[SCSI] hpsa: remove superfluous sleeps around reset code
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / scsi / hpsa.c
blobca8ee9220db0a9ea64273dab1bf2690c7dd5f044
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68 HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76 "Allow hpsa driver to access unknown HP Smart Array hardware");
77 static int hpsa_simple_mode;
78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_simple_mode,
80 "Use 'simple mode' rather than 'performant mode'");
82 /* define the PCI info for the cards we can control */
83 static const struct pci_device_id hpsa_pci_device_id[] = {
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
99 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
100 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
101 {0,}
104 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
106 /* board_id = Subsystem Device ID & Vendor ID
107 * product = Marketing Name for the board
108 * access = Address of the struct of function pointers
110 static struct board_type products[] = {
111 {0x3241103C, "Smart Array P212", &SA5_access},
112 {0x3243103C, "Smart Array P410", &SA5_access},
113 {0x3245103C, "Smart Array P410i", &SA5_access},
114 {0x3247103C, "Smart Array P411", &SA5_access},
115 {0x3249103C, "Smart Array P812", &SA5_access},
116 {0x324a103C, "Smart Array P712m", &SA5_access},
117 {0x324b103C, "Smart Array P711m", &SA5_access},
118 {0x3350103C, "Smart Array", &SA5_access},
119 {0x3351103C, "Smart Array", &SA5_access},
120 {0x3352103C, "Smart Array", &SA5_access},
121 {0x3353103C, "Smart Array", &SA5_access},
122 {0x3354103C, "Smart Array", &SA5_access},
123 {0x3355103C, "Smart Array", &SA5_access},
124 {0x3356103C, "Smart Array", &SA5_access},
125 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
128 static int number_of_controllers;
130 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
131 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
132 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
133 static void start_io(struct ctlr_info *h);
135 #ifdef CONFIG_COMPAT
136 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
137 #endif
139 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
140 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
141 static struct CommandList *cmd_alloc(struct ctlr_info *h);
142 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
143 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
144 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
145 int cmd_type);
147 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
148 static void hpsa_scan_start(struct Scsi_Host *);
149 static int hpsa_scan_finished(struct Scsi_Host *sh,
150 unsigned long elapsed_time);
151 static int hpsa_change_queue_depth(struct scsi_device *sdev,
152 int qdepth, int reason);
154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
155 static int hpsa_slave_alloc(struct scsi_device *sdev);
156 static void hpsa_slave_destroy(struct scsi_device *sdev);
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static int check_for_unit_attention(struct ctlr_info *h,
160 struct CommandList *c);
161 static void check_ioctl_unit_attention(struct ctlr_info *h,
162 struct CommandList *c);
163 /* performant mode helper functions */
164 static void calc_bucket_map(int *bucket, int num_buckets,
165 int nsgs, int *bucket_map);
166 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
167 static inline u32 next_command(struct ctlr_info *h);
168 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
169 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
170 u64 *cfg_offset);
171 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
172 unsigned long *memory_bar);
173 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
174 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
175 void __iomem *vaddr, int wait_for_ready);
176 #define BOARD_NOT_READY 0
177 #define BOARD_READY 1
179 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
181 unsigned long *priv = shost_priv(sdev->host);
182 return (struct ctlr_info *) *priv;
185 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
187 unsigned long *priv = shost_priv(sh);
188 return (struct ctlr_info *) *priv;
191 static int check_for_unit_attention(struct ctlr_info *h,
192 struct CommandList *c)
194 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
195 return 0;
197 switch (c->err_info->SenseInfo[12]) {
198 case STATE_CHANGED:
199 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
200 "detected, command retried\n", h->ctlr);
201 break;
202 case LUN_FAILED:
203 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
204 "detected, action required\n", h->ctlr);
205 break;
206 case REPORT_LUNS_CHANGED:
207 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
208 "changed, action required\n", h->ctlr);
210 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
212 break;
213 case POWER_OR_RESET:
214 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
215 "or device reset detected\n", h->ctlr);
216 break;
217 case UNIT_ATTENTION_CLEARED:
218 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
219 "cleared by another initiator\n", h->ctlr);
220 break;
221 default:
222 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
223 "unit attention detected\n", h->ctlr);
224 break;
226 return 1;
229 static ssize_t host_store_rescan(struct device *dev,
230 struct device_attribute *attr,
231 const char *buf, size_t count)
233 struct ctlr_info *h;
234 struct Scsi_Host *shost = class_to_shost(dev);
235 h = shost_to_hba(shost);
236 hpsa_scan_start(h->scsi_host);
237 return count;
240 static ssize_t host_show_firmware_revision(struct device *dev,
241 struct device_attribute *attr, char *buf)
243 struct ctlr_info *h;
244 struct Scsi_Host *shost = class_to_shost(dev);
245 unsigned char *fwrev;
247 h = shost_to_hba(shost);
248 if (!h->hba_inquiry_data)
249 return 0;
250 fwrev = &h->hba_inquiry_data[32];
251 return snprintf(buf, 20, "%c%c%c%c\n",
252 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
255 static ssize_t host_show_commands_outstanding(struct device *dev,
256 struct device_attribute *attr, char *buf)
258 struct Scsi_Host *shost = class_to_shost(dev);
259 struct ctlr_info *h = shost_to_hba(shost);
261 return snprintf(buf, 20, "%d\n", h->commands_outstanding);
264 static ssize_t host_show_transport_mode(struct device *dev,
265 struct device_attribute *attr, char *buf)
267 struct ctlr_info *h;
268 struct Scsi_Host *shost = class_to_shost(dev);
270 h = shost_to_hba(shost);
271 return snprintf(buf, 20, "%s\n",
272 h->transMethod & CFGTBL_Trans_Performant ?
273 "performant" : "simple");
276 /* List of controllers which cannot be reset on kexec with reset_devices */
277 static u32 unresettable_controller[] = {
278 0x324a103C, /* Smart Array P712m */
279 0x324b103C, /* SmartArray P711m */
280 0x3223103C, /* Smart Array P800 */
281 0x3234103C, /* Smart Array P400 */
282 0x3235103C, /* Smart Array P400i */
283 0x3211103C, /* Smart Array E200i */
284 0x3212103C, /* Smart Array E200 */
285 0x3213103C, /* Smart Array E200i */
286 0x3214103C, /* Smart Array E200i */
287 0x3215103C, /* Smart Array E200i */
288 0x3237103C, /* Smart Array E500 */
289 0x323D103C, /* Smart Array P700m */
290 0x409C0E11, /* Smart Array 6400 */
291 0x409D0E11, /* Smart Array 6400 EM */
294 static int ctlr_is_resettable(struct ctlr_info *h)
296 int i;
298 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
299 if (unresettable_controller[i] == h->board_id)
300 return 0;
301 return 1;
304 static ssize_t host_show_resettable(struct device *dev,
305 struct device_attribute *attr, char *buf)
307 struct ctlr_info *h;
308 struct Scsi_Host *shost = class_to_shost(dev);
310 h = shost_to_hba(shost);
311 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h));
314 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
316 return (scsi3addr[3] & 0xC0) == 0x40;
319 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
320 "UNKNOWN"
322 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
324 static ssize_t raid_level_show(struct device *dev,
325 struct device_attribute *attr, char *buf)
327 ssize_t l = 0;
328 unsigned char rlevel;
329 struct ctlr_info *h;
330 struct scsi_device *sdev;
331 struct hpsa_scsi_dev_t *hdev;
332 unsigned long flags;
334 sdev = to_scsi_device(dev);
335 h = sdev_to_hba(sdev);
336 spin_lock_irqsave(&h->lock, flags);
337 hdev = sdev->hostdata;
338 if (!hdev) {
339 spin_unlock_irqrestore(&h->lock, flags);
340 return -ENODEV;
343 /* Is this even a logical drive? */
344 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
345 spin_unlock_irqrestore(&h->lock, flags);
346 l = snprintf(buf, PAGE_SIZE, "N/A\n");
347 return l;
350 rlevel = hdev->raid_level;
351 spin_unlock_irqrestore(&h->lock, flags);
352 if (rlevel > RAID_UNKNOWN)
353 rlevel = RAID_UNKNOWN;
354 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
355 return l;
358 static ssize_t lunid_show(struct device *dev,
359 struct device_attribute *attr, char *buf)
361 struct ctlr_info *h;
362 struct scsi_device *sdev;
363 struct hpsa_scsi_dev_t *hdev;
364 unsigned long flags;
365 unsigned char lunid[8];
367 sdev = to_scsi_device(dev);
368 h = sdev_to_hba(sdev);
369 spin_lock_irqsave(&h->lock, flags);
370 hdev = sdev->hostdata;
371 if (!hdev) {
372 spin_unlock_irqrestore(&h->lock, flags);
373 return -ENODEV;
375 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
376 spin_unlock_irqrestore(&h->lock, flags);
377 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
378 lunid[0], lunid[1], lunid[2], lunid[3],
379 lunid[4], lunid[5], lunid[6], lunid[7]);
382 static ssize_t unique_id_show(struct device *dev,
383 struct device_attribute *attr, char *buf)
385 struct ctlr_info *h;
386 struct scsi_device *sdev;
387 struct hpsa_scsi_dev_t *hdev;
388 unsigned long flags;
389 unsigned char sn[16];
391 sdev = to_scsi_device(dev);
392 h = sdev_to_hba(sdev);
393 spin_lock_irqsave(&h->lock, flags);
394 hdev = sdev->hostdata;
395 if (!hdev) {
396 spin_unlock_irqrestore(&h->lock, flags);
397 return -ENODEV;
399 memcpy(sn, hdev->device_id, sizeof(sn));
400 spin_unlock_irqrestore(&h->lock, flags);
401 return snprintf(buf, 16 * 2 + 2,
402 "%02X%02X%02X%02X%02X%02X%02X%02X"
403 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
404 sn[0], sn[1], sn[2], sn[3],
405 sn[4], sn[5], sn[6], sn[7],
406 sn[8], sn[9], sn[10], sn[11],
407 sn[12], sn[13], sn[14], sn[15]);
410 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
411 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
412 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
413 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
414 static DEVICE_ATTR(firmware_revision, S_IRUGO,
415 host_show_firmware_revision, NULL);
416 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
417 host_show_commands_outstanding, NULL);
418 static DEVICE_ATTR(transport_mode, S_IRUGO,
419 host_show_transport_mode, NULL);
420 static DEVICE_ATTR(resettable, S_IRUGO,
421 host_show_resettable, NULL);
423 static struct device_attribute *hpsa_sdev_attrs[] = {
424 &dev_attr_raid_level,
425 &dev_attr_lunid,
426 &dev_attr_unique_id,
427 NULL,
430 static struct device_attribute *hpsa_shost_attrs[] = {
431 &dev_attr_rescan,
432 &dev_attr_firmware_revision,
433 &dev_attr_commands_outstanding,
434 &dev_attr_transport_mode,
435 &dev_attr_resettable,
436 NULL,
439 static struct scsi_host_template hpsa_driver_template = {
440 .module = THIS_MODULE,
441 .name = "hpsa",
442 .proc_name = "hpsa",
443 .queuecommand = hpsa_scsi_queue_command,
444 .scan_start = hpsa_scan_start,
445 .scan_finished = hpsa_scan_finished,
446 .change_queue_depth = hpsa_change_queue_depth,
447 .this_id = -1,
448 .use_clustering = ENABLE_CLUSTERING,
449 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
450 .ioctl = hpsa_ioctl,
451 .slave_alloc = hpsa_slave_alloc,
452 .slave_destroy = hpsa_slave_destroy,
453 #ifdef CONFIG_COMPAT
454 .compat_ioctl = hpsa_compat_ioctl,
455 #endif
456 .sdev_attrs = hpsa_sdev_attrs,
457 .shost_attrs = hpsa_shost_attrs,
461 /* Enqueuing and dequeuing functions for cmdlists. */
462 static inline void addQ(struct list_head *list, struct CommandList *c)
464 list_add_tail(&c->list, list);
467 static inline u32 next_command(struct ctlr_info *h)
469 u32 a;
471 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
472 return h->access.command_completed(h);
474 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
475 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
476 (h->reply_pool_head)++;
477 h->commands_outstanding--;
478 } else {
479 a = FIFO_EMPTY;
481 /* Check for wraparound */
482 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
483 h->reply_pool_head = h->reply_pool;
484 h->reply_pool_wraparound ^= 1;
486 return a;
489 /* set_performant_mode: Modify the tag for cciss performant
490 * set bit 0 for pull model, bits 3-1 for block fetch
491 * register number
493 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
495 if (likely(h->transMethod & CFGTBL_Trans_Performant))
496 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
499 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
500 struct CommandList *c)
502 unsigned long flags;
504 set_performant_mode(h, c);
505 spin_lock_irqsave(&h->lock, flags);
506 addQ(&h->reqQ, c);
507 h->Qdepth++;
508 start_io(h);
509 spin_unlock_irqrestore(&h->lock, flags);
512 static inline void removeQ(struct CommandList *c)
514 if (WARN_ON(list_empty(&c->list)))
515 return;
516 list_del_init(&c->list);
519 static inline int is_hba_lunid(unsigned char scsi3addr[])
521 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
524 static inline int is_scsi_rev_5(struct ctlr_info *h)
526 if (!h->hba_inquiry_data)
527 return 0;
528 if ((h->hba_inquiry_data[2] & 0x07) == 5)
529 return 1;
530 return 0;
533 static int hpsa_find_target_lun(struct ctlr_info *h,
534 unsigned char scsi3addr[], int bus, int *target, int *lun)
536 /* finds an unused bus, target, lun for a new physical device
537 * assumes h->devlock is held
539 int i, found = 0;
540 DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
542 memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
544 for (i = 0; i < h->ndevices; i++) {
545 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
546 set_bit(h->dev[i]->target, lun_taken);
549 for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
550 if (!test_bit(i, lun_taken)) {
551 /* *bus = 1; */
552 *target = i;
553 *lun = 0;
554 found = 1;
555 break;
558 return !found;
561 /* Add an entry into h->dev[] array. */
562 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
563 struct hpsa_scsi_dev_t *device,
564 struct hpsa_scsi_dev_t *added[], int *nadded)
566 /* assumes h->devlock is held */
567 int n = h->ndevices;
568 int i;
569 unsigned char addr1[8], addr2[8];
570 struct hpsa_scsi_dev_t *sd;
572 if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
573 dev_err(&h->pdev->dev, "too many devices, some will be "
574 "inaccessible.\n");
575 return -1;
578 /* physical devices do not have lun or target assigned until now. */
579 if (device->lun != -1)
580 /* Logical device, lun is already assigned. */
581 goto lun_assigned;
583 /* If this device a non-zero lun of a multi-lun device
584 * byte 4 of the 8-byte LUN addr will contain the logical
585 * unit no, zero otherise.
587 if (device->scsi3addr[4] == 0) {
588 /* This is not a non-zero lun of a multi-lun device */
589 if (hpsa_find_target_lun(h, device->scsi3addr,
590 device->bus, &device->target, &device->lun) != 0)
591 return -1;
592 goto lun_assigned;
595 /* This is a non-zero lun of a multi-lun device.
596 * Search through our list and find the device which
597 * has the same 8 byte LUN address, excepting byte 4.
598 * Assign the same bus and target for this new LUN.
599 * Use the logical unit number from the firmware.
601 memcpy(addr1, device->scsi3addr, 8);
602 addr1[4] = 0;
603 for (i = 0; i < n; i++) {
604 sd = h->dev[i];
605 memcpy(addr2, sd->scsi3addr, 8);
606 addr2[4] = 0;
607 /* differ only in byte 4? */
608 if (memcmp(addr1, addr2, 8) == 0) {
609 device->bus = sd->bus;
610 device->target = sd->target;
611 device->lun = device->scsi3addr[4];
612 break;
615 if (device->lun == -1) {
616 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
617 " suspect firmware bug or unsupported hardware "
618 "configuration.\n");
619 return -1;
622 lun_assigned:
624 h->dev[n] = device;
625 h->ndevices++;
626 added[*nadded] = device;
627 (*nadded)++;
629 /* initially, (before registering with scsi layer) we don't
630 * know our hostno and we don't want to print anything first
631 * time anyway (the scsi layer's inquiries will show that info)
633 /* if (hostno != -1) */
634 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
635 scsi_device_type(device->devtype), hostno,
636 device->bus, device->target, device->lun);
637 return 0;
640 /* Replace an entry from h->dev[] array. */
641 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
642 int entry, struct hpsa_scsi_dev_t *new_entry,
643 struct hpsa_scsi_dev_t *added[], int *nadded,
644 struct hpsa_scsi_dev_t *removed[], int *nremoved)
646 /* assumes h->devlock is held */
647 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
648 removed[*nremoved] = h->dev[entry];
649 (*nremoved)++;
650 h->dev[entry] = new_entry;
651 added[*nadded] = new_entry;
652 (*nadded)++;
653 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
654 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
655 new_entry->target, new_entry->lun);
658 /* Remove an entry from h->dev[] array. */
659 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
660 struct hpsa_scsi_dev_t *removed[], int *nremoved)
662 /* assumes h->devlock is held */
663 int i;
664 struct hpsa_scsi_dev_t *sd;
666 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
668 sd = h->dev[entry];
669 removed[*nremoved] = h->dev[entry];
670 (*nremoved)++;
672 for (i = entry; i < h->ndevices-1; i++)
673 h->dev[i] = h->dev[i+1];
674 h->ndevices--;
675 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
676 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
677 sd->lun);
680 #define SCSI3ADDR_EQ(a, b) ( \
681 (a)[7] == (b)[7] && \
682 (a)[6] == (b)[6] && \
683 (a)[5] == (b)[5] && \
684 (a)[4] == (b)[4] && \
685 (a)[3] == (b)[3] && \
686 (a)[2] == (b)[2] && \
687 (a)[1] == (b)[1] && \
688 (a)[0] == (b)[0])
690 static void fixup_botched_add(struct ctlr_info *h,
691 struct hpsa_scsi_dev_t *added)
693 /* called when scsi_add_device fails in order to re-adjust
694 * h->dev[] to match the mid layer's view.
696 unsigned long flags;
697 int i, j;
699 spin_lock_irqsave(&h->lock, flags);
700 for (i = 0; i < h->ndevices; i++) {
701 if (h->dev[i] == added) {
702 for (j = i; j < h->ndevices-1; j++)
703 h->dev[j] = h->dev[j+1];
704 h->ndevices--;
705 break;
708 spin_unlock_irqrestore(&h->lock, flags);
709 kfree(added);
712 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
713 struct hpsa_scsi_dev_t *dev2)
715 /* we compare everything except lun and target as these
716 * are not yet assigned. Compare parts likely
717 * to differ first
719 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
720 sizeof(dev1->scsi3addr)) != 0)
721 return 0;
722 if (memcmp(dev1->device_id, dev2->device_id,
723 sizeof(dev1->device_id)) != 0)
724 return 0;
725 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
726 return 0;
727 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
728 return 0;
729 if (dev1->devtype != dev2->devtype)
730 return 0;
731 if (dev1->bus != dev2->bus)
732 return 0;
733 return 1;
736 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
737 * and return needle location in *index. If scsi3addr matches, but not
738 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
739 * location in *index. If needle not found, return DEVICE_NOT_FOUND.
741 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
742 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
743 int *index)
745 int i;
746 #define DEVICE_NOT_FOUND 0
747 #define DEVICE_CHANGED 1
748 #define DEVICE_SAME 2
749 for (i = 0; i < haystack_size; i++) {
750 if (haystack[i] == NULL) /* previously removed. */
751 continue;
752 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
753 *index = i;
754 if (device_is_the_same(needle, haystack[i]))
755 return DEVICE_SAME;
756 else
757 return DEVICE_CHANGED;
760 *index = -1;
761 return DEVICE_NOT_FOUND;
764 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
765 struct hpsa_scsi_dev_t *sd[], int nsds)
767 /* sd contains scsi3 addresses and devtypes, and inquiry
768 * data. This function takes what's in sd to be the current
769 * reality and updates h->dev[] to reflect that reality.
771 int i, entry, device_change, changes = 0;
772 struct hpsa_scsi_dev_t *csd;
773 unsigned long flags;
774 struct hpsa_scsi_dev_t **added, **removed;
775 int nadded, nremoved;
776 struct Scsi_Host *sh = NULL;
778 added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
779 GFP_KERNEL);
780 removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
781 GFP_KERNEL);
783 if (!added || !removed) {
784 dev_warn(&h->pdev->dev, "out of memory in "
785 "adjust_hpsa_scsi_table\n");
786 goto free_and_out;
789 spin_lock_irqsave(&h->devlock, flags);
791 /* find any devices in h->dev[] that are not in
792 * sd[] and remove them from h->dev[], and for any
793 * devices which have changed, remove the old device
794 * info and add the new device info.
796 i = 0;
797 nremoved = 0;
798 nadded = 0;
799 while (i < h->ndevices) {
800 csd = h->dev[i];
801 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
802 if (device_change == DEVICE_NOT_FOUND) {
803 changes++;
804 hpsa_scsi_remove_entry(h, hostno, i,
805 removed, &nremoved);
806 continue; /* remove ^^^, hence i not incremented */
807 } else if (device_change == DEVICE_CHANGED) {
808 changes++;
809 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
810 added, &nadded, removed, &nremoved);
811 /* Set it to NULL to prevent it from being freed
812 * at the bottom of hpsa_update_scsi_devices()
814 sd[entry] = NULL;
816 i++;
819 /* Now, make sure every device listed in sd[] is also
820 * listed in h->dev[], adding them if they aren't found
823 for (i = 0; i < nsds; i++) {
824 if (!sd[i]) /* if already added above. */
825 continue;
826 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
827 h->ndevices, &entry);
828 if (device_change == DEVICE_NOT_FOUND) {
829 changes++;
830 if (hpsa_scsi_add_entry(h, hostno, sd[i],
831 added, &nadded) != 0)
832 break;
833 sd[i] = NULL; /* prevent from being freed later. */
834 } else if (device_change == DEVICE_CHANGED) {
835 /* should never happen... */
836 changes++;
837 dev_warn(&h->pdev->dev,
838 "device unexpectedly changed.\n");
839 /* but if it does happen, we just ignore that device */
842 spin_unlock_irqrestore(&h->devlock, flags);
844 /* Don't notify scsi mid layer of any changes the first time through
845 * (or if there are no changes) scsi_scan_host will do it later the
846 * first time through.
848 if (hostno == -1 || !changes)
849 goto free_and_out;
851 sh = h->scsi_host;
852 /* Notify scsi mid layer of any removed devices */
853 for (i = 0; i < nremoved; i++) {
854 struct scsi_device *sdev =
855 scsi_device_lookup(sh, removed[i]->bus,
856 removed[i]->target, removed[i]->lun);
857 if (sdev != NULL) {
858 scsi_remove_device(sdev);
859 scsi_device_put(sdev);
860 } else {
861 /* We don't expect to get here.
862 * future cmds to this device will get selection
863 * timeout as if the device was gone.
865 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
866 " for removal.", hostno, removed[i]->bus,
867 removed[i]->target, removed[i]->lun);
869 kfree(removed[i]);
870 removed[i] = NULL;
873 /* Notify scsi mid layer of any added devices */
874 for (i = 0; i < nadded; i++) {
875 if (scsi_add_device(sh, added[i]->bus,
876 added[i]->target, added[i]->lun) == 0)
877 continue;
878 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
879 "device not added.\n", hostno, added[i]->bus,
880 added[i]->target, added[i]->lun);
881 /* now we have to remove it from h->dev,
882 * since it didn't get added to scsi mid layer
884 fixup_botched_add(h, added[i]);
887 free_and_out:
888 kfree(added);
889 kfree(removed);
893 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
894 * Assume's h->devlock is held.
896 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
897 int bus, int target, int lun)
899 int i;
900 struct hpsa_scsi_dev_t *sd;
902 for (i = 0; i < h->ndevices; i++) {
903 sd = h->dev[i];
904 if (sd->bus == bus && sd->target == target && sd->lun == lun)
905 return sd;
907 return NULL;
910 /* link sdev->hostdata to our per-device structure. */
911 static int hpsa_slave_alloc(struct scsi_device *sdev)
913 struct hpsa_scsi_dev_t *sd;
914 unsigned long flags;
915 struct ctlr_info *h;
917 h = sdev_to_hba(sdev);
918 spin_lock_irqsave(&h->devlock, flags);
919 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
920 sdev_id(sdev), sdev->lun);
921 if (sd != NULL)
922 sdev->hostdata = sd;
923 spin_unlock_irqrestore(&h->devlock, flags);
924 return 0;
927 static void hpsa_slave_destroy(struct scsi_device *sdev)
929 /* nothing to do. */
932 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
934 int i;
936 if (!h->cmd_sg_list)
937 return;
938 for (i = 0; i < h->nr_cmds; i++) {
939 kfree(h->cmd_sg_list[i]);
940 h->cmd_sg_list[i] = NULL;
942 kfree(h->cmd_sg_list);
943 h->cmd_sg_list = NULL;
946 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
948 int i;
950 if (h->chainsize <= 0)
951 return 0;
953 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
954 GFP_KERNEL);
955 if (!h->cmd_sg_list)
956 return -ENOMEM;
957 for (i = 0; i < h->nr_cmds; i++) {
958 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
959 h->chainsize, GFP_KERNEL);
960 if (!h->cmd_sg_list[i])
961 goto clean;
963 return 0;
965 clean:
966 hpsa_free_sg_chain_blocks(h);
967 return -ENOMEM;
970 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
971 struct CommandList *c)
973 struct SGDescriptor *chain_sg, *chain_block;
974 u64 temp64;
976 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
977 chain_block = h->cmd_sg_list[c->cmdindex];
978 chain_sg->Ext = HPSA_SG_CHAIN;
979 chain_sg->Len = sizeof(*chain_sg) *
980 (c->Header.SGTotal - h->max_cmd_sg_entries);
981 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
982 PCI_DMA_TODEVICE);
983 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
984 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
987 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
988 struct CommandList *c)
990 struct SGDescriptor *chain_sg;
991 union u64bit temp64;
993 if (c->Header.SGTotal <= h->max_cmd_sg_entries)
994 return;
996 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
997 temp64.val32.lower = chain_sg->Addr.lower;
998 temp64.val32.upper = chain_sg->Addr.upper;
999 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1002 static void complete_scsi_command(struct CommandList *cp)
1004 struct scsi_cmnd *cmd;
1005 struct ctlr_info *h;
1006 struct ErrorInfo *ei;
1008 unsigned char sense_key;
1009 unsigned char asc; /* additional sense code */
1010 unsigned char ascq; /* additional sense code qualifier */
1012 ei = cp->err_info;
1013 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1014 h = cp->h;
1016 scsi_dma_unmap(cmd); /* undo the DMA mappings */
1017 if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1018 hpsa_unmap_sg_chain_block(h, cp);
1020 cmd->result = (DID_OK << 16); /* host byte */
1021 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1022 cmd->result |= ei->ScsiStatus;
1024 /* copy the sense data whether we need to or not. */
1025 memcpy(cmd->sense_buffer, ei->SenseInfo,
1026 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
1027 SCSI_SENSE_BUFFERSIZE :
1028 ei->SenseLen);
1029 scsi_set_resid(cmd, ei->ResidualCnt);
1031 if (ei->CommandStatus == 0) {
1032 cmd->scsi_done(cmd);
1033 cmd_free(h, cp);
1034 return;
1037 /* an error has occurred */
1038 switch (ei->CommandStatus) {
1040 case CMD_TARGET_STATUS:
1041 if (ei->ScsiStatus) {
1042 /* Get sense key */
1043 sense_key = 0xf & ei->SenseInfo[2];
1044 /* Get additional sense code */
1045 asc = ei->SenseInfo[12];
1046 /* Get addition sense code qualifier */
1047 ascq = ei->SenseInfo[13];
1050 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1051 if (check_for_unit_attention(h, cp)) {
1052 cmd->result = DID_SOFT_ERROR << 16;
1053 break;
1055 if (sense_key == ILLEGAL_REQUEST) {
1057 * SCSI REPORT_LUNS is commonly unsupported on
1058 * Smart Array. Suppress noisy complaint.
1060 if (cp->Request.CDB[0] == REPORT_LUNS)
1061 break;
1063 /* If ASC/ASCQ indicate Logical Unit
1064 * Not Supported condition,
1066 if ((asc == 0x25) && (ascq == 0x0)) {
1067 dev_warn(&h->pdev->dev, "cp %p "
1068 "has check condition\n", cp);
1069 break;
1073 if (sense_key == NOT_READY) {
1074 /* If Sense is Not Ready, Logical Unit
1075 * Not ready, Manual Intervention
1076 * required
1078 if ((asc == 0x04) && (ascq == 0x03)) {
1079 dev_warn(&h->pdev->dev, "cp %p "
1080 "has check condition: unit "
1081 "not ready, manual "
1082 "intervention required\n", cp);
1083 break;
1086 if (sense_key == ABORTED_COMMAND) {
1087 /* Aborted command is retryable */
1088 dev_warn(&h->pdev->dev, "cp %p "
1089 "has check condition: aborted command: "
1090 "ASC: 0x%x, ASCQ: 0x%x\n",
1091 cp, asc, ascq);
1092 cmd->result = DID_SOFT_ERROR << 16;
1093 break;
1095 /* Must be some other type of check condition */
1096 dev_warn(&h->pdev->dev, "cp %p has check condition: "
1097 "unknown type: "
1098 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1099 "Returning result: 0x%x, "
1100 "cmd=[%02x %02x %02x %02x %02x "
1101 "%02x %02x %02x %02x %02x %02x "
1102 "%02x %02x %02x %02x %02x]\n",
1103 cp, sense_key, asc, ascq,
1104 cmd->result,
1105 cmd->cmnd[0], cmd->cmnd[1],
1106 cmd->cmnd[2], cmd->cmnd[3],
1107 cmd->cmnd[4], cmd->cmnd[5],
1108 cmd->cmnd[6], cmd->cmnd[7],
1109 cmd->cmnd[8], cmd->cmnd[9],
1110 cmd->cmnd[10], cmd->cmnd[11],
1111 cmd->cmnd[12], cmd->cmnd[13],
1112 cmd->cmnd[14], cmd->cmnd[15]);
1113 break;
1117 /* Problem was not a check condition
1118 * Pass it up to the upper layers...
1120 if (ei->ScsiStatus) {
1121 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1122 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1123 "Returning result: 0x%x\n",
1124 cp, ei->ScsiStatus,
1125 sense_key, asc, ascq,
1126 cmd->result);
1127 } else { /* scsi status is zero??? How??? */
1128 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1129 "Returning no connection.\n", cp),
1131 /* Ordinarily, this case should never happen,
1132 * but there is a bug in some released firmware
1133 * revisions that allows it to happen if, for
1134 * example, a 4100 backplane loses power and
1135 * the tape drive is in it. We assume that
1136 * it's a fatal error of some kind because we
1137 * can't show that it wasn't. We will make it
1138 * look like selection timeout since that is
1139 * the most common reason for this to occur,
1140 * and it's severe enough.
1143 cmd->result = DID_NO_CONNECT << 16;
1145 break;
1147 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1148 break;
1149 case CMD_DATA_OVERRUN:
1150 dev_warn(&h->pdev->dev, "cp %p has"
1151 " completed with data overrun "
1152 "reported\n", cp);
1153 break;
1154 case CMD_INVALID: {
1155 /* print_bytes(cp, sizeof(*cp), 1, 0);
1156 print_cmd(cp); */
1157 /* We get CMD_INVALID if you address a non-existent device
1158 * instead of a selection timeout (no response). You will
1159 * see this if you yank out a drive, then try to access it.
1160 * This is kind of a shame because it means that any other
1161 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1162 * missing target. */
1163 cmd->result = DID_NO_CONNECT << 16;
1165 break;
1166 case CMD_PROTOCOL_ERR:
1167 dev_warn(&h->pdev->dev, "cp %p has "
1168 "protocol error \n", cp);
1169 break;
1170 case CMD_HARDWARE_ERR:
1171 cmd->result = DID_ERROR << 16;
1172 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1173 break;
1174 case CMD_CONNECTION_LOST:
1175 cmd->result = DID_ERROR << 16;
1176 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1177 break;
1178 case CMD_ABORTED:
1179 cmd->result = DID_ABORT << 16;
1180 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1181 cp, ei->ScsiStatus);
1182 break;
1183 case CMD_ABORT_FAILED:
1184 cmd->result = DID_ERROR << 16;
1185 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1186 break;
1187 case CMD_UNSOLICITED_ABORT:
1188 cmd->result = DID_RESET << 16;
1189 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1190 "abort\n", cp);
1191 break;
1192 case CMD_TIMEOUT:
1193 cmd->result = DID_TIME_OUT << 16;
1194 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1195 break;
1196 case CMD_UNABORTABLE:
1197 cmd->result = DID_ERROR << 16;
1198 dev_warn(&h->pdev->dev, "Command unabortable\n");
1199 break;
1200 default:
1201 cmd->result = DID_ERROR << 16;
1202 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1203 cp, ei->CommandStatus);
1205 cmd->scsi_done(cmd);
1206 cmd_free(h, cp);
1209 static int hpsa_scsi_detect(struct ctlr_info *h)
1211 struct Scsi_Host *sh;
1212 int error;
1214 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1215 if (sh == NULL)
1216 goto fail;
1218 sh->io_port = 0;
1219 sh->n_io_port = 0;
1220 sh->this_id = -1;
1221 sh->max_channel = 3;
1222 sh->max_cmd_len = MAX_COMMAND_SIZE;
1223 sh->max_lun = HPSA_MAX_LUN;
1224 sh->max_id = HPSA_MAX_LUN;
1225 sh->can_queue = h->nr_cmds;
1226 sh->cmd_per_lun = h->nr_cmds;
1227 sh->sg_tablesize = h->maxsgentries;
1228 h->scsi_host = sh;
1229 sh->hostdata[0] = (unsigned long) h;
1230 sh->irq = h->intr[h->intr_mode];
1231 sh->unique_id = sh->irq;
1232 error = scsi_add_host(sh, &h->pdev->dev);
1233 if (error)
1234 goto fail_host_put;
1235 scsi_scan_host(sh);
1236 return 0;
1238 fail_host_put:
1239 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1240 " failed for controller %d\n", h->ctlr);
1241 scsi_host_put(sh);
1242 return error;
1243 fail:
1244 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1245 " failed for controller %d\n", h->ctlr);
1246 return -ENOMEM;
1249 static void hpsa_pci_unmap(struct pci_dev *pdev,
1250 struct CommandList *c, int sg_used, int data_direction)
1252 int i;
1253 union u64bit addr64;
1255 for (i = 0; i < sg_used; i++) {
1256 addr64.val32.lower = c->SG[i].Addr.lower;
1257 addr64.val32.upper = c->SG[i].Addr.upper;
1258 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1259 data_direction);
1263 static void hpsa_map_one(struct pci_dev *pdev,
1264 struct CommandList *cp,
1265 unsigned char *buf,
1266 size_t buflen,
1267 int data_direction)
1269 u64 addr64;
1271 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1272 cp->Header.SGList = 0;
1273 cp->Header.SGTotal = 0;
1274 return;
1277 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1278 cp->SG[0].Addr.lower =
1279 (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1280 cp->SG[0].Addr.upper =
1281 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1282 cp->SG[0].Len = buflen;
1283 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */
1284 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1287 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1288 struct CommandList *c)
1290 DECLARE_COMPLETION_ONSTACK(wait);
1292 c->waiting = &wait;
1293 enqueue_cmd_and_start_io(h, c);
1294 wait_for_completion(&wait);
1297 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1298 struct CommandList *c, int data_direction)
1300 int retry_count = 0;
1302 do {
1303 memset(c->err_info, 0, sizeof(c->err_info));
1304 hpsa_scsi_do_simple_cmd_core(h, c);
1305 retry_count++;
1306 } while (check_for_unit_attention(h, c) && retry_count <= 3);
1307 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1310 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1312 struct ErrorInfo *ei;
1313 struct device *d = &cp->h->pdev->dev;
1315 ei = cp->err_info;
1316 switch (ei->CommandStatus) {
1317 case CMD_TARGET_STATUS:
1318 dev_warn(d, "cmd %p has completed with errors\n", cp);
1319 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1320 ei->ScsiStatus);
1321 if (ei->ScsiStatus == 0)
1322 dev_warn(d, "SCSI status is abnormally zero. "
1323 "(probably indicates selection timeout "
1324 "reported incorrectly due to a known "
1325 "firmware bug, circa July, 2001.)\n");
1326 break;
1327 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1328 dev_info(d, "UNDERRUN\n");
1329 break;
1330 case CMD_DATA_OVERRUN:
1331 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1332 break;
1333 case CMD_INVALID: {
1334 /* controller unfortunately reports SCSI passthru's
1335 * to non-existent targets as invalid commands.
1337 dev_warn(d, "cp %p is reported invalid (probably means "
1338 "target device no longer present)\n", cp);
1339 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1340 print_cmd(cp); */
1342 break;
1343 case CMD_PROTOCOL_ERR:
1344 dev_warn(d, "cp %p has protocol error \n", cp);
1345 break;
1346 case CMD_HARDWARE_ERR:
1347 /* cmd->result = DID_ERROR << 16; */
1348 dev_warn(d, "cp %p had hardware error\n", cp);
1349 break;
1350 case CMD_CONNECTION_LOST:
1351 dev_warn(d, "cp %p had connection lost\n", cp);
1352 break;
1353 case CMD_ABORTED:
1354 dev_warn(d, "cp %p was aborted\n", cp);
1355 break;
1356 case CMD_ABORT_FAILED:
1357 dev_warn(d, "cp %p reports abort failed\n", cp);
1358 break;
1359 case CMD_UNSOLICITED_ABORT:
1360 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1361 break;
1362 case CMD_TIMEOUT:
1363 dev_warn(d, "cp %p timed out\n", cp);
1364 break;
1365 case CMD_UNABORTABLE:
1366 dev_warn(d, "Command unabortable\n");
1367 break;
1368 default:
1369 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1370 ei->CommandStatus);
1374 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1375 unsigned char page, unsigned char *buf,
1376 unsigned char bufsize)
1378 int rc = IO_OK;
1379 struct CommandList *c;
1380 struct ErrorInfo *ei;
1382 c = cmd_special_alloc(h);
1384 if (c == NULL) { /* trouble... */
1385 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1386 return -ENOMEM;
1389 fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1390 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1391 ei = c->err_info;
1392 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1393 hpsa_scsi_interpret_error(c);
1394 rc = -1;
1396 cmd_special_free(h, c);
1397 return rc;
1400 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1402 int rc = IO_OK;
1403 struct CommandList *c;
1404 struct ErrorInfo *ei;
1406 c = cmd_special_alloc(h);
1408 if (c == NULL) { /* trouble... */
1409 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1410 return -ENOMEM;
1413 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1414 hpsa_scsi_do_simple_cmd_core(h, c);
1415 /* no unmap needed here because no data xfer. */
1417 ei = c->err_info;
1418 if (ei->CommandStatus != 0) {
1419 hpsa_scsi_interpret_error(c);
1420 rc = -1;
1422 cmd_special_free(h, c);
1423 return rc;
1426 static void hpsa_get_raid_level(struct ctlr_info *h,
1427 unsigned char *scsi3addr, unsigned char *raid_level)
1429 int rc;
1430 unsigned char *buf;
1432 *raid_level = RAID_UNKNOWN;
1433 buf = kzalloc(64, GFP_KERNEL);
1434 if (!buf)
1435 return;
1436 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1437 if (rc == 0)
1438 *raid_level = buf[8];
1439 if (*raid_level > RAID_UNKNOWN)
1440 *raid_level = RAID_UNKNOWN;
1441 kfree(buf);
1442 return;
1445 /* Get the device id from inquiry page 0x83 */
1446 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1447 unsigned char *device_id, int buflen)
1449 int rc;
1450 unsigned char *buf;
1452 if (buflen > 16)
1453 buflen = 16;
1454 buf = kzalloc(64, GFP_KERNEL);
1455 if (!buf)
1456 return -1;
1457 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1458 if (rc == 0)
1459 memcpy(device_id, &buf[8], buflen);
1460 kfree(buf);
1461 return rc != 0;
1464 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1465 struct ReportLUNdata *buf, int bufsize,
1466 int extended_response)
1468 int rc = IO_OK;
1469 struct CommandList *c;
1470 unsigned char scsi3addr[8];
1471 struct ErrorInfo *ei;
1473 c = cmd_special_alloc(h);
1474 if (c == NULL) { /* trouble... */
1475 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1476 return -1;
1478 /* address the controller */
1479 memset(scsi3addr, 0, sizeof(scsi3addr));
1480 fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1481 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1482 if (extended_response)
1483 c->Request.CDB[1] = extended_response;
1484 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1485 ei = c->err_info;
1486 if (ei->CommandStatus != 0 &&
1487 ei->CommandStatus != CMD_DATA_UNDERRUN) {
1488 hpsa_scsi_interpret_error(c);
1489 rc = -1;
1491 cmd_special_free(h, c);
1492 return rc;
1495 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1496 struct ReportLUNdata *buf,
1497 int bufsize, int extended_response)
1499 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1502 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1503 struct ReportLUNdata *buf, int bufsize)
1505 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1508 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1509 int bus, int target, int lun)
1511 device->bus = bus;
1512 device->target = target;
1513 device->lun = lun;
1516 static int hpsa_update_device_info(struct ctlr_info *h,
1517 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1519 #define OBDR_TAPE_INQ_SIZE 49
1520 unsigned char *inq_buff;
1522 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1523 if (!inq_buff)
1524 goto bail_out;
1526 /* Do an inquiry to the device to see what it is. */
1527 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1528 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1529 /* Inquiry failed (msg printed already) */
1530 dev_err(&h->pdev->dev,
1531 "hpsa_update_device_info: inquiry failed\n");
1532 goto bail_out;
1535 this_device->devtype = (inq_buff[0] & 0x1f);
1536 memcpy(this_device->scsi3addr, scsi3addr, 8);
1537 memcpy(this_device->vendor, &inq_buff[8],
1538 sizeof(this_device->vendor));
1539 memcpy(this_device->model, &inq_buff[16],
1540 sizeof(this_device->model));
1541 memset(this_device->device_id, 0,
1542 sizeof(this_device->device_id));
1543 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1544 sizeof(this_device->device_id));
1546 if (this_device->devtype == TYPE_DISK &&
1547 is_logical_dev_addr_mode(scsi3addr))
1548 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1549 else
1550 this_device->raid_level = RAID_UNKNOWN;
1552 kfree(inq_buff);
1553 return 0;
1555 bail_out:
1556 kfree(inq_buff);
1557 return 1;
1560 static unsigned char *msa2xxx_model[] = {
1561 "MSA2012",
1562 "MSA2024",
1563 "MSA2312",
1564 "MSA2324",
1565 NULL,
1568 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1570 int i;
1572 for (i = 0; msa2xxx_model[i]; i++)
1573 if (strncmp(device->model, msa2xxx_model[i],
1574 strlen(msa2xxx_model[i])) == 0)
1575 return 1;
1576 return 0;
1579 /* Helper function to assign bus, target, lun mapping of devices.
1580 * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1581 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1582 * Logical drive target and lun are assigned at this time, but
1583 * physical device lun and target assignment are deferred (assigned
1584 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1586 static void figure_bus_target_lun(struct ctlr_info *h,
1587 u8 *lunaddrbytes, int *bus, int *target, int *lun,
1588 struct hpsa_scsi_dev_t *device)
1590 u32 lunid;
1592 if (is_logical_dev_addr_mode(lunaddrbytes)) {
1593 /* logical device */
1594 if (unlikely(is_scsi_rev_5(h))) {
1595 /* p1210m, logical drives lun assignments
1596 * match SCSI REPORT LUNS data.
1598 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1599 *bus = 0;
1600 *target = 0;
1601 *lun = (lunid & 0x3fff) + 1;
1602 } else {
1603 /* not p1210m... */
1604 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1605 if (is_msa2xxx(h, device)) {
1606 /* msa2xxx way, put logicals on bus 1
1607 * and match target/lun numbers box
1608 * reports.
1610 *bus = 1;
1611 *target = (lunid >> 16) & 0x3fff;
1612 *lun = lunid & 0x00ff;
1613 } else {
1614 /* Traditional smart array way. */
1615 *bus = 0;
1616 *lun = 0;
1617 *target = lunid & 0x3fff;
1620 } else {
1621 /* physical device */
1622 if (is_hba_lunid(lunaddrbytes))
1623 if (unlikely(is_scsi_rev_5(h))) {
1624 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1625 *target = 0;
1626 *lun = 0;
1627 return;
1628 } else
1629 *bus = 3; /* traditional smartarray */
1630 else
1631 *bus = 2; /* physical disk */
1632 *target = -1;
1633 *lun = -1; /* we will fill these in later. */
1638 * If there is no lun 0 on a target, linux won't find any devices.
1639 * For the MSA2xxx boxes, we have to manually detect the enclosure
1640 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1641 * it for some reason. *tmpdevice is the target we're adding,
1642 * this_device is a pointer into the current element of currentsd[]
1643 * that we're building up in update_scsi_devices(), below.
1644 * lunzerobits is a bitmap that tracks which targets already have a
1645 * lun 0 assigned.
1646 * Returns 1 if an enclosure was added, 0 if not.
1648 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1649 struct hpsa_scsi_dev_t *tmpdevice,
1650 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1651 int bus, int target, int lun, unsigned long lunzerobits[],
1652 int *nmsa2xxx_enclosures)
1654 unsigned char scsi3addr[8];
1656 if (test_bit(target, lunzerobits))
1657 return 0; /* There is already a lun 0 on this target. */
1659 if (!is_logical_dev_addr_mode(lunaddrbytes))
1660 return 0; /* It's the logical targets that may lack lun 0. */
1662 if (!is_msa2xxx(h, tmpdevice))
1663 return 0; /* It's only the MSA2xxx that have this problem. */
1665 if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1666 return 0;
1668 memset(scsi3addr, 0, 8);
1669 scsi3addr[3] = target;
1670 if (is_hba_lunid(scsi3addr))
1671 return 0; /* Don't add the RAID controller here. */
1673 if (is_scsi_rev_5(h))
1674 return 0; /* p1210m doesn't need to do this. */
1676 #define MAX_MSA2XXX_ENCLOSURES 32
1677 if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1678 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1679 "enclosures exceeded. Check your hardware "
1680 "configuration.");
1681 return 0;
1684 if (hpsa_update_device_info(h, scsi3addr, this_device))
1685 return 0;
1686 (*nmsa2xxx_enclosures)++;
1687 hpsa_set_bus_target_lun(this_device, bus, target, 0);
1688 set_bit(target, lunzerobits);
1689 return 1;
1693 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
1694 * logdev. The number of luns in physdev and logdev are returned in
1695 * *nphysicals and *nlogicals, respectively.
1696 * Returns 0 on success, -1 otherwise.
1698 static int hpsa_gather_lun_info(struct ctlr_info *h,
1699 int reportlunsize,
1700 struct ReportLUNdata *physdev, u32 *nphysicals,
1701 struct ReportLUNdata *logdev, u32 *nlogicals)
1703 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1704 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1705 return -1;
1707 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1708 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1709 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1710 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1711 *nphysicals - HPSA_MAX_PHYS_LUN);
1712 *nphysicals = HPSA_MAX_PHYS_LUN;
1714 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1715 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1716 return -1;
1718 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1719 /* Reject Logicals in excess of our max capability. */
1720 if (*nlogicals > HPSA_MAX_LUN) {
1721 dev_warn(&h->pdev->dev,
1722 "maximum logical LUNs (%d) exceeded. "
1723 "%d LUNs ignored.\n", HPSA_MAX_LUN,
1724 *nlogicals - HPSA_MAX_LUN);
1725 *nlogicals = HPSA_MAX_LUN;
1727 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1728 dev_warn(&h->pdev->dev,
1729 "maximum logical + physical LUNs (%d) exceeded. "
1730 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1731 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1732 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1734 return 0;
1737 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1738 int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1739 struct ReportLUNdata *logdev_list)
1741 /* Helper function, figure out where the LUN ID info is coming from
1742 * given index i, lists of physical and logical devices, where in
1743 * the list the raid controller is supposed to appear (first or last)
1746 int logicals_start = nphysicals + (raid_ctlr_position == 0);
1747 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1749 if (i == raid_ctlr_position)
1750 return RAID_CTLR_LUNID;
1752 if (i < logicals_start)
1753 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1755 if (i < last_device)
1756 return &logdev_list->LUN[i - nphysicals -
1757 (raid_ctlr_position == 0)][0];
1758 BUG();
1759 return NULL;
1762 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1764 /* the idea here is we could get notified
1765 * that some devices have changed, so we do a report
1766 * physical luns and report logical luns cmd, and adjust
1767 * our list of devices accordingly.
1769 * The scsi3addr's of devices won't change so long as the
1770 * adapter is not reset. That means we can rescan and
1771 * tell which devices we already know about, vs. new
1772 * devices, vs. disappearing devices.
1774 struct ReportLUNdata *physdev_list = NULL;
1775 struct ReportLUNdata *logdev_list = NULL;
1776 unsigned char *inq_buff = NULL;
1777 u32 nphysicals = 0;
1778 u32 nlogicals = 0;
1779 u32 ndev_allocated = 0;
1780 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1781 int ncurrent = 0;
1782 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1783 int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1784 int bus, target, lun;
1785 int raid_ctlr_position;
1786 DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1788 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1789 GFP_KERNEL);
1790 physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1791 logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1792 inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1793 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1795 if (!currentsd || !physdev_list || !logdev_list ||
1796 !inq_buff || !tmpdevice) {
1797 dev_err(&h->pdev->dev, "out of memory\n");
1798 goto out;
1800 memset(lunzerobits, 0, sizeof(lunzerobits));
1802 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1803 logdev_list, &nlogicals))
1804 goto out;
1806 /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1807 * but each of them 4 times through different paths. The plus 1
1808 * is for the RAID controller.
1810 ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1812 /* Allocate the per device structures */
1813 for (i = 0; i < ndevs_to_allocate; i++) {
1814 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1815 if (!currentsd[i]) {
1816 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1817 __FILE__, __LINE__);
1818 goto out;
1820 ndev_allocated++;
1823 if (unlikely(is_scsi_rev_5(h)))
1824 raid_ctlr_position = 0;
1825 else
1826 raid_ctlr_position = nphysicals + nlogicals;
1828 /* adjust our table of devices */
1829 nmsa2xxx_enclosures = 0;
1830 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1831 u8 *lunaddrbytes;
1833 /* Figure out where the LUN ID info is coming from */
1834 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1835 i, nphysicals, nlogicals, physdev_list, logdev_list);
1836 /* skip masked physical devices. */
1837 if (lunaddrbytes[3] & 0xC0 &&
1838 i < nphysicals + (raid_ctlr_position == 0))
1839 continue;
1841 /* Get device type, vendor, model, device id */
1842 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1843 continue; /* skip it if we can't talk to it. */
1844 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1845 tmpdevice);
1846 this_device = currentsd[ncurrent];
1849 * For the msa2xxx boxes, we have to insert a LUN 0 which
1850 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1851 * is nonetheless an enclosure device there. We have to
1852 * present that otherwise linux won't find anything if
1853 * there is no lun 0.
1855 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1856 lunaddrbytes, bus, target, lun, lunzerobits,
1857 &nmsa2xxx_enclosures)) {
1858 ncurrent++;
1859 this_device = currentsd[ncurrent];
1862 *this_device = *tmpdevice;
1863 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1865 switch (this_device->devtype) {
1866 case TYPE_ROM: {
1867 /* We don't *really* support actual CD-ROM devices,
1868 * just "One Button Disaster Recovery" tape drive
1869 * which temporarily pretends to be a CD-ROM drive.
1870 * So we check that the device is really an OBDR tape
1871 * device by checking for "$DR-10" in bytes 43-48 of
1872 * the inquiry data.
1874 char obdr_sig[7];
1875 #define OBDR_TAPE_SIG "$DR-10"
1876 strncpy(obdr_sig, &inq_buff[43], 6);
1877 obdr_sig[6] = '\0';
1878 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1879 /* Not OBDR device, ignore it. */
1880 break;
1882 ncurrent++;
1883 break;
1884 case TYPE_DISK:
1885 if (i < nphysicals)
1886 break;
1887 ncurrent++;
1888 break;
1889 case TYPE_TAPE:
1890 case TYPE_MEDIUM_CHANGER:
1891 ncurrent++;
1892 break;
1893 case TYPE_RAID:
1894 /* Only present the Smartarray HBA as a RAID controller.
1895 * If it's a RAID controller other than the HBA itself
1896 * (an external RAID controller, MSA500 or similar)
1897 * don't present it.
1899 if (!is_hba_lunid(lunaddrbytes))
1900 break;
1901 ncurrent++;
1902 break;
1903 default:
1904 break;
1906 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1907 break;
1909 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1910 out:
1911 kfree(tmpdevice);
1912 for (i = 0; i < ndev_allocated; i++)
1913 kfree(currentsd[i]);
1914 kfree(currentsd);
1915 kfree(inq_buff);
1916 kfree(physdev_list);
1917 kfree(logdev_list);
1920 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1921 * dma mapping and fills in the scatter gather entries of the
1922 * hpsa command, cp.
1924 static int hpsa_scatter_gather(struct ctlr_info *h,
1925 struct CommandList *cp,
1926 struct scsi_cmnd *cmd)
1928 unsigned int len;
1929 struct scatterlist *sg;
1930 u64 addr64;
1931 int use_sg, i, sg_index, chained;
1932 struct SGDescriptor *curr_sg;
1934 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1936 use_sg = scsi_dma_map(cmd);
1937 if (use_sg < 0)
1938 return use_sg;
1940 if (!use_sg)
1941 goto sglist_finished;
1943 curr_sg = cp->SG;
1944 chained = 0;
1945 sg_index = 0;
1946 scsi_for_each_sg(cmd, sg, use_sg, i) {
1947 if (i == h->max_cmd_sg_entries - 1 &&
1948 use_sg > h->max_cmd_sg_entries) {
1949 chained = 1;
1950 curr_sg = h->cmd_sg_list[cp->cmdindex];
1951 sg_index = 0;
1953 addr64 = (u64) sg_dma_address(sg);
1954 len = sg_dma_len(sg);
1955 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1956 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1957 curr_sg->Len = len;
1958 curr_sg->Ext = 0; /* we are not chaining */
1959 curr_sg++;
1962 if (use_sg + chained > h->maxSG)
1963 h->maxSG = use_sg + chained;
1965 if (chained) {
1966 cp->Header.SGList = h->max_cmd_sg_entries;
1967 cp->Header.SGTotal = (u16) (use_sg + 1);
1968 hpsa_map_sg_chain_block(h, cp);
1969 return 0;
1972 sglist_finished:
1974 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
1975 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1976 return 0;
1980 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
1981 void (*done)(struct scsi_cmnd *))
1983 struct ctlr_info *h;
1984 struct hpsa_scsi_dev_t *dev;
1985 unsigned char scsi3addr[8];
1986 struct CommandList *c;
1987 unsigned long flags;
1989 /* Get the ptr to our adapter structure out of cmd->host. */
1990 h = sdev_to_hba(cmd->device);
1991 dev = cmd->device->hostdata;
1992 if (!dev) {
1993 cmd->result = DID_NO_CONNECT << 16;
1994 done(cmd);
1995 return 0;
1997 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1999 /* Need a lock as this is being allocated from the pool */
2000 spin_lock_irqsave(&h->lock, flags);
2001 c = cmd_alloc(h);
2002 spin_unlock_irqrestore(&h->lock, flags);
2003 if (c == NULL) { /* trouble... */
2004 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2005 return SCSI_MLQUEUE_HOST_BUSY;
2008 /* Fill in the command list header */
2010 cmd->scsi_done = done; /* save this for use by completion code */
2012 /* save c in case we have to abort it */
2013 cmd->host_scribble = (unsigned char *) c;
2015 c->cmd_type = CMD_SCSI;
2016 c->scsi_cmd = cmd;
2017 c->Header.ReplyQueue = 0; /* unused in simple mode */
2018 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2019 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2020 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2022 /* Fill in the request block... */
2024 c->Request.Timeout = 0;
2025 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2026 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2027 c->Request.CDBLen = cmd->cmd_len;
2028 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2029 c->Request.Type.Type = TYPE_CMD;
2030 c->Request.Type.Attribute = ATTR_SIMPLE;
2031 switch (cmd->sc_data_direction) {
2032 case DMA_TO_DEVICE:
2033 c->Request.Type.Direction = XFER_WRITE;
2034 break;
2035 case DMA_FROM_DEVICE:
2036 c->Request.Type.Direction = XFER_READ;
2037 break;
2038 case DMA_NONE:
2039 c->Request.Type.Direction = XFER_NONE;
2040 break;
2041 case DMA_BIDIRECTIONAL:
2042 /* This can happen if a buggy application does a scsi passthru
2043 * and sets both inlen and outlen to non-zero. ( see
2044 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2047 c->Request.Type.Direction = XFER_RSVD;
2048 /* This is technically wrong, and hpsa controllers should
2049 * reject it with CMD_INVALID, which is the most correct
2050 * response, but non-fibre backends appear to let it
2051 * slide by, and give the same results as if this field
2052 * were set correctly. Either way is acceptable for
2053 * our purposes here.
2056 break;
2058 default:
2059 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2060 cmd->sc_data_direction);
2061 BUG();
2062 break;
2065 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2066 cmd_free(h, c);
2067 return SCSI_MLQUEUE_HOST_BUSY;
2069 enqueue_cmd_and_start_io(h, c);
2070 /* the cmd'll come back via intr handler in complete_scsi_command() */
2071 return 0;
2074 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2076 static void hpsa_scan_start(struct Scsi_Host *sh)
2078 struct ctlr_info *h = shost_to_hba(sh);
2079 unsigned long flags;
2081 /* wait until any scan already in progress is finished. */
2082 while (1) {
2083 spin_lock_irqsave(&h->scan_lock, flags);
2084 if (h->scan_finished)
2085 break;
2086 spin_unlock_irqrestore(&h->scan_lock, flags);
2087 wait_event(h->scan_wait_queue, h->scan_finished);
2088 /* Note: We don't need to worry about a race between this
2089 * thread and driver unload because the midlayer will
2090 * have incremented the reference count, so unload won't
2091 * happen if we're in here.
2094 h->scan_finished = 0; /* mark scan as in progress */
2095 spin_unlock_irqrestore(&h->scan_lock, flags);
2097 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2099 spin_lock_irqsave(&h->scan_lock, flags);
2100 h->scan_finished = 1; /* mark scan as finished. */
2101 wake_up_all(&h->scan_wait_queue);
2102 spin_unlock_irqrestore(&h->scan_lock, flags);
2105 static int hpsa_scan_finished(struct Scsi_Host *sh,
2106 unsigned long elapsed_time)
2108 struct ctlr_info *h = shost_to_hba(sh);
2109 unsigned long flags;
2110 int finished;
2112 spin_lock_irqsave(&h->scan_lock, flags);
2113 finished = h->scan_finished;
2114 spin_unlock_irqrestore(&h->scan_lock, flags);
2115 return finished;
2118 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2119 int qdepth, int reason)
2121 struct ctlr_info *h = sdev_to_hba(sdev);
2123 if (reason != SCSI_QDEPTH_DEFAULT)
2124 return -ENOTSUPP;
2126 if (qdepth < 1)
2127 qdepth = 1;
2128 else
2129 if (qdepth > h->nr_cmds)
2130 qdepth = h->nr_cmds;
2131 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2132 return sdev->queue_depth;
2135 static void hpsa_unregister_scsi(struct ctlr_info *h)
2137 /* we are being forcibly unloaded, and may not refuse. */
2138 scsi_remove_host(h->scsi_host);
2139 scsi_host_put(h->scsi_host);
2140 h->scsi_host = NULL;
2143 static int hpsa_register_scsi(struct ctlr_info *h)
2145 int rc;
2147 rc = hpsa_scsi_detect(h);
2148 if (rc != 0)
2149 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2150 " hpsa_scsi_detect(), rc is %d\n", rc);
2151 return rc;
2154 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2155 unsigned char lunaddr[])
2157 int rc = 0;
2158 int count = 0;
2159 int waittime = 1; /* seconds */
2160 struct CommandList *c;
2162 c = cmd_special_alloc(h);
2163 if (!c) {
2164 dev_warn(&h->pdev->dev, "out of memory in "
2165 "wait_for_device_to_become_ready.\n");
2166 return IO_ERROR;
2169 /* Send test unit ready until device ready, or give up. */
2170 while (count < HPSA_TUR_RETRY_LIMIT) {
2172 /* Wait for a bit. do this first, because if we send
2173 * the TUR right away, the reset will just abort it.
2175 msleep(1000 * waittime);
2176 count++;
2178 /* Increase wait time with each try, up to a point. */
2179 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2180 waittime = waittime * 2;
2182 /* Send the Test Unit Ready */
2183 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2184 hpsa_scsi_do_simple_cmd_core(h, c);
2185 /* no unmap needed here because no data xfer. */
2187 if (c->err_info->CommandStatus == CMD_SUCCESS)
2188 break;
2190 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2191 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2192 (c->err_info->SenseInfo[2] == NO_SENSE ||
2193 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2194 break;
2196 dev_warn(&h->pdev->dev, "waiting %d secs "
2197 "for device to become ready.\n", waittime);
2198 rc = 1; /* device not ready. */
2201 if (rc)
2202 dev_warn(&h->pdev->dev, "giving up on device.\n");
2203 else
2204 dev_warn(&h->pdev->dev, "device is ready.\n");
2206 cmd_special_free(h, c);
2207 return rc;
2210 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2211 * complaining. Doing a host- or bus-reset can't do anything good here.
2213 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2215 int rc;
2216 struct ctlr_info *h;
2217 struct hpsa_scsi_dev_t *dev;
2219 /* find the controller to which the command to be aborted was sent */
2220 h = sdev_to_hba(scsicmd->device);
2221 if (h == NULL) /* paranoia */
2222 return FAILED;
2223 dev = scsicmd->device->hostdata;
2224 if (!dev) {
2225 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2226 "device lookup failed.\n");
2227 return FAILED;
2229 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2230 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2231 /* send a reset to the SCSI LUN which the command was sent to */
2232 rc = hpsa_send_reset(h, dev->scsi3addr);
2233 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2234 return SUCCESS;
2236 dev_warn(&h->pdev->dev, "resetting device failed.\n");
2237 return FAILED;
2241 * For operations that cannot sleep, a command block is allocated at init,
2242 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2243 * which ones are free or in use. Lock must be held when calling this.
2244 * cmd_free() is the complement.
2246 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2248 struct CommandList *c;
2249 int i;
2250 union u64bit temp64;
2251 dma_addr_t cmd_dma_handle, err_dma_handle;
2253 do {
2254 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2255 if (i == h->nr_cmds)
2256 return NULL;
2257 } while (test_and_set_bit
2258 (i & (BITS_PER_LONG - 1),
2259 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2260 c = h->cmd_pool + i;
2261 memset(c, 0, sizeof(*c));
2262 cmd_dma_handle = h->cmd_pool_dhandle
2263 + i * sizeof(*c);
2264 c->err_info = h->errinfo_pool + i;
2265 memset(c->err_info, 0, sizeof(*c->err_info));
2266 err_dma_handle = h->errinfo_pool_dhandle
2267 + i * sizeof(*c->err_info);
2268 h->nr_allocs++;
2270 c->cmdindex = i;
2272 INIT_LIST_HEAD(&c->list);
2273 c->busaddr = (u32) cmd_dma_handle;
2274 temp64.val = (u64) err_dma_handle;
2275 c->ErrDesc.Addr.lower = temp64.val32.lower;
2276 c->ErrDesc.Addr.upper = temp64.val32.upper;
2277 c->ErrDesc.Len = sizeof(*c->err_info);
2279 c->h = h;
2280 return c;
2283 /* For operations that can wait for kmalloc to possibly sleep,
2284 * this routine can be called. Lock need not be held to call
2285 * cmd_special_alloc. cmd_special_free() is the complement.
2287 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2289 struct CommandList *c;
2290 union u64bit temp64;
2291 dma_addr_t cmd_dma_handle, err_dma_handle;
2293 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2294 if (c == NULL)
2295 return NULL;
2296 memset(c, 0, sizeof(*c));
2298 c->cmdindex = -1;
2300 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2301 &err_dma_handle);
2303 if (c->err_info == NULL) {
2304 pci_free_consistent(h->pdev,
2305 sizeof(*c), c, cmd_dma_handle);
2306 return NULL;
2308 memset(c->err_info, 0, sizeof(*c->err_info));
2310 INIT_LIST_HEAD(&c->list);
2311 c->busaddr = (u32) cmd_dma_handle;
2312 temp64.val = (u64) err_dma_handle;
2313 c->ErrDesc.Addr.lower = temp64.val32.lower;
2314 c->ErrDesc.Addr.upper = temp64.val32.upper;
2315 c->ErrDesc.Len = sizeof(*c->err_info);
2317 c->h = h;
2318 return c;
2321 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2323 int i;
2325 i = c - h->cmd_pool;
2326 clear_bit(i & (BITS_PER_LONG - 1),
2327 h->cmd_pool_bits + (i / BITS_PER_LONG));
2328 h->nr_frees++;
2331 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2333 union u64bit temp64;
2335 temp64.val32.lower = c->ErrDesc.Addr.lower;
2336 temp64.val32.upper = c->ErrDesc.Addr.upper;
2337 pci_free_consistent(h->pdev, sizeof(*c->err_info),
2338 c->err_info, (dma_addr_t) temp64.val);
2339 pci_free_consistent(h->pdev, sizeof(*c),
2340 c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2343 #ifdef CONFIG_COMPAT
2345 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2347 IOCTL32_Command_struct __user *arg32 =
2348 (IOCTL32_Command_struct __user *) arg;
2349 IOCTL_Command_struct arg64;
2350 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2351 int err;
2352 u32 cp;
2354 memset(&arg64, 0, sizeof(arg64));
2355 err = 0;
2356 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2357 sizeof(arg64.LUN_info));
2358 err |= copy_from_user(&arg64.Request, &arg32->Request,
2359 sizeof(arg64.Request));
2360 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2361 sizeof(arg64.error_info));
2362 err |= get_user(arg64.buf_size, &arg32->buf_size);
2363 err |= get_user(cp, &arg32->buf);
2364 arg64.buf = compat_ptr(cp);
2365 err |= copy_to_user(p, &arg64, sizeof(arg64));
2367 if (err)
2368 return -EFAULT;
2370 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2371 if (err)
2372 return err;
2373 err |= copy_in_user(&arg32->error_info, &p->error_info,
2374 sizeof(arg32->error_info));
2375 if (err)
2376 return -EFAULT;
2377 return err;
2380 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2381 int cmd, void *arg)
2383 BIG_IOCTL32_Command_struct __user *arg32 =
2384 (BIG_IOCTL32_Command_struct __user *) arg;
2385 BIG_IOCTL_Command_struct arg64;
2386 BIG_IOCTL_Command_struct __user *p =
2387 compat_alloc_user_space(sizeof(arg64));
2388 int err;
2389 u32 cp;
2391 memset(&arg64, 0, sizeof(arg64));
2392 err = 0;
2393 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2394 sizeof(arg64.LUN_info));
2395 err |= copy_from_user(&arg64.Request, &arg32->Request,
2396 sizeof(arg64.Request));
2397 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2398 sizeof(arg64.error_info));
2399 err |= get_user(arg64.buf_size, &arg32->buf_size);
2400 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2401 err |= get_user(cp, &arg32->buf);
2402 arg64.buf = compat_ptr(cp);
2403 err |= copy_to_user(p, &arg64, sizeof(arg64));
2405 if (err)
2406 return -EFAULT;
2408 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2409 if (err)
2410 return err;
2411 err |= copy_in_user(&arg32->error_info, &p->error_info,
2412 sizeof(arg32->error_info));
2413 if (err)
2414 return -EFAULT;
2415 return err;
2418 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2420 switch (cmd) {
2421 case CCISS_GETPCIINFO:
2422 case CCISS_GETINTINFO:
2423 case CCISS_SETINTINFO:
2424 case CCISS_GETNODENAME:
2425 case CCISS_SETNODENAME:
2426 case CCISS_GETHEARTBEAT:
2427 case CCISS_GETBUSTYPES:
2428 case CCISS_GETFIRMVER:
2429 case CCISS_GETDRIVVER:
2430 case CCISS_REVALIDVOLS:
2431 case CCISS_DEREGDISK:
2432 case CCISS_REGNEWDISK:
2433 case CCISS_REGNEWD:
2434 case CCISS_RESCANDISK:
2435 case CCISS_GETLUNINFO:
2436 return hpsa_ioctl(dev, cmd, arg);
2438 case CCISS_PASSTHRU32:
2439 return hpsa_ioctl32_passthru(dev, cmd, arg);
2440 case CCISS_BIG_PASSTHRU32:
2441 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2443 default:
2444 return -ENOIOCTLCMD;
2447 #endif
2449 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2451 struct hpsa_pci_info pciinfo;
2453 if (!argp)
2454 return -EINVAL;
2455 pciinfo.domain = pci_domain_nr(h->pdev->bus);
2456 pciinfo.bus = h->pdev->bus->number;
2457 pciinfo.dev_fn = h->pdev->devfn;
2458 pciinfo.board_id = h->board_id;
2459 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2460 return -EFAULT;
2461 return 0;
2464 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2466 DriverVer_type DriverVer;
2467 unsigned char vmaj, vmin, vsubmin;
2468 int rc;
2470 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2471 &vmaj, &vmin, &vsubmin);
2472 if (rc != 3) {
2473 dev_info(&h->pdev->dev, "driver version string '%s' "
2474 "unrecognized.", HPSA_DRIVER_VERSION);
2475 vmaj = 0;
2476 vmin = 0;
2477 vsubmin = 0;
2479 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2480 if (!argp)
2481 return -EINVAL;
2482 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2483 return -EFAULT;
2484 return 0;
2487 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2489 IOCTL_Command_struct iocommand;
2490 struct CommandList *c;
2491 char *buff = NULL;
2492 union u64bit temp64;
2494 if (!argp)
2495 return -EINVAL;
2496 if (!capable(CAP_SYS_RAWIO))
2497 return -EPERM;
2498 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2499 return -EFAULT;
2500 if ((iocommand.buf_size < 1) &&
2501 (iocommand.Request.Type.Direction != XFER_NONE)) {
2502 return -EINVAL;
2504 if (iocommand.buf_size > 0) {
2505 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2506 if (buff == NULL)
2507 return -EFAULT;
2508 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2509 /* Copy the data into the buffer we created */
2510 if (copy_from_user(buff, iocommand.buf,
2511 iocommand.buf_size)) {
2512 kfree(buff);
2513 return -EFAULT;
2515 } else {
2516 memset(buff, 0, iocommand.buf_size);
2519 c = cmd_special_alloc(h);
2520 if (c == NULL) {
2521 kfree(buff);
2522 return -ENOMEM;
2524 /* Fill in the command type */
2525 c->cmd_type = CMD_IOCTL_PEND;
2526 /* Fill in Command Header */
2527 c->Header.ReplyQueue = 0; /* unused in simple mode */
2528 if (iocommand.buf_size > 0) { /* buffer to fill */
2529 c->Header.SGList = 1;
2530 c->Header.SGTotal = 1;
2531 } else { /* no buffers to fill */
2532 c->Header.SGList = 0;
2533 c->Header.SGTotal = 0;
2535 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2536 /* use the kernel address the cmd block for tag */
2537 c->Header.Tag.lower = c->busaddr;
2539 /* Fill in Request block */
2540 memcpy(&c->Request, &iocommand.Request,
2541 sizeof(c->Request));
2543 /* Fill in the scatter gather information */
2544 if (iocommand.buf_size > 0) {
2545 temp64.val = pci_map_single(h->pdev, buff,
2546 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2547 c->SG[0].Addr.lower = temp64.val32.lower;
2548 c->SG[0].Addr.upper = temp64.val32.upper;
2549 c->SG[0].Len = iocommand.buf_size;
2550 c->SG[0].Ext = 0; /* we are not chaining*/
2552 hpsa_scsi_do_simple_cmd_core(h, c);
2553 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2554 check_ioctl_unit_attention(h, c);
2556 /* Copy the error information out */
2557 memcpy(&iocommand.error_info, c->err_info,
2558 sizeof(iocommand.error_info));
2559 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2560 kfree(buff);
2561 cmd_special_free(h, c);
2562 return -EFAULT;
2564 if (iocommand.Request.Type.Direction == XFER_READ &&
2565 iocommand.buf_size > 0) {
2566 /* Copy the data out of the buffer we created */
2567 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2568 kfree(buff);
2569 cmd_special_free(h, c);
2570 return -EFAULT;
2573 kfree(buff);
2574 cmd_special_free(h, c);
2575 return 0;
2578 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2580 BIG_IOCTL_Command_struct *ioc;
2581 struct CommandList *c;
2582 unsigned char **buff = NULL;
2583 int *buff_size = NULL;
2584 union u64bit temp64;
2585 BYTE sg_used = 0;
2586 int status = 0;
2587 int i;
2588 u32 left;
2589 u32 sz;
2590 BYTE __user *data_ptr;
2592 if (!argp)
2593 return -EINVAL;
2594 if (!capable(CAP_SYS_RAWIO))
2595 return -EPERM;
2596 ioc = (BIG_IOCTL_Command_struct *)
2597 kmalloc(sizeof(*ioc), GFP_KERNEL);
2598 if (!ioc) {
2599 status = -ENOMEM;
2600 goto cleanup1;
2602 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2603 status = -EFAULT;
2604 goto cleanup1;
2606 if ((ioc->buf_size < 1) &&
2607 (ioc->Request.Type.Direction != XFER_NONE)) {
2608 status = -EINVAL;
2609 goto cleanup1;
2611 /* Check kmalloc limits using all SGs */
2612 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2613 status = -EINVAL;
2614 goto cleanup1;
2616 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2617 status = -EINVAL;
2618 goto cleanup1;
2620 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2621 if (!buff) {
2622 status = -ENOMEM;
2623 goto cleanup1;
2625 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2626 if (!buff_size) {
2627 status = -ENOMEM;
2628 goto cleanup1;
2630 left = ioc->buf_size;
2631 data_ptr = ioc->buf;
2632 while (left) {
2633 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2634 buff_size[sg_used] = sz;
2635 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2636 if (buff[sg_used] == NULL) {
2637 status = -ENOMEM;
2638 goto cleanup1;
2640 if (ioc->Request.Type.Direction == XFER_WRITE) {
2641 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2642 status = -ENOMEM;
2643 goto cleanup1;
2645 } else
2646 memset(buff[sg_used], 0, sz);
2647 left -= sz;
2648 data_ptr += sz;
2649 sg_used++;
2651 c = cmd_special_alloc(h);
2652 if (c == NULL) {
2653 status = -ENOMEM;
2654 goto cleanup1;
2656 c->cmd_type = CMD_IOCTL_PEND;
2657 c->Header.ReplyQueue = 0;
2658 c->Header.SGList = c->Header.SGTotal = sg_used;
2659 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2660 c->Header.Tag.lower = c->busaddr;
2661 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2662 if (ioc->buf_size > 0) {
2663 int i;
2664 for (i = 0; i < sg_used; i++) {
2665 temp64.val = pci_map_single(h->pdev, buff[i],
2666 buff_size[i], PCI_DMA_BIDIRECTIONAL);
2667 c->SG[i].Addr.lower = temp64.val32.lower;
2668 c->SG[i].Addr.upper = temp64.val32.upper;
2669 c->SG[i].Len = buff_size[i];
2670 /* we are not chaining */
2671 c->SG[i].Ext = 0;
2674 hpsa_scsi_do_simple_cmd_core(h, c);
2675 if (sg_used)
2676 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2677 check_ioctl_unit_attention(h, c);
2678 /* Copy the error information out */
2679 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2680 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2681 cmd_special_free(h, c);
2682 status = -EFAULT;
2683 goto cleanup1;
2685 if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2686 /* Copy the data out of the buffer we created */
2687 BYTE __user *ptr = ioc->buf;
2688 for (i = 0; i < sg_used; i++) {
2689 if (copy_to_user(ptr, buff[i], buff_size[i])) {
2690 cmd_special_free(h, c);
2691 status = -EFAULT;
2692 goto cleanup1;
2694 ptr += buff_size[i];
2697 cmd_special_free(h, c);
2698 status = 0;
2699 cleanup1:
2700 if (buff) {
2701 for (i = 0; i < sg_used; i++)
2702 kfree(buff[i]);
2703 kfree(buff);
2705 kfree(buff_size);
2706 kfree(ioc);
2707 return status;
2710 static void check_ioctl_unit_attention(struct ctlr_info *h,
2711 struct CommandList *c)
2713 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2714 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2715 (void) check_for_unit_attention(h, c);
2718 * ioctl
2720 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2722 struct ctlr_info *h;
2723 void __user *argp = (void __user *)arg;
2725 h = sdev_to_hba(dev);
2727 switch (cmd) {
2728 case CCISS_DEREGDISK:
2729 case CCISS_REGNEWDISK:
2730 case CCISS_REGNEWD:
2731 hpsa_scan_start(h->scsi_host);
2732 return 0;
2733 case CCISS_GETPCIINFO:
2734 return hpsa_getpciinfo_ioctl(h, argp);
2735 case CCISS_GETDRIVVER:
2736 return hpsa_getdrivver_ioctl(h, argp);
2737 case CCISS_PASSTHRU:
2738 return hpsa_passthru_ioctl(h, argp);
2739 case CCISS_BIG_PASSTHRU:
2740 return hpsa_big_passthru_ioctl(h, argp);
2741 default:
2742 return -ENOTTY;
2746 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2747 unsigned char *scsi3addr, u8 reset_type)
2749 struct CommandList *c;
2751 c = cmd_alloc(h);
2752 if (!c)
2753 return -ENOMEM;
2754 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2755 RAID_CTLR_LUNID, TYPE_MSG);
2756 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2757 c->waiting = NULL;
2758 enqueue_cmd_and_start_io(h, c);
2759 /* Don't wait for completion, the reset won't complete. Don't free
2760 * the command either. This is the last command we will send before
2761 * re-initializing everything, so it doesn't matter and won't leak.
2763 return 0;
2766 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2767 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2768 int cmd_type)
2770 int pci_dir = XFER_NONE;
2772 c->cmd_type = CMD_IOCTL_PEND;
2773 c->Header.ReplyQueue = 0;
2774 if (buff != NULL && size > 0) {
2775 c->Header.SGList = 1;
2776 c->Header.SGTotal = 1;
2777 } else {
2778 c->Header.SGList = 0;
2779 c->Header.SGTotal = 0;
2781 c->Header.Tag.lower = c->busaddr;
2782 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2784 c->Request.Type.Type = cmd_type;
2785 if (cmd_type == TYPE_CMD) {
2786 switch (cmd) {
2787 case HPSA_INQUIRY:
2788 /* are we trying to read a vital product page */
2789 if (page_code != 0) {
2790 c->Request.CDB[1] = 0x01;
2791 c->Request.CDB[2] = page_code;
2793 c->Request.CDBLen = 6;
2794 c->Request.Type.Attribute = ATTR_SIMPLE;
2795 c->Request.Type.Direction = XFER_READ;
2796 c->Request.Timeout = 0;
2797 c->Request.CDB[0] = HPSA_INQUIRY;
2798 c->Request.CDB[4] = size & 0xFF;
2799 break;
2800 case HPSA_REPORT_LOG:
2801 case HPSA_REPORT_PHYS:
2802 /* Talking to controller so It's a physical command
2803 mode = 00 target = 0. Nothing to write.
2805 c->Request.CDBLen = 12;
2806 c->Request.Type.Attribute = ATTR_SIMPLE;
2807 c->Request.Type.Direction = XFER_READ;
2808 c->Request.Timeout = 0;
2809 c->Request.CDB[0] = cmd;
2810 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2811 c->Request.CDB[7] = (size >> 16) & 0xFF;
2812 c->Request.CDB[8] = (size >> 8) & 0xFF;
2813 c->Request.CDB[9] = size & 0xFF;
2814 break;
2815 case HPSA_CACHE_FLUSH:
2816 c->Request.CDBLen = 12;
2817 c->Request.Type.Attribute = ATTR_SIMPLE;
2818 c->Request.Type.Direction = XFER_WRITE;
2819 c->Request.Timeout = 0;
2820 c->Request.CDB[0] = BMIC_WRITE;
2821 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2822 break;
2823 case TEST_UNIT_READY:
2824 c->Request.CDBLen = 6;
2825 c->Request.Type.Attribute = ATTR_SIMPLE;
2826 c->Request.Type.Direction = XFER_NONE;
2827 c->Request.Timeout = 0;
2828 break;
2829 default:
2830 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2831 BUG();
2832 return;
2834 } else if (cmd_type == TYPE_MSG) {
2835 switch (cmd) {
2837 case HPSA_DEVICE_RESET_MSG:
2838 c->Request.CDBLen = 16;
2839 c->Request.Type.Type = 1; /* It is a MSG not a CMD */
2840 c->Request.Type.Attribute = ATTR_SIMPLE;
2841 c->Request.Type.Direction = XFER_NONE;
2842 c->Request.Timeout = 0; /* Don't time out */
2843 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2844 c->Request.CDB[0] = cmd;
2845 c->Request.CDB[1] = 0x03; /* Reset target above */
2846 /* If bytes 4-7 are zero, it means reset the */
2847 /* LunID device */
2848 c->Request.CDB[4] = 0x00;
2849 c->Request.CDB[5] = 0x00;
2850 c->Request.CDB[6] = 0x00;
2851 c->Request.CDB[7] = 0x00;
2852 break;
2854 default:
2855 dev_warn(&h->pdev->dev, "unknown message type %d\n",
2856 cmd);
2857 BUG();
2859 } else {
2860 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2861 BUG();
2864 switch (c->Request.Type.Direction) {
2865 case XFER_READ:
2866 pci_dir = PCI_DMA_FROMDEVICE;
2867 break;
2868 case XFER_WRITE:
2869 pci_dir = PCI_DMA_TODEVICE;
2870 break;
2871 case XFER_NONE:
2872 pci_dir = PCI_DMA_NONE;
2873 break;
2874 default:
2875 pci_dir = PCI_DMA_BIDIRECTIONAL;
2878 hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2880 return;
2884 * Map (physical) PCI mem into (virtual) kernel space
2886 static void __iomem *remap_pci_mem(ulong base, ulong size)
2888 ulong page_base = ((ulong) base) & PAGE_MASK;
2889 ulong page_offs = ((ulong) base) - page_base;
2890 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2892 return page_remapped ? (page_remapped + page_offs) : NULL;
2895 /* Takes cmds off the submission queue and sends them to the hardware,
2896 * then puts them on the queue of cmds waiting for completion.
2898 static void start_io(struct ctlr_info *h)
2900 struct CommandList *c;
2902 while (!list_empty(&h->reqQ)) {
2903 c = list_entry(h->reqQ.next, struct CommandList, list);
2904 /* can't do anything if fifo is full */
2905 if ((h->access.fifo_full(h))) {
2906 dev_warn(&h->pdev->dev, "fifo full\n");
2907 break;
2910 /* Get the first entry from the Request Q */
2911 removeQ(c);
2912 h->Qdepth--;
2914 /* Tell the controller execute command */
2915 h->access.submit_command(h, c);
2917 /* Put job onto the completed Q */
2918 addQ(&h->cmpQ, c);
2922 static inline unsigned long get_next_completion(struct ctlr_info *h)
2924 return h->access.command_completed(h);
2927 static inline bool interrupt_pending(struct ctlr_info *h)
2929 return h->access.intr_pending(h);
2932 static inline long interrupt_not_for_us(struct ctlr_info *h)
2934 return (h->access.intr_pending(h) == 0) ||
2935 (h->interrupts_enabled == 0);
2938 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2939 u32 raw_tag)
2941 if (unlikely(tag_index >= h->nr_cmds)) {
2942 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2943 return 1;
2945 return 0;
2948 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2950 removeQ(c);
2951 if (likely(c->cmd_type == CMD_SCSI))
2952 complete_scsi_command(c);
2953 else if (c->cmd_type == CMD_IOCTL_PEND)
2954 complete(c->waiting);
2957 static inline u32 hpsa_tag_contains_index(u32 tag)
2959 return tag & DIRECT_LOOKUP_BIT;
2962 static inline u32 hpsa_tag_to_index(u32 tag)
2964 return tag >> DIRECT_LOOKUP_SHIFT;
2968 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
2970 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
2971 #define HPSA_SIMPLE_ERROR_BITS 0x03
2972 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
2973 return tag & ~HPSA_SIMPLE_ERROR_BITS;
2974 return tag & ~HPSA_PERF_ERROR_BITS;
2977 /* process completion of an indexed ("direct lookup") command */
2978 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2979 u32 raw_tag)
2981 u32 tag_index;
2982 struct CommandList *c;
2984 tag_index = hpsa_tag_to_index(raw_tag);
2985 if (bad_tag(h, tag_index, raw_tag))
2986 return next_command(h);
2987 c = h->cmd_pool + tag_index;
2988 finish_cmd(c, raw_tag);
2989 return next_command(h);
2992 /* process completion of a non-indexed command */
2993 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2994 u32 raw_tag)
2996 u32 tag;
2997 struct CommandList *c = NULL;
2999 tag = hpsa_tag_discard_error_bits(h, raw_tag);
3000 list_for_each_entry(c, &h->cmpQ, list) {
3001 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3002 finish_cmd(c, raw_tag);
3003 return next_command(h);
3006 bad_tag(h, h->nr_cmds + 1, raw_tag);
3007 return next_command(h);
3010 /* Some controllers, like p400, will give us one interrupt
3011 * after a soft reset, even if we turned interrupts off.
3012 * Only need to check for this in the hpsa_xxx_discard_completions
3013 * functions.
3015 static int ignore_bogus_interrupt(struct ctlr_info *h)
3017 if (likely(!reset_devices))
3018 return 0;
3020 if (likely(h->interrupts_enabled))
3021 return 0;
3023 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3024 "(known firmware bug.) Ignoring.\n");
3026 return 1;
3029 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3031 struct ctlr_info *h = dev_id;
3032 unsigned long flags;
3033 u32 raw_tag;
3035 if (ignore_bogus_interrupt(h))
3036 return IRQ_NONE;
3038 if (interrupt_not_for_us(h))
3039 return IRQ_NONE;
3040 spin_lock_irqsave(&h->lock, flags);
3041 while (interrupt_pending(h)) {
3042 raw_tag = get_next_completion(h);
3043 while (raw_tag != FIFO_EMPTY)
3044 raw_tag = next_command(h);
3046 spin_unlock_irqrestore(&h->lock, flags);
3047 return IRQ_HANDLED;
3050 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3052 struct ctlr_info *h = dev_id;
3053 unsigned long flags;
3054 u32 raw_tag;
3056 if (ignore_bogus_interrupt(h))
3057 return IRQ_NONE;
3059 spin_lock_irqsave(&h->lock, flags);
3060 raw_tag = get_next_completion(h);
3061 while (raw_tag != FIFO_EMPTY)
3062 raw_tag = next_command(h);
3063 spin_unlock_irqrestore(&h->lock, flags);
3064 return IRQ_HANDLED;
3067 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3069 struct ctlr_info *h = dev_id;
3070 unsigned long flags;
3071 u32 raw_tag;
3073 if (interrupt_not_for_us(h))
3074 return IRQ_NONE;
3075 spin_lock_irqsave(&h->lock, flags);
3076 while (interrupt_pending(h)) {
3077 raw_tag = get_next_completion(h);
3078 while (raw_tag != FIFO_EMPTY) {
3079 if (hpsa_tag_contains_index(raw_tag))
3080 raw_tag = process_indexed_cmd(h, raw_tag);
3081 else
3082 raw_tag = process_nonindexed_cmd(h, raw_tag);
3085 spin_unlock_irqrestore(&h->lock, flags);
3086 return IRQ_HANDLED;
3089 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3091 struct ctlr_info *h = dev_id;
3092 unsigned long flags;
3093 u32 raw_tag;
3095 spin_lock_irqsave(&h->lock, flags);
3096 raw_tag = get_next_completion(h);
3097 while (raw_tag != FIFO_EMPTY) {
3098 if (hpsa_tag_contains_index(raw_tag))
3099 raw_tag = process_indexed_cmd(h, raw_tag);
3100 else
3101 raw_tag = process_nonindexed_cmd(h, raw_tag);
3103 spin_unlock_irqrestore(&h->lock, flags);
3104 return IRQ_HANDLED;
3107 /* Send a message CDB to the firmware. Careful, this only works
3108 * in simple mode, not performant mode due to the tag lookup.
3109 * We only ever use this immediately after a controller reset.
3111 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3112 unsigned char type)
3114 struct Command {
3115 struct CommandListHeader CommandHeader;
3116 struct RequestBlock Request;
3117 struct ErrDescriptor ErrorDescriptor;
3119 struct Command *cmd;
3120 static const size_t cmd_sz = sizeof(*cmd) +
3121 sizeof(cmd->ErrorDescriptor);
3122 dma_addr_t paddr64;
3123 uint32_t paddr32, tag;
3124 void __iomem *vaddr;
3125 int i, err;
3127 vaddr = pci_ioremap_bar(pdev, 0);
3128 if (vaddr == NULL)
3129 return -ENOMEM;
3131 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3132 * CCISS commands, so they must be allocated from the lower 4GiB of
3133 * memory.
3135 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3136 if (err) {
3137 iounmap(vaddr);
3138 return -ENOMEM;
3141 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3142 if (cmd == NULL) {
3143 iounmap(vaddr);
3144 return -ENOMEM;
3147 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3148 * although there's no guarantee, we assume that the address is at
3149 * least 4-byte aligned (most likely, it's page-aligned).
3151 paddr32 = paddr64;
3153 cmd->CommandHeader.ReplyQueue = 0;
3154 cmd->CommandHeader.SGList = 0;
3155 cmd->CommandHeader.SGTotal = 0;
3156 cmd->CommandHeader.Tag.lower = paddr32;
3157 cmd->CommandHeader.Tag.upper = 0;
3158 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3160 cmd->Request.CDBLen = 16;
3161 cmd->Request.Type.Type = TYPE_MSG;
3162 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3163 cmd->Request.Type.Direction = XFER_NONE;
3164 cmd->Request.Timeout = 0; /* Don't time out */
3165 cmd->Request.CDB[0] = opcode;
3166 cmd->Request.CDB[1] = type;
3167 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3168 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3169 cmd->ErrorDescriptor.Addr.upper = 0;
3170 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3172 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3174 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3175 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3176 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3177 break;
3178 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3181 iounmap(vaddr);
3183 /* we leak the DMA buffer here ... no choice since the controller could
3184 * still complete the command.
3186 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3187 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3188 opcode, type);
3189 return -ETIMEDOUT;
3192 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3194 if (tag & HPSA_ERROR_BIT) {
3195 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3196 opcode, type);
3197 return -EIO;
3200 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3201 opcode, type);
3202 return 0;
3205 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3207 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3208 void * __iomem vaddr, u32 use_doorbell)
3210 u16 pmcsr;
3211 int pos;
3213 if (use_doorbell) {
3214 /* For everything after the P600, the PCI power state method
3215 * of resetting the controller doesn't work, so we have this
3216 * other way using the doorbell register.
3218 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3219 writel(use_doorbell, vaddr + SA5_DOORBELL);
3220 } else { /* Try to do it the PCI power state way */
3222 /* Quoting from the Open CISS Specification: "The Power
3223 * Management Control/Status Register (CSR) controls the power
3224 * state of the device. The normal operating state is D0,
3225 * CSR=00h. The software off state is D3, CSR=03h. To reset
3226 * the controller, place the interface device in D3 then to D0,
3227 * this causes a secondary PCI reset which will reset the
3228 * controller." */
3230 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3231 if (pos == 0) {
3232 dev_err(&pdev->dev,
3233 "hpsa_reset_controller: "
3234 "PCI PM not supported\n");
3235 return -ENODEV;
3237 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3238 /* enter the D3hot power management state */
3239 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3240 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3241 pmcsr |= PCI_D3hot;
3242 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3244 msleep(500);
3246 /* enter the D0 power management state */
3247 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3248 pmcsr |= PCI_D0;
3249 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3251 return 0;
3254 static __devinit void init_driver_version(char *driver_version, int len)
3256 memset(driver_version, 0, len);
3257 strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3260 static __devinit int write_driver_ver_to_cfgtable(
3261 struct CfgTable __iomem *cfgtable)
3263 char *driver_version;
3264 int i, size = sizeof(cfgtable->driver_version);
3266 driver_version = kmalloc(size, GFP_KERNEL);
3267 if (!driver_version)
3268 return -ENOMEM;
3270 init_driver_version(driver_version, size);
3271 for (i = 0; i < size; i++)
3272 writeb(driver_version[i], &cfgtable->driver_version[i]);
3273 kfree(driver_version);
3274 return 0;
3277 static __devinit void read_driver_ver_from_cfgtable(
3278 struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3280 int i;
3282 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3283 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3286 static __devinit int controller_reset_failed(
3287 struct CfgTable __iomem *cfgtable)
3290 char *driver_ver, *old_driver_ver;
3291 int rc, size = sizeof(cfgtable->driver_version);
3293 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3294 if (!old_driver_ver)
3295 return -ENOMEM;
3296 driver_ver = old_driver_ver + size;
3298 /* After a reset, the 32 bytes of "driver version" in the cfgtable
3299 * should have been changed, otherwise we know the reset failed.
3301 init_driver_version(old_driver_ver, size);
3302 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3303 rc = !memcmp(driver_ver, old_driver_ver, size);
3304 kfree(old_driver_ver);
3305 return rc;
3307 /* This does a hard reset of the controller using PCI power management
3308 * states or the using the doorbell register.
3310 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3312 u64 cfg_offset;
3313 u32 cfg_base_addr;
3314 u64 cfg_base_addr_index;
3315 void __iomem *vaddr;
3316 unsigned long paddr;
3317 u32 misc_fw_support;
3318 int rc;
3319 struct CfgTable __iomem *cfgtable;
3320 u32 use_doorbell;
3321 u32 board_id;
3322 u16 command_register;
3324 /* For controllers as old as the P600, this is very nearly
3325 * the same thing as
3327 * pci_save_state(pci_dev);
3328 * pci_set_power_state(pci_dev, PCI_D3hot);
3329 * pci_set_power_state(pci_dev, PCI_D0);
3330 * pci_restore_state(pci_dev);
3332 * For controllers newer than the P600, the pci power state
3333 * method of resetting doesn't work so we have another way
3334 * using the doorbell register.
3337 /* Exclude 640x boards. These are two pci devices in one slot
3338 * which share a battery backed cache module. One controls the
3339 * cache, the other accesses the cache through the one that controls
3340 * it. If we reset the one controlling the cache, the other will
3341 * likely not be happy. Just forbid resetting this conjoined mess.
3342 * The 640x isn't really supported by hpsa anyway.
3344 rc = hpsa_lookup_board_id(pdev, &board_id);
3345 if (rc < 0) {
3346 dev_warn(&pdev->dev, "Not resetting device.\n");
3347 return -ENODEV;
3349 if (board_id == 0x409C0E11 || board_id == 0x409D0E11)
3350 return -ENOTSUPP;
3352 /* Save the PCI command register */
3353 pci_read_config_word(pdev, 4, &command_register);
3354 /* Turn the board off. This is so that later pci_restore_state()
3355 * won't turn the board on before the rest of config space is ready.
3357 pci_disable_device(pdev);
3358 pci_save_state(pdev);
3360 /* find the first memory BAR, so we can find the cfg table */
3361 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3362 if (rc)
3363 return rc;
3364 vaddr = remap_pci_mem(paddr, 0x250);
3365 if (!vaddr)
3366 return -ENOMEM;
3368 /* find cfgtable in order to check if reset via doorbell is supported */
3369 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3370 &cfg_base_addr_index, &cfg_offset);
3371 if (rc)
3372 goto unmap_vaddr;
3373 cfgtable = remap_pci_mem(pci_resource_start(pdev,
3374 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3375 if (!cfgtable) {
3376 rc = -ENOMEM;
3377 goto unmap_vaddr;
3379 rc = write_driver_ver_to_cfgtable(cfgtable);
3380 if (rc)
3381 goto unmap_vaddr;
3383 /* If reset via doorbell register is supported, use that.
3384 * There are two such methods. Favor the newest method.
3386 misc_fw_support = readl(&cfgtable->misc_fw_support);
3387 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3388 if (use_doorbell) {
3389 use_doorbell = DOORBELL_CTLR_RESET2;
3390 } else {
3391 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3392 if (use_doorbell) {
3393 dev_warn(&pdev->dev, "Controller claims that "
3394 "'Bit 2 doorbell reset' is "
3395 "supported, but not 'bit 5 doorbell reset'. "
3396 "Firmware update is recommended.\n");
3397 rc = -ENOTSUPP; /* try soft reset */
3398 goto unmap_cfgtable;
3402 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3403 if (rc)
3404 goto unmap_cfgtable;
3406 pci_restore_state(pdev);
3407 rc = pci_enable_device(pdev);
3408 if (rc) {
3409 dev_warn(&pdev->dev, "failed to enable device.\n");
3410 goto unmap_cfgtable;
3412 pci_write_config_word(pdev, 4, command_register);
3414 /* Some devices (notably the HP Smart Array 5i Controller)
3415 need a little pause here */
3416 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3418 /* Wait for board to become not ready, then ready. */
3419 dev_info(&pdev->dev, "Waiting for board to reset.\n");
3420 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3421 if (rc) {
3422 dev_warn(&pdev->dev,
3423 "failed waiting for board to reset."
3424 " Will try soft reset.\n");
3425 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3426 goto unmap_cfgtable;
3428 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3429 if (rc) {
3430 dev_warn(&pdev->dev,
3431 "failed waiting for board to become ready "
3432 "after hard reset\n");
3433 goto unmap_cfgtable;
3436 rc = controller_reset_failed(vaddr);
3437 if (rc < 0)
3438 goto unmap_cfgtable;
3439 if (rc) {
3440 dev_warn(&pdev->dev, "Unable to successfully reset "
3441 "controller. Will try soft reset.\n");
3442 rc = -ENOTSUPP;
3443 } else {
3444 dev_info(&pdev->dev, "board ready after hard reset.\n");
3447 unmap_cfgtable:
3448 iounmap(cfgtable);
3450 unmap_vaddr:
3451 iounmap(vaddr);
3452 return rc;
3456 * We cannot read the structure directly, for portability we must use
3457 * the io functions.
3458 * This is for debug only.
3460 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3462 #ifdef HPSA_DEBUG
3463 int i;
3464 char temp_name[17];
3466 dev_info(dev, "Controller Configuration information\n");
3467 dev_info(dev, "------------------------------------\n");
3468 for (i = 0; i < 4; i++)
3469 temp_name[i] = readb(&(tb->Signature[i]));
3470 temp_name[4] = '\0';
3471 dev_info(dev, " Signature = %s\n", temp_name);
3472 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
3473 dev_info(dev, " Transport methods supported = 0x%x\n",
3474 readl(&(tb->TransportSupport)));
3475 dev_info(dev, " Transport methods active = 0x%x\n",
3476 readl(&(tb->TransportActive)));
3477 dev_info(dev, " Requested transport Method = 0x%x\n",
3478 readl(&(tb->HostWrite.TransportRequest)));
3479 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
3480 readl(&(tb->HostWrite.CoalIntDelay)));
3481 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
3482 readl(&(tb->HostWrite.CoalIntCount)));
3483 dev_info(dev, " Max outstanding commands = 0x%d\n",
3484 readl(&(tb->CmdsOutMax)));
3485 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3486 for (i = 0; i < 16; i++)
3487 temp_name[i] = readb(&(tb->ServerName[i]));
3488 temp_name[16] = '\0';
3489 dev_info(dev, " Server Name = %s\n", temp_name);
3490 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
3491 readl(&(tb->HeartBeat)));
3492 #endif /* HPSA_DEBUG */
3495 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3497 int i, offset, mem_type, bar_type;
3499 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3500 return 0;
3501 offset = 0;
3502 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3503 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3504 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3505 offset += 4;
3506 else {
3507 mem_type = pci_resource_flags(pdev, i) &
3508 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3509 switch (mem_type) {
3510 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3511 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3512 offset += 4; /* 32 bit */
3513 break;
3514 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3515 offset += 8;
3516 break;
3517 default: /* reserved in PCI 2.2 */
3518 dev_warn(&pdev->dev,
3519 "base address is invalid\n");
3520 return -1;
3521 break;
3524 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3525 return i + 1;
3527 return -1;
3530 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3531 * controllers that are capable. If not, we use IO-APIC mode.
3534 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3536 #ifdef CONFIG_PCI_MSI
3537 int err;
3538 struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3539 {0, 2}, {0, 3}
3542 /* Some boards advertise MSI but don't really support it */
3543 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3544 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3545 goto default_int_mode;
3546 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3547 dev_info(&h->pdev->dev, "MSIX\n");
3548 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3549 if (!err) {
3550 h->intr[0] = hpsa_msix_entries[0].vector;
3551 h->intr[1] = hpsa_msix_entries[1].vector;
3552 h->intr[2] = hpsa_msix_entries[2].vector;
3553 h->intr[3] = hpsa_msix_entries[3].vector;
3554 h->msix_vector = 1;
3555 return;
3557 if (err > 0) {
3558 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3559 "available\n", err);
3560 goto default_int_mode;
3561 } else {
3562 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3563 err);
3564 goto default_int_mode;
3567 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3568 dev_info(&h->pdev->dev, "MSI\n");
3569 if (!pci_enable_msi(h->pdev))
3570 h->msi_vector = 1;
3571 else
3572 dev_warn(&h->pdev->dev, "MSI init failed\n");
3574 default_int_mode:
3575 #endif /* CONFIG_PCI_MSI */
3576 /* if we get here we're going to use the default interrupt mode */
3577 h->intr[h->intr_mode] = h->pdev->irq;
3580 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3582 int i;
3583 u32 subsystem_vendor_id, subsystem_device_id;
3585 subsystem_vendor_id = pdev->subsystem_vendor;
3586 subsystem_device_id = pdev->subsystem_device;
3587 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3588 subsystem_vendor_id;
3590 for (i = 0; i < ARRAY_SIZE(products); i++)
3591 if (*board_id == products[i].board_id)
3592 return i;
3594 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3595 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3596 !hpsa_allow_any) {
3597 dev_warn(&pdev->dev, "unrecognized board ID: "
3598 "0x%08x, ignoring.\n", *board_id);
3599 return -ENODEV;
3601 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3604 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3606 u16 command;
3608 (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3609 return ((command & PCI_COMMAND_MEMORY) == 0);
3612 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3613 unsigned long *memory_bar)
3615 int i;
3617 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3618 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3619 /* addressing mode bits already removed */
3620 *memory_bar = pci_resource_start(pdev, i);
3621 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3622 *memory_bar);
3623 return 0;
3625 dev_warn(&pdev->dev, "no memory BAR found\n");
3626 return -ENODEV;
3629 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3630 void __iomem *vaddr, int wait_for_ready)
3632 int i, iterations;
3633 u32 scratchpad;
3634 if (wait_for_ready)
3635 iterations = HPSA_BOARD_READY_ITERATIONS;
3636 else
3637 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3639 for (i = 0; i < iterations; i++) {
3640 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3641 if (wait_for_ready) {
3642 if (scratchpad == HPSA_FIRMWARE_READY)
3643 return 0;
3644 } else {
3645 if (scratchpad != HPSA_FIRMWARE_READY)
3646 return 0;
3648 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3650 dev_warn(&pdev->dev, "board not ready, timed out.\n");
3651 return -ENODEV;
3654 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3655 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3656 u64 *cfg_offset)
3658 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3659 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3660 *cfg_base_addr &= (u32) 0x0000ffff;
3661 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3662 if (*cfg_base_addr_index == -1) {
3663 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3664 return -ENODEV;
3666 return 0;
3669 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3671 u64 cfg_offset;
3672 u32 cfg_base_addr;
3673 u64 cfg_base_addr_index;
3674 u32 trans_offset;
3675 int rc;
3677 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3678 &cfg_base_addr_index, &cfg_offset);
3679 if (rc)
3680 return rc;
3681 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3682 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3683 if (!h->cfgtable)
3684 return -ENOMEM;
3685 rc = write_driver_ver_to_cfgtable(h->cfgtable);
3686 if (rc)
3687 return rc;
3688 /* Find performant mode table. */
3689 trans_offset = readl(&h->cfgtable->TransMethodOffset);
3690 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3691 cfg_base_addr_index)+cfg_offset+trans_offset,
3692 sizeof(*h->transtable));
3693 if (!h->transtable)
3694 return -ENOMEM;
3695 return 0;
3698 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3700 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3702 /* Limit commands in memory limited kdump scenario. */
3703 if (reset_devices && h->max_commands > 32)
3704 h->max_commands = 32;
3706 if (h->max_commands < 16) {
3707 dev_warn(&h->pdev->dev, "Controller reports "
3708 "max supported commands of %d, an obvious lie. "
3709 "Using 16. Ensure that firmware is up to date.\n",
3710 h->max_commands);
3711 h->max_commands = 16;
3715 /* Interrogate the hardware for some limits:
3716 * max commands, max SG elements without chaining, and with chaining,
3717 * SG chain block size, etc.
3719 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3721 hpsa_get_max_perf_mode_cmds(h);
3722 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3723 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3725 * Limit in-command s/g elements to 32 save dma'able memory.
3726 * Howvever spec says if 0, use 31
3728 h->max_cmd_sg_entries = 31;
3729 if (h->maxsgentries > 512) {
3730 h->max_cmd_sg_entries = 32;
3731 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3732 h->maxsgentries--; /* save one for chain pointer */
3733 } else {
3734 h->maxsgentries = 31; /* default to traditional values */
3735 h->chainsize = 0;
3739 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3741 if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3742 (readb(&h->cfgtable->Signature[1]) != 'I') ||
3743 (readb(&h->cfgtable->Signature[2]) != 'S') ||
3744 (readb(&h->cfgtable->Signature[3]) != 'S')) {
3745 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3746 return false;
3748 return true;
3751 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3752 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3754 #ifdef CONFIG_X86
3755 u32 prefetch;
3757 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3758 prefetch |= 0x100;
3759 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3760 #endif
3763 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
3764 * in a prefetch beyond physical memory.
3766 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3768 u32 dma_prefetch;
3770 if (h->board_id != 0x3225103C)
3771 return;
3772 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3773 dma_prefetch |= 0x8000;
3774 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3777 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3779 int i;
3780 u32 doorbell_value;
3781 unsigned long flags;
3783 /* under certain very rare conditions, this can take awhile.
3784 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3785 * as we enter this code.)
3787 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3788 spin_lock_irqsave(&h->lock, flags);
3789 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3790 spin_unlock_irqrestore(&h->lock, flags);
3791 if (!(doorbell_value & CFGTBL_ChangeReq))
3792 break;
3793 /* delay and try again */
3794 usleep_range(10000, 20000);
3798 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3800 u32 trans_support;
3802 trans_support = readl(&(h->cfgtable->TransportSupport));
3803 if (!(trans_support & SIMPLE_MODE))
3804 return -ENOTSUPP;
3806 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3807 /* Update the field, and then ring the doorbell */
3808 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3809 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3810 hpsa_wait_for_mode_change_ack(h);
3811 print_cfg_table(&h->pdev->dev, h->cfgtable);
3812 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3813 dev_warn(&h->pdev->dev,
3814 "unable to get board into simple mode\n");
3815 return -ENODEV;
3817 h->transMethod = CFGTBL_Trans_Simple;
3818 return 0;
3821 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3823 int prod_index, err;
3825 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3826 if (prod_index < 0)
3827 return -ENODEV;
3828 h->product_name = products[prod_index].product_name;
3829 h->access = *(products[prod_index].access);
3831 if (hpsa_board_disabled(h->pdev)) {
3832 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3833 return -ENODEV;
3835 err = pci_enable_device(h->pdev);
3836 if (err) {
3837 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3838 return err;
3841 err = pci_request_regions(h->pdev, "hpsa");
3842 if (err) {
3843 dev_err(&h->pdev->dev,
3844 "cannot obtain PCI resources, aborting\n");
3845 return err;
3847 hpsa_interrupt_mode(h);
3848 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3849 if (err)
3850 goto err_out_free_res;
3851 h->vaddr = remap_pci_mem(h->paddr, 0x250);
3852 if (!h->vaddr) {
3853 err = -ENOMEM;
3854 goto err_out_free_res;
3856 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3857 if (err)
3858 goto err_out_free_res;
3859 err = hpsa_find_cfgtables(h);
3860 if (err)
3861 goto err_out_free_res;
3862 hpsa_find_board_params(h);
3864 if (!hpsa_CISS_signature_present(h)) {
3865 err = -ENODEV;
3866 goto err_out_free_res;
3868 hpsa_enable_scsi_prefetch(h);
3869 hpsa_p600_dma_prefetch_quirk(h);
3870 err = hpsa_enter_simple_mode(h);
3871 if (err)
3872 goto err_out_free_res;
3873 return 0;
3875 err_out_free_res:
3876 if (h->transtable)
3877 iounmap(h->transtable);
3878 if (h->cfgtable)
3879 iounmap(h->cfgtable);
3880 if (h->vaddr)
3881 iounmap(h->vaddr);
3883 * Deliberately omit pci_disable_device(): it does something nasty to
3884 * Smart Array controllers that pci_enable_device does not undo
3886 pci_release_regions(h->pdev);
3887 return err;
3890 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3892 int rc;
3894 #define HBA_INQUIRY_BYTE_COUNT 64
3895 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3896 if (!h->hba_inquiry_data)
3897 return;
3898 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3899 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3900 if (rc != 0) {
3901 kfree(h->hba_inquiry_data);
3902 h->hba_inquiry_data = NULL;
3906 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3908 int rc, i;
3910 if (!reset_devices)
3911 return 0;
3913 /* Reset the controller with a PCI power-cycle or via doorbell */
3914 rc = hpsa_kdump_hard_reset_controller(pdev);
3916 /* -ENOTSUPP here means we cannot reset the controller
3917 * but it's already (and still) up and running in
3918 * "performant mode". Or, it might be 640x, which can't reset
3919 * due to concerns about shared bbwc between 6402/6404 pair.
3921 if (rc == -ENOTSUPP)
3922 return rc; /* just try to do the kdump anyhow. */
3923 if (rc)
3924 return -ENODEV;
3926 /* Now try to get the controller to respond to a no-op */
3927 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
3928 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3929 if (hpsa_noop(pdev) == 0)
3930 break;
3931 else
3932 dev_warn(&pdev->dev, "no-op failed%s\n",
3933 (i < 11 ? "; re-trying" : ""));
3935 return 0;
3938 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
3940 h->cmd_pool_bits = kzalloc(
3941 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
3942 sizeof(unsigned long), GFP_KERNEL);
3943 h->cmd_pool = pci_alloc_consistent(h->pdev,
3944 h->nr_cmds * sizeof(*h->cmd_pool),
3945 &(h->cmd_pool_dhandle));
3946 h->errinfo_pool = pci_alloc_consistent(h->pdev,
3947 h->nr_cmds * sizeof(*h->errinfo_pool),
3948 &(h->errinfo_pool_dhandle));
3949 if ((h->cmd_pool_bits == NULL)
3950 || (h->cmd_pool == NULL)
3951 || (h->errinfo_pool == NULL)) {
3952 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
3953 return -ENOMEM;
3955 return 0;
3958 static void hpsa_free_cmd_pool(struct ctlr_info *h)
3960 kfree(h->cmd_pool_bits);
3961 if (h->cmd_pool)
3962 pci_free_consistent(h->pdev,
3963 h->nr_cmds * sizeof(struct CommandList),
3964 h->cmd_pool, h->cmd_pool_dhandle);
3965 if (h->errinfo_pool)
3966 pci_free_consistent(h->pdev,
3967 h->nr_cmds * sizeof(struct ErrorInfo),
3968 h->errinfo_pool,
3969 h->errinfo_pool_dhandle);
3972 static int hpsa_request_irq(struct ctlr_info *h,
3973 irqreturn_t (*msixhandler)(int, void *),
3974 irqreturn_t (*intxhandler)(int, void *))
3976 int rc;
3978 if (h->msix_vector || h->msi_vector)
3979 rc = request_irq(h->intr[h->intr_mode], msixhandler,
3980 IRQF_DISABLED, h->devname, h);
3981 else
3982 rc = request_irq(h->intr[h->intr_mode], intxhandler,
3983 IRQF_DISABLED, h->devname, h);
3984 if (rc) {
3985 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
3986 h->intr[h->intr_mode], h->devname);
3987 return -ENODEV;
3989 return 0;
3992 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
3994 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
3995 HPSA_RESET_TYPE_CONTROLLER)) {
3996 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
3997 return -EIO;
4000 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4001 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4002 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4003 return -1;
4006 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4007 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4008 dev_warn(&h->pdev->dev, "Board failed to become ready "
4009 "after soft reset.\n");
4010 return -1;
4013 return 0;
4016 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4018 free_irq(h->intr[h->intr_mode], h);
4019 #ifdef CONFIG_PCI_MSI
4020 if (h->msix_vector)
4021 pci_disable_msix(h->pdev);
4022 else if (h->msi_vector)
4023 pci_disable_msi(h->pdev);
4024 #endif /* CONFIG_PCI_MSI */
4025 hpsa_free_sg_chain_blocks(h);
4026 hpsa_free_cmd_pool(h);
4027 kfree(h->blockFetchTable);
4028 pci_free_consistent(h->pdev, h->reply_pool_size,
4029 h->reply_pool, h->reply_pool_dhandle);
4030 if (h->vaddr)
4031 iounmap(h->vaddr);
4032 if (h->transtable)
4033 iounmap(h->transtable);
4034 if (h->cfgtable)
4035 iounmap(h->cfgtable);
4036 pci_release_regions(h->pdev);
4037 kfree(h);
4040 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4041 const struct pci_device_id *ent)
4043 int dac, rc;
4044 struct ctlr_info *h;
4045 int try_soft_reset = 0;
4046 unsigned long flags;
4048 if (number_of_controllers == 0)
4049 printk(KERN_INFO DRIVER_NAME "\n");
4051 rc = hpsa_init_reset_devices(pdev);
4052 if (rc) {
4053 if (rc != -ENOTSUPP)
4054 return rc;
4055 /* If the reset fails in a particular way (it has no way to do
4056 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4057 * a soft reset once we get the controller configured up to the
4058 * point that it can accept a command.
4060 try_soft_reset = 1;
4061 rc = 0;
4064 reinit_after_soft_reset:
4066 /* Command structures must be aligned on a 32-byte boundary because
4067 * the 5 lower bits of the address are used by the hardware. and by
4068 * the driver. See comments in hpsa.h for more info.
4070 #define COMMANDLIST_ALIGNMENT 32
4071 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4072 h = kzalloc(sizeof(*h), GFP_KERNEL);
4073 if (!h)
4074 return -ENOMEM;
4076 h->pdev = pdev;
4077 h->busy_initializing = 1;
4078 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4079 INIT_LIST_HEAD(&h->cmpQ);
4080 INIT_LIST_HEAD(&h->reqQ);
4081 spin_lock_init(&h->lock);
4082 spin_lock_init(&h->scan_lock);
4083 rc = hpsa_pci_init(h);
4084 if (rc != 0)
4085 goto clean1;
4087 sprintf(h->devname, "hpsa%d", number_of_controllers);
4088 h->ctlr = number_of_controllers;
4089 number_of_controllers++;
4091 /* configure PCI DMA stuff */
4092 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4093 if (rc == 0) {
4094 dac = 1;
4095 } else {
4096 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4097 if (rc == 0) {
4098 dac = 0;
4099 } else {
4100 dev_err(&pdev->dev, "no suitable DMA available\n");
4101 goto clean1;
4105 /* make sure the board interrupts are off */
4106 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4108 if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4109 goto clean2;
4110 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4111 h->devname, pdev->device,
4112 h->intr[h->intr_mode], dac ? "" : " not");
4113 if (hpsa_allocate_cmd_pool(h))
4114 goto clean4;
4115 if (hpsa_allocate_sg_chain_blocks(h))
4116 goto clean4;
4117 init_waitqueue_head(&h->scan_wait_queue);
4118 h->scan_finished = 1; /* no scan currently in progress */
4120 pci_set_drvdata(pdev, h);
4121 h->ndevices = 0;
4122 h->scsi_host = NULL;
4123 spin_lock_init(&h->devlock);
4124 hpsa_put_ctlr_into_performant_mode(h);
4126 /* At this point, the controller is ready to take commands.
4127 * Now, if reset_devices and the hard reset didn't work, try
4128 * the soft reset and see if that works.
4130 if (try_soft_reset) {
4132 /* This is kind of gross. We may or may not get a completion
4133 * from the soft reset command, and if we do, then the value
4134 * from the fifo may or may not be valid. So, we wait 10 secs
4135 * after the reset throwing away any completions we get during
4136 * that time. Unregister the interrupt handler and register
4137 * fake ones to scoop up any residual completions.
4139 spin_lock_irqsave(&h->lock, flags);
4140 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4141 spin_unlock_irqrestore(&h->lock, flags);
4142 free_irq(h->intr[h->intr_mode], h);
4143 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4144 hpsa_intx_discard_completions);
4145 if (rc) {
4146 dev_warn(&h->pdev->dev, "Failed to request_irq after "
4147 "soft reset.\n");
4148 goto clean4;
4151 rc = hpsa_kdump_soft_reset(h);
4152 if (rc)
4153 /* Neither hard nor soft reset worked, we're hosed. */
4154 goto clean4;
4156 dev_info(&h->pdev->dev, "Board READY.\n");
4157 dev_info(&h->pdev->dev,
4158 "Waiting for stale completions to drain.\n");
4159 h->access.set_intr_mask(h, HPSA_INTR_ON);
4160 msleep(10000);
4161 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4163 rc = controller_reset_failed(h->cfgtable);
4164 if (rc)
4165 dev_info(&h->pdev->dev,
4166 "Soft reset appears to have failed.\n");
4168 /* since the controller's reset, we have to go back and re-init
4169 * everything. Easiest to just forget what we've done and do it
4170 * all over again.
4172 hpsa_undo_allocations_after_kdump_soft_reset(h);
4173 try_soft_reset = 0;
4174 if (rc)
4175 /* don't go to clean4, we already unallocated */
4176 return -ENODEV;
4178 goto reinit_after_soft_reset;
4181 /* Turn the interrupts on so we can service requests */
4182 h->access.set_intr_mask(h, HPSA_INTR_ON);
4184 hpsa_hba_inquiry(h);
4185 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
4186 h->busy_initializing = 0;
4187 return 1;
4189 clean4:
4190 hpsa_free_sg_chain_blocks(h);
4191 hpsa_free_cmd_pool(h);
4192 free_irq(h->intr[h->intr_mode], h);
4193 clean2:
4194 clean1:
4195 h->busy_initializing = 0;
4196 kfree(h);
4197 return rc;
4200 static void hpsa_flush_cache(struct ctlr_info *h)
4202 char *flush_buf;
4203 struct CommandList *c;
4205 flush_buf = kzalloc(4, GFP_KERNEL);
4206 if (!flush_buf)
4207 return;
4209 c = cmd_special_alloc(h);
4210 if (!c) {
4211 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4212 goto out_of_memory;
4214 fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4215 RAID_CTLR_LUNID, TYPE_CMD);
4216 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4217 if (c->err_info->CommandStatus != 0)
4218 dev_warn(&h->pdev->dev,
4219 "error flushing cache on controller\n");
4220 cmd_special_free(h, c);
4221 out_of_memory:
4222 kfree(flush_buf);
4225 static void hpsa_shutdown(struct pci_dev *pdev)
4227 struct ctlr_info *h;
4229 h = pci_get_drvdata(pdev);
4230 /* Turn board interrupts off and send the flush cache command
4231 * sendcmd will turn off interrupt, and send the flush...
4232 * To write all data in the battery backed cache to disks
4234 hpsa_flush_cache(h);
4235 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4236 free_irq(h->intr[h->intr_mode], h);
4237 #ifdef CONFIG_PCI_MSI
4238 if (h->msix_vector)
4239 pci_disable_msix(h->pdev);
4240 else if (h->msi_vector)
4241 pci_disable_msi(h->pdev);
4242 #endif /* CONFIG_PCI_MSI */
4245 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4247 struct ctlr_info *h;
4249 if (pci_get_drvdata(pdev) == NULL) {
4250 dev_err(&pdev->dev, "unable to remove device \n");
4251 return;
4253 h = pci_get_drvdata(pdev);
4254 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
4255 hpsa_shutdown(pdev);
4256 iounmap(h->vaddr);
4257 iounmap(h->transtable);
4258 iounmap(h->cfgtable);
4259 hpsa_free_sg_chain_blocks(h);
4260 pci_free_consistent(h->pdev,
4261 h->nr_cmds * sizeof(struct CommandList),
4262 h->cmd_pool, h->cmd_pool_dhandle);
4263 pci_free_consistent(h->pdev,
4264 h->nr_cmds * sizeof(struct ErrorInfo),
4265 h->errinfo_pool, h->errinfo_pool_dhandle);
4266 pci_free_consistent(h->pdev, h->reply_pool_size,
4267 h->reply_pool, h->reply_pool_dhandle);
4268 kfree(h->cmd_pool_bits);
4269 kfree(h->blockFetchTable);
4270 kfree(h->hba_inquiry_data);
4272 * Deliberately omit pci_disable_device(): it does something nasty to
4273 * Smart Array controllers that pci_enable_device does not undo
4275 pci_release_regions(pdev);
4276 pci_set_drvdata(pdev, NULL);
4277 kfree(h);
4280 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4281 __attribute__((unused)) pm_message_t state)
4283 return -ENOSYS;
4286 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4288 return -ENOSYS;
4291 static struct pci_driver hpsa_pci_driver = {
4292 .name = "hpsa",
4293 .probe = hpsa_init_one,
4294 .remove = __devexit_p(hpsa_remove_one),
4295 .id_table = hpsa_pci_device_id, /* id_table */
4296 .shutdown = hpsa_shutdown,
4297 .suspend = hpsa_suspend,
4298 .resume = hpsa_resume,
4301 /* Fill in bucket_map[], given nsgs (the max number of
4302 * scatter gather elements supported) and bucket[],
4303 * which is an array of 8 integers. The bucket[] array
4304 * contains 8 different DMA transfer sizes (in 16
4305 * byte increments) which the controller uses to fetch
4306 * commands. This function fills in bucket_map[], which
4307 * maps a given number of scatter gather elements to one of
4308 * the 8 DMA transfer sizes. The point of it is to allow the
4309 * controller to only do as much DMA as needed to fetch the
4310 * command, with the DMA transfer size encoded in the lower
4311 * bits of the command address.
4313 static void calc_bucket_map(int bucket[], int num_buckets,
4314 int nsgs, int *bucket_map)
4316 int i, j, b, size;
4318 /* even a command with 0 SGs requires 4 blocks */
4319 #define MINIMUM_TRANSFER_BLOCKS 4
4320 #define NUM_BUCKETS 8
4321 /* Note, bucket_map must have nsgs+1 entries. */
4322 for (i = 0; i <= nsgs; i++) {
4323 /* Compute size of a command with i SG entries */
4324 size = i + MINIMUM_TRANSFER_BLOCKS;
4325 b = num_buckets; /* Assume the biggest bucket */
4326 /* Find the bucket that is just big enough */
4327 for (j = 0; j < 8; j++) {
4328 if (bucket[j] >= size) {
4329 b = j;
4330 break;
4333 /* for a command with i SG entries, use bucket b. */
4334 bucket_map[i] = b;
4338 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4339 u32 use_short_tags)
4341 int i;
4342 unsigned long register_value;
4344 /* This is a bit complicated. There are 8 registers on
4345 * the controller which we write to to tell it 8 different
4346 * sizes of commands which there may be. It's a way of
4347 * reducing the DMA done to fetch each command. Encoded into
4348 * each command's tag are 3 bits which communicate to the controller
4349 * which of the eight sizes that command fits within. The size of
4350 * each command depends on how many scatter gather entries there are.
4351 * Each SG entry requires 16 bytes. The eight registers are programmed
4352 * with the number of 16-byte blocks a command of that size requires.
4353 * The smallest command possible requires 5 such 16 byte blocks.
4354 * the largest command possible requires MAXSGENTRIES + 4 16-byte
4355 * blocks. Note, this only extends to the SG entries contained
4356 * within the command block, and does not extend to chained blocks
4357 * of SG elements. bft[] contains the eight values we write to
4358 * the registers. They are not evenly distributed, but have more
4359 * sizes for small commands, and fewer sizes for larger commands.
4361 int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4362 BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4363 /* 5 = 1 s/g entry or 4k
4364 * 6 = 2 s/g entry or 8k
4365 * 8 = 4 s/g entry or 16k
4366 * 10 = 6 s/g entry or 24k
4369 h->reply_pool_wraparound = 1; /* spec: init to 1 */
4371 /* Controller spec: zero out this buffer. */
4372 memset(h->reply_pool, 0, h->reply_pool_size);
4373 h->reply_pool_head = h->reply_pool;
4375 bft[7] = h->max_sg_entries + 4;
4376 calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4377 for (i = 0; i < 8; i++)
4378 writel(bft[i], &h->transtable->BlockFetch[i]);
4380 /* size of controller ring buffer */
4381 writel(h->max_commands, &h->transtable->RepQSize);
4382 writel(1, &h->transtable->RepQCount);
4383 writel(0, &h->transtable->RepQCtrAddrLow32);
4384 writel(0, &h->transtable->RepQCtrAddrHigh32);
4385 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4386 writel(0, &h->transtable->RepQAddr0High32);
4387 writel(CFGTBL_Trans_Performant | use_short_tags,
4388 &(h->cfgtable->HostWrite.TransportRequest));
4389 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4390 hpsa_wait_for_mode_change_ack(h);
4391 register_value = readl(&(h->cfgtable->TransportActive));
4392 if (!(register_value & CFGTBL_Trans_Performant)) {
4393 dev_warn(&h->pdev->dev, "unable to get board into"
4394 " performant mode\n");
4395 return;
4397 /* Change the access methods to the performant access methods */
4398 h->access = SA5_performant_access;
4399 h->transMethod = CFGTBL_Trans_Performant;
4402 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4404 u32 trans_support;
4406 if (hpsa_simple_mode)
4407 return;
4409 trans_support = readl(&(h->cfgtable->TransportSupport));
4410 if (!(trans_support & PERFORMANT_MODE))
4411 return;
4413 hpsa_get_max_perf_mode_cmds(h);
4414 h->max_sg_entries = 32;
4415 /* Performant mode ring buffer and supporting data structures */
4416 h->reply_pool_size = h->max_commands * sizeof(u64);
4417 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4418 &(h->reply_pool_dhandle));
4420 /* Need a block fetch table for performant mode */
4421 h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4422 sizeof(u32)), GFP_KERNEL);
4424 if ((h->reply_pool == NULL)
4425 || (h->blockFetchTable == NULL))
4426 goto clean_up;
4428 hpsa_enter_performant_mode(h,
4429 trans_support & CFGTBL_Trans_use_short_tags);
4431 return;
4433 clean_up:
4434 if (h->reply_pool)
4435 pci_free_consistent(h->pdev, h->reply_pool_size,
4436 h->reply_pool, h->reply_pool_dhandle);
4437 kfree(h->blockFetchTable);
4441 * This is it. Register the PCI driver information for the cards we control
4442 * the OS will call our registered routines when it finds one of our cards.
4444 static int __init hpsa_init(void)
4446 return pci_register_driver(&hpsa_pci_driver);
4449 static void __exit hpsa_cleanup(void)
4451 pci_unregister_driver(&hpsa_pci_driver);
4454 module_init(hpsa_init);
4455 module_exit(hpsa_cleanup);