3 * Helper functions for bitmap.h.
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
8 #include <linux/module.h>
9 #include <linux/ctype.h>
10 #include <linux/errno.h>
11 #include <linux/bitmap.h>
12 #include <linux/bitops.h>
13 #include <asm/uaccess.h>
16 * bitmaps provide an array of bits, implemented using an an
17 * array of unsigned longs. The number of valid bits in a
18 * given bitmap does _not_ need to be an exact multiple of
21 * The possible unused bits in the last, partially used word
22 * of a bitmap are 'don't care'. The implementation makes
23 * no particular effort to keep them zero. It ensures that
24 * their value will not affect the results of any operation.
25 * The bitmap operations that return Boolean (bitmap_empty,
26 * for example) or scalar (bitmap_weight, for example) results
27 * carefully filter out these unused bits from impacting their
30 * These operations actually hold to a slightly stronger rule:
31 * if you don't input any bitmaps to these ops that have some
32 * unused bits set, then they won't output any set unused bits
35 * The byte ordering of bitmaps is more natural on little
36 * endian architectures. See the big-endian headers
37 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
38 * for the best explanations of this ordering.
41 int __bitmap_empty(const unsigned long *bitmap
, int bits
)
43 int k
, lim
= bits
/BITS_PER_LONG
;
44 for (k
= 0; k
< lim
; ++k
)
48 if (bits
% BITS_PER_LONG
)
49 if (bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
))
54 EXPORT_SYMBOL(__bitmap_empty
);
56 int __bitmap_full(const unsigned long *bitmap
, int bits
)
58 int k
, lim
= bits
/BITS_PER_LONG
;
59 for (k
= 0; k
< lim
; ++k
)
63 if (bits
% BITS_PER_LONG
)
64 if (~bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
))
69 EXPORT_SYMBOL(__bitmap_full
);
71 int __bitmap_equal(const unsigned long *bitmap1
,
72 const unsigned long *bitmap2
, int bits
)
74 int k
, lim
= bits
/BITS_PER_LONG
;
75 for (k
= 0; k
< lim
; ++k
)
76 if (bitmap1
[k
] != bitmap2
[k
])
79 if (bits
% BITS_PER_LONG
)
80 if ((bitmap1
[k
] ^ bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
85 EXPORT_SYMBOL(__bitmap_equal
);
87 void __bitmap_complement(unsigned long *dst
, const unsigned long *src
, int bits
)
89 int k
, lim
= bits
/BITS_PER_LONG
;
90 for (k
= 0; k
< lim
; ++k
)
93 if (bits
% BITS_PER_LONG
)
94 dst
[k
] = ~src
[k
] & BITMAP_LAST_WORD_MASK(bits
);
96 EXPORT_SYMBOL(__bitmap_complement
);
99 * __bitmap_shift_right - logical right shift of the bits in a bitmap
100 * @dst : destination bitmap
101 * @src : source bitmap
102 * @shift : shift by this many bits
103 * @bits : bitmap size, in bits
105 * Shifting right (dividing) means moving bits in the MS -> LS bit
106 * direction. Zeros are fed into the vacated MS positions and the
107 * LS bits shifted off the bottom are lost.
109 void __bitmap_shift_right(unsigned long *dst
,
110 const unsigned long *src
, int shift
, int bits
)
112 int k
, lim
= BITS_TO_LONGS(bits
), left
= bits
% BITS_PER_LONG
;
113 int off
= shift
/BITS_PER_LONG
, rem
= shift
% BITS_PER_LONG
;
114 unsigned long mask
= (1UL << left
) - 1;
115 for (k
= 0; off
+ k
< lim
; ++k
) {
116 unsigned long upper
, lower
;
119 * If shift is not word aligned, take lower rem bits of
120 * word above and make them the top rem bits of result.
122 if (!rem
|| off
+ k
+ 1 >= lim
)
125 upper
= src
[off
+ k
+ 1];
126 if (off
+ k
+ 1 == lim
- 1 && left
)
129 lower
= src
[off
+ k
];
130 if (left
&& off
+ k
== lim
- 1)
132 dst
[k
] = upper
<< (BITS_PER_LONG
- rem
) | lower
>> rem
;
133 if (left
&& k
== lim
- 1)
137 memset(&dst
[lim
- off
], 0, off
*sizeof(unsigned long));
139 EXPORT_SYMBOL(__bitmap_shift_right
);
143 * __bitmap_shift_left - logical left shift of the bits in a bitmap
144 * @dst : destination bitmap
145 * @src : source bitmap
146 * @shift : shift by this many bits
147 * @bits : bitmap size, in bits
149 * Shifting left (multiplying) means moving bits in the LS -> MS
150 * direction. Zeros are fed into the vacated LS bit positions
151 * and those MS bits shifted off the top are lost.
154 void __bitmap_shift_left(unsigned long *dst
,
155 const unsigned long *src
, int shift
, int bits
)
157 int k
, lim
= BITS_TO_LONGS(bits
), left
= bits
% BITS_PER_LONG
;
158 int off
= shift
/BITS_PER_LONG
, rem
= shift
% BITS_PER_LONG
;
159 for (k
= lim
- off
- 1; k
>= 0; --k
) {
160 unsigned long upper
, lower
;
163 * If shift is not word aligned, take upper rem bits of
164 * word below and make them the bottom rem bits of result.
171 if (left
&& k
== lim
- 1)
172 upper
&= (1UL << left
) - 1;
173 dst
[k
+ off
] = lower
>> (BITS_PER_LONG
- rem
) | upper
<< rem
;
174 if (left
&& k
+ off
== lim
- 1)
175 dst
[k
+ off
] &= (1UL << left
) - 1;
178 memset(dst
, 0, off
*sizeof(unsigned long));
180 EXPORT_SYMBOL(__bitmap_shift_left
);
182 int __bitmap_and(unsigned long *dst
, const unsigned long *bitmap1
,
183 const unsigned long *bitmap2
, int bits
)
186 int nr
= BITS_TO_LONGS(bits
);
187 unsigned long result
= 0;
189 for (k
= 0; k
< nr
; k
++)
190 result
|= (dst
[k
] = bitmap1
[k
] & bitmap2
[k
]);
193 EXPORT_SYMBOL(__bitmap_and
);
195 void __bitmap_or(unsigned long *dst
, const unsigned long *bitmap1
,
196 const unsigned long *bitmap2
, int bits
)
199 int nr
= BITS_TO_LONGS(bits
);
201 for (k
= 0; k
< nr
; k
++)
202 dst
[k
] = bitmap1
[k
] | bitmap2
[k
];
204 EXPORT_SYMBOL(__bitmap_or
);
206 void __bitmap_xor(unsigned long *dst
, const unsigned long *bitmap1
,
207 const unsigned long *bitmap2
, int bits
)
210 int nr
= BITS_TO_LONGS(bits
);
212 for (k
= 0; k
< nr
; k
++)
213 dst
[k
] = bitmap1
[k
] ^ bitmap2
[k
];
215 EXPORT_SYMBOL(__bitmap_xor
);
217 int __bitmap_andnot(unsigned long *dst
, const unsigned long *bitmap1
,
218 const unsigned long *bitmap2
, int bits
)
221 int nr
= BITS_TO_LONGS(bits
);
222 unsigned long result
= 0;
224 for (k
= 0; k
< nr
; k
++)
225 result
|= (dst
[k
] = bitmap1
[k
] & ~bitmap2
[k
]);
228 EXPORT_SYMBOL(__bitmap_andnot
);
230 int __bitmap_intersects(const unsigned long *bitmap1
,
231 const unsigned long *bitmap2
, int bits
)
233 int k
, lim
= bits
/BITS_PER_LONG
;
234 for (k
= 0; k
< lim
; ++k
)
235 if (bitmap1
[k
] & bitmap2
[k
])
238 if (bits
% BITS_PER_LONG
)
239 if ((bitmap1
[k
] & bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
243 EXPORT_SYMBOL(__bitmap_intersects
);
245 int __bitmap_subset(const unsigned long *bitmap1
,
246 const unsigned long *bitmap2
, int bits
)
248 int k
, lim
= bits
/BITS_PER_LONG
;
249 for (k
= 0; k
< lim
; ++k
)
250 if (bitmap1
[k
] & ~bitmap2
[k
])
253 if (bits
% BITS_PER_LONG
)
254 if ((bitmap1
[k
] & ~bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
258 EXPORT_SYMBOL(__bitmap_subset
);
260 int __bitmap_weight(const unsigned long *bitmap
, int bits
)
262 int k
, w
= 0, lim
= bits
/BITS_PER_LONG
;
264 for (k
= 0; k
< lim
; k
++)
265 w
+= hweight_long(bitmap
[k
]);
267 if (bits
% BITS_PER_LONG
)
268 w
+= hweight_long(bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
));
272 EXPORT_SYMBOL(__bitmap_weight
);
274 #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG))
276 void bitmap_set(unsigned long *map
, int start
, int nr
)
278 unsigned long *p
= map
+ BIT_WORD(start
);
279 const int size
= start
+ nr
;
280 int bits_to_set
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
281 unsigned long mask_to_set
= BITMAP_FIRST_WORD_MASK(start
);
283 while (nr
- bits_to_set
>= 0) {
286 bits_to_set
= BITS_PER_LONG
;
291 mask_to_set
&= BITMAP_LAST_WORD_MASK(size
);
295 EXPORT_SYMBOL(bitmap_set
);
297 void bitmap_clear(unsigned long *map
, int start
, int nr
)
299 unsigned long *p
= map
+ BIT_WORD(start
);
300 const int size
= start
+ nr
;
301 int bits_to_clear
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
302 unsigned long mask_to_clear
= BITMAP_FIRST_WORD_MASK(start
);
304 while (nr
- bits_to_clear
>= 0) {
305 *p
&= ~mask_to_clear
;
307 bits_to_clear
= BITS_PER_LONG
;
308 mask_to_clear
= ~0UL;
312 mask_to_clear
&= BITMAP_LAST_WORD_MASK(size
);
313 *p
&= ~mask_to_clear
;
316 EXPORT_SYMBOL(bitmap_clear
);
319 * bitmap_find_next_zero_area - find a contiguous aligned zero area
320 * @map: The address to base the search on
321 * @size: The bitmap size in bits
322 * @start: The bitnumber to start searching at
323 * @nr: The number of zeroed bits we're looking for
324 * @align_mask: Alignment mask for zero area
326 * The @align_mask should be one less than a power of 2; the effect is that
327 * the bit offset of all zero areas this function finds is multiples of that
328 * power of 2. A @align_mask of 0 means no alignment is required.
330 unsigned long bitmap_find_next_zero_area(unsigned long *map
,
334 unsigned long align_mask
)
336 unsigned long index
, end
, i
;
338 index
= find_next_zero_bit(map
, size
, start
);
340 /* Align allocation */
341 index
= __ALIGN_MASK(index
, align_mask
);
346 i
= find_next_bit(map
, end
, index
);
353 EXPORT_SYMBOL(bitmap_find_next_zero_area
);
356 * Bitmap printing & parsing functions: first version by Bill Irwin,
357 * second version by Paul Jackson, third by Joe Korty.
361 #define nbits_to_hold_value(val) fls(val)
362 #define BASEDEC 10 /* fancier cpuset lists input in decimal */
365 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
366 * @buf: byte buffer into which string is placed
367 * @buflen: reserved size of @buf, in bytes
368 * @maskp: pointer to bitmap to convert
369 * @nmaskbits: size of bitmap, in bits
371 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into
372 * comma-separated sets of eight digits per set.
374 int bitmap_scnprintf(char *buf
, unsigned int buflen
,
375 const unsigned long *maskp
, int nmaskbits
)
377 int i
, word
, bit
, len
= 0;
379 const char *sep
= "";
383 chunksz
= nmaskbits
& (CHUNKSZ
- 1);
387 i
= ALIGN(nmaskbits
, CHUNKSZ
) - CHUNKSZ
;
388 for (; i
>= 0; i
-= CHUNKSZ
) {
389 chunkmask
= ((1ULL << chunksz
) - 1);
390 word
= i
/ BITS_PER_LONG
;
391 bit
= i
% BITS_PER_LONG
;
392 val
= (maskp
[word
] >> bit
) & chunkmask
;
393 len
+= scnprintf(buf
+len
, buflen
-len
, "%s%0*lx", sep
,
400 EXPORT_SYMBOL(bitmap_scnprintf
);
403 * __bitmap_parse - convert an ASCII hex string into a bitmap.
404 * @buf: pointer to buffer containing string.
405 * @buflen: buffer size in bytes. If string is smaller than this
406 * then it must be terminated with a \0.
407 * @is_user: location of buffer, 0 indicates kernel space
408 * @maskp: pointer to bitmap array that will contain result.
409 * @nmaskbits: size of bitmap, in bits.
411 * Commas group hex digits into chunks. Each chunk defines exactly 32
412 * bits of the resultant bitmask. No chunk may specify a value larger
413 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
414 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
415 * characters and for grouping errors such as "1,,5", ",44", "," and "".
416 * Leading and trailing whitespace accepted, but not embedded whitespace.
418 int __bitmap_parse(const char *buf
, unsigned int buflen
,
419 int is_user
, unsigned long *maskp
,
422 int c
, old_c
, totaldigits
, ndigits
, nchunks
, nbits
;
424 const char __user
*ubuf
= buf
;
426 bitmap_zero(maskp
, nmaskbits
);
428 nchunks
= nbits
= totaldigits
= c
= 0;
432 /* Get the next chunk of the bitmap */
436 if (__get_user(c
, ubuf
++))
446 * If the last character was a space and the current
447 * character isn't '\0', we've got embedded whitespace.
448 * This is a no-no, so throw an error.
450 if (totaldigits
&& c
&& isspace(old_c
))
453 /* A '\0' or a ',' signal the end of the chunk */
454 if (c
== '\0' || c
== ',')
461 * Make sure there are at least 4 free bits in 'chunk'.
462 * If not, this hexdigit will overflow 'chunk', so
465 if (chunk
& ~((1UL << (CHUNKSZ
- 4)) - 1))
468 chunk
= (chunk
<< 4) | hex_to_bin(c
);
469 ndigits
++; totaldigits
++;
473 if (nchunks
== 0 && chunk
== 0)
476 __bitmap_shift_left(maskp
, maskp
, CHUNKSZ
, nmaskbits
);
479 nbits
+= (nchunks
== 1) ? nbits_to_hold_value(chunk
) : CHUNKSZ
;
480 if (nbits
> nmaskbits
)
482 } while (buflen
&& c
== ',');
486 EXPORT_SYMBOL(__bitmap_parse
);
489 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
491 * @ubuf: pointer to user buffer containing string.
492 * @ulen: buffer size in bytes. If string is smaller than this
493 * then it must be terminated with a \0.
494 * @maskp: pointer to bitmap array that will contain result.
495 * @nmaskbits: size of bitmap, in bits.
497 * Wrapper for __bitmap_parse(), providing it with user buffer.
499 * We cannot have this as an inline function in bitmap.h because it needs
500 * linux/uaccess.h to get the access_ok() declaration and this causes
501 * cyclic dependencies.
503 int bitmap_parse_user(const char __user
*ubuf
,
504 unsigned int ulen
, unsigned long *maskp
,
507 if (!access_ok(VERIFY_READ
, ubuf
, ulen
))
509 return __bitmap_parse((const char *)ubuf
, ulen
, 1, maskp
, nmaskbits
);
511 EXPORT_SYMBOL(bitmap_parse_user
);
514 * bscnl_emit(buf, buflen, rbot, rtop, bp)
516 * Helper routine for bitmap_scnlistprintf(). Write decimal number
517 * or range to buf, suppressing output past buf+buflen, with optional
518 * comma-prefix. Return len of what would be written to buf, if it
521 static inline int bscnl_emit(char *buf
, int buflen
, int rbot
, int rtop
, int len
)
524 len
+= scnprintf(buf
+ len
, buflen
- len
, ",");
526 len
+= scnprintf(buf
+ len
, buflen
- len
, "%d", rbot
);
528 len
+= scnprintf(buf
+ len
, buflen
- len
, "%d-%d", rbot
, rtop
);
533 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
534 * @buf: byte buffer into which string is placed
535 * @buflen: reserved size of @buf, in bytes
536 * @maskp: pointer to bitmap to convert
537 * @nmaskbits: size of bitmap, in bits
539 * Output format is a comma-separated list of decimal numbers and
540 * ranges. Consecutively set bits are shown as two hyphen-separated
541 * decimal numbers, the smallest and largest bit numbers set in
542 * the range. Output format is compatible with the format
543 * accepted as input by bitmap_parselist().
545 * The return value is the number of characters which would be
546 * generated for the given input, excluding the trailing '\0', as
549 int bitmap_scnlistprintf(char *buf
, unsigned int buflen
,
550 const unsigned long *maskp
, int nmaskbits
)
553 /* current bit is 'cur', most recently seen range is [rbot, rtop] */
560 rbot
= cur
= find_first_bit(maskp
, nmaskbits
);
561 while (cur
< nmaskbits
) {
563 cur
= find_next_bit(maskp
, nmaskbits
, cur
+1);
564 if (cur
>= nmaskbits
|| cur
> rtop
+ 1) {
565 len
= bscnl_emit(buf
, buflen
, rbot
, rtop
, len
);
571 EXPORT_SYMBOL(bitmap_scnlistprintf
);
574 * __bitmap_parselist - convert list format ASCII string to bitmap
575 * @buf: read nul-terminated user string from this buffer
576 * @buflen: buffer size in bytes. If string is smaller than this
577 * then it must be terminated with a \0.
578 * @is_user: location of buffer, 0 indicates kernel space
579 * @maskp: write resulting mask here
580 * @nmaskbits: number of bits in mask to be written
582 * Input format is a comma-separated list of decimal numbers and
583 * ranges. Consecutively set bits are shown as two hyphen-separated
584 * decimal numbers, the smallest and largest bit numbers set in
587 * Returns 0 on success, -errno on invalid input strings.
589 * %-EINVAL: second number in range smaller than first
590 * %-EINVAL: invalid character in string
591 * %-ERANGE: bit number specified too large for mask
593 static int __bitmap_parselist(const char *buf
, unsigned int buflen
,
594 int is_user
, unsigned long *maskp
,
598 int c
, old_c
, totaldigits
;
599 const char __user
*ubuf
= buf
;
600 int exp_digit
, in_range
;
603 bitmap_zero(maskp
, nmaskbits
);
609 /* Get the next cpu# or a range of cpu#'s */
613 if (__get_user(c
, ubuf
++))
622 * If the last character was a space and the current
623 * character isn't '\0', we've got embedded whitespace.
624 * This is a no-no, so throw an error.
626 if (totaldigits
&& c
&& isspace(old_c
))
629 /* A '\0' or a ',' signal the end of a cpu# or range */
630 if (c
== '\0' || c
== ',')
634 if (exp_digit
|| in_range
)
645 b
= b
* 10 + (c
- '0');
659 } while (buflen
&& c
== ',');
663 int bitmap_parselist(const char *bp
, unsigned long *maskp
, int nmaskbits
)
665 char *nl
= strchr(bp
, '\n');
673 return __bitmap_parselist(bp
, len
, 0, maskp
, nmaskbits
);
675 EXPORT_SYMBOL(bitmap_parselist
);
679 * bitmap_parselist_user()
681 * @ubuf: pointer to user buffer containing string.
682 * @ulen: buffer size in bytes. If string is smaller than this
683 * then it must be terminated with a \0.
684 * @maskp: pointer to bitmap array that will contain result.
685 * @nmaskbits: size of bitmap, in bits.
687 * Wrapper for bitmap_parselist(), providing it with user buffer.
689 * We cannot have this as an inline function in bitmap.h because it needs
690 * linux/uaccess.h to get the access_ok() declaration and this causes
691 * cyclic dependencies.
693 int bitmap_parselist_user(const char __user
*ubuf
,
694 unsigned int ulen
, unsigned long *maskp
,
697 if (!access_ok(VERIFY_READ
, ubuf
, ulen
))
699 return __bitmap_parselist((const char *)ubuf
,
700 ulen
, 1, maskp
, nmaskbits
);
702 EXPORT_SYMBOL(bitmap_parselist_user
);
706 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
707 * @buf: pointer to a bitmap
708 * @pos: a bit position in @buf (0 <= @pos < @bits)
709 * @bits: number of valid bit positions in @buf
711 * Map the bit at position @pos in @buf (of length @bits) to the
712 * ordinal of which set bit it is. If it is not set or if @pos
713 * is not a valid bit position, map to -1.
715 * If for example, just bits 4 through 7 are set in @buf, then @pos
716 * values 4 through 7 will get mapped to 0 through 3, respectively,
717 * and other @pos values will get mapped to 0. When @pos value 7
718 * gets mapped to (returns) @ord value 3 in this example, that means
719 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
721 * The bit positions 0 through @bits are valid positions in @buf.
723 static int bitmap_pos_to_ord(const unsigned long *buf
, int pos
, int bits
)
727 if (pos
< 0 || pos
>= bits
|| !test_bit(pos
, buf
))
730 i
= find_first_bit(buf
, bits
);
733 i
= find_next_bit(buf
, bits
, i
+ 1);
742 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
743 * @buf: pointer to bitmap
744 * @ord: ordinal bit position (n-th set bit, n >= 0)
745 * @bits: number of valid bit positions in @buf
747 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
748 * Value of @ord should be in range 0 <= @ord < weight(buf), else
749 * results are undefined.
751 * If for example, just bits 4 through 7 are set in @buf, then @ord
752 * values 0 through 3 will get mapped to 4 through 7, respectively,
753 * and all other @ord values return undefined values. When @ord value 3
754 * gets mapped to (returns) @pos value 7 in this example, that means
755 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
757 * The bit positions 0 through @bits are valid positions in @buf.
759 int bitmap_ord_to_pos(const unsigned long *buf
, int ord
, int bits
)
763 if (ord
>= 0 && ord
< bits
) {
766 for (i
= find_first_bit(buf
, bits
);
768 i
= find_next_bit(buf
, bits
, i
+ 1))
770 if (i
< bits
&& ord
== 0)
778 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
779 * @dst: remapped result
780 * @src: subset to be remapped
781 * @old: defines domain of map
782 * @new: defines range of map
783 * @bits: number of bits in each of these bitmaps
785 * Let @old and @new define a mapping of bit positions, such that
786 * whatever position is held by the n-th set bit in @old is mapped
787 * to the n-th set bit in @new. In the more general case, allowing
788 * for the possibility that the weight 'w' of @new is less than the
789 * weight of @old, map the position of the n-th set bit in @old to
790 * the position of the m-th set bit in @new, where m == n % w.
792 * If either of the @old and @new bitmaps are empty, or if @src and
793 * @dst point to the same location, then this routine copies @src
796 * The positions of unset bits in @old are mapped to themselves
797 * (the identify map).
799 * Apply the above specified mapping to @src, placing the result in
800 * @dst, clearing any bits previously set in @dst.
802 * For example, lets say that @old has bits 4 through 7 set, and
803 * @new has bits 12 through 15 set. This defines the mapping of bit
804 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
805 * bit positions unchanged. So if say @src comes into this routine
806 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
809 void bitmap_remap(unsigned long *dst
, const unsigned long *src
,
810 const unsigned long *old
, const unsigned long *new,
815 if (dst
== src
) /* following doesn't handle inplace remaps */
817 bitmap_zero(dst
, bits
);
819 w
= bitmap_weight(new, bits
);
820 for_each_set_bit(oldbit
, src
, bits
) {
821 int n
= bitmap_pos_to_ord(old
, oldbit
, bits
);
824 set_bit(oldbit
, dst
); /* identity map */
826 set_bit(bitmap_ord_to_pos(new, n
% w
, bits
), dst
);
829 EXPORT_SYMBOL(bitmap_remap
);
832 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
833 * @oldbit: bit position to be mapped
834 * @old: defines domain of map
835 * @new: defines range of map
836 * @bits: number of bits in each of these bitmaps
838 * Let @old and @new define a mapping of bit positions, such that
839 * whatever position is held by the n-th set bit in @old is mapped
840 * to the n-th set bit in @new. In the more general case, allowing
841 * for the possibility that the weight 'w' of @new is less than the
842 * weight of @old, map the position of the n-th set bit in @old to
843 * the position of the m-th set bit in @new, where m == n % w.
845 * The positions of unset bits in @old are mapped to themselves
846 * (the identify map).
848 * Apply the above specified mapping to bit position @oldbit, returning
849 * the new bit position.
851 * For example, lets say that @old has bits 4 through 7 set, and
852 * @new has bits 12 through 15 set. This defines the mapping of bit
853 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
854 * bit positions unchanged. So if say @oldbit is 5, then this routine
857 int bitmap_bitremap(int oldbit
, const unsigned long *old
,
858 const unsigned long *new, int bits
)
860 int w
= bitmap_weight(new, bits
);
861 int n
= bitmap_pos_to_ord(old
, oldbit
, bits
);
865 return bitmap_ord_to_pos(new, n
% w
, bits
);
867 EXPORT_SYMBOL(bitmap_bitremap
);
870 * bitmap_onto - translate one bitmap relative to another
871 * @dst: resulting translated bitmap
872 * @orig: original untranslated bitmap
873 * @relmap: bitmap relative to which translated
874 * @bits: number of bits in each of these bitmaps
876 * Set the n-th bit of @dst iff there exists some m such that the
877 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
878 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
879 * (If you understood the previous sentence the first time your
880 * read it, you're overqualified for your current job.)
882 * In other words, @orig is mapped onto (surjectively) @dst,
883 * using the the map { <n, m> | the n-th bit of @relmap is the
884 * m-th set bit of @relmap }.
886 * Any set bits in @orig above bit number W, where W is the
887 * weight of (number of set bits in) @relmap are mapped nowhere.
888 * In particular, if for all bits m set in @orig, m >= W, then
889 * @dst will end up empty. In situations where the possibility
890 * of such an empty result is not desired, one way to avoid it is
891 * to use the bitmap_fold() operator, below, to first fold the
892 * @orig bitmap over itself so that all its set bits x are in the
893 * range 0 <= x < W. The bitmap_fold() operator does this by
894 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
896 * Example [1] for bitmap_onto():
897 * Let's say @relmap has bits 30-39 set, and @orig has bits
898 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
899 * @dst will have bits 31, 33, 35, 37 and 39 set.
901 * When bit 0 is set in @orig, it means turn on the bit in
902 * @dst corresponding to whatever is the first bit (if any)
903 * that is turned on in @relmap. Since bit 0 was off in the
904 * above example, we leave off that bit (bit 30) in @dst.
906 * When bit 1 is set in @orig (as in the above example), it
907 * means turn on the bit in @dst corresponding to whatever
908 * is the second bit that is turned on in @relmap. The second
909 * bit in @relmap that was turned on in the above example was
910 * bit 31, so we turned on bit 31 in @dst.
912 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
913 * because they were the 4th, 6th, 8th and 10th set bits
914 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
915 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
917 * When bit 11 is set in @orig, it means turn on the bit in
918 * @dst corresponding to whatever is the twelfth bit that is
919 * turned on in @relmap. In the above example, there were
920 * only ten bits turned on in @relmap (30..39), so that bit
921 * 11 was set in @orig had no affect on @dst.
923 * Example [2] for bitmap_fold() + bitmap_onto():
924 * Let's say @relmap has these ten bits set:
925 * 40 41 42 43 45 48 53 61 74 95
926 * (for the curious, that's 40 plus the first ten terms of the
927 * Fibonacci sequence.)
929 * Further lets say we use the following code, invoking
930 * bitmap_fold() then bitmap_onto, as suggested above to
931 * avoid the possitility of an empty @dst result:
933 * unsigned long *tmp; // a temporary bitmap's bits
935 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
936 * bitmap_onto(dst, tmp, relmap, bits);
938 * Then this table shows what various values of @dst would be, for
939 * various @orig's. I list the zero-based positions of each set bit.
940 * The tmp column shows the intermediate result, as computed by
941 * using bitmap_fold() to fold the @orig bitmap modulo ten
942 * (the weight of @relmap).
949 * 1 3 5 7 1 3 5 7 41 43 48 61
950 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
951 * 0 9 18 27 0 9 8 7 40 61 74 95
953 * 0 11 22 33 0 1 2 3 40 41 42 43
954 * 0 12 24 36 0 2 4 6 40 42 45 53
955 * 78 102 211 1 2 8 41 42 74 (*)
957 * (*) For these marked lines, if we hadn't first done bitmap_fold()
958 * into tmp, then the @dst result would have been empty.
960 * If either of @orig or @relmap is empty (no set bits), then @dst
961 * will be returned empty.
963 * If (as explained above) the only set bits in @orig are in positions
964 * m where m >= W, (where W is the weight of @relmap) then @dst will
965 * once again be returned empty.
967 * All bits in @dst not set by the above rule are cleared.
969 void bitmap_onto(unsigned long *dst
, const unsigned long *orig
,
970 const unsigned long *relmap
, int bits
)
972 int n
, m
; /* same meaning as in above comment */
974 if (dst
== orig
) /* following doesn't handle inplace mappings */
976 bitmap_zero(dst
, bits
);
979 * The following code is a more efficient, but less
980 * obvious, equivalent to the loop:
981 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
982 * n = bitmap_ord_to_pos(orig, m, bits);
983 * if (test_bit(m, orig))
989 for_each_set_bit(n
, relmap
, bits
) {
990 /* m == bitmap_pos_to_ord(relmap, n, bits) */
991 if (test_bit(m
, orig
))
996 EXPORT_SYMBOL(bitmap_onto
);
999 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1000 * @dst: resulting smaller bitmap
1001 * @orig: original larger bitmap
1002 * @sz: specified size
1003 * @bits: number of bits in each of these bitmaps
1005 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1006 * Clear all other bits in @dst. See further the comment and
1007 * Example [2] for bitmap_onto() for why and how to use this.
1009 void bitmap_fold(unsigned long *dst
, const unsigned long *orig
,
1014 if (dst
== orig
) /* following doesn't handle inplace mappings */
1016 bitmap_zero(dst
, bits
);
1018 for_each_set_bit(oldbit
, orig
, bits
)
1019 set_bit(oldbit
% sz
, dst
);
1021 EXPORT_SYMBOL(bitmap_fold
);
1024 * Common code for bitmap_*_region() routines.
1025 * bitmap: array of unsigned longs corresponding to the bitmap
1026 * pos: the beginning of the region
1027 * order: region size (log base 2 of number of bits)
1028 * reg_op: operation(s) to perform on that region of bitmap
1030 * Can set, verify and/or release a region of bits in a bitmap,
1031 * depending on which combination of REG_OP_* flag bits is set.
1033 * A region of a bitmap is a sequence of bits in the bitmap, of
1034 * some size '1 << order' (a power of two), aligned to that same
1035 * '1 << order' power of two.
1037 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1038 * Returns 0 in all other cases and reg_ops.
1042 REG_OP_ISFREE
, /* true if region is all zero bits */
1043 REG_OP_ALLOC
, /* set all bits in region */
1044 REG_OP_RELEASE
, /* clear all bits in region */
1047 static int __reg_op(unsigned long *bitmap
, int pos
, int order
, int reg_op
)
1049 int nbits_reg
; /* number of bits in region */
1050 int index
; /* index first long of region in bitmap */
1051 int offset
; /* bit offset region in bitmap[index] */
1052 int nlongs_reg
; /* num longs spanned by region in bitmap */
1053 int nbitsinlong
; /* num bits of region in each spanned long */
1054 unsigned long mask
; /* bitmask for one long of region */
1055 int i
; /* scans bitmap by longs */
1056 int ret
= 0; /* return value */
1059 * Either nlongs_reg == 1 (for small orders that fit in one long)
1060 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1062 nbits_reg
= 1 << order
;
1063 index
= pos
/ BITS_PER_LONG
;
1064 offset
= pos
- (index
* BITS_PER_LONG
);
1065 nlongs_reg
= BITS_TO_LONGS(nbits_reg
);
1066 nbitsinlong
= min(nbits_reg
, BITS_PER_LONG
);
1069 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1070 * overflows if nbitsinlong == BITS_PER_LONG.
1072 mask
= (1UL << (nbitsinlong
- 1));
1078 for (i
= 0; i
< nlongs_reg
; i
++) {
1079 if (bitmap
[index
+ i
] & mask
)
1082 ret
= 1; /* all bits in region free (zero) */
1086 for (i
= 0; i
< nlongs_reg
; i
++)
1087 bitmap
[index
+ i
] |= mask
;
1090 case REG_OP_RELEASE
:
1091 for (i
= 0; i
< nlongs_reg
; i
++)
1092 bitmap
[index
+ i
] &= ~mask
;
1100 * bitmap_find_free_region - find a contiguous aligned mem region
1101 * @bitmap: array of unsigned longs corresponding to the bitmap
1102 * @bits: number of bits in the bitmap
1103 * @order: region size (log base 2 of number of bits) to find
1105 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1106 * allocate them (set them to one). Only consider regions of length
1107 * a power (@order) of two, aligned to that power of two, which
1108 * makes the search algorithm much faster.
1110 * Return the bit offset in bitmap of the allocated region,
1111 * or -errno on failure.
1113 int bitmap_find_free_region(unsigned long *bitmap
, int bits
, int order
)
1115 int pos
, end
; /* scans bitmap by regions of size order */
1117 for (pos
= 0 ; (end
= pos
+ (1 << order
)) <= bits
; pos
= end
) {
1118 if (!__reg_op(bitmap
, pos
, order
, REG_OP_ISFREE
))
1120 __reg_op(bitmap
, pos
, order
, REG_OP_ALLOC
);
1125 EXPORT_SYMBOL(bitmap_find_free_region
);
1128 * bitmap_release_region - release allocated bitmap region
1129 * @bitmap: array of unsigned longs corresponding to the bitmap
1130 * @pos: beginning of bit region to release
1131 * @order: region size (log base 2 of number of bits) to release
1133 * This is the complement to __bitmap_find_free_region() and releases
1134 * the found region (by clearing it in the bitmap).
1138 void bitmap_release_region(unsigned long *bitmap
, int pos
, int order
)
1140 __reg_op(bitmap
, pos
, order
, REG_OP_RELEASE
);
1142 EXPORT_SYMBOL(bitmap_release_region
);
1145 * bitmap_allocate_region - allocate bitmap region
1146 * @bitmap: array of unsigned longs corresponding to the bitmap
1147 * @pos: beginning of bit region to allocate
1148 * @order: region size (log base 2 of number of bits) to allocate
1150 * Allocate (set bits in) a specified region of a bitmap.
1152 * Return 0 on success, or %-EBUSY if specified region wasn't
1153 * free (not all bits were zero).
1155 int bitmap_allocate_region(unsigned long *bitmap
, int pos
, int order
)
1157 if (!__reg_op(bitmap
, pos
, order
, REG_OP_ISFREE
))
1159 __reg_op(bitmap
, pos
, order
, REG_OP_ALLOC
);
1162 EXPORT_SYMBOL(bitmap_allocate_region
);
1165 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1166 * @dst: destination buffer
1167 * @src: bitmap to copy
1168 * @nbits: number of bits in the bitmap
1170 * Require nbits % BITS_PER_LONG == 0.
1172 void bitmap_copy_le(void *dst
, const unsigned long *src
, int nbits
)
1174 unsigned long *d
= dst
;
1177 for (i
= 0; i
< nbits
/BITS_PER_LONG
; i
++) {
1178 if (BITS_PER_LONG
== 64)
1179 d
[i
] = cpu_to_le64(src
[i
]);
1181 d
[i
] = cpu_to_le32(src
[i
]);
1184 EXPORT_SYMBOL(bitmap_copy_le
);