eCryptfs: Filename encryption only supports password auth tokens
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ecryptfs / keystore.c
blob17164e483ab135ac6855cc161abff9ea7f8be204
1 /**
2 * eCryptfs: Linux filesystem encryption layer
3 * In-kernel key management code. Includes functions to parse and
4 * write authentication token-related packets with the underlying
5 * file.
7 * Copyright (C) 2004-2006 International Business Machines Corp.
8 * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * Trevor S. Highland <trevor.highland@gmail.com>
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25 * 02111-1307, USA.
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include "ecryptfs_kernel.h"
37 /**
38 * request_key returned an error instead of a valid key address;
39 * determine the type of error, make appropriate log entries, and
40 * return an error code.
42 static int process_request_key_err(long err_code)
44 int rc = 0;
46 switch (err_code) {
47 case -ENOKEY:
48 ecryptfs_printk(KERN_WARNING, "No key\n");
49 rc = -ENOENT;
50 break;
51 case -EKEYEXPIRED:
52 ecryptfs_printk(KERN_WARNING, "Key expired\n");
53 rc = -ETIME;
54 break;
55 case -EKEYREVOKED:
56 ecryptfs_printk(KERN_WARNING, "Key revoked\n");
57 rc = -EINVAL;
58 break;
59 default:
60 ecryptfs_printk(KERN_WARNING, "Unknown error code: "
61 "[0x%.16x]\n", err_code);
62 rc = -EINVAL;
64 return rc;
67 /**
68 * ecryptfs_parse_packet_length
69 * @data: Pointer to memory containing length at offset
70 * @size: This function writes the decoded size to this memory
71 * address; zero on error
72 * @length_size: The number of bytes occupied by the encoded length
74 * Returns zero on success; non-zero on error
76 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
77 size_t *length_size)
79 int rc = 0;
81 (*length_size) = 0;
82 (*size) = 0;
83 if (data[0] < 192) {
84 /* One-byte length */
85 (*size) = (unsigned char)data[0];
86 (*length_size) = 1;
87 } else if (data[0] < 224) {
88 /* Two-byte length */
89 (*size) = (((unsigned char)(data[0]) - 192) * 256);
90 (*size) += ((unsigned char)(data[1]) + 192);
91 (*length_size) = 2;
92 } else if (data[0] == 255) {
93 /* Five-byte length; we're not supposed to see this */
94 ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
95 "supported\n");
96 rc = -EINVAL;
97 goto out;
98 } else {
99 ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
100 rc = -EINVAL;
101 goto out;
103 out:
104 return rc;
108 * ecryptfs_write_packet_length
109 * @dest: The byte array target into which to write the length. Must
110 * have at least 5 bytes allocated.
111 * @size: The length to write.
112 * @packet_size_length: The number of bytes used to encode the packet
113 * length is written to this address.
115 * Returns zero on success; non-zero on error.
117 int ecryptfs_write_packet_length(char *dest, size_t size,
118 size_t *packet_size_length)
120 int rc = 0;
122 if (size < 192) {
123 dest[0] = size;
124 (*packet_size_length) = 1;
125 } else if (size < 65536) {
126 dest[0] = (((size - 192) / 256) + 192);
127 dest[1] = ((size - 192) % 256);
128 (*packet_size_length) = 2;
129 } else {
130 rc = -EINVAL;
131 ecryptfs_printk(KERN_WARNING,
132 "Unsupported packet size: [%d]\n", size);
134 return rc;
137 static int
138 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
139 char **packet, size_t *packet_len)
141 size_t i = 0;
142 size_t data_len;
143 size_t packet_size_len;
144 char *message;
145 int rc;
148 * ***** TAG 64 Packet Format *****
149 * | Content Type | 1 byte |
150 * | Key Identifier Size | 1 or 2 bytes |
151 * | Key Identifier | arbitrary |
152 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
153 * | Encrypted File Encryption Key | arbitrary |
155 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
156 + session_key->encrypted_key_size);
157 *packet = kmalloc(data_len, GFP_KERNEL);
158 message = *packet;
159 if (!message) {
160 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
161 rc = -ENOMEM;
162 goto out;
164 message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
165 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
166 &packet_size_len);
167 if (rc) {
168 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
169 "header; cannot generate packet length\n");
170 goto out;
172 i += packet_size_len;
173 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
174 i += ECRYPTFS_SIG_SIZE_HEX;
175 rc = ecryptfs_write_packet_length(&message[i],
176 session_key->encrypted_key_size,
177 &packet_size_len);
178 if (rc) {
179 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
180 "header; cannot generate packet length\n");
181 goto out;
183 i += packet_size_len;
184 memcpy(&message[i], session_key->encrypted_key,
185 session_key->encrypted_key_size);
186 i += session_key->encrypted_key_size;
187 *packet_len = i;
188 out:
189 return rc;
192 static int
193 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
194 struct ecryptfs_message *msg)
196 size_t i = 0;
197 char *data;
198 size_t data_len;
199 size_t m_size;
200 size_t message_len;
201 u16 checksum = 0;
202 u16 expected_checksum = 0;
203 int rc;
206 * ***** TAG 65 Packet Format *****
207 * | Content Type | 1 byte |
208 * | Status Indicator | 1 byte |
209 * | File Encryption Key Size | 1 or 2 bytes |
210 * | File Encryption Key | arbitrary |
212 message_len = msg->data_len;
213 data = msg->data;
214 if (message_len < 4) {
215 rc = -EIO;
216 goto out;
218 if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
219 ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
220 rc = -EIO;
221 goto out;
223 if (data[i++]) {
224 ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
225 "[%d]\n", data[i-1]);
226 rc = -EIO;
227 goto out;
229 rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
230 if (rc) {
231 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
232 "rc = [%d]\n", rc);
233 goto out;
235 i += data_len;
236 if (message_len < (i + m_size)) {
237 ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
238 "is shorter than expected\n");
239 rc = -EIO;
240 goto out;
242 if (m_size < 3) {
243 ecryptfs_printk(KERN_ERR,
244 "The decrypted key is not long enough to "
245 "include a cipher code and checksum\n");
246 rc = -EIO;
247 goto out;
249 *cipher_code = data[i++];
250 /* The decrypted key includes 1 byte cipher code and 2 byte checksum */
251 session_key->decrypted_key_size = m_size - 3;
252 if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
253 ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
254 "the maximum key size [%d]\n",
255 session_key->decrypted_key_size,
256 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
257 rc = -EIO;
258 goto out;
260 memcpy(session_key->decrypted_key, &data[i],
261 session_key->decrypted_key_size);
262 i += session_key->decrypted_key_size;
263 expected_checksum += (unsigned char)(data[i++]) << 8;
264 expected_checksum += (unsigned char)(data[i++]);
265 for (i = 0; i < session_key->decrypted_key_size; i++)
266 checksum += session_key->decrypted_key[i];
267 if (expected_checksum != checksum) {
268 ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
269 "encryption key; expected [%x]; calculated "
270 "[%x]\n", expected_checksum, checksum);
271 rc = -EIO;
273 out:
274 return rc;
278 static int
279 write_tag_66_packet(char *signature, u8 cipher_code,
280 struct ecryptfs_crypt_stat *crypt_stat, char **packet,
281 size_t *packet_len)
283 size_t i = 0;
284 size_t j;
285 size_t data_len;
286 size_t checksum = 0;
287 size_t packet_size_len;
288 char *message;
289 int rc;
292 * ***** TAG 66 Packet Format *****
293 * | Content Type | 1 byte |
294 * | Key Identifier Size | 1 or 2 bytes |
295 * | Key Identifier | arbitrary |
296 * | File Encryption Key Size | 1 or 2 bytes |
297 * | File Encryption Key | arbitrary |
299 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
300 *packet = kmalloc(data_len, GFP_KERNEL);
301 message = *packet;
302 if (!message) {
303 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
304 rc = -ENOMEM;
305 goto out;
307 message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
308 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
309 &packet_size_len);
310 if (rc) {
311 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
312 "header; cannot generate packet length\n");
313 goto out;
315 i += packet_size_len;
316 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
317 i += ECRYPTFS_SIG_SIZE_HEX;
318 /* The encrypted key includes 1 byte cipher code and 2 byte checksum */
319 rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
320 &packet_size_len);
321 if (rc) {
322 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
323 "header; cannot generate packet length\n");
324 goto out;
326 i += packet_size_len;
327 message[i++] = cipher_code;
328 memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
329 i += crypt_stat->key_size;
330 for (j = 0; j < crypt_stat->key_size; j++)
331 checksum += crypt_stat->key[j];
332 message[i++] = (checksum / 256) % 256;
333 message[i++] = (checksum % 256);
334 *packet_len = i;
335 out:
336 return rc;
339 static int
340 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
341 struct ecryptfs_message *msg)
343 size_t i = 0;
344 char *data;
345 size_t data_len;
346 size_t message_len;
347 int rc;
350 * ***** TAG 65 Packet Format *****
351 * | Content Type | 1 byte |
352 * | Status Indicator | 1 byte |
353 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
354 * | Encrypted File Encryption Key | arbitrary |
356 message_len = msg->data_len;
357 data = msg->data;
358 /* verify that everything through the encrypted FEK size is present */
359 if (message_len < 4) {
360 rc = -EIO;
361 printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
362 "message length is [%d]\n", __func__, message_len, 4);
363 goto out;
365 if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
366 rc = -EIO;
367 printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
368 __func__);
369 goto out;
371 if (data[i++]) {
372 rc = -EIO;
373 printk(KERN_ERR "%s: Status indicator has non zero "
374 "value [%d]\n", __func__, data[i-1]);
376 goto out;
378 rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
379 &data_len);
380 if (rc) {
381 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
382 "rc = [%d]\n", rc);
383 goto out;
385 i += data_len;
386 if (message_len < (i + key_rec->enc_key_size)) {
387 rc = -EIO;
388 printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
389 __func__, message_len, (i + key_rec->enc_key_size));
390 goto out;
392 if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
393 rc = -EIO;
394 printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
395 "the maximum key size [%d]\n", __func__,
396 key_rec->enc_key_size,
397 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
398 goto out;
400 memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
401 out:
402 return rc;
405 static int
406 ecryptfs_find_global_auth_tok_for_sig(
407 struct ecryptfs_global_auth_tok **global_auth_tok,
408 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
410 struct ecryptfs_global_auth_tok *walker;
411 int rc = 0;
413 (*global_auth_tok) = NULL;
414 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
415 list_for_each_entry(walker,
416 &mount_crypt_stat->global_auth_tok_list,
417 mount_crypt_stat_list) {
418 if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX) == 0) {
419 (*global_auth_tok) = walker;
420 goto out;
423 rc = -EINVAL;
424 out:
425 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
426 return rc;
430 * ecryptfs_find_auth_tok_for_sig
431 * @auth_tok: Set to the matching auth_tok; NULL if not found
432 * @crypt_stat: inode crypt_stat crypto context
433 * @sig: Sig of auth_tok to find
435 * For now, this function simply looks at the registered auth_tok's
436 * linked off the mount_crypt_stat, so all the auth_toks that can be
437 * used must be registered at mount time. This function could
438 * potentially try a lot harder to find auth_tok's (e.g., by calling
439 * out to ecryptfsd to dynamically retrieve an auth_tok object) so
440 * that static registration of auth_tok's will no longer be necessary.
442 * Returns zero on no error; non-zero on error
444 static int
445 ecryptfs_find_auth_tok_for_sig(
446 struct ecryptfs_auth_tok **auth_tok,
447 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
448 char *sig)
450 struct ecryptfs_global_auth_tok *global_auth_tok;
451 int rc = 0;
453 (*auth_tok) = NULL;
454 if (ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
455 mount_crypt_stat, sig)) {
456 struct key *auth_tok_key;
458 rc = ecryptfs_keyring_auth_tok_for_sig(&auth_tok_key, auth_tok,
459 sig);
460 } else
461 (*auth_tok) = global_auth_tok->global_auth_tok;
462 return rc;
466 * write_tag_70_packet can gobble a lot of stack space. We stuff most
467 * of the function's parameters in a kmalloc'd struct to help reduce
468 * eCryptfs' overall stack usage.
470 struct ecryptfs_write_tag_70_packet_silly_stack {
471 u8 cipher_code;
472 size_t max_packet_size;
473 size_t packet_size_len;
474 size_t block_aligned_filename_size;
475 size_t block_size;
476 size_t i;
477 size_t j;
478 size_t num_rand_bytes;
479 struct mutex *tfm_mutex;
480 char *block_aligned_filename;
481 struct ecryptfs_auth_tok *auth_tok;
482 struct scatterlist src_sg;
483 struct scatterlist dst_sg;
484 struct blkcipher_desc desc;
485 char iv[ECRYPTFS_MAX_IV_BYTES];
486 char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
487 char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
488 struct hash_desc hash_desc;
489 struct scatterlist hash_sg;
493 * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
494 * @filename: NULL-terminated filename string
496 * This is the simplest mechanism for achieving filename encryption in
497 * eCryptfs. It encrypts the given filename with the mount-wide
498 * filename encryption key (FNEK) and stores it in a packet to @dest,
499 * which the callee will encode and write directly into the dentry
500 * name.
503 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
504 size_t *packet_size,
505 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
506 char *filename, size_t filename_size)
508 struct ecryptfs_write_tag_70_packet_silly_stack *s;
509 int rc = 0;
511 s = kmalloc(sizeof(*s), GFP_KERNEL);
512 if (!s) {
513 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
514 "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
515 goto out;
517 s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
518 (*packet_size) = 0;
519 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
520 &s->desc.tfm,
521 &s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
522 if (unlikely(rc)) {
523 printk(KERN_ERR "Internal error whilst attempting to get "
524 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
525 mount_crypt_stat->global_default_fn_cipher_name, rc);
526 goto out;
528 mutex_lock(s->tfm_mutex);
529 s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
530 /* Plus one for the \0 separator between the random prefix
531 * and the plaintext filename */
532 s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
533 s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
534 if ((s->block_aligned_filename_size % s->block_size) != 0) {
535 s->num_rand_bytes += (s->block_size
536 - (s->block_aligned_filename_size
537 % s->block_size));
538 s->block_aligned_filename_size = (s->num_rand_bytes
539 + filename_size);
541 /* Octet 0: Tag 70 identifier
542 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
543 * and block-aligned encrypted filename size)
544 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
545 * Octet N2-N3: Cipher identifier (1 octet)
546 * Octets N3-N4: Block-aligned encrypted filename
547 * - Consists of a minimum number of random characters, a \0
548 * separator, and then the filename */
549 s->max_packet_size = (1 /* Tag 70 identifier */
550 + 3 /* Max Tag 70 packet size */
551 + ECRYPTFS_SIG_SIZE /* FNEK sig */
552 + 1 /* Cipher identifier */
553 + s->block_aligned_filename_size);
554 if (dest == NULL) {
555 (*packet_size) = s->max_packet_size;
556 goto out_unlock;
558 if (s->max_packet_size > (*remaining_bytes)) {
559 printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
560 "[%zd] available\n", __func__, s->max_packet_size,
561 (*remaining_bytes));
562 rc = -EINVAL;
563 goto out_unlock;
565 s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
566 GFP_KERNEL);
567 if (!s->block_aligned_filename) {
568 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
569 "kzalloc [%zd] bytes\n", __func__,
570 s->block_aligned_filename_size);
571 rc = -ENOMEM;
572 goto out_unlock;
574 s->i = 0;
575 dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
576 rc = ecryptfs_write_packet_length(&dest[s->i],
577 (ECRYPTFS_SIG_SIZE
578 + 1 /* Cipher code */
579 + s->block_aligned_filename_size),
580 &s->packet_size_len);
581 if (rc) {
582 printk(KERN_ERR "%s: Error generating tag 70 packet "
583 "header; cannot generate packet length; rc = [%d]\n",
584 __func__, rc);
585 goto out_free_unlock;
587 s->i += s->packet_size_len;
588 ecryptfs_from_hex(&dest[s->i],
589 mount_crypt_stat->global_default_fnek_sig,
590 ECRYPTFS_SIG_SIZE);
591 s->i += ECRYPTFS_SIG_SIZE;
592 s->cipher_code = ecryptfs_code_for_cipher_string(
593 mount_crypt_stat->global_default_fn_cipher_name,
594 mount_crypt_stat->global_default_fn_cipher_key_bytes);
595 if (s->cipher_code == 0) {
596 printk(KERN_WARNING "%s: Unable to generate code for "
597 "cipher [%s] with key bytes [%zd]\n", __func__,
598 mount_crypt_stat->global_default_fn_cipher_name,
599 mount_crypt_stat->global_default_fn_cipher_key_bytes);
600 rc = -EINVAL;
601 goto out_free_unlock;
603 dest[s->i++] = s->cipher_code;
604 rc = ecryptfs_find_auth_tok_for_sig(
605 &s->auth_tok, mount_crypt_stat,
606 mount_crypt_stat->global_default_fnek_sig);
607 if (rc) {
608 printk(KERN_ERR "%s: Error attempting to find auth tok for "
609 "fnek sig [%s]; rc = [%d]\n", __func__,
610 mount_crypt_stat->global_default_fnek_sig, rc);
611 goto out_free_unlock;
613 /* TODO: Support other key modules than passphrase for
614 * filename encryption */
615 if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
616 rc = -EOPNOTSUPP;
617 printk(KERN_INFO "%s: Filename encryption only supports "
618 "password tokens\n", __func__);
619 goto out_free_unlock;
621 sg_init_one(
622 &s->hash_sg,
623 (u8 *)s->auth_tok->token.password.session_key_encryption_key,
624 s->auth_tok->token.password.session_key_encryption_key_bytes);
625 s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
626 s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
627 CRYPTO_ALG_ASYNC);
628 if (IS_ERR(s->hash_desc.tfm)) {
629 rc = PTR_ERR(s->hash_desc.tfm);
630 printk(KERN_ERR "%s: Error attempting to "
631 "allocate hash crypto context; rc = [%d]\n",
632 __func__, rc);
633 goto out_free_unlock;
635 rc = crypto_hash_init(&s->hash_desc);
636 if (rc) {
637 printk(KERN_ERR
638 "%s: Error initializing crypto hash; rc = [%d]\n",
639 __func__, rc);
640 goto out_release_free_unlock;
642 rc = crypto_hash_update(
643 &s->hash_desc, &s->hash_sg,
644 s->auth_tok->token.password.session_key_encryption_key_bytes);
645 if (rc) {
646 printk(KERN_ERR
647 "%s: Error updating crypto hash; rc = [%d]\n",
648 __func__, rc);
649 goto out_release_free_unlock;
651 rc = crypto_hash_final(&s->hash_desc, s->hash);
652 if (rc) {
653 printk(KERN_ERR
654 "%s: Error finalizing crypto hash; rc = [%d]\n",
655 __func__, rc);
656 goto out_release_free_unlock;
658 for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
659 s->block_aligned_filename[s->j] =
660 s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
661 if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
662 == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
663 sg_init_one(&s->hash_sg, (u8 *)s->hash,
664 ECRYPTFS_TAG_70_DIGEST_SIZE);
665 rc = crypto_hash_init(&s->hash_desc);
666 if (rc) {
667 printk(KERN_ERR
668 "%s: Error initializing crypto hash; "
669 "rc = [%d]\n", __func__, rc);
670 goto out_release_free_unlock;
672 rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
673 ECRYPTFS_TAG_70_DIGEST_SIZE);
674 if (rc) {
675 printk(KERN_ERR
676 "%s: Error updating crypto hash; "
677 "rc = [%d]\n", __func__, rc);
678 goto out_release_free_unlock;
680 rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
681 if (rc) {
682 printk(KERN_ERR
683 "%s: Error finalizing crypto hash; "
684 "rc = [%d]\n", __func__, rc);
685 goto out_release_free_unlock;
687 memcpy(s->hash, s->tmp_hash,
688 ECRYPTFS_TAG_70_DIGEST_SIZE);
690 if (s->block_aligned_filename[s->j] == '\0')
691 s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
693 memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
694 filename_size);
695 rc = virt_to_scatterlist(s->block_aligned_filename,
696 s->block_aligned_filename_size, &s->src_sg, 1);
697 if (rc != 1) {
698 printk(KERN_ERR "%s: Internal error whilst attempting to "
699 "convert filename memory to scatterlist; "
700 "expected rc = 1; got rc = [%d]. "
701 "block_aligned_filename_size = [%zd]\n", __func__, rc,
702 s->block_aligned_filename_size);
703 goto out_release_free_unlock;
705 rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
706 &s->dst_sg, 1);
707 if (rc != 1) {
708 printk(KERN_ERR "%s: Internal error whilst attempting to "
709 "convert encrypted filename memory to scatterlist; "
710 "expected rc = 1; got rc = [%d]. "
711 "block_aligned_filename_size = [%zd]\n", __func__, rc,
712 s->block_aligned_filename_size);
713 goto out_release_free_unlock;
715 /* The characters in the first block effectively do the job
716 * of the IV here, so we just use 0's for the IV. Note the
717 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
718 * >= ECRYPTFS_MAX_IV_BYTES. */
719 memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
720 s->desc.info = s->iv;
721 rc = crypto_blkcipher_setkey(
722 s->desc.tfm,
723 s->auth_tok->token.password.session_key_encryption_key,
724 mount_crypt_stat->global_default_fn_cipher_key_bytes);
725 if (rc < 0) {
726 printk(KERN_ERR "%s: Error setting key for crypto context; "
727 "rc = [%d]. s->auth_tok->token.password.session_key_"
728 "encryption_key = [0x%p]; mount_crypt_stat->"
729 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
731 s->auth_tok->token.password.session_key_encryption_key,
732 mount_crypt_stat->global_default_fn_cipher_key_bytes);
733 goto out_release_free_unlock;
735 rc = crypto_blkcipher_encrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
736 s->block_aligned_filename_size);
737 if (rc) {
738 printk(KERN_ERR "%s: Error attempting to encrypt filename; "
739 "rc = [%d]\n", __func__, rc);
740 goto out_release_free_unlock;
742 s->i += s->block_aligned_filename_size;
743 (*packet_size) = s->i;
744 (*remaining_bytes) -= (*packet_size);
745 out_release_free_unlock:
746 crypto_free_hash(s->hash_desc.tfm);
747 out_free_unlock:
748 kzfree(s->block_aligned_filename);
749 out_unlock:
750 mutex_unlock(s->tfm_mutex);
751 out:
752 kfree(s);
753 return rc;
756 struct ecryptfs_parse_tag_70_packet_silly_stack {
757 u8 cipher_code;
758 size_t max_packet_size;
759 size_t packet_size_len;
760 size_t parsed_tag_70_packet_size;
761 size_t block_aligned_filename_size;
762 size_t block_size;
763 size_t i;
764 struct mutex *tfm_mutex;
765 char *decrypted_filename;
766 struct ecryptfs_auth_tok *auth_tok;
767 struct scatterlist src_sg;
768 struct scatterlist dst_sg;
769 struct blkcipher_desc desc;
770 char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
771 char iv[ECRYPTFS_MAX_IV_BYTES];
772 char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
776 * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
777 * @filename: This function kmalloc's the memory for the filename
778 * @filename_size: This function sets this to the amount of memory
779 * kmalloc'd for the filename
780 * @packet_size: This function sets this to the the number of octets
781 * in the packet parsed
782 * @mount_crypt_stat: The mount-wide cryptographic context
783 * @data: The memory location containing the start of the tag 70
784 * packet
785 * @max_packet_size: The maximum legal size of the packet to be parsed
786 * from @data
788 * Returns zero on success; non-zero otherwise
791 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
792 size_t *packet_size,
793 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
794 char *data, size_t max_packet_size)
796 struct ecryptfs_parse_tag_70_packet_silly_stack *s;
797 int rc = 0;
799 (*packet_size) = 0;
800 (*filename_size) = 0;
801 (*filename) = NULL;
802 s = kmalloc(sizeof(*s), GFP_KERNEL);
803 if (!s) {
804 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
805 "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
806 goto out;
808 s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
809 if (max_packet_size < (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)) {
810 printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
811 "at least [%d]\n", __func__, max_packet_size,
812 (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1));
813 rc = -EINVAL;
814 goto out;
816 /* Octet 0: Tag 70 identifier
817 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
818 * and block-aligned encrypted filename size)
819 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
820 * Octet N2-N3: Cipher identifier (1 octet)
821 * Octets N3-N4: Block-aligned encrypted filename
822 * - Consists of a minimum number of random numbers, a \0
823 * separator, and then the filename */
824 if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
825 printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
826 "tag [0x%.2x]\n", __func__,
827 data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
828 rc = -EINVAL;
829 goto out;
831 rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
832 &s->parsed_tag_70_packet_size,
833 &s->packet_size_len);
834 if (rc) {
835 printk(KERN_WARNING "%s: Error parsing packet length; "
836 "rc = [%d]\n", __func__, rc);
837 goto out;
839 s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
840 - ECRYPTFS_SIG_SIZE - 1);
841 if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
842 > max_packet_size) {
843 printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
844 "size is [%zd]\n", __func__, max_packet_size,
845 (1 + s->packet_size_len + 1
846 + s->block_aligned_filename_size));
847 rc = -EINVAL;
848 goto out;
850 (*packet_size) += s->packet_size_len;
851 ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
852 ECRYPTFS_SIG_SIZE);
853 s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
854 (*packet_size) += ECRYPTFS_SIG_SIZE;
855 s->cipher_code = data[(*packet_size)++];
856 rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
857 if (rc) {
858 printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
859 __func__, s->cipher_code);
860 goto out;
862 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
863 &s->tfm_mutex,
864 s->cipher_string);
865 if (unlikely(rc)) {
866 printk(KERN_ERR "Internal error whilst attempting to get "
867 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
868 s->cipher_string, rc);
869 goto out;
871 mutex_lock(s->tfm_mutex);
872 rc = virt_to_scatterlist(&data[(*packet_size)],
873 s->block_aligned_filename_size, &s->src_sg, 1);
874 if (rc != 1) {
875 printk(KERN_ERR "%s: Internal error whilst attempting to "
876 "convert encrypted filename memory to scatterlist; "
877 "expected rc = 1; got rc = [%d]. "
878 "block_aligned_filename_size = [%zd]\n", __func__, rc,
879 s->block_aligned_filename_size);
880 goto out_unlock;
882 (*packet_size) += s->block_aligned_filename_size;
883 s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
884 GFP_KERNEL);
885 if (!s->decrypted_filename) {
886 printk(KERN_ERR "%s: Out of memory whilst attempting to "
887 "kmalloc [%zd] bytes\n", __func__,
888 s->block_aligned_filename_size);
889 rc = -ENOMEM;
890 goto out_unlock;
892 rc = virt_to_scatterlist(s->decrypted_filename,
893 s->block_aligned_filename_size, &s->dst_sg, 1);
894 if (rc != 1) {
895 printk(KERN_ERR "%s: Internal error whilst attempting to "
896 "convert decrypted filename memory to scatterlist; "
897 "expected rc = 1; got rc = [%d]. "
898 "block_aligned_filename_size = [%zd]\n", __func__, rc,
899 s->block_aligned_filename_size);
900 goto out_free_unlock;
902 /* The characters in the first block effectively do the job of
903 * the IV here, so we just use 0's for the IV. Note the
904 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
905 * >= ECRYPTFS_MAX_IV_BYTES. */
906 memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
907 s->desc.info = s->iv;
908 rc = ecryptfs_find_auth_tok_for_sig(&s->auth_tok, mount_crypt_stat,
909 s->fnek_sig_hex);
910 if (rc) {
911 printk(KERN_ERR "%s: Error attempting to find auth tok for "
912 "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
913 rc);
914 goto out_free_unlock;
916 /* TODO: Support other key modules than passphrase for
917 * filename encryption */
918 if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
919 rc = -EOPNOTSUPP;
920 printk(KERN_INFO "%s: Filename encryption only supports "
921 "password tokens\n", __func__);
922 goto out_free_unlock;
924 rc = crypto_blkcipher_setkey(
925 s->desc.tfm,
926 s->auth_tok->token.password.session_key_encryption_key,
927 mount_crypt_stat->global_default_fn_cipher_key_bytes);
928 if (rc < 0) {
929 printk(KERN_ERR "%s: Error setting key for crypto context; "
930 "rc = [%d]. s->auth_tok->token.password.session_key_"
931 "encryption_key = [0x%p]; mount_crypt_stat->"
932 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
934 s->auth_tok->token.password.session_key_encryption_key,
935 mount_crypt_stat->global_default_fn_cipher_key_bytes);
936 goto out_free_unlock;
938 rc = crypto_blkcipher_decrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
939 s->block_aligned_filename_size);
940 if (rc) {
941 printk(KERN_ERR "%s: Error attempting to decrypt filename; "
942 "rc = [%d]\n", __func__, rc);
943 goto out_free_unlock;
945 s->i = 0;
946 while (s->decrypted_filename[s->i] != '\0'
947 && s->i < s->block_aligned_filename_size)
948 s->i++;
949 if (s->i == s->block_aligned_filename_size) {
950 printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
951 "find valid separator between random characters and "
952 "the filename\n", __func__);
953 rc = -EINVAL;
954 goto out_free_unlock;
956 s->i++;
957 (*filename_size) = (s->block_aligned_filename_size - s->i);
958 if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
959 printk(KERN_WARNING "%s: Filename size is [%zd], which is "
960 "invalid\n", __func__, (*filename_size));
961 rc = -EINVAL;
962 goto out_free_unlock;
964 (*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
965 if (!(*filename)) {
966 printk(KERN_ERR "%s: Out of memory whilst attempting to "
967 "kmalloc [%zd] bytes\n", __func__,
968 ((*filename_size) + 1));
969 rc = -ENOMEM;
970 goto out_free_unlock;
972 memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
973 (*filename)[(*filename_size)] = '\0';
974 out_free_unlock:
975 kfree(s->decrypted_filename);
976 out_unlock:
977 mutex_unlock(s->tfm_mutex);
978 out:
979 if (rc) {
980 (*packet_size) = 0;
981 (*filename_size) = 0;
982 (*filename) = NULL;
984 kfree(s);
985 return rc;
988 static int
989 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
991 int rc = 0;
993 (*sig) = NULL;
994 switch (auth_tok->token_type) {
995 case ECRYPTFS_PASSWORD:
996 (*sig) = auth_tok->token.password.signature;
997 break;
998 case ECRYPTFS_PRIVATE_KEY:
999 (*sig) = auth_tok->token.private_key.signature;
1000 break;
1001 default:
1002 printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1003 auth_tok->token_type);
1004 rc = -EINVAL;
1006 return rc;
1010 * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1011 * @auth_tok: The key authentication token used to decrypt the session key
1012 * @crypt_stat: The cryptographic context
1014 * Returns zero on success; non-zero error otherwise.
1016 static int
1017 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1018 struct ecryptfs_crypt_stat *crypt_stat)
1020 u8 cipher_code = 0;
1021 struct ecryptfs_msg_ctx *msg_ctx;
1022 struct ecryptfs_message *msg = NULL;
1023 char *auth_tok_sig;
1024 char *payload;
1025 size_t payload_len;
1026 int rc;
1028 rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1029 if (rc) {
1030 printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1031 auth_tok->token_type);
1032 goto out;
1034 rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1035 &payload, &payload_len);
1036 if (rc) {
1037 ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1038 goto out;
1040 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1041 if (rc) {
1042 ecryptfs_printk(KERN_ERR, "Error sending message to "
1043 "ecryptfsd\n");
1044 goto out;
1046 rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1047 if (rc) {
1048 ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1049 "from the user space daemon\n");
1050 rc = -EIO;
1051 goto out;
1053 rc = parse_tag_65_packet(&(auth_tok->session_key),
1054 &cipher_code, msg);
1055 if (rc) {
1056 printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1057 rc);
1058 goto out;
1060 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1061 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1062 auth_tok->session_key.decrypted_key_size);
1063 crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1064 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1065 if (rc) {
1066 ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1067 cipher_code)
1068 goto out;
1070 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1071 if (ecryptfs_verbosity > 0) {
1072 ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1073 ecryptfs_dump_hex(crypt_stat->key,
1074 crypt_stat->key_size);
1076 out:
1077 if (msg)
1078 kfree(msg);
1079 return rc;
1082 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1084 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1085 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1087 list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1088 auth_tok_list_head, list) {
1089 list_del(&auth_tok_list_item->list);
1090 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1091 auth_tok_list_item);
1095 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1098 * parse_tag_1_packet
1099 * @crypt_stat: The cryptographic context to modify based on packet contents
1100 * @data: The raw bytes of the packet.
1101 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1102 * a new authentication token will be placed at the
1103 * end of this list for this packet.
1104 * @new_auth_tok: Pointer to a pointer to memory that this function
1105 * allocates; sets the memory address of the pointer to
1106 * NULL on error. This object is added to the
1107 * auth_tok_list.
1108 * @packet_size: This function writes the size of the parsed packet
1109 * into this memory location; zero on error.
1110 * @max_packet_size: The maximum allowable packet size
1112 * Returns zero on success; non-zero on error.
1114 static int
1115 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1116 unsigned char *data, struct list_head *auth_tok_list,
1117 struct ecryptfs_auth_tok **new_auth_tok,
1118 size_t *packet_size, size_t max_packet_size)
1120 size_t body_size;
1121 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1122 size_t length_size;
1123 int rc = 0;
1125 (*packet_size) = 0;
1126 (*new_auth_tok) = NULL;
1128 * This format is inspired by OpenPGP; see RFC 2440
1129 * packet tag 1
1131 * Tag 1 identifier (1 byte)
1132 * Max Tag 1 packet size (max 3 bytes)
1133 * Version (1 byte)
1134 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1135 * Cipher identifier (1 byte)
1136 * Encrypted key size (arbitrary)
1138 * 12 bytes minimum packet size
1140 if (unlikely(max_packet_size < 12)) {
1141 printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1142 rc = -EINVAL;
1143 goto out;
1145 if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1146 printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1147 ECRYPTFS_TAG_1_PACKET_TYPE);
1148 rc = -EINVAL;
1149 goto out;
1151 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1152 * at end of function upon failure */
1153 auth_tok_list_item =
1154 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1155 GFP_KERNEL);
1156 if (!auth_tok_list_item) {
1157 printk(KERN_ERR "Unable to allocate memory\n");
1158 rc = -ENOMEM;
1159 goto out;
1161 (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1162 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1163 &length_size);
1164 if (rc) {
1165 printk(KERN_WARNING "Error parsing packet length; "
1166 "rc = [%d]\n", rc);
1167 goto out_free;
1169 if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1170 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1171 rc = -EINVAL;
1172 goto out_free;
1174 (*packet_size) += length_size;
1175 if (unlikely((*packet_size) + body_size > max_packet_size)) {
1176 printk(KERN_WARNING "Packet size exceeds max\n");
1177 rc = -EINVAL;
1178 goto out_free;
1180 if (unlikely(data[(*packet_size)++] != 0x03)) {
1181 printk(KERN_WARNING "Unknown version number [%d]\n",
1182 data[(*packet_size) - 1]);
1183 rc = -EINVAL;
1184 goto out_free;
1186 ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1187 &data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1188 *packet_size += ECRYPTFS_SIG_SIZE;
1189 /* This byte is skipped because the kernel does not need to
1190 * know which public key encryption algorithm was used */
1191 (*packet_size)++;
1192 (*new_auth_tok)->session_key.encrypted_key_size =
1193 body_size - (ECRYPTFS_SIG_SIZE + 2);
1194 if ((*new_auth_tok)->session_key.encrypted_key_size
1195 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1196 printk(KERN_WARNING "Tag 1 packet contains key larger "
1197 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1198 rc = -EINVAL;
1199 goto out;
1201 memcpy((*new_auth_tok)->session_key.encrypted_key,
1202 &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1203 (*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1204 (*new_auth_tok)->session_key.flags &=
1205 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1206 (*new_auth_tok)->session_key.flags |=
1207 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1208 (*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1209 (*new_auth_tok)->flags = 0;
1210 (*new_auth_tok)->session_key.flags &=
1211 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1212 (*new_auth_tok)->session_key.flags &=
1213 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1214 list_add(&auth_tok_list_item->list, auth_tok_list);
1215 goto out;
1216 out_free:
1217 (*new_auth_tok) = NULL;
1218 memset(auth_tok_list_item, 0,
1219 sizeof(struct ecryptfs_auth_tok_list_item));
1220 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1221 auth_tok_list_item);
1222 out:
1223 if (rc)
1224 (*packet_size) = 0;
1225 return rc;
1229 * parse_tag_3_packet
1230 * @crypt_stat: The cryptographic context to modify based on packet
1231 * contents.
1232 * @data: The raw bytes of the packet.
1233 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1234 * a new authentication token will be placed at the end
1235 * of this list for this packet.
1236 * @new_auth_tok: Pointer to a pointer to memory that this function
1237 * allocates; sets the memory address of the pointer to
1238 * NULL on error. This object is added to the
1239 * auth_tok_list.
1240 * @packet_size: This function writes the size of the parsed packet
1241 * into this memory location; zero on error.
1242 * @max_packet_size: maximum number of bytes to parse
1244 * Returns zero on success; non-zero on error.
1246 static int
1247 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1248 unsigned char *data, struct list_head *auth_tok_list,
1249 struct ecryptfs_auth_tok **new_auth_tok,
1250 size_t *packet_size, size_t max_packet_size)
1252 size_t body_size;
1253 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1254 size_t length_size;
1255 int rc = 0;
1257 (*packet_size) = 0;
1258 (*new_auth_tok) = NULL;
1260 *This format is inspired by OpenPGP; see RFC 2440
1261 * packet tag 3
1263 * Tag 3 identifier (1 byte)
1264 * Max Tag 3 packet size (max 3 bytes)
1265 * Version (1 byte)
1266 * Cipher code (1 byte)
1267 * S2K specifier (1 byte)
1268 * Hash identifier (1 byte)
1269 * Salt (ECRYPTFS_SALT_SIZE)
1270 * Hash iterations (1 byte)
1271 * Encrypted key (arbitrary)
1273 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1275 if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1276 printk(KERN_ERR "Max packet size too large\n");
1277 rc = -EINVAL;
1278 goto out;
1280 if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1281 printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1282 ECRYPTFS_TAG_3_PACKET_TYPE);
1283 rc = -EINVAL;
1284 goto out;
1286 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1287 * at end of function upon failure */
1288 auth_tok_list_item =
1289 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1290 if (!auth_tok_list_item) {
1291 printk(KERN_ERR "Unable to allocate memory\n");
1292 rc = -ENOMEM;
1293 goto out;
1295 (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1296 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1297 &length_size);
1298 if (rc) {
1299 printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1300 rc);
1301 goto out_free;
1303 if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1304 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1305 rc = -EINVAL;
1306 goto out_free;
1308 (*packet_size) += length_size;
1309 if (unlikely((*packet_size) + body_size > max_packet_size)) {
1310 printk(KERN_ERR "Packet size exceeds max\n");
1311 rc = -EINVAL;
1312 goto out_free;
1314 (*new_auth_tok)->session_key.encrypted_key_size =
1315 (body_size - (ECRYPTFS_SALT_SIZE + 5));
1316 if ((*new_auth_tok)->session_key.encrypted_key_size
1317 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1318 printk(KERN_WARNING "Tag 3 packet contains key larger "
1319 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1320 rc = -EINVAL;
1321 goto out_free;
1323 if (unlikely(data[(*packet_size)++] != 0x04)) {
1324 printk(KERN_WARNING "Unknown version number [%d]\n",
1325 data[(*packet_size) - 1]);
1326 rc = -EINVAL;
1327 goto out_free;
1329 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1330 (u16)data[(*packet_size)]);
1331 if (rc)
1332 goto out_free;
1333 /* A little extra work to differentiate among the AES key
1334 * sizes; see RFC2440 */
1335 switch(data[(*packet_size)++]) {
1336 case RFC2440_CIPHER_AES_192:
1337 crypt_stat->key_size = 24;
1338 break;
1339 default:
1340 crypt_stat->key_size =
1341 (*new_auth_tok)->session_key.encrypted_key_size;
1343 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1344 if (rc)
1345 goto out_free;
1346 if (unlikely(data[(*packet_size)++] != 0x03)) {
1347 printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1348 rc = -ENOSYS;
1349 goto out_free;
1351 /* TODO: finish the hash mapping */
1352 switch (data[(*packet_size)++]) {
1353 case 0x01: /* See RFC2440 for these numbers and their mappings */
1354 /* Choose MD5 */
1355 memcpy((*new_auth_tok)->token.password.salt,
1356 &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1357 (*packet_size) += ECRYPTFS_SALT_SIZE;
1358 /* This conversion was taken straight from RFC2440 */
1359 (*new_auth_tok)->token.password.hash_iterations =
1360 ((u32) 16 + (data[(*packet_size)] & 15))
1361 << ((data[(*packet_size)] >> 4) + 6);
1362 (*packet_size)++;
1363 /* Friendly reminder:
1364 * (*new_auth_tok)->session_key.encrypted_key_size =
1365 * (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1366 memcpy((*new_auth_tok)->session_key.encrypted_key,
1367 &data[(*packet_size)],
1368 (*new_auth_tok)->session_key.encrypted_key_size);
1369 (*packet_size) +=
1370 (*new_auth_tok)->session_key.encrypted_key_size;
1371 (*new_auth_tok)->session_key.flags &=
1372 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1373 (*new_auth_tok)->session_key.flags |=
1374 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1375 (*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1376 break;
1377 default:
1378 ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1379 "[%d]\n", data[(*packet_size) - 1]);
1380 rc = -ENOSYS;
1381 goto out_free;
1383 (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1384 /* TODO: Parametarize; we might actually want userspace to
1385 * decrypt the session key. */
1386 (*new_auth_tok)->session_key.flags &=
1387 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1388 (*new_auth_tok)->session_key.flags &=
1389 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1390 list_add(&auth_tok_list_item->list, auth_tok_list);
1391 goto out;
1392 out_free:
1393 (*new_auth_tok) = NULL;
1394 memset(auth_tok_list_item, 0,
1395 sizeof(struct ecryptfs_auth_tok_list_item));
1396 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1397 auth_tok_list_item);
1398 out:
1399 if (rc)
1400 (*packet_size) = 0;
1401 return rc;
1405 * parse_tag_11_packet
1406 * @data: The raw bytes of the packet
1407 * @contents: This function writes the data contents of the literal
1408 * packet into this memory location
1409 * @max_contents_bytes: The maximum number of bytes that this function
1410 * is allowed to write into contents
1411 * @tag_11_contents_size: This function writes the size of the parsed
1412 * contents into this memory location; zero on
1413 * error
1414 * @packet_size: This function writes the size of the parsed packet
1415 * into this memory location; zero on error
1416 * @max_packet_size: maximum number of bytes to parse
1418 * Returns zero on success; non-zero on error.
1420 static int
1421 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1422 size_t max_contents_bytes, size_t *tag_11_contents_size,
1423 size_t *packet_size, size_t max_packet_size)
1425 size_t body_size;
1426 size_t length_size;
1427 int rc = 0;
1429 (*packet_size) = 0;
1430 (*tag_11_contents_size) = 0;
1431 /* This format is inspired by OpenPGP; see RFC 2440
1432 * packet tag 11
1434 * Tag 11 identifier (1 byte)
1435 * Max Tag 11 packet size (max 3 bytes)
1436 * Binary format specifier (1 byte)
1437 * Filename length (1 byte)
1438 * Filename ("_CONSOLE") (8 bytes)
1439 * Modification date (4 bytes)
1440 * Literal data (arbitrary)
1442 * We need at least 16 bytes of data for the packet to even be
1443 * valid.
1445 if (max_packet_size < 16) {
1446 printk(KERN_ERR "Maximum packet size too small\n");
1447 rc = -EINVAL;
1448 goto out;
1450 if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1451 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1452 rc = -EINVAL;
1453 goto out;
1455 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1456 &length_size);
1457 if (rc) {
1458 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1459 goto out;
1461 if (body_size < 14) {
1462 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1463 rc = -EINVAL;
1464 goto out;
1466 (*packet_size) += length_size;
1467 (*tag_11_contents_size) = (body_size - 14);
1468 if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1469 printk(KERN_ERR "Packet size exceeds max\n");
1470 rc = -EINVAL;
1471 goto out;
1473 if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1474 printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1475 "expected size\n");
1476 rc = -EINVAL;
1477 goto out;
1479 if (data[(*packet_size)++] != 0x62) {
1480 printk(KERN_WARNING "Unrecognizable packet\n");
1481 rc = -EINVAL;
1482 goto out;
1484 if (data[(*packet_size)++] != 0x08) {
1485 printk(KERN_WARNING "Unrecognizable packet\n");
1486 rc = -EINVAL;
1487 goto out;
1489 (*packet_size) += 12; /* Ignore filename and modification date */
1490 memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1491 (*packet_size) += (*tag_11_contents_size);
1492 out:
1493 if (rc) {
1494 (*packet_size) = 0;
1495 (*tag_11_contents_size) = 0;
1497 return rc;
1501 * ecryptfs_verify_version
1502 * @version: The version number to confirm
1504 * Returns zero on good version; non-zero otherwise
1506 static int ecryptfs_verify_version(u16 version)
1508 int rc = 0;
1509 unsigned char major;
1510 unsigned char minor;
1512 major = ((version >> 8) & 0xFF);
1513 minor = (version & 0xFF);
1514 if (major != ECRYPTFS_VERSION_MAJOR) {
1515 ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
1516 "Expected [%d]; got [%d]\n",
1517 ECRYPTFS_VERSION_MAJOR, major);
1518 rc = -EINVAL;
1519 goto out;
1521 if (minor != ECRYPTFS_VERSION_MINOR) {
1522 ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
1523 "Expected [%d]; got [%d]\n",
1524 ECRYPTFS_VERSION_MINOR, minor);
1525 rc = -EINVAL;
1526 goto out;
1528 out:
1529 return rc;
1532 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1533 struct ecryptfs_auth_tok **auth_tok,
1534 char *sig)
1536 int rc = 0;
1538 (*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1539 if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1540 printk(KERN_ERR "Could not find key with description: [%s]\n",
1541 sig);
1542 rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1543 goto out;
1545 (*auth_tok) = ecryptfs_get_key_payload_data(*auth_tok_key);
1546 if (ecryptfs_verify_version((*auth_tok)->version)) {
1547 printk(KERN_ERR
1548 "Data structure version mismatch. "
1549 "Userspace tools must match eCryptfs "
1550 "kernel module with major version [%d] "
1551 "and minor version [%d]\n",
1552 ECRYPTFS_VERSION_MAJOR,
1553 ECRYPTFS_VERSION_MINOR);
1554 rc = -EINVAL;
1555 goto out;
1557 if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
1558 && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
1559 printk(KERN_ERR "Invalid auth_tok structure "
1560 "returned from key query\n");
1561 rc = -EINVAL;
1562 goto out;
1564 out:
1565 return rc;
1569 * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1570 * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1571 * @crypt_stat: The cryptographic context
1573 * Returns zero on success; non-zero error otherwise
1575 static int
1576 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1577 struct ecryptfs_crypt_stat *crypt_stat)
1579 struct scatterlist dst_sg[2];
1580 struct scatterlist src_sg[2];
1581 struct mutex *tfm_mutex;
1582 struct blkcipher_desc desc = {
1583 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
1585 int rc = 0;
1587 if (unlikely(ecryptfs_verbosity > 0)) {
1588 ecryptfs_printk(
1589 KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1590 auth_tok->token.password.session_key_encryption_key_bytes);
1591 ecryptfs_dump_hex(
1592 auth_tok->token.password.session_key_encryption_key,
1593 auth_tok->token.password.session_key_encryption_key_bytes);
1595 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1596 crypt_stat->cipher);
1597 if (unlikely(rc)) {
1598 printk(KERN_ERR "Internal error whilst attempting to get "
1599 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1600 crypt_stat->cipher, rc);
1601 goto out;
1603 rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1604 auth_tok->session_key.encrypted_key_size,
1605 src_sg, 2);
1606 if (rc < 1 || rc > 2) {
1607 printk(KERN_ERR "Internal error whilst attempting to convert "
1608 "auth_tok->session_key.encrypted_key to scatterlist; "
1609 "expected rc = 1; got rc = [%d]. "
1610 "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1611 auth_tok->session_key.encrypted_key_size);
1612 goto out;
1614 auth_tok->session_key.decrypted_key_size =
1615 auth_tok->session_key.encrypted_key_size;
1616 rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1617 auth_tok->session_key.decrypted_key_size,
1618 dst_sg, 2);
1619 if (rc < 1 || rc > 2) {
1620 printk(KERN_ERR "Internal error whilst attempting to convert "
1621 "auth_tok->session_key.decrypted_key to scatterlist; "
1622 "expected rc = 1; got rc = [%d]\n", rc);
1623 goto out;
1625 mutex_lock(tfm_mutex);
1626 rc = crypto_blkcipher_setkey(
1627 desc.tfm, auth_tok->token.password.session_key_encryption_key,
1628 crypt_stat->key_size);
1629 if (unlikely(rc < 0)) {
1630 mutex_unlock(tfm_mutex);
1631 printk(KERN_ERR "Error setting key for crypto context\n");
1632 rc = -EINVAL;
1633 goto out;
1635 rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1636 auth_tok->session_key.encrypted_key_size);
1637 mutex_unlock(tfm_mutex);
1638 if (unlikely(rc)) {
1639 printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1640 goto out;
1642 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1643 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1644 auth_tok->session_key.decrypted_key_size);
1645 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1646 if (unlikely(ecryptfs_verbosity > 0)) {
1647 ecryptfs_printk(KERN_DEBUG, "FEK of size [%d]:\n",
1648 crypt_stat->key_size);
1649 ecryptfs_dump_hex(crypt_stat->key,
1650 crypt_stat->key_size);
1652 out:
1653 return rc;
1657 * ecryptfs_parse_packet_set
1658 * @crypt_stat: The cryptographic context
1659 * @src: Virtual address of region of memory containing the packets
1660 * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1662 * Get crypt_stat to have the file's session key if the requisite key
1663 * is available to decrypt the session key.
1665 * Returns Zero if a valid authentication token was retrieved and
1666 * processed; negative value for file not encrypted or for error
1667 * conditions.
1669 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1670 unsigned char *src,
1671 struct dentry *ecryptfs_dentry)
1673 size_t i = 0;
1674 size_t found_auth_tok;
1675 size_t next_packet_is_auth_tok_packet;
1676 struct list_head auth_tok_list;
1677 struct ecryptfs_auth_tok *matching_auth_tok;
1678 struct ecryptfs_auth_tok *candidate_auth_tok;
1679 char *candidate_auth_tok_sig;
1680 size_t packet_size;
1681 struct ecryptfs_auth_tok *new_auth_tok;
1682 unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1683 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1684 size_t tag_11_contents_size;
1685 size_t tag_11_packet_size;
1686 int rc = 0;
1688 INIT_LIST_HEAD(&auth_tok_list);
1689 /* Parse the header to find as many packets as we can; these will be
1690 * added the our &auth_tok_list */
1691 next_packet_is_auth_tok_packet = 1;
1692 while (next_packet_is_auth_tok_packet) {
1693 size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1695 switch (src[i]) {
1696 case ECRYPTFS_TAG_3_PACKET_TYPE:
1697 rc = parse_tag_3_packet(crypt_stat,
1698 (unsigned char *)&src[i],
1699 &auth_tok_list, &new_auth_tok,
1700 &packet_size, max_packet_size);
1701 if (rc) {
1702 ecryptfs_printk(KERN_ERR, "Error parsing "
1703 "tag 3 packet\n");
1704 rc = -EIO;
1705 goto out_wipe_list;
1707 i += packet_size;
1708 rc = parse_tag_11_packet((unsigned char *)&src[i],
1709 sig_tmp_space,
1710 ECRYPTFS_SIG_SIZE,
1711 &tag_11_contents_size,
1712 &tag_11_packet_size,
1713 max_packet_size);
1714 if (rc) {
1715 ecryptfs_printk(KERN_ERR, "No valid "
1716 "(ecryptfs-specific) literal "
1717 "packet containing "
1718 "authentication token "
1719 "signature found after "
1720 "tag 3 packet\n");
1721 rc = -EIO;
1722 goto out_wipe_list;
1724 i += tag_11_packet_size;
1725 if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1726 ecryptfs_printk(KERN_ERR, "Expected "
1727 "signature of size [%d]; "
1728 "read size [%d]\n",
1729 ECRYPTFS_SIG_SIZE,
1730 tag_11_contents_size);
1731 rc = -EIO;
1732 goto out_wipe_list;
1734 ecryptfs_to_hex(new_auth_tok->token.password.signature,
1735 sig_tmp_space, tag_11_contents_size);
1736 new_auth_tok->token.password.signature[
1737 ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1738 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1739 break;
1740 case ECRYPTFS_TAG_1_PACKET_TYPE:
1741 rc = parse_tag_1_packet(crypt_stat,
1742 (unsigned char *)&src[i],
1743 &auth_tok_list, &new_auth_tok,
1744 &packet_size, max_packet_size);
1745 if (rc) {
1746 ecryptfs_printk(KERN_ERR, "Error parsing "
1747 "tag 1 packet\n");
1748 rc = -EIO;
1749 goto out_wipe_list;
1751 i += packet_size;
1752 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1753 break;
1754 case ECRYPTFS_TAG_11_PACKET_TYPE:
1755 ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1756 "(Tag 11 not allowed by itself)\n");
1757 rc = -EIO;
1758 goto out_wipe_list;
1759 break;
1760 default:
1761 ecryptfs_printk(KERN_DEBUG, "No packet at offset "
1762 "[%d] of the file header; hex value of "
1763 "character is [0x%.2x]\n", i, src[i]);
1764 next_packet_is_auth_tok_packet = 0;
1767 if (list_empty(&auth_tok_list)) {
1768 printk(KERN_ERR "The lower file appears to be a non-encrypted "
1769 "eCryptfs file; this is not supported in this version "
1770 "of the eCryptfs kernel module\n");
1771 rc = -EINVAL;
1772 goto out;
1774 /* auth_tok_list contains the set of authentication tokens
1775 * parsed from the metadata. We need to find a matching
1776 * authentication token that has the secret component(s)
1777 * necessary to decrypt the EFEK in the auth_tok parsed from
1778 * the metadata. There may be several potential matches, but
1779 * just one will be sufficient to decrypt to get the FEK. */
1780 find_next_matching_auth_tok:
1781 found_auth_tok = 0;
1782 list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1783 candidate_auth_tok = &auth_tok_list_item->auth_tok;
1784 if (unlikely(ecryptfs_verbosity > 0)) {
1785 ecryptfs_printk(KERN_DEBUG,
1786 "Considering cadidate auth tok:\n");
1787 ecryptfs_dump_auth_tok(candidate_auth_tok);
1789 rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1790 candidate_auth_tok);
1791 if (rc) {
1792 printk(KERN_ERR
1793 "Unrecognized candidate auth tok type: [%d]\n",
1794 candidate_auth_tok->token_type);
1795 rc = -EINVAL;
1796 goto out_wipe_list;
1798 ecryptfs_find_auth_tok_for_sig(&matching_auth_tok,
1799 crypt_stat->mount_crypt_stat,
1800 candidate_auth_tok_sig);
1801 if (matching_auth_tok) {
1802 found_auth_tok = 1;
1803 goto found_matching_auth_tok;
1806 if (!found_auth_tok) {
1807 ecryptfs_printk(KERN_ERR, "Could not find a usable "
1808 "authentication token\n");
1809 rc = -EIO;
1810 goto out_wipe_list;
1812 found_matching_auth_tok:
1813 if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1814 memcpy(&(candidate_auth_tok->token.private_key),
1815 &(matching_auth_tok->token.private_key),
1816 sizeof(struct ecryptfs_private_key));
1817 rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1818 crypt_stat);
1819 } else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1820 memcpy(&(candidate_auth_tok->token.password),
1821 &(matching_auth_tok->token.password),
1822 sizeof(struct ecryptfs_password));
1823 rc = decrypt_passphrase_encrypted_session_key(
1824 candidate_auth_tok, crypt_stat);
1826 if (rc) {
1827 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1829 ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1830 "session key for authentication token with sig "
1831 "[%.*s]; rc = [%d]. Removing auth tok "
1832 "candidate from the list and searching for "
1833 "the next match.\n", candidate_auth_tok_sig,
1834 ECRYPTFS_SIG_SIZE_HEX, rc);
1835 list_for_each_entry_safe(auth_tok_list_item,
1836 auth_tok_list_item_tmp,
1837 &auth_tok_list, list) {
1838 if (candidate_auth_tok
1839 == &auth_tok_list_item->auth_tok) {
1840 list_del(&auth_tok_list_item->list);
1841 kmem_cache_free(
1842 ecryptfs_auth_tok_list_item_cache,
1843 auth_tok_list_item);
1844 goto find_next_matching_auth_tok;
1847 BUG();
1849 rc = ecryptfs_compute_root_iv(crypt_stat);
1850 if (rc) {
1851 ecryptfs_printk(KERN_ERR, "Error computing "
1852 "the root IV\n");
1853 goto out_wipe_list;
1855 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1856 if (rc) {
1857 ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1858 "context for cipher [%s]; rc = [%d]\n",
1859 crypt_stat->cipher, rc);
1861 out_wipe_list:
1862 wipe_auth_tok_list(&auth_tok_list);
1863 out:
1864 return rc;
1867 static int
1868 pki_encrypt_session_key(struct ecryptfs_auth_tok *auth_tok,
1869 struct ecryptfs_crypt_stat *crypt_stat,
1870 struct ecryptfs_key_record *key_rec)
1872 struct ecryptfs_msg_ctx *msg_ctx = NULL;
1873 char *payload = NULL;
1874 size_t payload_len;
1875 struct ecryptfs_message *msg;
1876 int rc;
1878 rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1879 ecryptfs_code_for_cipher_string(
1880 crypt_stat->cipher,
1881 crypt_stat->key_size),
1882 crypt_stat, &payload, &payload_len);
1883 if (rc) {
1884 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1885 goto out;
1887 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1888 if (rc) {
1889 ecryptfs_printk(KERN_ERR, "Error sending message to "
1890 "ecryptfsd\n");
1891 goto out;
1893 rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1894 if (rc) {
1895 ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1896 "from the user space daemon\n");
1897 rc = -EIO;
1898 goto out;
1900 rc = parse_tag_67_packet(key_rec, msg);
1901 if (rc)
1902 ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1903 kfree(msg);
1904 out:
1905 kfree(payload);
1906 return rc;
1909 * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
1910 * @dest: Buffer into which to write the packet
1911 * @remaining_bytes: Maximum number of bytes that can be writtn
1912 * @auth_tok: The authentication token used for generating the tag 1 packet
1913 * @crypt_stat: The cryptographic context
1914 * @key_rec: The key record struct for the tag 1 packet
1915 * @packet_size: This function will write the number of bytes that end
1916 * up constituting the packet; set to zero on error
1918 * Returns zero on success; non-zero on error.
1920 static int
1921 write_tag_1_packet(char *dest, size_t *remaining_bytes,
1922 struct ecryptfs_auth_tok *auth_tok,
1923 struct ecryptfs_crypt_stat *crypt_stat,
1924 struct ecryptfs_key_record *key_rec, size_t *packet_size)
1926 size_t i;
1927 size_t encrypted_session_key_valid = 0;
1928 size_t packet_size_length;
1929 size_t max_packet_size;
1930 int rc = 0;
1932 (*packet_size) = 0;
1933 ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
1934 ECRYPTFS_SIG_SIZE);
1935 encrypted_session_key_valid = 0;
1936 for (i = 0; i < crypt_stat->key_size; i++)
1937 encrypted_session_key_valid |=
1938 auth_tok->session_key.encrypted_key[i];
1939 if (encrypted_session_key_valid) {
1940 memcpy(key_rec->enc_key,
1941 auth_tok->session_key.encrypted_key,
1942 auth_tok->session_key.encrypted_key_size);
1943 goto encrypted_session_key_set;
1945 if (auth_tok->session_key.encrypted_key_size == 0)
1946 auth_tok->session_key.encrypted_key_size =
1947 auth_tok->token.private_key.key_size;
1948 rc = pki_encrypt_session_key(auth_tok, crypt_stat, key_rec);
1949 if (rc) {
1950 printk(KERN_ERR "Failed to encrypt session key via a key "
1951 "module; rc = [%d]\n", rc);
1952 goto out;
1954 if (ecryptfs_verbosity > 0) {
1955 ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
1956 ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
1958 encrypted_session_key_set:
1959 /* This format is inspired by OpenPGP; see RFC 2440
1960 * packet tag 1 */
1961 max_packet_size = (1 /* Tag 1 identifier */
1962 + 3 /* Max Tag 1 packet size */
1963 + 1 /* Version */
1964 + ECRYPTFS_SIG_SIZE /* Key identifier */
1965 + 1 /* Cipher identifier */
1966 + key_rec->enc_key_size); /* Encrypted key size */
1967 if (max_packet_size > (*remaining_bytes)) {
1968 printk(KERN_ERR "Packet length larger than maximum allowable; "
1969 "need up to [%td] bytes, but there are only [%td] "
1970 "available\n", max_packet_size, (*remaining_bytes));
1971 rc = -EINVAL;
1972 goto out;
1974 dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
1975 rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
1976 (max_packet_size - 4),
1977 &packet_size_length);
1978 if (rc) {
1979 ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
1980 "header; cannot generate packet length\n");
1981 goto out;
1983 (*packet_size) += packet_size_length;
1984 dest[(*packet_size)++] = 0x03; /* version 3 */
1985 memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
1986 (*packet_size) += ECRYPTFS_SIG_SIZE;
1987 dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
1988 memcpy(&dest[(*packet_size)], key_rec->enc_key,
1989 key_rec->enc_key_size);
1990 (*packet_size) += key_rec->enc_key_size;
1991 out:
1992 if (rc)
1993 (*packet_size) = 0;
1994 else
1995 (*remaining_bytes) -= (*packet_size);
1996 return rc;
2000 * write_tag_11_packet
2001 * @dest: Target into which Tag 11 packet is to be written
2002 * @remaining_bytes: Maximum packet length
2003 * @contents: Byte array of contents to copy in
2004 * @contents_length: Number of bytes in contents
2005 * @packet_length: Length of the Tag 11 packet written; zero on error
2007 * Returns zero on success; non-zero on error.
2009 static int
2010 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2011 size_t contents_length, size_t *packet_length)
2013 size_t packet_size_length;
2014 size_t max_packet_size;
2015 int rc = 0;
2017 (*packet_length) = 0;
2018 /* This format is inspired by OpenPGP; see RFC 2440
2019 * packet tag 11 */
2020 max_packet_size = (1 /* Tag 11 identifier */
2021 + 3 /* Max Tag 11 packet size */
2022 + 1 /* Binary format specifier */
2023 + 1 /* Filename length */
2024 + 8 /* Filename ("_CONSOLE") */
2025 + 4 /* Modification date */
2026 + contents_length); /* Literal data */
2027 if (max_packet_size > (*remaining_bytes)) {
2028 printk(KERN_ERR "Packet length larger than maximum allowable; "
2029 "need up to [%td] bytes, but there are only [%td] "
2030 "available\n", max_packet_size, (*remaining_bytes));
2031 rc = -EINVAL;
2032 goto out;
2034 dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2035 rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2036 (max_packet_size - 4),
2037 &packet_size_length);
2038 if (rc) {
2039 printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2040 "generate packet length. rc = [%d]\n", rc);
2041 goto out;
2043 (*packet_length) += packet_size_length;
2044 dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2045 dest[(*packet_length)++] = 8;
2046 memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2047 (*packet_length) += 8;
2048 memset(&dest[(*packet_length)], 0x00, 4);
2049 (*packet_length) += 4;
2050 memcpy(&dest[(*packet_length)], contents, contents_length);
2051 (*packet_length) += contents_length;
2052 out:
2053 if (rc)
2054 (*packet_length) = 0;
2055 else
2056 (*remaining_bytes) -= (*packet_length);
2057 return rc;
2061 * write_tag_3_packet
2062 * @dest: Buffer into which to write the packet
2063 * @remaining_bytes: Maximum number of bytes that can be written
2064 * @auth_tok: Authentication token
2065 * @crypt_stat: The cryptographic context
2066 * @key_rec: encrypted key
2067 * @packet_size: This function will write the number of bytes that end
2068 * up constituting the packet; set to zero on error
2070 * Returns zero on success; non-zero on error.
2072 static int
2073 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2074 struct ecryptfs_auth_tok *auth_tok,
2075 struct ecryptfs_crypt_stat *crypt_stat,
2076 struct ecryptfs_key_record *key_rec, size_t *packet_size)
2078 size_t i;
2079 size_t encrypted_session_key_valid = 0;
2080 char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2081 struct scatterlist dst_sg[2];
2082 struct scatterlist src_sg[2];
2083 struct mutex *tfm_mutex = NULL;
2084 u8 cipher_code;
2085 size_t packet_size_length;
2086 size_t max_packet_size;
2087 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2088 crypt_stat->mount_crypt_stat;
2089 struct blkcipher_desc desc = {
2090 .tfm = NULL,
2091 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
2093 int rc = 0;
2095 (*packet_size) = 0;
2096 ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2097 ECRYPTFS_SIG_SIZE);
2098 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2099 crypt_stat->cipher);
2100 if (unlikely(rc)) {
2101 printk(KERN_ERR "Internal error whilst attempting to get "
2102 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2103 crypt_stat->cipher, rc);
2104 goto out;
2106 if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2107 struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
2109 printk(KERN_WARNING "No key size specified at mount; "
2110 "defaulting to [%d]\n", alg->max_keysize);
2111 mount_crypt_stat->global_default_cipher_key_size =
2112 alg->max_keysize;
2114 if (crypt_stat->key_size == 0)
2115 crypt_stat->key_size =
2116 mount_crypt_stat->global_default_cipher_key_size;
2117 if (auth_tok->session_key.encrypted_key_size == 0)
2118 auth_tok->session_key.encrypted_key_size =
2119 crypt_stat->key_size;
2120 if (crypt_stat->key_size == 24
2121 && strcmp("aes", crypt_stat->cipher) == 0) {
2122 memset((crypt_stat->key + 24), 0, 8);
2123 auth_tok->session_key.encrypted_key_size = 32;
2124 } else
2125 auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2126 key_rec->enc_key_size =
2127 auth_tok->session_key.encrypted_key_size;
2128 encrypted_session_key_valid = 0;
2129 for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2130 encrypted_session_key_valid |=
2131 auth_tok->session_key.encrypted_key[i];
2132 if (encrypted_session_key_valid) {
2133 ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2134 "using auth_tok->session_key.encrypted_key, "
2135 "where key_rec->enc_key_size = [%d]\n",
2136 key_rec->enc_key_size);
2137 memcpy(key_rec->enc_key,
2138 auth_tok->session_key.encrypted_key,
2139 key_rec->enc_key_size);
2140 goto encrypted_session_key_set;
2142 if (auth_tok->token.password.flags &
2143 ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2144 ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2145 "session key encryption key of size [%d]\n",
2146 auth_tok->token.password.
2147 session_key_encryption_key_bytes);
2148 memcpy(session_key_encryption_key,
2149 auth_tok->token.password.session_key_encryption_key,
2150 crypt_stat->key_size);
2151 ecryptfs_printk(KERN_DEBUG,
2152 "Cached session key " "encryption key: \n");
2153 if (ecryptfs_verbosity > 0)
2154 ecryptfs_dump_hex(session_key_encryption_key, 16);
2156 if (unlikely(ecryptfs_verbosity > 0)) {
2157 ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2158 ecryptfs_dump_hex(session_key_encryption_key, 16);
2160 rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2161 src_sg, 2);
2162 if (rc < 1 || rc > 2) {
2163 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2164 "for crypt_stat session key; expected rc = 1; "
2165 "got rc = [%d]. key_rec->enc_key_size = [%d]\n",
2166 rc, key_rec->enc_key_size);
2167 rc = -ENOMEM;
2168 goto out;
2170 rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2171 dst_sg, 2);
2172 if (rc < 1 || rc > 2) {
2173 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2174 "for crypt_stat encrypted session key; "
2175 "expected rc = 1; got rc = [%d]. "
2176 "key_rec->enc_key_size = [%d]\n", rc,
2177 key_rec->enc_key_size);
2178 rc = -ENOMEM;
2179 goto out;
2181 mutex_lock(tfm_mutex);
2182 rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
2183 crypt_stat->key_size);
2184 if (rc < 0) {
2185 mutex_unlock(tfm_mutex);
2186 ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2187 "context; rc = [%d]\n", rc);
2188 goto out;
2190 rc = 0;
2191 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes of the key\n",
2192 crypt_stat->key_size);
2193 rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2194 (*key_rec).enc_key_size);
2195 mutex_unlock(tfm_mutex);
2196 if (rc) {
2197 printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2198 goto out;
2200 ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2201 if (ecryptfs_verbosity > 0) {
2202 ecryptfs_printk(KERN_DEBUG, "EFEK of size [%d]:\n",
2203 key_rec->enc_key_size);
2204 ecryptfs_dump_hex(key_rec->enc_key,
2205 key_rec->enc_key_size);
2207 encrypted_session_key_set:
2208 /* This format is inspired by OpenPGP; see RFC 2440
2209 * packet tag 3 */
2210 max_packet_size = (1 /* Tag 3 identifier */
2211 + 3 /* Max Tag 3 packet size */
2212 + 1 /* Version */
2213 + 1 /* Cipher code */
2214 + 1 /* S2K specifier */
2215 + 1 /* Hash identifier */
2216 + ECRYPTFS_SALT_SIZE /* Salt */
2217 + 1 /* Hash iterations */
2218 + key_rec->enc_key_size); /* Encrypted key size */
2219 if (max_packet_size > (*remaining_bytes)) {
2220 printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2221 "there are only [%td] available\n", max_packet_size,
2222 (*remaining_bytes));
2223 rc = -EINVAL;
2224 goto out;
2226 dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2227 /* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2228 * to get the number of octets in the actual Tag 3 packet */
2229 rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2230 (max_packet_size - 4),
2231 &packet_size_length);
2232 if (rc) {
2233 printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2234 "generate packet length. rc = [%d]\n", rc);
2235 goto out;
2237 (*packet_size) += packet_size_length;
2238 dest[(*packet_size)++] = 0x04; /* version 4 */
2239 /* TODO: Break from RFC2440 so that arbitrary ciphers can be
2240 * specified with strings */
2241 cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2242 crypt_stat->key_size);
2243 if (cipher_code == 0) {
2244 ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2245 "cipher [%s]\n", crypt_stat->cipher);
2246 rc = -EINVAL;
2247 goto out;
2249 dest[(*packet_size)++] = cipher_code;
2250 dest[(*packet_size)++] = 0x03; /* S2K */
2251 dest[(*packet_size)++] = 0x01; /* MD5 (TODO: parameterize) */
2252 memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2253 ECRYPTFS_SALT_SIZE);
2254 (*packet_size) += ECRYPTFS_SALT_SIZE; /* salt */
2255 dest[(*packet_size)++] = 0x60; /* hash iterations (65536) */
2256 memcpy(&dest[(*packet_size)], key_rec->enc_key,
2257 key_rec->enc_key_size);
2258 (*packet_size) += key_rec->enc_key_size;
2259 out:
2260 if (rc)
2261 (*packet_size) = 0;
2262 else
2263 (*remaining_bytes) -= (*packet_size);
2264 return rc;
2267 struct kmem_cache *ecryptfs_key_record_cache;
2270 * ecryptfs_generate_key_packet_set
2271 * @dest_base: Virtual address from which to write the key record set
2272 * @crypt_stat: The cryptographic context from which the
2273 * authentication tokens will be retrieved
2274 * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2275 * for the global parameters
2276 * @len: The amount written
2277 * @max: The maximum amount of data allowed to be written
2279 * Generates a key packet set and writes it to the virtual address
2280 * passed in.
2282 * Returns zero on success; non-zero on error.
2285 ecryptfs_generate_key_packet_set(char *dest_base,
2286 struct ecryptfs_crypt_stat *crypt_stat,
2287 struct dentry *ecryptfs_dentry, size_t *len,
2288 size_t max)
2290 struct ecryptfs_auth_tok *auth_tok;
2291 struct ecryptfs_global_auth_tok *global_auth_tok;
2292 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2293 &ecryptfs_superblock_to_private(
2294 ecryptfs_dentry->d_sb)->mount_crypt_stat;
2295 size_t written;
2296 struct ecryptfs_key_record *key_rec;
2297 struct ecryptfs_key_sig *key_sig;
2298 int rc = 0;
2300 (*len) = 0;
2301 mutex_lock(&crypt_stat->keysig_list_mutex);
2302 key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2303 if (!key_rec) {
2304 rc = -ENOMEM;
2305 goto out;
2307 list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2308 crypt_stat_list) {
2309 memset(key_rec, 0, sizeof(*key_rec));
2310 rc = ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
2311 mount_crypt_stat,
2312 key_sig->keysig);
2313 if (rc) {
2314 printk(KERN_ERR "Error attempting to get the global "
2315 "auth_tok; rc = [%d]\n", rc);
2316 goto out_free;
2318 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID) {
2319 printk(KERN_WARNING
2320 "Skipping invalid auth tok with sig = [%s]\n",
2321 global_auth_tok->sig);
2322 continue;
2324 auth_tok = global_auth_tok->global_auth_tok;
2325 if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2326 rc = write_tag_3_packet((dest_base + (*len)),
2327 &max, auth_tok,
2328 crypt_stat, key_rec,
2329 &written);
2330 if (rc) {
2331 ecryptfs_printk(KERN_WARNING, "Error "
2332 "writing tag 3 packet\n");
2333 goto out_free;
2335 (*len) += written;
2336 /* Write auth tok signature packet */
2337 rc = write_tag_11_packet((dest_base + (*len)), &max,
2338 key_rec->sig,
2339 ECRYPTFS_SIG_SIZE, &written);
2340 if (rc) {
2341 ecryptfs_printk(KERN_ERR, "Error writing "
2342 "auth tok signature packet\n");
2343 goto out_free;
2345 (*len) += written;
2346 } else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2347 rc = write_tag_1_packet(dest_base + (*len),
2348 &max, auth_tok,
2349 crypt_stat, key_rec, &written);
2350 if (rc) {
2351 ecryptfs_printk(KERN_WARNING, "Error "
2352 "writing tag 1 packet\n");
2353 goto out_free;
2355 (*len) += written;
2356 } else {
2357 ecryptfs_printk(KERN_WARNING, "Unsupported "
2358 "authentication token type\n");
2359 rc = -EINVAL;
2360 goto out_free;
2363 if (likely(max > 0)) {
2364 dest_base[(*len)] = 0x00;
2365 } else {
2366 ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2367 rc = -EIO;
2369 out_free:
2370 kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2371 out:
2372 if (rc)
2373 (*len) = 0;
2374 mutex_unlock(&crypt_stat->keysig_list_mutex);
2375 return rc;
2378 struct kmem_cache *ecryptfs_key_sig_cache;
2380 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2382 struct ecryptfs_key_sig *new_key_sig;
2384 new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2385 if (!new_key_sig) {
2386 printk(KERN_ERR
2387 "Error allocating from ecryptfs_key_sig_cache\n");
2388 return -ENOMEM;
2390 memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2391 /* Caller must hold keysig_list_mutex */
2392 list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2394 return 0;
2397 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2400 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2401 char *sig, u32 global_auth_tok_flags)
2403 struct ecryptfs_global_auth_tok *new_auth_tok;
2404 int rc = 0;
2406 new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2407 GFP_KERNEL);
2408 if (!new_auth_tok) {
2409 rc = -ENOMEM;
2410 printk(KERN_ERR "Error allocating from "
2411 "ecryptfs_global_auth_tok_cache\n");
2412 goto out;
2414 memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2415 new_auth_tok->flags = global_auth_tok_flags;
2416 new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2417 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2418 list_add(&new_auth_tok->mount_crypt_stat_list,
2419 &mount_crypt_stat->global_auth_tok_list);
2420 mount_crypt_stat->num_global_auth_toks++;
2421 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2422 out:
2423 return rc;