libata: consider errors not associated with commands for speed down
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / profile.c
blob5e95330e51207c48a043b2675b1d015d48d0f488
1 /*
2 * linux/kernel/profile.c
3 * Simple profiling. Manages a direct-mapped profile hit count buffer,
4 * with configurable resolution, support for restricting the cpus on
5 * which profiling is done, and switching between cpu time and
6 * schedule() calls via kernel command line parameters passed at boot.
8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9 * Red Hat, July 2004
10 * Consolidation of architecture support code for profiling,
11 * William Irwin, Oracle, July 2004
12 * Amortized hit count accounting via per-cpu open-addressed hashtables
13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/bootmem.h>
19 #include <linux/notifier.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/profile.h>
24 #include <linux/highmem.h>
25 #include <linux/mutex.h>
26 #include <asm/sections.h>
27 #include <asm/semaphore.h>
28 #include <asm/irq_regs.h>
29 #include <asm/ptrace.h>
31 struct profile_hit {
32 u32 pc, hits;
34 #define PROFILE_GRPSHIFT 3
35 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
36 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
37 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
39 /* Oprofile timer tick hook */
40 static int (*timer_hook)(struct pt_regs *) __read_mostly;
42 static atomic_t *prof_buffer;
43 static unsigned long prof_len, prof_shift;
45 int prof_on __read_mostly;
46 EXPORT_SYMBOL_GPL(prof_on);
48 static cpumask_t prof_cpu_mask = CPU_MASK_ALL;
49 #ifdef CONFIG_SMP
50 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
51 static DEFINE_PER_CPU(int, cpu_profile_flip);
52 static DEFINE_MUTEX(profile_flip_mutex);
53 #endif /* CONFIG_SMP */
55 static int __init profile_setup(char * str)
57 static char __initdata schedstr[] = "schedule";
58 static char __initdata sleepstr[] = "sleep";
59 static char __initdata kvmstr[] = "kvm";
60 int par;
62 if (!strncmp(str, sleepstr, strlen(sleepstr))) {
63 #ifdef CONFIG_SCHEDSTATS
64 prof_on = SLEEP_PROFILING;
65 if (str[strlen(sleepstr)] == ',')
66 str += strlen(sleepstr) + 1;
67 if (get_option(&str, &par))
68 prof_shift = par;
69 printk(KERN_INFO
70 "kernel sleep profiling enabled (shift: %ld)\n",
71 prof_shift);
72 #else
73 printk(KERN_WARNING
74 "kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
75 #endif /* CONFIG_SCHEDSTATS */
76 } else if (!strncmp(str, schedstr, strlen(schedstr))) {
77 prof_on = SCHED_PROFILING;
78 if (str[strlen(schedstr)] == ',')
79 str += strlen(schedstr) + 1;
80 if (get_option(&str, &par))
81 prof_shift = par;
82 printk(KERN_INFO
83 "kernel schedule profiling enabled (shift: %ld)\n",
84 prof_shift);
85 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
86 prof_on = KVM_PROFILING;
87 if (str[strlen(kvmstr)] == ',')
88 str += strlen(kvmstr) + 1;
89 if (get_option(&str, &par))
90 prof_shift = par;
91 printk(KERN_INFO
92 "kernel KVM profiling enabled (shift: %ld)\n",
93 prof_shift);
94 } else if (get_option(&str, &par)) {
95 prof_shift = par;
96 prof_on = CPU_PROFILING;
97 printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
98 prof_shift);
100 return 1;
102 __setup("profile=", profile_setup);
105 void __init profile_init(void)
107 if (!prof_on)
108 return;
110 /* only text is profiled */
111 prof_len = (_etext - _stext) >> prof_shift;
112 prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t));
115 /* Profile event notifications */
117 #ifdef CONFIG_PROFILING
119 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
120 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
121 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
123 void profile_task_exit(struct task_struct * task)
125 blocking_notifier_call_chain(&task_exit_notifier, 0, task);
128 int profile_handoff_task(struct task_struct * task)
130 int ret;
131 ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
132 return (ret == NOTIFY_OK) ? 1 : 0;
135 void profile_munmap(unsigned long addr)
137 blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
140 int task_handoff_register(struct notifier_block * n)
142 return atomic_notifier_chain_register(&task_free_notifier, n);
145 int task_handoff_unregister(struct notifier_block * n)
147 return atomic_notifier_chain_unregister(&task_free_notifier, n);
150 int profile_event_register(enum profile_type type, struct notifier_block * n)
152 int err = -EINVAL;
154 switch (type) {
155 case PROFILE_TASK_EXIT:
156 err = blocking_notifier_chain_register(
157 &task_exit_notifier, n);
158 break;
159 case PROFILE_MUNMAP:
160 err = blocking_notifier_chain_register(
161 &munmap_notifier, n);
162 break;
165 return err;
169 int profile_event_unregister(enum profile_type type, struct notifier_block * n)
171 int err = -EINVAL;
173 switch (type) {
174 case PROFILE_TASK_EXIT:
175 err = blocking_notifier_chain_unregister(
176 &task_exit_notifier, n);
177 break;
178 case PROFILE_MUNMAP:
179 err = blocking_notifier_chain_unregister(
180 &munmap_notifier, n);
181 break;
184 return err;
187 int register_timer_hook(int (*hook)(struct pt_regs *))
189 if (timer_hook)
190 return -EBUSY;
191 timer_hook = hook;
192 return 0;
195 void unregister_timer_hook(int (*hook)(struct pt_regs *))
197 WARN_ON(hook != timer_hook);
198 timer_hook = NULL;
199 /* make sure all CPUs see the NULL hook */
200 synchronize_sched(); /* Allow ongoing interrupts to complete. */
203 EXPORT_SYMBOL_GPL(register_timer_hook);
204 EXPORT_SYMBOL_GPL(unregister_timer_hook);
205 EXPORT_SYMBOL_GPL(task_handoff_register);
206 EXPORT_SYMBOL_GPL(task_handoff_unregister);
207 EXPORT_SYMBOL_GPL(profile_event_register);
208 EXPORT_SYMBOL_GPL(profile_event_unregister);
210 #endif /* CONFIG_PROFILING */
213 #ifdef CONFIG_SMP
215 * Each cpu has a pair of open-addressed hashtables for pending
216 * profile hits. read_profile() IPI's all cpus to request them
217 * to flip buffers and flushes their contents to prof_buffer itself.
218 * Flip requests are serialized by the profile_flip_mutex. The sole
219 * use of having a second hashtable is for avoiding cacheline
220 * contention that would otherwise happen during flushes of pending
221 * profile hits required for the accuracy of reported profile hits
222 * and so resurrect the interrupt livelock issue.
224 * The open-addressed hashtables are indexed by profile buffer slot
225 * and hold the number of pending hits to that profile buffer slot on
226 * a cpu in an entry. When the hashtable overflows, all pending hits
227 * are accounted to their corresponding profile buffer slots with
228 * atomic_add() and the hashtable emptied. As numerous pending hits
229 * may be accounted to a profile buffer slot in a hashtable entry,
230 * this amortizes a number of atomic profile buffer increments likely
231 * to be far larger than the number of entries in the hashtable,
232 * particularly given that the number of distinct profile buffer
233 * positions to which hits are accounted during short intervals (e.g.
234 * several seconds) is usually very small. Exclusion from buffer
235 * flipping is provided by interrupt disablement (note that for
236 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
237 * process context).
238 * The hash function is meant to be lightweight as opposed to strong,
239 * and was vaguely inspired by ppc64 firmware-supported inverted
240 * pagetable hash functions, but uses a full hashtable full of finite
241 * collision chains, not just pairs of them.
243 * -- wli
245 static void __profile_flip_buffers(void *unused)
247 int cpu = smp_processor_id();
249 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
252 static void profile_flip_buffers(void)
254 int i, j, cpu;
256 mutex_lock(&profile_flip_mutex);
257 j = per_cpu(cpu_profile_flip, get_cpu());
258 put_cpu();
259 on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
260 for_each_online_cpu(cpu) {
261 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
262 for (i = 0; i < NR_PROFILE_HIT; ++i) {
263 if (!hits[i].hits) {
264 if (hits[i].pc)
265 hits[i].pc = 0;
266 continue;
268 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
269 hits[i].hits = hits[i].pc = 0;
272 mutex_unlock(&profile_flip_mutex);
275 static void profile_discard_flip_buffers(void)
277 int i, cpu;
279 mutex_lock(&profile_flip_mutex);
280 i = per_cpu(cpu_profile_flip, get_cpu());
281 put_cpu();
282 on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
283 for_each_online_cpu(cpu) {
284 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
285 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
287 mutex_unlock(&profile_flip_mutex);
290 void profile_hits(int type, void *__pc, unsigned int nr_hits)
292 unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
293 int i, j, cpu;
294 struct profile_hit *hits;
296 if (prof_on != type || !prof_buffer)
297 return;
298 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
299 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
300 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
301 cpu = get_cpu();
302 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
303 if (!hits) {
304 put_cpu();
305 return;
308 * We buffer the global profiler buffer into a per-CPU
309 * queue and thus reduce the number of global (and possibly
310 * NUMA-alien) accesses. The write-queue is self-coalescing:
312 local_irq_save(flags);
313 do {
314 for (j = 0; j < PROFILE_GRPSZ; ++j) {
315 if (hits[i + j].pc == pc) {
316 hits[i + j].hits += nr_hits;
317 goto out;
318 } else if (!hits[i + j].hits) {
319 hits[i + j].pc = pc;
320 hits[i + j].hits = nr_hits;
321 goto out;
324 i = (i + secondary) & (NR_PROFILE_HIT - 1);
325 } while (i != primary);
328 * Add the current hit(s) and flush the write-queue out
329 * to the global buffer:
331 atomic_add(nr_hits, &prof_buffer[pc]);
332 for (i = 0; i < NR_PROFILE_HIT; ++i) {
333 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
334 hits[i].pc = hits[i].hits = 0;
336 out:
337 local_irq_restore(flags);
338 put_cpu();
341 static int __devinit profile_cpu_callback(struct notifier_block *info,
342 unsigned long action, void *__cpu)
344 int node, cpu = (unsigned long)__cpu;
345 struct page *page;
347 switch (action) {
348 case CPU_UP_PREPARE:
349 case CPU_UP_PREPARE_FROZEN:
350 node = cpu_to_node(cpu);
351 per_cpu(cpu_profile_flip, cpu) = 0;
352 if (!per_cpu(cpu_profile_hits, cpu)[1]) {
353 page = alloc_pages_node(node,
354 GFP_KERNEL | __GFP_ZERO,
356 if (!page)
357 return NOTIFY_BAD;
358 per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
360 if (!per_cpu(cpu_profile_hits, cpu)[0]) {
361 page = alloc_pages_node(node,
362 GFP_KERNEL | __GFP_ZERO,
364 if (!page)
365 goto out_free;
366 per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
368 break;
369 out_free:
370 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
371 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
372 __free_page(page);
373 return NOTIFY_BAD;
374 case CPU_ONLINE:
375 case CPU_ONLINE_FROZEN:
376 cpu_set(cpu, prof_cpu_mask);
377 break;
378 case CPU_UP_CANCELED:
379 case CPU_UP_CANCELED_FROZEN:
380 case CPU_DEAD:
381 case CPU_DEAD_FROZEN:
382 cpu_clear(cpu, prof_cpu_mask);
383 if (per_cpu(cpu_profile_hits, cpu)[0]) {
384 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
385 per_cpu(cpu_profile_hits, cpu)[0] = NULL;
386 __free_page(page);
388 if (per_cpu(cpu_profile_hits, cpu)[1]) {
389 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
390 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
391 __free_page(page);
393 break;
395 return NOTIFY_OK;
397 #else /* !CONFIG_SMP */
398 #define profile_flip_buffers() do { } while (0)
399 #define profile_discard_flip_buffers() do { } while (0)
400 #define profile_cpu_callback NULL
402 void profile_hits(int type, void *__pc, unsigned int nr_hits)
404 unsigned long pc;
406 if (prof_on != type || !prof_buffer)
407 return;
408 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
409 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
411 #endif /* !CONFIG_SMP */
413 EXPORT_SYMBOL_GPL(profile_hits);
415 void profile_tick(int type)
417 struct pt_regs *regs = get_irq_regs();
419 if (type == CPU_PROFILING && timer_hook)
420 timer_hook(regs);
421 if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask))
422 profile_hit(type, (void *)profile_pc(regs));
425 #ifdef CONFIG_PROC_FS
426 #include <linux/proc_fs.h>
427 #include <asm/uaccess.h>
428 #include <asm/ptrace.h>
430 static int prof_cpu_mask_read_proc (char *page, char **start, off_t off,
431 int count, int *eof, void *data)
433 int len = cpumask_scnprintf(page, count, *(cpumask_t *)data);
434 if (count - len < 2)
435 return -EINVAL;
436 len += sprintf(page + len, "\n");
437 return len;
440 static int prof_cpu_mask_write_proc (struct file *file, const char __user *buffer,
441 unsigned long count, void *data)
443 cpumask_t *mask = (cpumask_t *)data;
444 unsigned long full_count = count, err;
445 cpumask_t new_value;
447 err = cpumask_parse_user(buffer, count, new_value);
448 if (err)
449 return err;
451 *mask = new_value;
452 return full_count;
455 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
457 struct proc_dir_entry *entry;
459 /* create /proc/irq/prof_cpu_mask */
460 if (!(entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir)))
461 return;
462 entry->data = (void *)&prof_cpu_mask;
463 entry->read_proc = prof_cpu_mask_read_proc;
464 entry->write_proc = prof_cpu_mask_write_proc;
468 * This function accesses profiling information. The returned data is
469 * binary: the sampling step and the actual contents of the profile
470 * buffer. Use of the program readprofile is recommended in order to
471 * get meaningful info out of these data.
473 static ssize_t
474 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
476 unsigned long p = *ppos;
477 ssize_t read;
478 char * pnt;
479 unsigned int sample_step = 1 << prof_shift;
481 profile_flip_buffers();
482 if (p >= (prof_len+1)*sizeof(unsigned int))
483 return 0;
484 if (count > (prof_len+1)*sizeof(unsigned int) - p)
485 count = (prof_len+1)*sizeof(unsigned int) - p;
486 read = 0;
488 while (p < sizeof(unsigned int) && count > 0) {
489 if (put_user(*((char *)(&sample_step)+p),buf))
490 return -EFAULT;
491 buf++; p++; count--; read++;
493 pnt = (char *)prof_buffer + p - sizeof(atomic_t);
494 if (copy_to_user(buf,(void *)pnt,count))
495 return -EFAULT;
496 read += count;
497 *ppos += read;
498 return read;
502 * Writing to /proc/profile resets the counters
504 * Writing a 'profiling multiplier' value into it also re-sets the profiling
505 * interrupt frequency, on architectures that support this.
507 static ssize_t write_profile(struct file *file, const char __user *buf,
508 size_t count, loff_t *ppos)
510 #ifdef CONFIG_SMP
511 extern int setup_profiling_timer (unsigned int multiplier);
513 if (count == sizeof(int)) {
514 unsigned int multiplier;
516 if (copy_from_user(&multiplier, buf, sizeof(int)))
517 return -EFAULT;
519 if (setup_profiling_timer(multiplier))
520 return -EINVAL;
522 #endif
523 profile_discard_flip_buffers();
524 memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
525 return count;
528 static const struct file_operations proc_profile_operations = {
529 .read = read_profile,
530 .write = write_profile,
533 #ifdef CONFIG_SMP
534 static void __init profile_nop(void *unused)
538 static int __init create_hash_tables(void)
540 int cpu;
542 for_each_online_cpu(cpu) {
543 int node = cpu_to_node(cpu);
544 struct page *page;
546 page = alloc_pages_node(node,
547 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
549 if (!page)
550 goto out_cleanup;
551 per_cpu(cpu_profile_hits, cpu)[1]
552 = (struct profile_hit *)page_address(page);
553 page = alloc_pages_node(node,
554 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
556 if (!page)
557 goto out_cleanup;
558 per_cpu(cpu_profile_hits, cpu)[0]
559 = (struct profile_hit *)page_address(page);
561 return 0;
562 out_cleanup:
563 prof_on = 0;
564 smp_mb();
565 on_each_cpu(profile_nop, NULL, 0, 1);
566 for_each_online_cpu(cpu) {
567 struct page *page;
569 if (per_cpu(cpu_profile_hits, cpu)[0]) {
570 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
571 per_cpu(cpu_profile_hits, cpu)[0] = NULL;
572 __free_page(page);
574 if (per_cpu(cpu_profile_hits, cpu)[1]) {
575 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
576 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
577 __free_page(page);
580 return -1;
582 #else
583 #define create_hash_tables() ({ 0; })
584 #endif
586 static int __init create_proc_profile(void)
588 struct proc_dir_entry *entry;
590 if (!prof_on)
591 return 0;
592 if (create_hash_tables())
593 return -1;
594 if (!(entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL)))
595 return 0;
596 entry->proc_fops = &proc_profile_operations;
597 entry->size = (1+prof_len) * sizeof(atomic_t);
598 hotcpu_notifier(profile_cpu_callback, 0);
599 return 0;
601 module_init(create_proc_profile);
602 #endif /* CONFIG_PROC_FS */