselected the initiator.
4380 case SIR_RESEL_NO_MSG_IN:
4381 scmd_printk(KERN_WARNING, cp->cmd,
4382 "No MSG IN phase after reselection\n");
4383 goto out_stuck;
4385 * After reselection, the device sent a message that wasn't
4386 * an IDENTIFY.
4388 case SIR_RESEL_NO_IDENTIFY:
4389 scmd_printk(KERN_WARNING, cp->cmd,
4390 "No IDENTIFY after reselection\n");
4391 goto out_stuck;
4393 * The device reselected a LUN we do not know about.
4395 case SIR_RESEL_BAD_LUN:
4396 np->msgout[0] = M_RESET;
4397 goto out;
4399 * The device reselected for an untagged nexus and we
4400 * haven't any.
4402 case SIR_RESEL_BAD_I_T_L:
4403 np->msgout[0] = M_ABORT;
4404 goto out;
4406 * The device reselected for a tagged nexus that we do not have.
4408 case SIR_RESEL_BAD_I_T_L_Q:
4409 np->msgout[0] = M_ABORT_TAG;
4410 goto out;
4412 * The SCRIPTS let us know that the device has grabbed
4413 * our message and will abort the job.
4415 case SIR_RESEL_ABORTED:
4416 np->lastmsg = np->msgout[0];
4417 np->msgout[0] = M_NOOP;
4418 scmd_printk(KERN_WARNING, cp->cmd,
4419 "message %x sent on bad reselection\n", np->lastmsg);
4420 goto out;
4422 * The SCRIPTS let us know that a message has been
4423 * successfully sent to the device.
4425 case SIR_MSG_OUT_DONE:
4426 np->lastmsg = np->msgout[0];
4427 np->msgout[0] = M_NOOP;
4428 /* Should we really care of that */
4429 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4430 if (cp) {
4431 cp->xerr_status &= ~XE_PARITY_ERR;
4432 if (!cp->xerr_status)
4433 OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4436 goto out;
4438 * The device didn't send a GOOD SCSI status.
4439 * We may have some work to do prior to allow
4440 * the SCRIPTS processor to continue.
4442 case SIR_BAD_SCSI_STATUS:
4443 if (!cp)
4444 goto out;
4445 sym_sir_bad_scsi_status(np, num, cp);
4446 return;
4448 * We are asked by the SCRIPTS to prepare a
4449 * REJECT message.
4451 case SIR_REJECT_TO_SEND:
4452 sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4453 np->msgout[0] = M_REJECT;
4454 goto out;
4456 * We have been ODD at the end of a DATA IN
4457 * transfer and the device didn't send a
4458 * IGNORE WIDE RESIDUE message.
4459 * It is a data overrun condition.
4461 case SIR_SWIDE_OVERRUN:
4462 if (cp) {
4463 OUTONB(np, HF_PRT, HF_EXT_ERR);
4464 cp->xerr_status |= XE_SWIDE_OVRUN;
4466 goto out;
4468 * We have been ODD at the end of a DATA OUT
4469 * transfer.
4470 * It is a data underrun condition.
4472 case SIR_SODL_UNDERRUN:
4473 if (cp) {
4474 OUTONB(np, HF_PRT, HF_EXT_ERR);
4475 cp->xerr_status |= XE_SODL_UNRUN;
4477 goto out;
4479 * The device wants us to tranfer more data than
4480 * expected or in the wrong direction.
4481 * The number of extra bytes is in scratcha.
4482 * It is a data overrun condition.
4484 case SIR_DATA_OVERRUN:
4485 if (cp) {
4486 OUTONB(np, HF_PRT, HF_EXT_ERR);
4487 cp->xerr_status |= XE_EXTRA_DATA;
4488 cp->extra_bytes += INL(np, nc_scratcha);
4490 goto out;
4492 * The device switched to an illegal phase (4/5).
4494 case SIR_BAD_PHASE:
4495 if (cp) {
4496 OUTONB(np, HF_PRT, HF_EXT_ERR);
4497 cp->xerr_status |= XE_BAD_PHASE;
4499 goto out;
4501 * We received a message.
4503 case SIR_MSG_RECEIVED:
4504 if (!cp)
4505 goto out_stuck;
4506 switch (np->msgin [0]) {
4508 * We received an extended message.
4509 * We handle MODIFY DATA POINTER, SDTR, WDTR
4510 * and reject all other extended messages.
4512 case M_EXTENDED:
4513 switch (np->msgin [2]) {
4514 case M_X_MODIFY_DP:
4515 if (DEBUG_FLAGS & DEBUG_POINTER)
4516 sym_print_msg(cp, NULL, np->msgin);
4517 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4518 (np->msgin[5]<<8) + (np->msgin[6]);
4519 sym_modify_dp(np, tp, cp, tmp);
4520 return;
4521 case M_X_SYNC_REQ:
4522 sym_sync_nego(np, tp, cp);
4523 return;
4524 case M_X_PPR_REQ:
4525 sym_ppr_nego(np, tp, cp);
4526 return;
4527 case M_X_WIDE_REQ:
4528 sym_wide_nego(np, tp, cp);
4529 return;
4530 default:
4531 goto out_reject;
4533 break;
4535 * We received a 1/2 byte message not handled from SCRIPTS.
4536 * We are only expecting MESSAGE REJECT and IGNORE WIDE
4537 * RESIDUE messages that haven't been anticipated by
4538 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4539 * WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4541 case M_IGN_RESIDUE:
4542 if (DEBUG_FLAGS & DEBUG_POINTER)
4543 sym_print_msg(cp, NULL, np->msgin);
4544 if (cp->host_flags & HF_SENSE)
4545 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4546 else
4547 sym_modify_dp(np, tp, cp, -1);
4548 return;
4549 case M_REJECT:
4550 if (INB(np, HS_PRT) == HS_NEGOTIATE)
4551 sym_nego_rejected(np, tp, cp);
4552 else {
4553 sym_print_addr(cp->cmd,
4554 "M_REJECT received (%x:%x).\n",
4555 scr_to_cpu(np->lastmsg), np->msgout[0]);
4557 goto out_clrack;
4558 break;
4559 default:
4560 goto out_reject;
4562 break;
4564 * We received an unknown message.
4565 * Ignore all MSG IN phases and reject it.
4567 case SIR_MSG_WEIRD:
4568 sym_print_msg(cp, "WEIRD message received", np->msgin);
4569 OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4570 return;
4572 * Negotiation failed.
4573 * Target does not send us the reply.
4574 * Remove the HS_NEGOTIATE status.
4576 case SIR_NEGO_FAILED:
4577 OUTB(np, HS_PRT, HS_BUSY);
4579 * Negotiation failed.
4580 * Target does not want answer message.
4582 case SIR_NEGO_PROTO:
4583 sym_nego_default(np, tp, cp);
4584 goto out;
4587 out:
4588 OUTONB_STD();
4589 return;
4590 out_reject:
4591 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4592 return;
4593 out_clrack:
4594 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4595 return;
4596 out_stuck:
4597 return;
4601 * Acquire a control block
4603 struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4605 u_char tn = cmd->device->id;
4606 u_char ln = cmd->device->lun;
4607 struct sym_tcb *tp = &np->target[tn];
4608 struct sym_lcb *lp = sym_lp(tp, ln);
4609 u_short tag = NO_TAG;
4610 SYM_QUEHEAD *qp;
4611 struct sym_ccb *cp = NULL;
4614 * Look for a free CCB
4616 if (sym_que_empty(&np->free_ccbq))
4617 sym_alloc_ccb(np);
4618 qp = sym_remque_head(&np->free_ccbq);
4619 if (!qp)
4620 goto out;
4621 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4625 * If we have been asked for a tagged command.
4627 if (tag_order) {
4629 * Debugging purpose.
4631 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4632 if (lp->busy_itl != 0)
4633 goto out_free;
4634 #endif
4636 * Allocate resources for tags if not yet.
4638 if (!lp->cb_tags) {
4639 sym_alloc_lcb_tags(np, tn, ln);
4640 if (!lp->cb_tags)
4641 goto out_free;
4644 * Get a tag for this SCSI IO and set up
4645 * the CCB bus address for reselection,
4646 * and count it for this LUN.
4647 * Toggle reselect path to tagged.
4649 if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4650 tag = lp->cb_tags[lp->ia_tag];
4651 if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4652 lp->ia_tag = 0;
4653 ++lp->busy_itlq;
4654 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4655 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4656 lp->head.resel_sa =
4657 cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4658 #endif
4659 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4660 cp->tags_si = lp->tags_si;
4661 ++lp->tags_sum[cp->tags_si];
4662 ++lp->tags_since;
4663 #endif
4665 else
4666 goto out_free;
4669 * This command will not be tagged.
4670 * If we already have either a tagged or untagged
4671 * one, refuse to overlap this untagged one.
4673 else {
4675 * Debugging purpose.
4677 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4678 if (lp->busy_itl != 0 || lp->busy_itlq != 0)
4679 goto out_free;
4680 #endif
4682 * Count this nexus for this LUN.
4683 * Set up the CCB bus address for reselection.
4684 * Toggle reselect path to untagged.
4686 ++lp->busy_itl;
4687 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4688 if (lp->busy_itl == 1) {
4689 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4690 lp->head.resel_sa =
4691 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4693 else
4694 goto out_free;
4695 #endif
4699 * Put the CCB into the busy queue.
4701 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4702 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4703 if (lp) {
4704 sym_remque(&cp->link2_ccbq);
4705 sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4708 #endif
4709 cp->to_abort = 0;
4710 cp->odd_byte_adjustment = 0;
4711 cp->tag = tag;
4712 cp->order = tag_order;
4713 cp->target = tn;
4714 cp->lun = ln;
4716 if (DEBUG_FLAGS & DEBUG_TAGS) {
4717 sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4720 out:
4721 return cp;
4722 out_free:
4723 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4724 return NULL;
4728 * Release one control block
4730 void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4732 struct sym_tcb *tp = &np->target[cp->target];
4733 struct sym_lcb *lp = sym_lp(tp, cp->lun);
4735 if (DEBUG_FLAGS & DEBUG_TAGS) {
4736 sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4737 cp, cp->tag);
4741 * If LCB available,
4743 if (lp) {
4745 * If tagged, release the tag, set the relect path
4747 if (cp->tag != NO_TAG) {
4748 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4749 --lp->tags_sum[cp->tags_si];
4750 #endif
4752 * Free the tag value.
4754 lp->cb_tags[lp->if_tag] = cp->tag;
4755 if (++lp->if_tag == SYM_CONF_MAX_TASK)
4756 lp->if_tag = 0;
4758 * Make the reselect path invalid,
4759 * and uncount this CCB.
4761 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4762 --lp->busy_itlq;
4763 } else { /* Untagged */
4765 * Make the reselect path invalid,
4766 * and uncount this CCB.
4768 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4769 --lp->busy_itl;
4772 * If no JOB active, make the LUN reselect path invalid.
4774 if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4775 lp->head.resel_sa =
4776 cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4780 * We donnot queue more than 1 ccb per target
4781 * with negotiation at any time. If this ccb was
4782 * used for negotiation, clear this info in the tcb.
4784 if (cp == tp->nego_cp)
4785 tp->nego_cp = NULL;
4787 #ifdef SYM_CONF_IARB_SUPPORT
4789 * If we just complete the last queued CCB,
4790 * clear this info that is no longer relevant.
4792 if (cp == np->last_cp)
4793 np->last_cp = 0;
4794 #endif
4797 * Make this CCB available.
4799 cp->cmd = NULL;
4800 cp->host_status = HS_IDLE;
4801 sym_remque(&cp->link_ccbq);
4802 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4804 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4805 if (lp) {
4806 sym_remque(&cp->link2_ccbq);
4807 sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4808 if (cp->started) {
4809 if (cp->tag != NO_TAG)
4810 --lp->started_tags;
4811 else
4812 --lp->started_no_tag;
4815 cp->started = 0;
4816 #endif
4820 * Allocate a CCB from memory and initialize its fixed part.
4822 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4824 struct sym_ccb *cp = NULL;
4825 int hcode;
4828 * Prevent from allocating more CCBs than we can
4829 * queue to the controller.
4831 if (np->actccbs >= SYM_CONF_MAX_START)
4832 return NULL;
4835 * Allocate memory for this CCB.
4837 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4838 if (!cp)
4839 goto out_free;
4842 * Count it.
4844 np->actccbs++;
4847 * Compute the bus address of this ccb.
4849 cp->ccb_ba = vtobus(cp);
4852 * Insert this ccb into the hashed list.
4854 hcode = CCB_HASH_CODE(cp->ccb_ba);
4855 cp->link_ccbh = np->ccbh[hcode];
4856 np->ccbh[hcode] = cp;
4859 * Initialyze the start and restart actions.
4861 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, idle));
4862 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4865 * Initilialyze some other fields.
4867 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4870 * Chain into free ccb queue.
4872 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4875 * Chain into optionnal lists.
4877 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4878 sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4879 #endif
4880 return cp;
4881 out_free:
4882 if (cp)
4883 sym_mfree_dma(cp, sizeof(*cp), "CCB");
4884 return NULL;
4888 * Look up a CCB from a DSA value.
4890 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4892 int hcode;
4893 struct sym_ccb *cp;
4895 hcode = CCB_HASH_CODE(dsa);
4896 cp = np->ccbh[hcode];
4897 while (cp) {
4898 if (cp->ccb_ba == dsa)
4899 break;
4900 cp = cp->link_ccbh;
4903 return cp;
4907 * Target control block initialisation.
4908 * Nothing important to do at the moment.
4910 static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4912 #if 0 /* Hmmm... this checking looks paranoid. */
4914 * Check some alignments required by the chip.
4916 assert (((offsetof(struct sym_reg, nc_sxfer) ^
4917 offsetof(struct sym_tcb, head.sval)) &3) == 0);
4918 assert (((offsetof(struct sym_reg, nc_scntl3) ^
4919 offsetof(struct sym_tcb, head.wval)) &3) == 0);
4920 #endif
4924 * Lun control block allocation and initialization.
4926 struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4928 struct sym_tcb *tp = &np->target[tn];
4929 struct sym_lcb *lp = NULL;
4932 * Initialize the target control block if not yet.
4934 sym_init_tcb (np, tn);
4937 * Allocate the LCB bus address array.
4938 * Compute the bus address of this table.
4940 if (ln && !tp->luntbl) {
4941 int i;
4943 tp->luntbl = sym_calloc_dma(256, "LUNTBL");
4944 if (!tp->luntbl)
4945 goto fail;
4946 for (i = 0 ; i < 64 ; i++)
4947 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
4948 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
4952 * Allocate the table of pointers for LUN(s) > 0, if needed.
4954 if (ln && !tp->lunmp) {
4955 tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
4956 GFP_KERNEL);
4957 if (!tp->lunmp)
4958 goto fail;
4962 * Allocate the lcb.
4963 * Make it available to the chip.
4965 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
4966 if (!lp)
4967 goto fail;
4968 if (ln) {
4969 tp->lunmp[ln] = lp;
4970 tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
4972 else {
4973 tp->lun0p = lp;
4974 tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
4978 * Let the itl task point to error handling.
4980 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4983 * Set the reselect pattern to our default. :)
4985 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4988 * Set user capabilities.
4990 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
4992 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4994 * Initialize device queueing.
4996 sym_que_init(&lp->waiting_ccbq);
4997 sym_que_init(&lp->started_ccbq);
4998 lp->started_max = SYM_CONF_MAX_TASK;
4999 lp->started_limit = SYM_CONF_MAX_TASK;
5000 #endif
5002 fail:
5003 return lp;
5007 * Allocate LCB resources for tagged command queuing.
5009 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
5011 struct sym_tcb *tp = &np->target[tn];
5012 struct sym_lcb *lp = sym_lp(tp, ln);
5013 int i;
5016 * Allocate the task table and and the tag allocation
5017 * circular buffer. We want both or none.
5019 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5020 if (!lp->itlq_tbl)
5021 goto fail;
5022 lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC);
5023 if (!lp->cb_tags) {
5024 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5025 lp->itlq_tbl = NULL;
5026 goto fail;
5030 * Initialize the task table with invalid entries.
5032 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5033 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
5036 * Fill up the tag buffer with tag numbers.
5038 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5039 lp->cb_tags[i] = i;
5042 * Make the task table available to SCRIPTS,
5043 * And accept tagged commands now.
5045 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5047 return;
5048 fail:
5049 return;
5053 * Queue a SCSI IO to the controller.
5055 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5057 struct scsi_device *sdev = cmd->device;
5058 struct sym_tcb *tp;
5059 struct sym_lcb *lp;
5060 u_char *msgptr;
5061 u_int msglen;
5062 int can_disconnect;
5065 * Keep track of the IO in our CCB.
5067 cp->cmd = cmd;
5070 * Retrieve the target descriptor.
5072 tp = &np->target[cp->target];
5075 * Retrieve the lun descriptor.
5077 lp = sym_lp(tp, sdev->lun);
5079 can_disconnect = (cp->tag != NO_TAG) ||
5080 (lp && (lp->curr_flags & SYM_DISC_ENABLED));
5082 msgptr = cp->scsi_smsg;
5083 msglen = 0;
5084 msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5087 * Build the tag message if present.
5089 if (cp->tag != NO_TAG) {
5090 u_char order = cp->order;
5092 switch(order) {
5093 case M_ORDERED_TAG:
5094 break;
5095 case M_HEAD_TAG:
5096 break;
5097 default:
5098 order = M_SIMPLE_TAG;
5100 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5102 * Avoid too much reordering of SCSI commands.
5103 * The algorithm tries to prevent completion of any
5104 * tagged command from being delayed against more
5105 * than 3 times the max number of queued commands.
5107 if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5108 lp->tags_si = !(lp->tags_si);
5109 if (lp->tags_sum[lp->tags_si]) {
5110 order = M_ORDERED_TAG;
5111 if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5112 sym_print_addr(cmd,
5113 "ordered tag forced.\n");
5116 lp->tags_since = 0;
5118 #endif
5119 msgptr[msglen++] = order;
5122 * For less than 128 tags, actual tags are numbered
5123 * 1,3,5,..2*MAXTAGS+1,since we may have to deal
5124 * with devices that have problems with #TAG 0 or too
5125 * great #TAG numbers. For more tags (up to 256),
5126 * we use directly our tag number.
5128 #if SYM_CONF_MAX_TASK > (512/4)
5129 msgptr[msglen++] = cp->tag;
5130 #else
5131 msgptr[msglen++] = (cp->tag << 1) + 1;
5132 #endif
5136 * Build a negotiation message if needed.
5137 * (nego_status is filled by sym_prepare_nego())
5139 cp->nego_status = 0;
5140 if (tp->tgoal.check_nego && !tp->nego_cp && lp) {
5141 msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5145 * Startqueue
5147 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
5148 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5151 * select
5153 cp->phys.select.sel_id = cp->target;
5154 cp->phys.select.sel_scntl3 = tp->head.wval;
5155 cp->phys.select.sel_sxfer = tp->head.sval;
5156 cp->phys.select.sel_scntl4 = tp->head.uval;
5159 * message
5161 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg);
5162 cp->phys.smsg.size = cpu_to_scr(msglen);
5165 * status
5167 cp->host_xflags = 0;
5168 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5169 cp->ssss_status = S_ILLEGAL;
5170 cp->xerr_status = 0;
5171 cp->host_flags = 0;
5172 cp->extra_bytes = 0;
5175 * extreme data pointer.
5176 * shall be positive, so -1 is lower than lowest.:)
5178 cp->ext_sg = -1;
5179 cp->ext_ofs = 0;
5182 * Build the CDB and DATA descriptor block
5183 * and start the IO.
5185 return sym_setup_data_and_start(np, cmd, cp);
5189 * Reset a SCSI target (all LUNs of this target).
5191 int sym_reset_scsi_target(struct sym_hcb *np, int target)
5193 struct sym_tcb *tp;
5195 if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5196 return -1;
5198 tp = &np->target[target];
5199 tp->to_reset = 1;
5201 np->istat_sem = SEM;
5202 OUTB(np, nc_istat, SIGP|SEM);
5204 return 0;
5208 * Abort a SCSI IO.
5210 static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5213 * Check that the IO is active.
5215 if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5216 return -1;
5219 * If a previous abort didn't succeed in time,
5220 * perform a BUS reset.
5222 if (cp->to_abort) {
5223 sym_reset_scsi_bus(np, 1);
5224 return 0;
5228 * Mark the CCB for abort and allow time for.
5230 cp->to_abort = timed_out ? 2 : 1;
5233 * Tell the SCRIPTS processor to stop and synchronize with us.
5235 np->istat_sem = SEM;
5236 OUTB(np, nc_istat, SIGP|SEM);
5237 return 0;
5240 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5242 struct sym_ccb *cp;
5243 SYM_QUEHEAD *qp;
5246 * Look up our CCB control block.
5248 cp = NULL;
5249 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5250 struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5251 if (cp2->cmd == cmd) {
5252 cp = cp2;
5253 break;
5257 return sym_abort_ccb(np, cp, timed_out);
5261 * Complete execution of a SCSI command with extended
5262 * error, SCSI status error, or having been auto-sensed.
5264 * The SCRIPTS processor is not running there, so we
5265 * can safely access IO registers and remove JOBs from
5266 * the START queue.
5267 * SCRATCHA is assumed to have been loaded with STARTPOS
5268 * before the SCRIPTS called the C code.
5270 void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5272 struct scsi_device *sdev;
5273 struct scsi_cmnd *cmd;
5274 struct sym_tcb *tp;
5275 struct sym_lcb *lp;
5276 int resid;
5277 int i;
5280 * Paranoid check. :)
5282 if (!cp || !cp->cmd)
5283 return;
5285 cmd = cp->cmd;
5286 sdev = cmd->device;
5287 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5288 dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5289 cp->host_status, cp->ssss_status, cp->host_flags);
5293 * Get target and lun pointers.
5295 tp = &np->target[cp->target];
5296 lp = sym_lp(tp, sdev->lun);
5299 * Check for extended errors.
5301 if (cp->xerr_status) {
5302 if (sym_verbose)
5303 sym_print_xerr(cmd, cp->xerr_status);
5304 if (cp->host_status == HS_COMPLETE)
5305 cp->host_status = HS_COMP_ERR;
5309 * Calculate the residual.
5311 resid = sym_compute_residual(np, cp);
5313 if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5314 resid = 0; /* throw them away. :) */
5315 cp->sv_resid = 0;
5317 #ifdef DEBUG_2_0_X
5318 if (resid)
5319 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5320 #endif
5323 * Dequeue all queued CCBs for that device
5324 * not yet started by SCRIPTS.
5326 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5327 i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5330 * Restart the SCRIPTS processor.
5332 OUTL_DSP(np, SCRIPTA_BA(np, start));
5334 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5335 if (cp->host_status == HS_COMPLETE &&
5336 cp->ssss_status == S_QUEUE_FULL) {
5337 if (!lp || lp->started_tags - i < 2)
5338 goto weirdness;
5340 * Decrease queue depth as needed.
5342 lp->started_max = lp->started_tags - i - 1;
5343 lp->num_sgood = 0;
5345 if (sym_verbose >= 2) {
5346 sym_print_addr(cmd, " queue depth is now %d\n",
5347 lp->started_max);
5351 * Repair the CCB.
5353 cp->host_status = HS_BUSY;
5354 cp->ssss_status = S_ILLEGAL;
5357 * Let's requeue it to device.
5359 sym_set_cam_status(cmd, DID_SOFT_ERROR);
5360 goto finish;
5362 weirdness:
5363 #endif
5365 * Build result in CAM ccb.
5367 sym_set_cam_result_error(np, cp, resid);
5369 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5370 finish:
5371 #endif
5373 * Add this one to the COMP queue.
5375 sym_remque(&cp->link_ccbq);
5376 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5379 * Complete all those commands with either error
5380 * or requeue condition.
5382 sym_flush_comp_queue(np, 0);
5384 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5386 * Donnot start more than 1 command after an error.
5388 sym_start_next_ccbs(np, lp, 1);
5389 #endif
5393 * Complete execution of a successful SCSI command.
5395 * Only successful commands go to the DONE queue,
5396 * since we need to have the SCRIPTS processor
5397 * stopped on any error condition.
5398 * The SCRIPTS processor is running while we are
5399 * completing successful commands.
5401 void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5403 struct sym_tcb *tp;
5404 struct sym_lcb *lp;
5405 struct scsi_cmnd *cmd;
5406 int resid;
5409 * Paranoid check. :)
5411 if (!cp || !cp->cmd)
5412 return;
5413 assert (cp->host_status == HS_COMPLETE);
5416 * Get user command.
5418 cmd = cp->cmd;
5421 * Get target and lun pointers.
5423 tp = &np->target[cp->target];
5424 lp = sym_lp(tp, cp->lun);
5427 * If all data have been transferred, given than no
5428 * extended error did occur, there is no residual.
5430 resid = 0;
5431 if (cp->phys.head.lastp != cp->goalp)
5432 resid = sym_compute_residual(np, cp);
5435 * Wrong transfer residuals may be worse than just always
5436 * returning zero. User can disable this feature in
5437 * sym53c8xx.h. Residual support is enabled by default.
5439 if (!SYM_SETUP_RESIDUAL_SUPPORT)
5440 resid = 0;
5441 #ifdef DEBUG_2_0_X
5442 if (resid)
5443 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5444 #endif
5447 * Build result in CAM ccb.
5449 sym_set_cam_result_ok(cp, cmd, resid);
5451 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5453 * If max number of started ccbs had been reduced,
5454 * increase it if 200 good status received.
5456 if (lp && lp->started_max < lp->started_limit) {
5457 ++lp->num_sgood;
5458 if (lp->num_sgood >= 200) {
5459 lp->num_sgood = 0;
5460 ++lp->started_max;
5461 if (sym_verbose >= 2) {
5462 sym_print_addr(cmd, " queue depth is now %d\n",
5463 lp->started_max);
5467 #endif
5470 * Free our CCB.
5472 sym_free_ccb (np, cp);
5474 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5476 * Requeue a couple of awaiting scsi commands.
5478 if (!sym_que_empty(&lp->waiting_ccbq))
5479 sym_start_next_ccbs(np, lp, 2);
5480 #endif
5482 * Complete the command.
5484 sym_xpt_done(np, cmd);
5488 * Soft-attach the controller.
5490 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5492 struct sym_hcb *np = sym_get_hcb(shost);
5493 int i;
5496 * Get some info about the firmware.
5498 np->scripta_sz = fw->a_size;
5499 np->scriptb_sz = fw->b_size;
5500 np->scriptz_sz = fw->z_size;
5501 np->fw_setup = fw->setup;
5502 np->fw_patch = fw->patch;
5503 np->fw_name = fw->name;
5506 * Save setting of some IO registers, so we will
5507 * be able to probe specific implementations.
5509 sym_save_initial_setting (np);
5512 * Reset the chip now, since it has been reported
5513 * that SCSI clock calibration may not work properly
5514 * if the chip is currently active.
5516 sym_chip_reset(np);
5519 * Prepare controller and devices settings, according
5520 * to chip features, user set-up and driver set-up.
5522 sym_prepare_setting(shost, np, nvram);
5525 * Check the PCI clock frequency.
5526 * Must be performed after prepare_setting since it destroys
5527 * STEST1 that is used to probe for the clock doubler.
5529 i = sym_getpciclock(np);
5530 if (i > 37000 && !(np->features & FE_66MHZ))
5531 printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5532 sym_name(np), i);
5535 * Allocate the start queue.
5537 np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5538 if (!np->squeue)
5539 goto attach_failed;
5540 np->squeue_ba = vtobus(np->squeue);
5543 * Allocate the done queue.
5545 np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5546 if (!np->dqueue)
5547 goto attach_failed;
5548 np->dqueue_ba = vtobus(np->dqueue);
5551 * Allocate the target bus address array.
5553 np->targtbl = sym_calloc_dma(256, "TARGTBL");
5554 if (!np->targtbl)
5555 goto attach_failed;
5556 np->targtbl_ba = vtobus(np->targtbl);
5559 * Allocate SCRIPTS areas.
5561 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5562 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5563 np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5564 if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5565 goto attach_failed;
5568 * Allocate the array of lists of CCBs hashed by DSA.
5570 np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(struct sym_ccb **), GFP_KERNEL);
5571 if (!np->ccbh)
5572 goto attach_failed;
5575 * Initialyze the CCB free and busy queues.
5577 sym_que_init(&np->free_ccbq);
5578 sym_que_init(&np->busy_ccbq);
5579 sym_que_init(&np->comp_ccbq);
5582 * Initialization for optional handling
5583 * of device queueing.
5585 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5586 sym_que_init(&np->dummy_ccbq);
5587 #endif
5589 * Allocate some CCB. We need at least ONE.
5591 if (!sym_alloc_ccb(np))
5592 goto attach_failed;
5595 * Calculate BUS addresses where we are going
5596 * to load the SCRIPTS.
5598 np->scripta_ba = vtobus(np->scripta0);
5599 np->scriptb_ba = vtobus(np->scriptb0);
5600 np->scriptz_ba = vtobus(np->scriptz0);
5602 if (np->ram_ba) {
5603 np->scripta_ba = np->ram_ba;
5604 if (np->features & FE_RAM8K) {
5605 np->scriptb_ba = np->scripta_ba + 4096;
5606 #if 0 /* May get useful for 64 BIT PCI addressing */
5607 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5608 #endif
5613 * Copy scripts to controller instance.
5615 memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5616 memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5617 memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5620 * Setup variable parts in scripts and compute
5621 * scripts bus addresses used from the C code.
5623 np->fw_setup(np, fw);
5626 * Bind SCRIPTS with physical addresses usable by the
5627 * SCRIPTS processor (as seen from the BUS = BUS addresses).
5629 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5630 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5631 sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5633 #ifdef SYM_CONF_IARB_SUPPORT
5635 * If user wants IARB to be set when we win arbitration
5636 * and have other jobs, compute the max number of consecutive
5637 * settings of IARB hints before we leave devices a chance to
5638 * arbitrate for reselection.
5640 #ifdef SYM_SETUP_IARB_MAX
5641 np->iarb_max = SYM_SETUP_IARB_MAX;
5642 #else
5643 np->iarb_max = 4;
5644 #endif
5645 #endif
5648 * Prepare the idle and invalid task actions.
5650 np->idletask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5651 np->idletask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5652 np->idletask_ba = vtobus(&np->idletask);
5654 np->notask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5655 np->notask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5656 np->notask_ba = vtobus(&np->notask);
5658 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5659 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5660 np->bad_itl_ba = vtobus(&np->bad_itl);
5662 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5663 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5664 np->bad_itlq_ba = vtobus(&np->bad_itlq);
5667 * Allocate and prepare the lun JUMP table that is used
5668 * for a target prior the probing of devices (bad lun table).
5669 * A private table will be allocated for the target on the
5670 * first INQUIRY response received.
5672 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5673 if (!np->badluntbl)
5674 goto attach_failed;
5676 np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5677 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */
5678 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5681 * Prepare the bus address array that contains the bus
5682 * address of each target control block.
5683 * For now, assume all logical units are wrong. :)
5685 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5686 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5687 np->target[i].head.luntbl_sa =
5688 cpu_to_scr(vtobus(np->badluntbl));
5689 np->target[i].head.lun0_sa =
5690 cpu_to_scr(vtobus(&np->badlun_sa));
5694 * Now check the cache handling of the pci chipset.
5696 if (sym_snooptest (np)) {
5697 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5698 goto attach_failed;
5702 * Sigh! we are done.
5704 return 0;
5706 attach_failed:
5707 return -ENXIO;
5711 * Free everything that has been allocated for this device.
5713 void sym_hcb_free(struct sym_hcb *np)
5715 SYM_QUEHEAD *qp;
5716 struct sym_ccb *cp;
5717 struct sym_tcb *tp;
5718 int target;
5720 if (np->scriptz0)
5721 sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5722 if (np->scriptb0)
5723 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5724 if (np->scripta0)
5725 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5726 if (np->squeue)
5727 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5728 if (np->dqueue)
5729 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5731 if (np->actccbs) {
5732 while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
5733 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5734 sym_mfree_dma(cp, sizeof(*cp), "CCB");
5737 kfree(np->ccbh);
5739 if (np->badluntbl)
5740 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5742 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5743 tp = &np->target[target];
5744 if (tp->luntbl)
5745 sym_mfree_dma(tp->luntbl, 256, "LUNTBL");
5746 #if SYM_CONF_MAX_LUN > 1
5747 kfree(tp->lunmp);
5748 #endif
5750 if (np->targtbl)
5751 sym_mfree_dma(np->targtbl, 256, "TARGTBL");