Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / raid10.c
blob6e846688962fccfd9c7ceddd645192047f7d4d87
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include "md.h"
26 #include "raid10.h"
27 #include "raid0.h"
28 #include "bitmap.h"
31 * RAID10 provides a combination of RAID0 and RAID1 functionality.
32 * The layout of data is defined by
33 * chunk_size
34 * raid_disks
35 * near_copies (stored in low byte of layout)
36 * far_copies (stored in second byte of layout)
37 * far_offset (stored in bit 16 of layout )
39 * The data to be stored is divided into chunks using chunksize.
40 * Each device is divided into far_copies sections.
41 * In each section, chunks are laid out in a style similar to raid0, but
42 * near_copies copies of each chunk is stored (each on a different drive).
43 * The starting device for each section is offset near_copies from the starting
44 * device of the previous section.
45 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
46 * drive.
47 * near_copies and far_copies must be at least one, and their product is at most
48 * raid_disks.
50 * If far_offset is true, then the far_copies are handled a bit differently.
51 * The copies are still in different stripes, but instead of be very far apart
52 * on disk, there are adjacent stripes.
56 * Number of guaranteed r10bios in case of extreme VM load:
58 #define NR_RAID10_BIOS 256
60 static void allow_barrier(conf_t *conf);
61 static void lower_barrier(conf_t *conf);
63 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
65 conf_t *conf = data;
66 int size = offsetof(struct r10bio_s, devs[conf->copies]);
68 /* allocate a r10bio with room for raid_disks entries in the bios array */
69 return kzalloc(size, gfp_flags);
72 static void r10bio_pool_free(void *r10_bio, void *data)
74 kfree(r10_bio);
77 /* Maximum size of each resync request */
78 #define RESYNC_BLOCK_SIZE (64*1024)
79 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
80 /* amount of memory to reserve for resync requests */
81 #define RESYNC_WINDOW (1024*1024)
82 /* maximum number of concurrent requests, memory permitting */
83 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
86 * When performing a resync, we need to read and compare, so
87 * we need as many pages are there are copies.
88 * When performing a recovery, we need 2 bios, one for read,
89 * one for write (we recover only one drive per r10buf)
92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
94 conf_t *conf = data;
95 struct page *page;
96 r10bio_t *r10_bio;
97 struct bio *bio;
98 int i, j;
99 int nalloc;
101 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
102 if (!r10_bio)
103 return NULL;
105 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
106 nalloc = conf->copies; /* resync */
107 else
108 nalloc = 2; /* recovery */
111 * Allocate bios.
113 for (j = nalloc ; j-- ; ) {
114 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
115 if (!bio)
116 goto out_free_bio;
117 r10_bio->devs[j].bio = bio;
120 * Allocate RESYNC_PAGES data pages and attach them
121 * where needed.
123 for (j = 0 ; j < nalloc; j++) {
124 bio = r10_bio->devs[j].bio;
125 for (i = 0; i < RESYNC_PAGES; i++) {
126 page = alloc_page(gfp_flags);
127 if (unlikely(!page))
128 goto out_free_pages;
130 bio->bi_io_vec[i].bv_page = page;
134 return r10_bio;
136 out_free_pages:
137 for ( ; i > 0 ; i--)
138 safe_put_page(bio->bi_io_vec[i-1].bv_page);
139 while (j--)
140 for (i = 0; i < RESYNC_PAGES ; i++)
141 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
142 j = -1;
143 out_free_bio:
144 while ( ++j < nalloc )
145 bio_put(r10_bio->devs[j].bio);
146 r10bio_pool_free(r10_bio, conf);
147 return NULL;
150 static void r10buf_pool_free(void *__r10_bio, void *data)
152 int i;
153 conf_t *conf = data;
154 r10bio_t *r10bio = __r10_bio;
155 int j;
157 for (j=0; j < conf->copies; j++) {
158 struct bio *bio = r10bio->devs[j].bio;
159 if (bio) {
160 for (i = 0; i < RESYNC_PAGES; i++) {
161 safe_put_page(bio->bi_io_vec[i].bv_page);
162 bio->bi_io_vec[i].bv_page = NULL;
164 bio_put(bio);
167 r10bio_pool_free(r10bio, conf);
170 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
172 int i;
174 for (i = 0; i < conf->copies; i++) {
175 struct bio **bio = & r10_bio->devs[i].bio;
176 if (*bio && *bio != IO_BLOCKED)
177 bio_put(*bio);
178 *bio = NULL;
182 static void free_r10bio(r10bio_t *r10_bio)
184 conf_t *conf = r10_bio->mddev->private;
187 * Wake up any possible resync thread that waits for the device
188 * to go idle.
190 allow_barrier(conf);
192 put_all_bios(conf, r10_bio);
193 mempool_free(r10_bio, conf->r10bio_pool);
196 static void put_buf(r10bio_t *r10_bio)
198 conf_t *conf = r10_bio->mddev->private;
200 mempool_free(r10_bio, conf->r10buf_pool);
202 lower_barrier(conf);
205 static void reschedule_retry(r10bio_t *r10_bio)
207 unsigned long flags;
208 mddev_t *mddev = r10_bio->mddev;
209 conf_t *conf = mddev->private;
211 spin_lock_irqsave(&conf->device_lock, flags);
212 list_add(&r10_bio->retry_list, &conf->retry_list);
213 conf->nr_queued ++;
214 spin_unlock_irqrestore(&conf->device_lock, flags);
216 /* wake up frozen array... */
217 wake_up(&conf->wait_barrier);
219 md_wakeup_thread(mddev->thread);
223 * raid_end_bio_io() is called when we have finished servicing a mirrored
224 * operation and are ready to return a success/failure code to the buffer
225 * cache layer.
227 static void raid_end_bio_io(r10bio_t *r10_bio)
229 struct bio *bio = r10_bio->master_bio;
231 bio_endio(bio,
232 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
233 free_r10bio(r10_bio);
237 * Update disk head position estimator based on IRQ completion info.
239 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
241 conf_t *conf = r10_bio->mddev->private;
243 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
244 r10_bio->devs[slot].addr + (r10_bio->sectors);
247 static void raid10_end_read_request(struct bio *bio, int error)
249 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
250 r10bio_t *r10_bio = bio->bi_private;
251 int slot, dev;
252 conf_t *conf = r10_bio->mddev->private;
255 slot = r10_bio->read_slot;
256 dev = r10_bio->devs[slot].devnum;
258 * this branch is our 'one mirror IO has finished' event handler:
260 update_head_pos(slot, r10_bio);
262 if (uptodate) {
264 * Set R10BIO_Uptodate in our master bio, so that
265 * we will return a good error code to the higher
266 * levels even if IO on some other mirrored buffer fails.
268 * The 'master' represents the composite IO operation to
269 * user-side. So if something waits for IO, then it will
270 * wait for the 'master' bio.
272 set_bit(R10BIO_Uptodate, &r10_bio->state);
273 raid_end_bio_io(r10_bio);
274 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
275 } else {
277 * oops, read error - keep the refcount on the rdev
279 char b[BDEVNAME_SIZE];
280 if (printk_ratelimit())
281 printk(KERN_ERR "md/raid10:%s: %s: rescheduling sector %llu\n",
282 mdname(conf->mddev),
283 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
284 reschedule_retry(r10_bio);
288 static void raid10_end_write_request(struct bio *bio, int error)
290 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
291 r10bio_t *r10_bio = bio->bi_private;
292 int slot, dev;
293 conf_t *conf = r10_bio->mddev->private;
295 for (slot = 0; slot < conf->copies; slot++)
296 if (r10_bio->devs[slot].bio == bio)
297 break;
298 dev = r10_bio->devs[slot].devnum;
301 * this branch is our 'one mirror IO has finished' event handler:
303 if (!uptodate) {
304 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
305 /* an I/O failed, we can't clear the bitmap */
306 set_bit(R10BIO_Degraded, &r10_bio->state);
307 } else
309 * Set R10BIO_Uptodate in our master bio, so that
310 * we will return a good error code for to the higher
311 * levels even if IO on some other mirrored buffer fails.
313 * The 'master' represents the composite IO operation to
314 * user-side. So if something waits for IO, then it will
315 * wait for the 'master' bio.
317 set_bit(R10BIO_Uptodate, &r10_bio->state);
319 update_head_pos(slot, r10_bio);
323 * Let's see if all mirrored write operations have finished
324 * already.
326 if (atomic_dec_and_test(&r10_bio->remaining)) {
327 /* clear the bitmap if all writes complete successfully */
328 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
329 r10_bio->sectors,
330 !test_bit(R10BIO_Degraded, &r10_bio->state),
332 md_write_end(r10_bio->mddev);
333 raid_end_bio_io(r10_bio);
336 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
341 * RAID10 layout manager
342 * As well as the chunksize and raid_disks count, there are two
343 * parameters: near_copies and far_copies.
344 * near_copies * far_copies must be <= raid_disks.
345 * Normally one of these will be 1.
346 * If both are 1, we get raid0.
347 * If near_copies == raid_disks, we get raid1.
349 * Chunks are laid out in raid0 style with near_copies copies of the
350 * first chunk, followed by near_copies copies of the next chunk and
351 * so on.
352 * If far_copies > 1, then after 1/far_copies of the array has been assigned
353 * as described above, we start again with a device offset of near_copies.
354 * So we effectively have another copy of the whole array further down all
355 * the drives, but with blocks on different drives.
356 * With this layout, and block is never stored twice on the one device.
358 * raid10_find_phys finds the sector offset of a given virtual sector
359 * on each device that it is on.
361 * raid10_find_virt does the reverse mapping, from a device and a
362 * sector offset to a virtual address
365 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
367 int n,f;
368 sector_t sector;
369 sector_t chunk;
370 sector_t stripe;
371 int dev;
373 int slot = 0;
375 /* now calculate first sector/dev */
376 chunk = r10bio->sector >> conf->chunk_shift;
377 sector = r10bio->sector & conf->chunk_mask;
379 chunk *= conf->near_copies;
380 stripe = chunk;
381 dev = sector_div(stripe, conf->raid_disks);
382 if (conf->far_offset)
383 stripe *= conf->far_copies;
385 sector += stripe << conf->chunk_shift;
387 /* and calculate all the others */
388 for (n=0; n < conf->near_copies; n++) {
389 int d = dev;
390 sector_t s = sector;
391 r10bio->devs[slot].addr = sector;
392 r10bio->devs[slot].devnum = d;
393 slot++;
395 for (f = 1; f < conf->far_copies; f++) {
396 d += conf->near_copies;
397 if (d >= conf->raid_disks)
398 d -= conf->raid_disks;
399 s += conf->stride;
400 r10bio->devs[slot].devnum = d;
401 r10bio->devs[slot].addr = s;
402 slot++;
404 dev++;
405 if (dev >= conf->raid_disks) {
406 dev = 0;
407 sector += (conf->chunk_mask + 1);
410 BUG_ON(slot != conf->copies);
413 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
415 sector_t offset, chunk, vchunk;
417 offset = sector & conf->chunk_mask;
418 if (conf->far_offset) {
419 int fc;
420 chunk = sector >> conf->chunk_shift;
421 fc = sector_div(chunk, conf->far_copies);
422 dev -= fc * conf->near_copies;
423 if (dev < 0)
424 dev += conf->raid_disks;
425 } else {
426 while (sector >= conf->stride) {
427 sector -= conf->stride;
428 if (dev < conf->near_copies)
429 dev += conf->raid_disks - conf->near_copies;
430 else
431 dev -= conf->near_copies;
433 chunk = sector >> conf->chunk_shift;
435 vchunk = chunk * conf->raid_disks + dev;
436 sector_div(vchunk, conf->near_copies);
437 return (vchunk << conf->chunk_shift) + offset;
441 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
442 * @q: request queue
443 * @bvm: properties of new bio
444 * @biovec: the request that could be merged to it.
446 * Return amount of bytes we can accept at this offset
447 * If near_copies == raid_disk, there are no striping issues,
448 * but in that case, the function isn't called at all.
450 static int raid10_mergeable_bvec(struct request_queue *q,
451 struct bvec_merge_data *bvm,
452 struct bio_vec *biovec)
454 mddev_t *mddev = q->queuedata;
455 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
456 int max;
457 unsigned int chunk_sectors = mddev->chunk_sectors;
458 unsigned int bio_sectors = bvm->bi_size >> 9;
460 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
461 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
462 if (max <= biovec->bv_len && bio_sectors == 0)
463 return biovec->bv_len;
464 else
465 return max;
469 * This routine returns the disk from which the requested read should
470 * be done. There is a per-array 'next expected sequential IO' sector
471 * number - if this matches on the next IO then we use the last disk.
472 * There is also a per-disk 'last know head position' sector that is
473 * maintained from IRQ contexts, both the normal and the resync IO
474 * completion handlers update this position correctly. If there is no
475 * perfect sequential match then we pick the disk whose head is closest.
477 * If there are 2 mirrors in the same 2 devices, performance degrades
478 * because position is mirror, not device based.
480 * The rdev for the device selected will have nr_pending incremented.
484 * FIXME: possibly should rethink readbalancing and do it differently
485 * depending on near_copies / far_copies geometry.
487 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
489 const sector_t this_sector = r10_bio->sector;
490 int disk, slot;
491 const int sectors = r10_bio->sectors;
492 sector_t new_distance, best_dist;
493 mdk_rdev_t *rdev;
494 int do_balance;
495 int best_slot;
497 raid10_find_phys(conf, r10_bio);
498 rcu_read_lock();
499 retry:
500 best_slot = -1;
501 best_dist = MaxSector;
502 do_balance = 1;
504 * Check if we can balance. We can balance on the whole
505 * device if no resync is going on (recovery is ok), or below
506 * the resync window. We take the first readable disk when
507 * above the resync window.
509 if (conf->mddev->recovery_cp < MaxSector
510 && (this_sector + sectors >= conf->next_resync))
511 do_balance = 0;
513 for (slot = 0; slot < conf->copies ; slot++) {
514 if (r10_bio->devs[slot].bio == IO_BLOCKED)
515 continue;
516 disk = r10_bio->devs[slot].devnum;
517 rdev = rcu_dereference(conf->mirrors[disk].rdev);
518 if (rdev == NULL)
519 continue;
520 if (!test_bit(In_sync, &rdev->flags))
521 continue;
523 if (!do_balance)
524 break;
526 /* This optimisation is debatable, and completely destroys
527 * sequential read speed for 'far copies' arrays. So only
528 * keep it for 'near' arrays, and review those later.
530 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
531 break;
533 /* for far > 1 always use the lowest address */
534 if (conf->far_copies > 1)
535 new_distance = r10_bio->devs[slot].addr;
536 else
537 new_distance = abs(r10_bio->devs[slot].addr -
538 conf->mirrors[disk].head_position);
539 if (new_distance < best_dist) {
540 best_dist = new_distance;
541 best_slot = slot;
544 if (slot == conf->copies)
545 slot = best_slot;
547 if (slot >= 0) {
548 disk = r10_bio->devs[slot].devnum;
549 rdev = rcu_dereference(conf->mirrors[disk].rdev);
550 if (!rdev)
551 goto retry;
552 atomic_inc(&rdev->nr_pending);
553 if (test_bit(Faulty, &rdev->flags)) {
554 /* Cannot risk returning a device that failed
555 * before we inc'ed nr_pending
557 rdev_dec_pending(rdev, conf->mddev);
558 goto retry;
560 r10_bio->read_slot = slot;
561 } else
562 disk = -1;
563 rcu_read_unlock();
565 return disk;
568 static int raid10_congested(void *data, int bits)
570 mddev_t *mddev = data;
571 conf_t *conf = mddev->private;
572 int i, ret = 0;
574 if (mddev_congested(mddev, bits))
575 return 1;
576 rcu_read_lock();
577 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
578 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
579 if (rdev && !test_bit(Faulty, &rdev->flags)) {
580 struct request_queue *q = bdev_get_queue(rdev->bdev);
582 ret |= bdi_congested(&q->backing_dev_info, bits);
585 rcu_read_unlock();
586 return ret;
589 static void flush_pending_writes(conf_t *conf)
591 /* Any writes that have been queued but are awaiting
592 * bitmap updates get flushed here.
594 spin_lock_irq(&conf->device_lock);
596 if (conf->pending_bio_list.head) {
597 struct bio *bio;
598 bio = bio_list_get(&conf->pending_bio_list);
599 spin_unlock_irq(&conf->device_lock);
600 /* flush any pending bitmap writes to disk
601 * before proceeding w/ I/O */
602 bitmap_unplug(conf->mddev->bitmap);
604 while (bio) { /* submit pending writes */
605 struct bio *next = bio->bi_next;
606 bio->bi_next = NULL;
607 generic_make_request(bio);
608 bio = next;
610 } else
611 spin_unlock_irq(&conf->device_lock);
614 /* Barriers....
615 * Sometimes we need to suspend IO while we do something else,
616 * either some resync/recovery, or reconfigure the array.
617 * To do this we raise a 'barrier'.
618 * The 'barrier' is a counter that can be raised multiple times
619 * to count how many activities are happening which preclude
620 * normal IO.
621 * We can only raise the barrier if there is no pending IO.
622 * i.e. if nr_pending == 0.
623 * We choose only to raise the barrier if no-one is waiting for the
624 * barrier to go down. This means that as soon as an IO request
625 * is ready, no other operations which require a barrier will start
626 * until the IO request has had a chance.
628 * So: regular IO calls 'wait_barrier'. When that returns there
629 * is no backgroup IO happening, It must arrange to call
630 * allow_barrier when it has finished its IO.
631 * backgroup IO calls must call raise_barrier. Once that returns
632 * there is no normal IO happeing. It must arrange to call
633 * lower_barrier when the particular background IO completes.
636 static void raise_barrier(conf_t *conf, int force)
638 BUG_ON(force && !conf->barrier);
639 spin_lock_irq(&conf->resync_lock);
641 /* Wait until no block IO is waiting (unless 'force') */
642 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
643 conf->resync_lock, );
645 /* block any new IO from starting */
646 conf->barrier++;
648 /* Now wait for all pending IO to complete */
649 wait_event_lock_irq(conf->wait_barrier,
650 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
651 conf->resync_lock, );
653 spin_unlock_irq(&conf->resync_lock);
656 static void lower_barrier(conf_t *conf)
658 unsigned long flags;
659 spin_lock_irqsave(&conf->resync_lock, flags);
660 conf->barrier--;
661 spin_unlock_irqrestore(&conf->resync_lock, flags);
662 wake_up(&conf->wait_barrier);
665 static void wait_barrier(conf_t *conf)
667 spin_lock_irq(&conf->resync_lock);
668 if (conf->barrier) {
669 conf->nr_waiting++;
670 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
671 conf->resync_lock,
673 conf->nr_waiting--;
675 conf->nr_pending++;
676 spin_unlock_irq(&conf->resync_lock);
679 static void allow_barrier(conf_t *conf)
681 unsigned long flags;
682 spin_lock_irqsave(&conf->resync_lock, flags);
683 conf->nr_pending--;
684 spin_unlock_irqrestore(&conf->resync_lock, flags);
685 wake_up(&conf->wait_barrier);
688 static void freeze_array(conf_t *conf)
690 /* stop syncio and normal IO and wait for everything to
691 * go quiet.
692 * We increment barrier and nr_waiting, and then
693 * wait until nr_pending match nr_queued+1
694 * This is called in the context of one normal IO request
695 * that has failed. Thus any sync request that might be pending
696 * will be blocked by nr_pending, and we need to wait for
697 * pending IO requests to complete or be queued for re-try.
698 * Thus the number queued (nr_queued) plus this request (1)
699 * must match the number of pending IOs (nr_pending) before
700 * we continue.
702 spin_lock_irq(&conf->resync_lock);
703 conf->barrier++;
704 conf->nr_waiting++;
705 wait_event_lock_irq(conf->wait_barrier,
706 conf->nr_pending == conf->nr_queued+1,
707 conf->resync_lock,
708 flush_pending_writes(conf));
710 spin_unlock_irq(&conf->resync_lock);
713 static void unfreeze_array(conf_t *conf)
715 /* reverse the effect of the freeze */
716 spin_lock_irq(&conf->resync_lock);
717 conf->barrier--;
718 conf->nr_waiting--;
719 wake_up(&conf->wait_barrier);
720 spin_unlock_irq(&conf->resync_lock);
723 static int make_request(mddev_t *mddev, struct bio * bio)
725 conf_t *conf = mddev->private;
726 mirror_info_t *mirror;
727 r10bio_t *r10_bio;
728 struct bio *read_bio;
729 int i;
730 int chunk_sects = conf->chunk_mask + 1;
731 const int rw = bio_data_dir(bio);
732 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
733 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
734 unsigned long flags;
735 mdk_rdev_t *blocked_rdev;
736 int plugged;
738 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
739 md_flush_request(mddev, bio);
740 return 0;
743 /* If this request crosses a chunk boundary, we need to
744 * split it. This will only happen for 1 PAGE (or less) requests.
746 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
747 > chunk_sects &&
748 conf->near_copies < conf->raid_disks)) {
749 struct bio_pair *bp;
750 /* Sanity check -- queue functions should prevent this happening */
751 if (bio->bi_vcnt != 1 ||
752 bio->bi_idx != 0)
753 goto bad_map;
754 /* This is a one page bio that upper layers
755 * refuse to split for us, so we need to split it.
757 bp = bio_split(bio,
758 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
760 /* Each of these 'make_request' calls will call 'wait_barrier'.
761 * If the first succeeds but the second blocks due to the resync
762 * thread raising the barrier, we will deadlock because the
763 * IO to the underlying device will be queued in generic_make_request
764 * and will never complete, so will never reduce nr_pending.
765 * So increment nr_waiting here so no new raise_barriers will
766 * succeed, and so the second wait_barrier cannot block.
768 spin_lock_irq(&conf->resync_lock);
769 conf->nr_waiting++;
770 spin_unlock_irq(&conf->resync_lock);
772 if (make_request(mddev, &bp->bio1))
773 generic_make_request(&bp->bio1);
774 if (make_request(mddev, &bp->bio2))
775 generic_make_request(&bp->bio2);
777 spin_lock_irq(&conf->resync_lock);
778 conf->nr_waiting--;
779 wake_up(&conf->wait_barrier);
780 spin_unlock_irq(&conf->resync_lock);
782 bio_pair_release(bp);
783 return 0;
784 bad_map:
785 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
786 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
787 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
789 bio_io_error(bio);
790 return 0;
793 md_write_start(mddev, bio);
796 * Register the new request and wait if the reconstruction
797 * thread has put up a bar for new requests.
798 * Continue immediately if no resync is active currently.
800 wait_barrier(conf);
802 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
804 r10_bio->master_bio = bio;
805 r10_bio->sectors = bio->bi_size >> 9;
807 r10_bio->mddev = mddev;
808 r10_bio->sector = bio->bi_sector;
809 r10_bio->state = 0;
811 if (rw == READ) {
813 * read balancing logic:
815 int disk = read_balance(conf, r10_bio);
816 int slot = r10_bio->read_slot;
817 if (disk < 0) {
818 raid_end_bio_io(r10_bio);
819 return 0;
821 mirror = conf->mirrors + disk;
823 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
825 r10_bio->devs[slot].bio = read_bio;
827 read_bio->bi_sector = r10_bio->devs[slot].addr +
828 mirror->rdev->data_offset;
829 read_bio->bi_bdev = mirror->rdev->bdev;
830 read_bio->bi_end_io = raid10_end_read_request;
831 read_bio->bi_rw = READ | do_sync;
832 read_bio->bi_private = r10_bio;
834 generic_make_request(read_bio);
835 return 0;
839 * WRITE:
841 /* first select target devices under rcu_lock and
842 * inc refcount on their rdev. Record them by setting
843 * bios[x] to bio
845 plugged = mddev_check_plugged(mddev);
847 raid10_find_phys(conf, r10_bio);
848 retry_write:
849 blocked_rdev = NULL;
850 rcu_read_lock();
851 for (i = 0; i < conf->copies; i++) {
852 int d = r10_bio->devs[i].devnum;
853 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
854 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
855 atomic_inc(&rdev->nr_pending);
856 blocked_rdev = rdev;
857 break;
859 if (rdev && !test_bit(Faulty, &rdev->flags)) {
860 atomic_inc(&rdev->nr_pending);
861 r10_bio->devs[i].bio = bio;
862 } else {
863 r10_bio->devs[i].bio = NULL;
864 set_bit(R10BIO_Degraded, &r10_bio->state);
867 rcu_read_unlock();
869 if (unlikely(blocked_rdev)) {
870 /* Have to wait for this device to get unblocked, then retry */
871 int j;
872 int d;
874 for (j = 0; j < i; j++)
875 if (r10_bio->devs[j].bio) {
876 d = r10_bio->devs[j].devnum;
877 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
879 allow_barrier(conf);
880 md_wait_for_blocked_rdev(blocked_rdev, mddev);
881 wait_barrier(conf);
882 goto retry_write;
885 atomic_set(&r10_bio->remaining, 1);
886 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
888 for (i = 0; i < conf->copies; i++) {
889 struct bio *mbio;
890 int d = r10_bio->devs[i].devnum;
891 if (!r10_bio->devs[i].bio)
892 continue;
894 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
895 r10_bio->devs[i].bio = mbio;
897 mbio->bi_sector = r10_bio->devs[i].addr+
898 conf->mirrors[d].rdev->data_offset;
899 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
900 mbio->bi_end_io = raid10_end_write_request;
901 mbio->bi_rw = WRITE | do_sync | do_fua;
902 mbio->bi_private = r10_bio;
904 atomic_inc(&r10_bio->remaining);
905 spin_lock_irqsave(&conf->device_lock, flags);
906 bio_list_add(&conf->pending_bio_list, mbio);
907 spin_unlock_irqrestore(&conf->device_lock, flags);
910 if (atomic_dec_and_test(&r10_bio->remaining)) {
911 /* This matches the end of raid10_end_write_request() */
912 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
913 r10_bio->sectors,
914 !test_bit(R10BIO_Degraded, &r10_bio->state),
916 md_write_end(mddev);
917 raid_end_bio_io(r10_bio);
920 /* In case raid10d snuck in to freeze_array */
921 wake_up(&conf->wait_barrier);
923 if (do_sync || !mddev->bitmap || !plugged)
924 md_wakeup_thread(mddev->thread);
925 return 0;
928 static void status(struct seq_file *seq, mddev_t *mddev)
930 conf_t *conf = mddev->private;
931 int i;
933 if (conf->near_copies < conf->raid_disks)
934 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
935 if (conf->near_copies > 1)
936 seq_printf(seq, " %d near-copies", conf->near_copies);
937 if (conf->far_copies > 1) {
938 if (conf->far_offset)
939 seq_printf(seq, " %d offset-copies", conf->far_copies);
940 else
941 seq_printf(seq, " %d far-copies", conf->far_copies);
943 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
944 conf->raid_disks - mddev->degraded);
945 for (i = 0; i < conf->raid_disks; i++)
946 seq_printf(seq, "%s",
947 conf->mirrors[i].rdev &&
948 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
949 seq_printf(seq, "]");
952 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
954 char b[BDEVNAME_SIZE];
955 conf_t *conf = mddev->private;
958 * If it is not operational, then we have already marked it as dead
959 * else if it is the last working disks, ignore the error, let the
960 * next level up know.
961 * else mark the drive as failed
963 if (test_bit(In_sync, &rdev->flags)
964 && conf->raid_disks-mddev->degraded == 1)
966 * Don't fail the drive, just return an IO error.
967 * The test should really be more sophisticated than
968 * "working_disks == 1", but it isn't critical, and
969 * can wait until we do more sophisticated "is the drive
970 * really dead" tests...
972 return;
973 if (test_and_clear_bit(In_sync, &rdev->flags)) {
974 unsigned long flags;
975 spin_lock_irqsave(&conf->device_lock, flags);
976 mddev->degraded++;
977 spin_unlock_irqrestore(&conf->device_lock, flags);
979 * if recovery is running, make sure it aborts.
981 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
983 set_bit(Faulty, &rdev->flags);
984 set_bit(MD_CHANGE_DEVS, &mddev->flags);
985 printk(KERN_ALERT
986 "md/raid10:%s: Disk failure on %s, disabling device.\n"
987 "md/raid10:%s: Operation continuing on %d devices.\n",
988 mdname(mddev), bdevname(rdev->bdev, b),
989 mdname(mddev), conf->raid_disks - mddev->degraded);
992 static void print_conf(conf_t *conf)
994 int i;
995 mirror_info_t *tmp;
997 printk(KERN_DEBUG "RAID10 conf printout:\n");
998 if (!conf) {
999 printk(KERN_DEBUG "(!conf)\n");
1000 return;
1002 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1003 conf->raid_disks);
1005 for (i = 0; i < conf->raid_disks; i++) {
1006 char b[BDEVNAME_SIZE];
1007 tmp = conf->mirrors + i;
1008 if (tmp->rdev)
1009 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1010 i, !test_bit(In_sync, &tmp->rdev->flags),
1011 !test_bit(Faulty, &tmp->rdev->flags),
1012 bdevname(tmp->rdev->bdev,b));
1016 static void close_sync(conf_t *conf)
1018 wait_barrier(conf);
1019 allow_barrier(conf);
1021 mempool_destroy(conf->r10buf_pool);
1022 conf->r10buf_pool = NULL;
1025 /* check if there are enough drives for
1026 * every block to appear on atleast one
1028 static int enough(conf_t *conf)
1030 int first = 0;
1032 do {
1033 int n = conf->copies;
1034 int cnt = 0;
1035 while (n--) {
1036 if (conf->mirrors[first].rdev)
1037 cnt++;
1038 first = (first+1) % conf->raid_disks;
1040 if (cnt == 0)
1041 return 0;
1042 } while (first != 0);
1043 return 1;
1046 static int raid10_spare_active(mddev_t *mddev)
1048 int i;
1049 conf_t *conf = mddev->private;
1050 mirror_info_t *tmp;
1051 int count = 0;
1052 unsigned long flags;
1055 * Find all non-in_sync disks within the RAID10 configuration
1056 * and mark them in_sync
1058 for (i = 0; i < conf->raid_disks; i++) {
1059 tmp = conf->mirrors + i;
1060 if (tmp->rdev
1061 && !test_bit(Faulty, &tmp->rdev->flags)
1062 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1063 count++;
1064 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1067 spin_lock_irqsave(&conf->device_lock, flags);
1068 mddev->degraded -= count;
1069 spin_unlock_irqrestore(&conf->device_lock, flags);
1071 print_conf(conf);
1072 return count;
1076 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1078 conf_t *conf = mddev->private;
1079 int err = -EEXIST;
1080 int mirror;
1081 mirror_info_t *p;
1082 int first = 0;
1083 int last = conf->raid_disks - 1;
1085 if (mddev->recovery_cp < MaxSector)
1086 /* only hot-add to in-sync arrays, as recovery is
1087 * very different from resync
1089 return -EBUSY;
1090 if (!enough(conf))
1091 return -EINVAL;
1093 if (rdev->raid_disk >= 0)
1094 first = last = rdev->raid_disk;
1096 if (rdev->saved_raid_disk >= 0 &&
1097 rdev->saved_raid_disk >= first &&
1098 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1099 mirror = rdev->saved_raid_disk;
1100 else
1101 mirror = first;
1102 for ( ; mirror <= last ; mirror++)
1103 if ( !(p=conf->mirrors+mirror)->rdev) {
1105 disk_stack_limits(mddev->gendisk, rdev->bdev,
1106 rdev->data_offset << 9);
1107 /* as we don't honour merge_bvec_fn, we must
1108 * never risk violating it, so limit
1109 * ->max_segments to one lying with a single
1110 * page, as a one page request is never in
1111 * violation.
1113 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1114 blk_queue_max_segments(mddev->queue, 1);
1115 blk_queue_segment_boundary(mddev->queue,
1116 PAGE_CACHE_SIZE - 1);
1119 p->head_position = 0;
1120 rdev->raid_disk = mirror;
1121 err = 0;
1122 if (rdev->saved_raid_disk != mirror)
1123 conf->fullsync = 1;
1124 rcu_assign_pointer(p->rdev, rdev);
1125 break;
1128 md_integrity_add_rdev(rdev, mddev);
1129 print_conf(conf);
1130 return err;
1133 static int raid10_remove_disk(mddev_t *mddev, int number)
1135 conf_t *conf = mddev->private;
1136 int err = 0;
1137 mdk_rdev_t *rdev;
1138 mirror_info_t *p = conf->mirrors+ number;
1140 print_conf(conf);
1141 rdev = p->rdev;
1142 if (rdev) {
1143 if (test_bit(In_sync, &rdev->flags) ||
1144 atomic_read(&rdev->nr_pending)) {
1145 err = -EBUSY;
1146 goto abort;
1148 /* Only remove faulty devices in recovery
1149 * is not possible.
1151 if (!test_bit(Faulty, &rdev->flags) &&
1152 enough(conf)) {
1153 err = -EBUSY;
1154 goto abort;
1156 p->rdev = NULL;
1157 synchronize_rcu();
1158 if (atomic_read(&rdev->nr_pending)) {
1159 /* lost the race, try later */
1160 err = -EBUSY;
1161 p->rdev = rdev;
1162 goto abort;
1164 err = md_integrity_register(mddev);
1166 abort:
1168 print_conf(conf);
1169 return err;
1173 static void end_sync_read(struct bio *bio, int error)
1175 r10bio_t *r10_bio = bio->bi_private;
1176 conf_t *conf = r10_bio->mddev->private;
1177 int i,d;
1179 for (i=0; i<conf->copies; i++)
1180 if (r10_bio->devs[i].bio == bio)
1181 break;
1182 BUG_ON(i == conf->copies);
1183 update_head_pos(i, r10_bio);
1184 d = r10_bio->devs[i].devnum;
1186 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1187 set_bit(R10BIO_Uptodate, &r10_bio->state);
1188 else {
1189 atomic_add(r10_bio->sectors,
1190 &conf->mirrors[d].rdev->corrected_errors);
1191 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1192 md_error(r10_bio->mddev,
1193 conf->mirrors[d].rdev);
1196 /* for reconstruct, we always reschedule after a read.
1197 * for resync, only after all reads
1199 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1200 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1201 atomic_dec_and_test(&r10_bio->remaining)) {
1202 /* we have read all the blocks,
1203 * do the comparison in process context in raid10d
1205 reschedule_retry(r10_bio);
1209 static void end_sync_write(struct bio *bio, int error)
1211 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1212 r10bio_t *r10_bio = bio->bi_private;
1213 mddev_t *mddev = r10_bio->mddev;
1214 conf_t *conf = mddev->private;
1215 int i,d;
1217 for (i = 0; i < conf->copies; i++)
1218 if (r10_bio->devs[i].bio == bio)
1219 break;
1220 d = r10_bio->devs[i].devnum;
1222 if (!uptodate)
1223 md_error(mddev, conf->mirrors[d].rdev);
1225 update_head_pos(i, r10_bio);
1227 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1228 while (atomic_dec_and_test(&r10_bio->remaining)) {
1229 if (r10_bio->master_bio == NULL) {
1230 /* the primary of several recovery bios */
1231 sector_t s = r10_bio->sectors;
1232 put_buf(r10_bio);
1233 md_done_sync(mddev, s, 1);
1234 break;
1235 } else {
1236 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1237 put_buf(r10_bio);
1238 r10_bio = r10_bio2;
1244 * Note: sync and recover and handled very differently for raid10
1245 * This code is for resync.
1246 * For resync, we read through virtual addresses and read all blocks.
1247 * If there is any error, we schedule a write. The lowest numbered
1248 * drive is authoritative.
1249 * However requests come for physical address, so we need to map.
1250 * For every physical address there are raid_disks/copies virtual addresses,
1251 * which is always are least one, but is not necessarly an integer.
1252 * This means that a physical address can span multiple chunks, so we may
1253 * have to submit multiple io requests for a single sync request.
1256 * We check if all blocks are in-sync and only write to blocks that
1257 * aren't in sync
1259 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1261 conf_t *conf = mddev->private;
1262 int i, first;
1263 struct bio *tbio, *fbio;
1265 atomic_set(&r10_bio->remaining, 1);
1267 /* find the first device with a block */
1268 for (i=0; i<conf->copies; i++)
1269 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1270 break;
1272 if (i == conf->copies)
1273 goto done;
1275 first = i;
1276 fbio = r10_bio->devs[i].bio;
1278 /* now find blocks with errors */
1279 for (i=0 ; i < conf->copies ; i++) {
1280 int j, d;
1281 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1283 tbio = r10_bio->devs[i].bio;
1285 if (tbio->bi_end_io != end_sync_read)
1286 continue;
1287 if (i == first)
1288 continue;
1289 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1290 /* We know that the bi_io_vec layout is the same for
1291 * both 'first' and 'i', so we just compare them.
1292 * All vec entries are PAGE_SIZE;
1294 for (j = 0; j < vcnt; j++)
1295 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1296 page_address(tbio->bi_io_vec[j].bv_page),
1297 PAGE_SIZE))
1298 break;
1299 if (j == vcnt)
1300 continue;
1301 mddev->resync_mismatches += r10_bio->sectors;
1303 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1304 /* Don't fix anything. */
1305 continue;
1306 /* Ok, we need to write this bio
1307 * First we need to fixup bv_offset, bv_len and
1308 * bi_vecs, as the read request might have corrupted these
1310 tbio->bi_vcnt = vcnt;
1311 tbio->bi_size = r10_bio->sectors << 9;
1312 tbio->bi_idx = 0;
1313 tbio->bi_phys_segments = 0;
1314 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1315 tbio->bi_flags |= 1 << BIO_UPTODATE;
1316 tbio->bi_next = NULL;
1317 tbio->bi_rw = WRITE;
1318 tbio->bi_private = r10_bio;
1319 tbio->bi_sector = r10_bio->devs[i].addr;
1321 for (j=0; j < vcnt ; j++) {
1322 tbio->bi_io_vec[j].bv_offset = 0;
1323 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1325 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1326 page_address(fbio->bi_io_vec[j].bv_page),
1327 PAGE_SIZE);
1329 tbio->bi_end_io = end_sync_write;
1331 d = r10_bio->devs[i].devnum;
1332 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1333 atomic_inc(&r10_bio->remaining);
1334 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1336 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1337 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1338 generic_make_request(tbio);
1341 done:
1342 if (atomic_dec_and_test(&r10_bio->remaining)) {
1343 md_done_sync(mddev, r10_bio->sectors, 1);
1344 put_buf(r10_bio);
1349 * Now for the recovery code.
1350 * Recovery happens across physical sectors.
1351 * We recover all non-is_sync drives by finding the virtual address of
1352 * each, and then choose a working drive that also has that virt address.
1353 * There is a separate r10_bio for each non-in_sync drive.
1354 * Only the first two slots are in use. The first for reading,
1355 * The second for writing.
1359 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1361 conf_t *conf = mddev->private;
1362 int i, d;
1363 struct bio *bio, *wbio;
1366 /* move the pages across to the second bio
1367 * and submit the write request
1369 bio = r10_bio->devs[0].bio;
1370 wbio = r10_bio->devs[1].bio;
1371 for (i=0; i < wbio->bi_vcnt; i++) {
1372 struct page *p = bio->bi_io_vec[i].bv_page;
1373 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1374 wbio->bi_io_vec[i].bv_page = p;
1376 d = r10_bio->devs[1].devnum;
1378 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1379 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1380 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1381 generic_make_request(wbio);
1382 else
1383 bio_endio(wbio, -EIO);
1388 * Used by fix_read_error() to decay the per rdev read_errors.
1389 * We halve the read error count for every hour that has elapsed
1390 * since the last recorded read error.
1393 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1395 struct timespec cur_time_mon;
1396 unsigned long hours_since_last;
1397 unsigned int read_errors = atomic_read(&rdev->read_errors);
1399 ktime_get_ts(&cur_time_mon);
1401 if (rdev->last_read_error.tv_sec == 0 &&
1402 rdev->last_read_error.tv_nsec == 0) {
1403 /* first time we've seen a read error */
1404 rdev->last_read_error = cur_time_mon;
1405 return;
1408 hours_since_last = (cur_time_mon.tv_sec -
1409 rdev->last_read_error.tv_sec) / 3600;
1411 rdev->last_read_error = cur_time_mon;
1414 * if hours_since_last is > the number of bits in read_errors
1415 * just set read errors to 0. We do this to avoid
1416 * overflowing the shift of read_errors by hours_since_last.
1418 if (hours_since_last >= 8 * sizeof(read_errors))
1419 atomic_set(&rdev->read_errors, 0);
1420 else
1421 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1425 * This is a kernel thread which:
1427 * 1. Retries failed read operations on working mirrors.
1428 * 2. Updates the raid superblock when problems encounter.
1429 * 3. Performs writes following reads for array synchronising.
1432 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1434 int sect = 0; /* Offset from r10_bio->sector */
1435 int sectors = r10_bio->sectors;
1436 mdk_rdev_t*rdev;
1437 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1438 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1440 /* still own a reference to this rdev, so it cannot
1441 * have been cleared recently.
1443 rdev = conf->mirrors[d].rdev;
1445 if (test_bit(Faulty, &rdev->flags))
1446 /* drive has already been failed, just ignore any
1447 more fix_read_error() attempts */
1448 return;
1450 check_decay_read_errors(mddev, rdev);
1451 atomic_inc(&rdev->read_errors);
1452 if (atomic_read(&rdev->read_errors) > max_read_errors) {
1453 char b[BDEVNAME_SIZE];
1454 bdevname(rdev->bdev, b);
1456 printk(KERN_NOTICE
1457 "md/raid10:%s: %s: Raid device exceeded "
1458 "read_error threshold [cur %d:max %d]\n",
1459 mdname(mddev), b,
1460 atomic_read(&rdev->read_errors), max_read_errors);
1461 printk(KERN_NOTICE
1462 "md/raid10:%s: %s: Failing raid device\n",
1463 mdname(mddev), b);
1464 md_error(mddev, conf->mirrors[d].rdev);
1465 return;
1468 while(sectors) {
1469 int s = sectors;
1470 int sl = r10_bio->read_slot;
1471 int success = 0;
1472 int start;
1474 if (s > (PAGE_SIZE>>9))
1475 s = PAGE_SIZE >> 9;
1477 rcu_read_lock();
1478 do {
1479 d = r10_bio->devs[sl].devnum;
1480 rdev = rcu_dereference(conf->mirrors[d].rdev);
1481 if (rdev &&
1482 test_bit(In_sync, &rdev->flags)) {
1483 atomic_inc(&rdev->nr_pending);
1484 rcu_read_unlock();
1485 success = sync_page_io(rdev,
1486 r10_bio->devs[sl].addr +
1487 sect,
1488 s<<9,
1489 conf->tmppage, READ, false);
1490 rdev_dec_pending(rdev, mddev);
1491 rcu_read_lock();
1492 if (success)
1493 break;
1495 sl++;
1496 if (sl == conf->copies)
1497 sl = 0;
1498 } while (!success && sl != r10_bio->read_slot);
1499 rcu_read_unlock();
1501 if (!success) {
1502 /* Cannot read from anywhere -- bye bye array */
1503 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1504 md_error(mddev, conf->mirrors[dn].rdev);
1505 break;
1508 start = sl;
1509 /* write it back and re-read */
1510 rcu_read_lock();
1511 while (sl != r10_bio->read_slot) {
1512 char b[BDEVNAME_SIZE];
1514 if (sl==0)
1515 sl = conf->copies;
1516 sl--;
1517 d = r10_bio->devs[sl].devnum;
1518 rdev = rcu_dereference(conf->mirrors[d].rdev);
1519 if (rdev &&
1520 test_bit(In_sync, &rdev->flags)) {
1521 atomic_inc(&rdev->nr_pending);
1522 rcu_read_unlock();
1523 atomic_add(s, &rdev->corrected_errors);
1524 if (sync_page_io(rdev,
1525 r10_bio->devs[sl].addr +
1526 sect,
1527 s<<9, conf->tmppage, WRITE, false)
1528 == 0) {
1529 /* Well, this device is dead */
1530 printk(KERN_NOTICE
1531 "md/raid10:%s: read correction "
1532 "write failed"
1533 " (%d sectors at %llu on %s)\n",
1534 mdname(mddev), s,
1535 (unsigned long long)(
1536 sect + rdev->data_offset),
1537 bdevname(rdev->bdev, b));
1538 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1539 "drive\n",
1540 mdname(mddev),
1541 bdevname(rdev->bdev, b));
1542 md_error(mddev, rdev);
1544 rdev_dec_pending(rdev, mddev);
1545 rcu_read_lock();
1548 sl = start;
1549 while (sl != r10_bio->read_slot) {
1551 if (sl==0)
1552 sl = conf->copies;
1553 sl--;
1554 d = r10_bio->devs[sl].devnum;
1555 rdev = rcu_dereference(conf->mirrors[d].rdev);
1556 if (rdev &&
1557 test_bit(In_sync, &rdev->flags)) {
1558 char b[BDEVNAME_SIZE];
1559 atomic_inc(&rdev->nr_pending);
1560 rcu_read_unlock();
1561 if (sync_page_io(rdev,
1562 r10_bio->devs[sl].addr +
1563 sect,
1564 s<<9, conf->tmppage,
1565 READ, false) == 0) {
1566 /* Well, this device is dead */
1567 printk(KERN_NOTICE
1568 "md/raid10:%s: unable to read back "
1569 "corrected sectors"
1570 " (%d sectors at %llu on %s)\n",
1571 mdname(mddev), s,
1572 (unsigned long long)(
1573 sect + rdev->data_offset),
1574 bdevname(rdev->bdev, b));
1575 printk(KERN_NOTICE "md/raid10:%s: %s: failing drive\n",
1576 mdname(mddev),
1577 bdevname(rdev->bdev, b));
1579 md_error(mddev, rdev);
1580 } else {
1581 printk(KERN_INFO
1582 "md/raid10:%s: read error corrected"
1583 " (%d sectors at %llu on %s)\n",
1584 mdname(mddev), s,
1585 (unsigned long long)(
1586 sect + rdev->data_offset),
1587 bdevname(rdev->bdev, b));
1590 rdev_dec_pending(rdev, mddev);
1591 rcu_read_lock();
1594 rcu_read_unlock();
1596 sectors -= s;
1597 sect += s;
1601 static void raid10d(mddev_t *mddev)
1603 r10bio_t *r10_bio;
1604 struct bio *bio;
1605 unsigned long flags;
1606 conf_t *conf = mddev->private;
1607 struct list_head *head = &conf->retry_list;
1608 mdk_rdev_t *rdev;
1609 struct blk_plug plug;
1611 md_check_recovery(mddev);
1613 blk_start_plug(&plug);
1614 for (;;) {
1615 char b[BDEVNAME_SIZE];
1617 flush_pending_writes(conf);
1619 spin_lock_irqsave(&conf->device_lock, flags);
1620 if (list_empty(head)) {
1621 spin_unlock_irqrestore(&conf->device_lock, flags);
1622 break;
1624 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1625 list_del(head->prev);
1626 conf->nr_queued--;
1627 spin_unlock_irqrestore(&conf->device_lock, flags);
1629 mddev = r10_bio->mddev;
1630 conf = mddev->private;
1631 if (test_bit(R10BIO_IsSync, &r10_bio->state))
1632 sync_request_write(mddev, r10_bio);
1633 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1634 recovery_request_write(mddev, r10_bio);
1635 else {
1636 int slot = r10_bio->read_slot;
1637 int mirror = r10_bio->devs[slot].devnum;
1638 /* we got a read error. Maybe the drive is bad. Maybe just
1639 * the block and we can fix it.
1640 * We freeze all other IO, and try reading the block from
1641 * other devices. When we find one, we re-write
1642 * and check it that fixes the read error.
1643 * This is all done synchronously while the array is
1644 * frozen.
1646 if (mddev->ro == 0) {
1647 freeze_array(conf);
1648 fix_read_error(conf, mddev, r10_bio);
1649 unfreeze_array(conf);
1651 rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
1653 bio = r10_bio->devs[slot].bio;
1654 r10_bio->devs[slot].bio =
1655 mddev->ro ? IO_BLOCKED : NULL;
1656 mirror = read_balance(conf, r10_bio);
1657 if (mirror == -1) {
1658 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
1659 " read error for block %llu\n",
1660 mdname(mddev),
1661 bdevname(bio->bi_bdev,b),
1662 (unsigned long long)r10_bio->sector);
1663 raid_end_bio_io(r10_bio);
1664 bio_put(bio);
1665 } else {
1666 const unsigned long do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
1667 bio_put(bio);
1668 slot = r10_bio->read_slot;
1669 rdev = conf->mirrors[mirror].rdev;
1670 if (printk_ratelimit())
1671 printk(KERN_ERR "md/raid10:%s: %s: redirecting sector %llu to"
1672 " another mirror\n",
1673 mdname(mddev),
1674 bdevname(rdev->bdev,b),
1675 (unsigned long long)r10_bio->sector);
1676 bio = bio_clone_mddev(r10_bio->master_bio,
1677 GFP_NOIO, mddev);
1678 r10_bio->devs[slot].bio = bio;
1679 bio->bi_sector = r10_bio->devs[slot].addr
1680 + rdev->data_offset;
1681 bio->bi_bdev = rdev->bdev;
1682 bio->bi_rw = READ | do_sync;
1683 bio->bi_private = r10_bio;
1684 bio->bi_end_io = raid10_end_read_request;
1685 generic_make_request(bio);
1688 cond_resched();
1690 blk_finish_plug(&plug);
1694 static int init_resync(conf_t *conf)
1696 int buffs;
1698 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1699 BUG_ON(conf->r10buf_pool);
1700 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1701 if (!conf->r10buf_pool)
1702 return -ENOMEM;
1703 conf->next_resync = 0;
1704 return 0;
1708 * perform a "sync" on one "block"
1710 * We need to make sure that no normal I/O request - particularly write
1711 * requests - conflict with active sync requests.
1713 * This is achieved by tracking pending requests and a 'barrier' concept
1714 * that can be installed to exclude normal IO requests.
1716 * Resync and recovery are handled very differently.
1717 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1719 * For resync, we iterate over virtual addresses, read all copies,
1720 * and update if there are differences. If only one copy is live,
1721 * skip it.
1722 * For recovery, we iterate over physical addresses, read a good
1723 * value for each non-in_sync drive, and over-write.
1725 * So, for recovery we may have several outstanding complex requests for a
1726 * given address, one for each out-of-sync device. We model this by allocating
1727 * a number of r10_bio structures, one for each out-of-sync device.
1728 * As we setup these structures, we collect all bio's together into a list
1729 * which we then process collectively to add pages, and then process again
1730 * to pass to generic_make_request.
1732 * The r10_bio structures are linked using a borrowed master_bio pointer.
1733 * This link is counted in ->remaining. When the r10_bio that points to NULL
1734 * has its remaining count decremented to 0, the whole complex operation
1735 * is complete.
1739 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr,
1740 int *skipped, int go_faster)
1742 conf_t *conf = mddev->private;
1743 r10bio_t *r10_bio;
1744 struct bio *biolist = NULL, *bio;
1745 sector_t max_sector, nr_sectors;
1746 int i;
1747 int max_sync;
1748 sector_t sync_blocks;
1750 sector_t sectors_skipped = 0;
1751 int chunks_skipped = 0;
1753 if (!conf->r10buf_pool)
1754 if (init_resync(conf))
1755 return 0;
1757 skipped:
1758 max_sector = mddev->dev_sectors;
1759 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1760 max_sector = mddev->resync_max_sectors;
1761 if (sector_nr >= max_sector) {
1762 /* If we aborted, we need to abort the
1763 * sync on the 'current' bitmap chucks (there can
1764 * be several when recovering multiple devices).
1765 * as we may have started syncing it but not finished.
1766 * We can find the current address in
1767 * mddev->curr_resync, but for recovery,
1768 * we need to convert that to several
1769 * virtual addresses.
1771 if (mddev->curr_resync < max_sector) { /* aborted */
1772 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1773 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1774 &sync_blocks, 1);
1775 else for (i=0; i<conf->raid_disks; i++) {
1776 sector_t sect =
1777 raid10_find_virt(conf, mddev->curr_resync, i);
1778 bitmap_end_sync(mddev->bitmap, sect,
1779 &sync_blocks, 1);
1781 } else /* completed sync */
1782 conf->fullsync = 0;
1784 bitmap_close_sync(mddev->bitmap);
1785 close_sync(conf);
1786 *skipped = 1;
1787 return sectors_skipped;
1789 if (chunks_skipped >= conf->raid_disks) {
1790 /* if there has been nothing to do on any drive,
1791 * then there is nothing to do at all..
1793 *skipped = 1;
1794 return (max_sector - sector_nr) + sectors_skipped;
1797 if (max_sector > mddev->resync_max)
1798 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1800 /* make sure whole request will fit in a chunk - if chunks
1801 * are meaningful
1803 if (conf->near_copies < conf->raid_disks &&
1804 max_sector > (sector_nr | conf->chunk_mask))
1805 max_sector = (sector_nr | conf->chunk_mask) + 1;
1807 * If there is non-resync activity waiting for us then
1808 * put in a delay to throttle resync.
1810 if (!go_faster && conf->nr_waiting)
1811 msleep_interruptible(1000);
1813 /* Again, very different code for resync and recovery.
1814 * Both must result in an r10bio with a list of bios that
1815 * have bi_end_io, bi_sector, bi_bdev set,
1816 * and bi_private set to the r10bio.
1817 * For recovery, we may actually create several r10bios
1818 * with 2 bios in each, that correspond to the bios in the main one.
1819 * In this case, the subordinate r10bios link back through a
1820 * borrowed master_bio pointer, and the counter in the master
1821 * includes a ref from each subordinate.
1823 /* First, we decide what to do and set ->bi_end_io
1824 * To end_sync_read if we want to read, and
1825 * end_sync_write if we will want to write.
1828 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1829 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1830 /* recovery... the complicated one */
1831 int j, k;
1832 r10_bio = NULL;
1834 for (i=0 ; i<conf->raid_disks; i++) {
1835 int still_degraded;
1836 r10bio_t *rb2;
1837 sector_t sect;
1838 int must_sync;
1840 if (conf->mirrors[i].rdev == NULL ||
1841 test_bit(In_sync, &conf->mirrors[i].rdev->flags))
1842 continue;
1844 still_degraded = 0;
1845 /* want to reconstruct this device */
1846 rb2 = r10_bio;
1847 sect = raid10_find_virt(conf, sector_nr, i);
1848 /* Unless we are doing a full sync, we only need
1849 * to recover the block if it is set in the bitmap
1851 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1852 &sync_blocks, 1);
1853 if (sync_blocks < max_sync)
1854 max_sync = sync_blocks;
1855 if (!must_sync &&
1856 !conf->fullsync) {
1857 /* yep, skip the sync_blocks here, but don't assume
1858 * that there will never be anything to do here
1860 chunks_skipped = -1;
1861 continue;
1864 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1865 raise_barrier(conf, rb2 != NULL);
1866 atomic_set(&r10_bio->remaining, 0);
1868 r10_bio->master_bio = (struct bio*)rb2;
1869 if (rb2)
1870 atomic_inc(&rb2->remaining);
1871 r10_bio->mddev = mddev;
1872 set_bit(R10BIO_IsRecover, &r10_bio->state);
1873 r10_bio->sector = sect;
1875 raid10_find_phys(conf, r10_bio);
1877 /* Need to check if the array will still be
1878 * degraded
1880 for (j=0; j<conf->raid_disks; j++)
1881 if (conf->mirrors[j].rdev == NULL ||
1882 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
1883 still_degraded = 1;
1884 break;
1887 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1888 &sync_blocks, still_degraded);
1890 for (j=0; j<conf->copies;j++) {
1891 int d = r10_bio->devs[j].devnum;
1892 if (!conf->mirrors[d].rdev ||
1893 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
1894 continue;
1895 /* This is where we read from */
1896 bio = r10_bio->devs[0].bio;
1897 bio->bi_next = biolist;
1898 biolist = bio;
1899 bio->bi_private = r10_bio;
1900 bio->bi_end_io = end_sync_read;
1901 bio->bi_rw = READ;
1902 bio->bi_sector = r10_bio->devs[j].addr +
1903 conf->mirrors[d].rdev->data_offset;
1904 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1905 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1906 atomic_inc(&r10_bio->remaining);
1907 /* and we write to 'i' */
1909 for (k=0; k<conf->copies; k++)
1910 if (r10_bio->devs[k].devnum == i)
1911 break;
1912 BUG_ON(k == conf->copies);
1913 bio = r10_bio->devs[1].bio;
1914 bio->bi_next = biolist;
1915 biolist = bio;
1916 bio->bi_private = r10_bio;
1917 bio->bi_end_io = end_sync_write;
1918 bio->bi_rw = WRITE;
1919 bio->bi_sector = r10_bio->devs[k].addr +
1920 conf->mirrors[i].rdev->data_offset;
1921 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1923 r10_bio->devs[0].devnum = d;
1924 r10_bio->devs[1].devnum = i;
1926 break;
1928 if (j == conf->copies) {
1929 /* Cannot recover, so abort the recovery */
1930 put_buf(r10_bio);
1931 if (rb2)
1932 atomic_dec(&rb2->remaining);
1933 r10_bio = rb2;
1934 if (!test_and_set_bit(MD_RECOVERY_INTR,
1935 &mddev->recovery))
1936 printk(KERN_INFO "md/raid10:%s: insufficient "
1937 "working devices for recovery.\n",
1938 mdname(mddev));
1939 break;
1942 if (biolist == NULL) {
1943 while (r10_bio) {
1944 r10bio_t *rb2 = r10_bio;
1945 r10_bio = (r10bio_t*) rb2->master_bio;
1946 rb2->master_bio = NULL;
1947 put_buf(rb2);
1949 goto giveup;
1951 } else {
1952 /* resync. Schedule a read for every block at this virt offset */
1953 int count = 0;
1955 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1957 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1958 &sync_blocks, mddev->degraded) &&
1959 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
1960 &mddev->recovery)) {
1961 /* We can skip this block */
1962 *skipped = 1;
1963 return sync_blocks + sectors_skipped;
1965 if (sync_blocks < max_sync)
1966 max_sync = sync_blocks;
1967 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1969 r10_bio->mddev = mddev;
1970 atomic_set(&r10_bio->remaining, 0);
1971 raise_barrier(conf, 0);
1972 conf->next_resync = sector_nr;
1974 r10_bio->master_bio = NULL;
1975 r10_bio->sector = sector_nr;
1976 set_bit(R10BIO_IsSync, &r10_bio->state);
1977 raid10_find_phys(conf, r10_bio);
1978 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1980 for (i=0; i<conf->copies; i++) {
1981 int d = r10_bio->devs[i].devnum;
1982 bio = r10_bio->devs[i].bio;
1983 bio->bi_end_io = NULL;
1984 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1985 if (conf->mirrors[d].rdev == NULL ||
1986 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1987 continue;
1988 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1989 atomic_inc(&r10_bio->remaining);
1990 bio->bi_next = biolist;
1991 biolist = bio;
1992 bio->bi_private = r10_bio;
1993 bio->bi_end_io = end_sync_read;
1994 bio->bi_rw = READ;
1995 bio->bi_sector = r10_bio->devs[i].addr +
1996 conf->mirrors[d].rdev->data_offset;
1997 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1998 count++;
2001 if (count < 2) {
2002 for (i=0; i<conf->copies; i++) {
2003 int d = r10_bio->devs[i].devnum;
2004 if (r10_bio->devs[i].bio->bi_end_io)
2005 rdev_dec_pending(conf->mirrors[d].rdev,
2006 mddev);
2008 put_buf(r10_bio);
2009 biolist = NULL;
2010 goto giveup;
2014 for (bio = biolist; bio ; bio=bio->bi_next) {
2016 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2017 if (bio->bi_end_io)
2018 bio->bi_flags |= 1 << BIO_UPTODATE;
2019 bio->bi_vcnt = 0;
2020 bio->bi_idx = 0;
2021 bio->bi_phys_segments = 0;
2022 bio->bi_size = 0;
2025 nr_sectors = 0;
2026 if (sector_nr + max_sync < max_sector)
2027 max_sector = sector_nr + max_sync;
2028 do {
2029 struct page *page;
2030 int len = PAGE_SIZE;
2031 if (sector_nr + (len>>9) > max_sector)
2032 len = (max_sector - sector_nr) << 9;
2033 if (len == 0)
2034 break;
2035 for (bio= biolist ; bio ; bio=bio->bi_next) {
2036 struct bio *bio2;
2037 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2038 if (bio_add_page(bio, page, len, 0))
2039 continue;
2041 /* stop here */
2042 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2043 for (bio2 = biolist;
2044 bio2 && bio2 != bio;
2045 bio2 = bio2->bi_next) {
2046 /* remove last page from this bio */
2047 bio2->bi_vcnt--;
2048 bio2->bi_size -= len;
2049 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2051 goto bio_full;
2053 nr_sectors += len>>9;
2054 sector_nr += len>>9;
2055 } while (biolist->bi_vcnt < RESYNC_PAGES);
2056 bio_full:
2057 r10_bio->sectors = nr_sectors;
2059 while (biolist) {
2060 bio = biolist;
2061 biolist = biolist->bi_next;
2063 bio->bi_next = NULL;
2064 r10_bio = bio->bi_private;
2065 r10_bio->sectors = nr_sectors;
2067 if (bio->bi_end_io == end_sync_read) {
2068 md_sync_acct(bio->bi_bdev, nr_sectors);
2069 generic_make_request(bio);
2073 if (sectors_skipped)
2074 /* pretend they weren't skipped, it makes
2075 * no important difference in this case
2077 md_done_sync(mddev, sectors_skipped, 1);
2079 return sectors_skipped + nr_sectors;
2080 giveup:
2081 /* There is nowhere to write, so all non-sync
2082 * drives must be failed, so try the next chunk...
2084 if (sector_nr + max_sync < max_sector)
2085 max_sector = sector_nr + max_sync;
2087 sectors_skipped += (max_sector - sector_nr);
2088 chunks_skipped ++;
2089 sector_nr = max_sector;
2090 goto skipped;
2093 static sector_t
2094 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2096 sector_t size;
2097 conf_t *conf = mddev->private;
2099 if (!raid_disks)
2100 raid_disks = conf->raid_disks;
2101 if (!sectors)
2102 sectors = conf->dev_sectors;
2104 size = sectors >> conf->chunk_shift;
2105 sector_div(size, conf->far_copies);
2106 size = size * raid_disks;
2107 sector_div(size, conf->near_copies);
2109 return size << conf->chunk_shift;
2113 static conf_t *setup_conf(mddev_t *mddev)
2115 conf_t *conf = NULL;
2116 int nc, fc, fo;
2117 sector_t stride, size;
2118 int err = -EINVAL;
2120 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2121 !is_power_of_2(mddev->new_chunk_sectors)) {
2122 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2123 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2124 mdname(mddev), PAGE_SIZE);
2125 goto out;
2128 nc = mddev->new_layout & 255;
2129 fc = (mddev->new_layout >> 8) & 255;
2130 fo = mddev->new_layout & (1<<16);
2132 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2133 (mddev->new_layout >> 17)) {
2134 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2135 mdname(mddev), mddev->new_layout);
2136 goto out;
2139 err = -ENOMEM;
2140 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2141 if (!conf)
2142 goto out;
2144 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2145 GFP_KERNEL);
2146 if (!conf->mirrors)
2147 goto out;
2149 conf->tmppage = alloc_page(GFP_KERNEL);
2150 if (!conf->tmppage)
2151 goto out;
2154 conf->raid_disks = mddev->raid_disks;
2155 conf->near_copies = nc;
2156 conf->far_copies = fc;
2157 conf->copies = nc*fc;
2158 conf->far_offset = fo;
2159 conf->chunk_mask = mddev->new_chunk_sectors - 1;
2160 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2162 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2163 r10bio_pool_free, conf);
2164 if (!conf->r10bio_pool)
2165 goto out;
2167 size = mddev->dev_sectors >> conf->chunk_shift;
2168 sector_div(size, fc);
2169 size = size * conf->raid_disks;
2170 sector_div(size, nc);
2171 /* 'size' is now the number of chunks in the array */
2172 /* calculate "used chunks per device" in 'stride' */
2173 stride = size * conf->copies;
2175 /* We need to round up when dividing by raid_disks to
2176 * get the stride size.
2178 stride += conf->raid_disks - 1;
2179 sector_div(stride, conf->raid_disks);
2181 conf->dev_sectors = stride << conf->chunk_shift;
2183 if (fo)
2184 stride = 1;
2185 else
2186 sector_div(stride, fc);
2187 conf->stride = stride << conf->chunk_shift;
2190 spin_lock_init(&conf->device_lock);
2191 INIT_LIST_HEAD(&conf->retry_list);
2193 spin_lock_init(&conf->resync_lock);
2194 init_waitqueue_head(&conf->wait_barrier);
2196 conf->thread = md_register_thread(raid10d, mddev, NULL);
2197 if (!conf->thread)
2198 goto out;
2200 conf->mddev = mddev;
2201 return conf;
2203 out:
2204 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2205 mdname(mddev));
2206 if (conf) {
2207 if (conf->r10bio_pool)
2208 mempool_destroy(conf->r10bio_pool);
2209 kfree(conf->mirrors);
2210 safe_put_page(conf->tmppage);
2211 kfree(conf);
2213 return ERR_PTR(err);
2216 static int run(mddev_t *mddev)
2218 conf_t *conf;
2219 int i, disk_idx, chunk_size;
2220 mirror_info_t *disk;
2221 mdk_rdev_t *rdev;
2222 sector_t size;
2225 * copy the already verified devices into our private RAID10
2226 * bookkeeping area. [whatever we allocate in run(),
2227 * should be freed in stop()]
2230 if (mddev->private == NULL) {
2231 conf = setup_conf(mddev);
2232 if (IS_ERR(conf))
2233 return PTR_ERR(conf);
2234 mddev->private = conf;
2236 conf = mddev->private;
2237 if (!conf)
2238 goto out;
2240 mddev->thread = conf->thread;
2241 conf->thread = NULL;
2243 chunk_size = mddev->chunk_sectors << 9;
2244 blk_queue_io_min(mddev->queue, chunk_size);
2245 if (conf->raid_disks % conf->near_copies)
2246 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2247 else
2248 blk_queue_io_opt(mddev->queue, chunk_size *
2249 (conf->raid_disks / conf->near_copies));
2251 list_for_each_entry(rdev, &mddev->disks, same_set) {
2252 disk_idx = rdev->raid_disk;
2253 if (disk_idx >= conf->raid_disks
2254 || disk_idx < 0)
2255 continue;
2256 disk = conf->mirrors + disk_idx;
2258 disk->rdev = rdev;
2259 disk_stack_limits(mddev->gendisk, rdev->bdev,
2260 rdev->data_offset << 9);
2261 /* as we don't honour merge_bvec_fn, we must never risk
2262 * violating it, so limit max_segments to 1 lying
2263 * within a single page.
2265 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2266 blk_queue_max_segments(mddev->queue, 1);
2267 blk_queue_segment_boundary(mddev->queue,
2268 PAGE_CACHE_SIZE - 1);
2271 disk->head_position = 0;
2273 /* need to check that every block has at least one working mirror */
2274 if (!enough(conf)) {
2275 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2276 mdname(mddev));
2277 goto out_free_conf;
2280 mddev->degraded = 0;
2281 for (i = 0; i < conf->raid_disks; i++) {
2283 disk = conf->mirrors + i;
2285 if (!disk->rdev ||
2286 !test_bit(In_sync, &disk->rdev->flags)) {
2287 disk->head_position = 0;
2288 mddev->degraded++;
2289 if (disk->rdev)
2290 conf->fullsync = 1;
2294 if (mddev->recovery_cp != MaxSector)
2295 printk(KERN_NOTICE "md/raid10:%s: not clean"
2296 " -- starting background reconstruction\n",
2297 mdname(mddev));
2298 printk(KERN_INFO
2299 "md/raid10:%s: active with %d out of %d devices\n",
2300 mdname(mddev), conf->raid_disks - mddev->degraded,
2301 conf->raid_disks);
2303 * Ok, everything is just fine now
2305 mddev->dev_sectors = conf->dev_sectors;
2306 size = raid10_size(mddev, 0, 0);
2307 md_set_array_sectors(mddev, size);
2308 mddev->resync_max_sectors = size;
2310 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2311 mddev->queue->backing_dev_info.congested_data = mddev;
2313 /* Calculate max read-ahead size.
2314 * We need to readahead at least twice a whole stripe....
2315 * maybe...
2318 int stripe = conf->raid_disks *
2319 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
2320 stripe /= conf->near_copies;
2321 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2322 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2325 if (conf->near_copies < conf->raid_disks)
2326 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2328 if (md_integrity_register(mddev))
2329 goto out_free_conf;
2331 return 0;
2333 out_free_conf:
2334 md_unregister_thread(mddev->thread);
2335 if (conf->r10bio_pool)
2336 mempool_destroy(conf->r10bio_pool);
2337 safe_put_page(conf->tmppage);
2338 kfree(conf->mirrors);
2339 kfree(conf);
2340 mddev->private = NULL;
2341 out:
2342 return -EIO;
2345 static int stop(mddev_t *mddev)
2347 conf_t *conf = mddev->private;
2349 raise_barrier(conf, 0);
2350 lower_barrier(conf);
2352 md_unregister_thread(mddev->thread);
2353 mddev->thread = NULL;
2354 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2355 if (conf->r10bio_pool)
2356 mempool_destroy(conf->r10bio_pool);
2357 kfree(conf->mirrors);
2358 kfree(conf);
2359 mddev->private = NULL;
2360 return 0;
2363 static void raid10_quiesce(mddev_t *mddev, int state)
2365 conf_t *conf = mddev->private;
2367 switch(state) {
2368 case 1:
2369 raise_barrier(conf, 0);
2370 break;
2371 case 0:
2372 lower_barrier(conf);
2373 break;
2377 static void *raid10_takeover_raid0(mddev_t *mddev)
2379 mdk_rdev_t *rdev;
2380 conf_t *conf;
2382 if (mddev->degraded > 0) {
2383 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
2384 mdname(mddev));
2385 return ERR_PTR(-EINVAL);
2388 /* Set new parameters */
2389 mddev->new_level = 10;
2390 /* new layout: far_copies = 1, near_copies = 2 */
2391 mddev->new_layout = (1<<8) + 2;
2392 mddev->new_chunk_sectors = mddev->chunk_sectors;
2393 mddev->delta_disks = mddev->raid_disks;
2394 mddev->raid_disks *= 2;
2395 /* make sure it will be not marked as dirty */
2396 mddev->recovery_cp = MaxSector;
2398 conf = setup_conf(mddev);
2399 if (!IS_ERR(conf)) {
2400 list_for_each_entry(rdev, &mddev->disks, same_set)
2401 if (rdev->raid_disk >= 0)
2402 rdev->new_raid_disk = rdev->raid_disk * 2;
2403 conf->barrier = 1;
2406 return conf;
2409 static void *raid10_takeover(mddev_t *mddev)
2411 struct raid0_private_data *raid0_priv;
2413 /* raid10 can take over:
2414 * raid0 - providing it has only two drives
2416 if (mddev->level == 0) {
2417 /* for raid0 takeover only one zone is supported */
2418 raid0_priv = mddev->private;
2419 if (raid0_priv->nr_strip_zones > 1) {
2420 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
2421 " with more than one zone.\n",
2422 mdname(mddev));
2423 return ERR_PTR(-EINVAL);
2425 return raid10_takeover_raid0(mddev);
2427 return ERR_PTR(-EINVAL);
2430 static struct mdk_personality raid10_personality =
2432 .name = "raid10",
2433 .level = 10,
2434 .owner = THIS_MODULE,
2435 .make_request = make_request,
2436 .run = run,
2437 .stop = stop,
2438 .status = status,
2439 .error_handler = error,
2440 .hot_add_disk = raid10_add_disk,
2441 .hot_remove_disk= raid10_remove_disk,
2442 .spare_active = raid10_spare_active,
2443 .sync_request = sync_request,
2444 .quiesce = raid10_quiesce,
2445 .size = raid10_size,
2446 .takeover = raid10_takeover,
2449 static int __init raid_init(void)
2451 return register_md_personality(&raid10_personality);
2454 static void raid_exit(void)
2456 unregister_md_personality(&raid10_personality);
2459 module_init(raid_init);
2460 module_exit(raid_exit);
2461 MODULE_LICENSE("GPL");
2462 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2463 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2464 MODULE_ALIAS("md-raid10");
2465 MODULE_ALIAS("md-level-10");