cfq: merge cooperating cfq_queues
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / cfq-iosched.c
blobf0994aedb3907e207cf1bbb5a45a5b12a5fa0d29
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
17 * tunables
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
32 * offset from end of service tree
34 #define CFQ_IDLE_DELAY (HZ / 5)
37 * below this threshold, we consider thinktime immediate
39 #define CFQ_MIN_TT (2)
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
44 #define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
51 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
59 #define sample_valid(samples) ((samples) > 80)
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
67 struct cfq_rb_root {
68 struct rb_root rb;
69 struct rb_node *left;
71 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
74 * Per process-grouping structure
76 struct cfq_queue {
77 /* reference count */
78 atomic_t ref;
79 /* various state flags, see below */
80 unsigned int flags;
81 /* parent cfq_data */
82 struct cfq_data *cfqd;
83 /* service_tree member */
84 struct rb_node rb_node;
85 /* service_tree key */
86 unsigned long rb_key;
87 /* prio tree member */
88 struct rb_node p_node;
89 /* prio tree root we belong to, if any */
90 struct rb_root *p_root;
91 /* sorted list of pending requests */
92 struct rb_root sort_list;
93 /* if fifo isn't expired, next request to serve */
94 struct request *next_rq;
95 /* requests queued in sort_list */
96 int queued[2];
97 /* currently allocated requests */
98 int allocated[2];
99 /* fifo list of requests in sort_list */
100 struct list_head fifo;
102 unsigned long slice_end;
103 long slice_resid;
104 unsigned int slice_dispatch;
106 /* pending metadata requests */
107 int meta_pending;
108 /* number of requests that are on the dispatch list or inside driver */
109 int dispatched;
111 /* io prio of this group */
112 unsigned short ioprio, org_ioprio;
113 unsigned short ioprio_class, org_ioprio_class;
115 unsigned int seek_samples;
116 u64 seek_total;
117 sector_t seek_mean;
118 sector_t last_request_pos;
120 pid_t pid;
122 struct cfq_queue *new_cfqq;
126 * Per block device queue structure
128 struct cfq_data {
129 struct request_queue *queue;
132 * rr list of queues with requests and the count of them
134 struct cfq_rb_root service_tree;
137 * Each priority tree is sorted by next_request position. These
138 * trees are used when determining if two or more queues are
139 * interleaving requests (see cfq_close_cooperator).
141 struct rb_root prio_trees[CFQ_PRIO_LISTS];
143 unsigned int busy_queues;
145 int rq_in_driver[2];
146 int sync_flight;
149 * queue-depth detection
151 int rq_queued;
152 int hw_tag;
153 int hw_tag_samples;
154 int rq_in_driver_peak;
157 * idle window management
159 struct timer_list idle_slice_timer;
160 struct work_struct unplug_work;
162 struct cfq_queue *active_queue;
163 struct cfq_io_context *active_cic;
166 * async queue for each priority case
168 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
169 struct cfq_queue *async_idle_cfqq;
171 sector_t last_position;
174 * tunables, see top of file
176 unsigned int cfq_quantum;
177 unsigned int cfq_fifo_expire[2];
178 unsigned int cfq_back_penalty;
179 unsigned int cfq_back_max;
180 unsigned int cfq_slice[2];
181 unsigned int cfq_slice_async_rq;
182 unsigned int cfq_slice_idle;
183 unsigned int cfq_latency;
185 struct list_head cic_list;
188 * Fallback dummy cfqq for extreme OOM conditions
190 struct cfq_queue oom_cfqq;
192 unsigned long last_end_sync_rq;
195 enum cfqq_state_flags {
196 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
197 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
198 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
199 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
200 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
201 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
202 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
203 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
204 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
205 CFQ_CFQQ_FLAG_coop, /* has done a coop jump of the queue */
208 #define CFQ_CFQQ_FNS(name) \
209 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
211 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
213 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
215 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
217 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
219 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
222 CFQ_CFQQ_FNS(on_rr);
223 CFQ_CFQQ_FNS(wait_request);
224 CFQ_CFQQ_FNS(must_dispatch);
225 CFQ_CFQQ_FNS(must_alloc_slice);
226 CFQ_CFQQ_FNS(fifo_expire);
227 CFQ_CFQQ_FNS(idle_window);
228 CFQ_CFQQ_FNS(prio_changed);
229 CFQ_CFQQ_FNS(slice_new);
230 CFQ_CFQQ_FNS(sync);
231 CFQ_CFQQ_FNS(coop);
232 #undef CFQ_CFQQ_FNS
234 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
235 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
236 #define cfq_log(cfqd, fmt, args...) \
237 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
239 static void cfq_dispatch_insert(struct request_queue *, struct request *);
240 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
241 struct io_context *, gfp_t);
242 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
243 struct io_context *);
245 static inline int rq_in_driver(struct cfq_data *cfqd)
247 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
250 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
251 bool is_sync)
253 return cic->cfqq[is_sync];
256 static inline void cic_set_cfqq(struct cfq_io_context *cic,
257 struct cfq_queue *cfqq, bool is_sync)
259 cic->cfqq[is_sync] = cfqq;
263 * We regard a request as SYNC, if it's either a read or has the SYNC bit
264 * set (in which case it could also be direct WRITE).
266 static inline bool cfq_bio_sync(struct bio *bio)
268 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
272 * scheduler run of queue, if there are requests pending and no one in the
273 * driver that will restart queueing
275 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
277 if (cfqd->busy_queues) {
278 cfq_log(cfqd, "schedule dispatch");
279 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
283 static int cfq_queue_empty(struct request_queue *q)
285 struct cfq_data *cfqd = q->elevator->elevator_data;
287 return !cfqd->busy_queues;
291 * Scale schedule slice based on io priority. Use the sync time slice only
292 * if a queue is marked sync and has sync io queued. A sync queue with async
293 * io only, should not get full sync slice length.
295 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
296 unsigned short prio)
298 const int base_slice = cfqd->cfq_slice[sync];
300 WARN_ON(prio >= IOPRIO_BE_NR);
302 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
305 static inline int
306 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
308 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
311 static inline void
312 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
314 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
315 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
319 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
320 * isn't valid until the first request from the dispatch is activated
321 * and the slice time set.
323 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
325 if (cfq_cfqq_slice_new(cfqq))
326 return 0;
327 if (time_before(jiffies, cfqq->slice_end))
328 return 0;
330 return 1;
334 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
335 * We choose the request that is closest to the head right now. Distance
336 * behind the head is penalized and only allowed to a certain extent.
338 static struct request *
339 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
341 sector_t last, s1, s2, d1 = 0, d2 = 0;
342 unsigned long back_max;
343 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
344 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
345 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
347 if (rq1 == NULL || rq1 == rq2)
348 return rq2;
349 if (rq2 == NULL)
350 return rq1;
352 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
353 return rq1;
354 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
355 return rq2;
356 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
357 return rq1;
358 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
359 return rq2;
361 s1 = blk_rq_pos(rq1);
362 s2 = blk_rq_pos(rq2);
364 last = cfqd->last_position;
367 * by definition, 1KiB is 2 sectors
369 back_max = cfqd->cfq_back_max * 2;
372 * Strict one way elevator _except_ in the case where we allow
373 * short backward seeks which are biased as twice the cost of a
374 * similar forward seek.
376 if (s1 >= last)
377 d1 = s1 - last;
378 else if (s1 + back_max >= last)
379 d1 = (last - s1) * cfqd->cfq_back_penalty;
380 else
381 wrap |= CFQ_RQ1_WRAP;
383 if (s2 >= last)
384 d2 = s2 - last;
385 else if (s2 + back_max >= last)
386 d2 = (last - s2) * cfqd->cfq_back_penalty;
387 else
388 wrap |= CFQ_RQ2_WRAP;
390 /* Found required data */
393 * By doing switch() on the bit mask "wrap" we avoid having to
394 * check two variables for all permutations: --> faster!
396 switch (wrap) {
397 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
398 if (d1 < d2)
399 return rq1;
400 else if (d2 < d1)
401 return rq2;
402 else {
403 if (s1 >= s2)
404 return rq1;
405 else
406 return rq2;
409 case CFQ_RQ2_WRAP:
410 return rq1;
411 case CFQ_RQ1_WRAP:
412 return rq2;
413 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
414 default:
416 * Since both rqs are wrapped,
417 * start with the one that's further behind head
418 * (--> only *one* back seek required),
419 * since back seek takes more time than forward.
421 if (s1 <= s2)
422 return rq1;
423 else
424 return rq2;
429 * The below is leftmost cache rbtree addon
431 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
433 if (!root->left)
434 root->left = rb_first(&root->rb);
436 if (root->left)
437 return rb_entry(root->left, struct cfq_queue, rb_node);
439 return NULL;
442 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
444 rb_erase(n, root);
445 RB_CLEAR_NODE(n);
448 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
450 if (root->left == n)
451 root->left = NULL;
452 rb_erase_init(n, &root->rb);
456 * would be nice to take fifo expire time into account as well
458 static struct request *
459 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
460 struct request *last)
462 struct rb_node *rbnext = rb_next(&last->rb_node);
463 struct rb_node *rbprev = rb_prev(&last->rb_node);
464 struct request *next = NULL, *prev = NULL;
466 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
468 if (rbprev)
469 prev = rb_entry_rq(rbprev);
471 if (rbnext)
472 next = rb_entry_rq(rbnext);
473 else {
474 rbnext = rb_first(&cfqq->sort_list);
475 if (rbnext && rbnext != &last->rb_node)
476 next = rb_entry_rq(rbnext);
479 return cfq_choose_req(cfqd, next, prev);
482 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
483 struct cfq_queue *cfqq)
486 * just an approximation, should be ok.
488 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
489 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
493 * The cfqd->service_tree holds all pending cfq_queue's that have
494 * requests waiting to be processed. It is sorted in the order that
495 * we will service the queues.
497 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
498 bool add_front)
500 struct rb_node **p, *parent;
501 struct cfq_queue *__cfqq;
502 unsigned long rb_key;
503 int left;
505 if (cfq_class_idle(cfqq)) {
506 rb_key = CFQ_IDLE_DELAY;
507 parent = rb_last(&cfqd->service_tree.rb);
508 if (parent && parent != &cfqq->rb_node) {
509 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
510 rb_key += __cfqq->rb_key;
511 } else
512 rb_key += jiffies;
513 } else if (!add_front) {
515 * Get our rb key offset. Subtract any residual slice
516 * value carried from last service. A negative resid
517 * count indicates slice overrun, and this should position
518 * the next service time further away in the tree.
520 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
521 rb_key -= cfqq->slice_resid;
522 cfqq->slice_resid = 0;
523 } else {
524 rb_key = -HZ;
525 __cfqq = cfq_rb_first(&cfqd->service_tree);
526 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
529 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
531 * same position, nothing more to do
533 if (rb_key == cfqq->rb_key)
534 return;
536 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
539 left = 1;
540 parent = NULL;
541 p = &cfqd->service_tree.rb.rb_node;
542 while (*p) {
543 struct rb_node **n;
545 parent = *p;
546 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
549 * sort RT queues first, we always want to give
550 * preference to them. IDLE queues goes to the back.
551 * after that, sort on the next service time.
553 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
554 n = &(*p)->rb_left;
555 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
556 n = &(*p)->rb_right;
557 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
558 n = &(*p)->rb_left;
559 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
560 n = &(*p)->rb_right;
561 else if (time_before(rb_key, __cfqq->rb_key))
562 n = &(*p)->rb_left;
563 else
564 n = &(*p)->rb_right;
566 if (n == &(*p)->rb_right)
567 left = 0;
569 p = n;
572 if (left)
573 cfqd->service_tree.left = &cfqq->rb_node;
575 cfqq->rb_key = rb_key;
576 rb_link_node(&cfqq->rb_node, parent, p);
577 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
580 static struct cfq_queue *
581 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
582 sector_t sector, struct rb_node **ret_parent,
583 struct rb_node ***rb_link)
585 struct rb_node **p, *parent;
586 struct cfq_queue *cfqq = NULL;
588 parent = NULL;
589 p = &root->rb_node;
590 while (*p) {
591 struct rb_node **n;
593 parent = *p;
594 cfqq = rb_entry(parent, struct cfq_queue, p_node);
597 * Sort strictly based on sector. Smallest to the left,
598 * largest to the right.
600 if (sector > blk_rq_pos(cfqq->next_rq))
601 n = &(*p)->rb_right;
602 else if (sector < blk_rq_pos(cfqq->next_rq))
603 n = &(*p)->rb_left;
604 else
605 break;
606 p = n;
607 cfqq = NULL;
610 *ret_parent = parent;
611 if (rb_link)
612 *rb_link = p;
613 return cfqq;
616 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
618 struct rb_node **p, *parent;
619 struct cfq_queue *__cfqq;
621 if (cfqq->p_root) {
622 rb_erase(&cfqq->p_node, cfqq->p_root);
623 cfqq->p_root = NULL;
626 if (cfq_class_idle(cfqq))
627 return;
628 if (!cfqq->next_rq)
629 return;
631 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
632 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
633 blk_rq_pos(cfqq->next_rq), &parent, &p);
634 if (!__cfqq) {
635 rb_link_node(&cfqq->p_node, parent, p);
636 rb_insert_color(&cfqq->p_node, cfqq->p_root);
637 } else
638 cfqq->p_root = NULL;
642 * Update cfqq's position in the service tree.
644 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
647 * Resorting requires the cfqq to be on the RR list already.
649 if (cfq_cfqq_on_rr(cfqq)) {
650 cfq_service_tree_add(cfqd, cfqq, 0);
651 cfq_prio_tree_add(cfqd, cfqq);
656 * add to busy list of queues for service, trying to be fair in ordering
657 * the pending list according to last request service
659 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
661 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
662 BUG_ON(cfq_cfqq_on_rr(cfqq));
663 cfq_mark_cfqq_on_rr(cfqq);
664 cfqd->busy_queues++;
666 cfq_resort_rr_list(cfqd, cfqq);
670 * Called when the cfqq no longer has requests pending, remove it from
671 * the service tree.
673 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
675 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
676 BUG_ON(!cfq_cfqq_on_rr(cfqq));
677 cfq_clear_cfqq_on_rr(cfqq);
679 if (!RB_EMPTY_NODE(&cfqq->rb_node))
680 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
681 if (cfqq->p_root) {
682 rb_erase(&cfqq->p_node, cfqq->p_root);
683 cfqq->p_root = NULL;
686 BUG_ON(!cfqd->busy_queues);
687 cfqd->busy_queues--;
691 * rb tree support functions
693 static void cfq_del_rq_rb(struct request *rq)
695 struct cfq_queue *cfqq = RQ_CFQQ(rq);
696 struct cfq_data *cfqd = cfqq->cfqd;
697 const int sync = rq_is_sync(rq);
699 BUG_ON(!cfqq->queued[sync]);
700 cfqq->queued[sync]--;
702 elv_rb_del(&cfqq->sort_list, rq);
704 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
705 cfq_del_cfqq_rr(cfqd, cfqq);
708 static void cfq_add_rq_rb(struct request *rq)
710 struct cfq_queue *cfqq = RQ_CFQQ(rq);
711 struct cfq_data *cfqd = cfqq->cfqd;
712 struct request *__alias, *prev;
714 cfqq->queued[rq_is_sync(rq)]++;
717 * looks a little odd, but the first insert might return an alias.
718 * if that happens, put the alias on the dispatch list
720 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
721 cfq_dispatch_insert(cfqd->queue, __alias);
723 if (!cfq_cfqq_on_rr(cfqq))
724 cfq_add_cfqq_rr(cfqd, cfqq);
727 * check if this request is a better next-serve candidate
729 prev = cfqq->next_rq;
730 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
733 * adjust priority tree position, if ->next_rq changes
735 if (prev != cfqq->next_rq)
736 cfq_prio_tree_add(cfqd, cfqq);
738 BUG_ON(!cfqq->next_rq);
741 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
743 elv_rb_del(&cfqq->sort_list, rq);
744 cfqq->queued[rq_is_sync(rq)]--;
745 cfq_add_rq_rb(rq);
748 static struct request *
749 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
751 struct task_struct *tsk = current;
752 struct cfq_io_context *cic;
753 struct cfq_queue *cfqq;
755 cic = cfq_cic_lookup(cfqd, tsk->io_context);
756 if (!cic)
757 return NULL;
759 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
760 if (cfqq) {
761 sector_t sector = bio->bi_sector + bio_sectors(bio);
763 return elv_rb_find(&cfqq->sort_list, sector);
766 return NULL;
769 static void cfq_activate_request(struct request_queue *q, struct request *rq)
771 struct cfq_data *cfqd = q->elevator->elevator_data;
773 cfqd->rq_in_driver[rq_is_sync(rq)]++;
774 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
775 rq_in_driver(cfqd));
777 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
780 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
782 struct cfq_data *cfqd = q->elevator->elevator_data;
783 const int sync = rq_is_sync(rq);
785 WARN_ON(!cfqd->rq_in_driver[sync]);
786 cfqd->rq_in_driver[sync]--;
787 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
788 rq_in_driver(cfqd));
791 static void cfq_remove_request(struct request *rq)
793 struct cfq_queue *cfqq = RQ_CFQQ(rq);
795 if (cfqq->next_rq == rq)
796 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
798 list_del_init(&rq->queuelist);
799 cfq_del_rq_rb(rq);
801 cfqq->cfqd->rq_queued--;
802 if (rq_is_meta(rq)) {
803 WARN_ON(!cfqq->meta_pending);
804 cfqq->meta_pending--;
808 static int cfq_merge(struct request_queue *q, struct request **req,
809 struct bio *bio)
811 struct cfq_data *cfqd = q->elevator->elevator_data;
812 struct request *__rq;
814 __rq = cfq_find_rq_fmerge(cfqd, bio);
815 if (__rq && elv_rq_merge_ok(__rq, bio)) {
816 *req = __rq;
817 return ELEVATOR_FRONT_MERGE;
820 return ELEVATOR_NO_MERGE;
823 static void cfq_merged_request(struct request_queue *q, struct request *req,
824 int type)
826 if (type == ELEVATOR_FRONT_MERGE) {
827 struct cfq_queue *cfqq = RQ_CFQQ(req);
829 cfq_reposition_rq_rb(cfqq, req);
833 static void
834 cfq_merged_requests(struct request_queue *q, struct request *rq,
835 struct request *next)
838 * reposition in fifo if next is older than rq
840 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
841 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
842 list_move(&rq->queuelist, &next->queuelist);
843 rq_set_fifo_time(rq, rq_fifo_time(next));
846 cfq_remove_request(next);
849 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
850 struct bio *bio)
852 struct cfq_data *cfqd = q->elevator->elevator_data;
853 struct cfq_io_context *cic;
854 struct cfq_queue *cfqq;
857 * Disallow merge of a sync bio into an async request.
859 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
860 return false;
863 * Lookup the cfqq that this bio will be queued with. Allow
864 * merge only if rq is queued there.
866 cic = cfq_cic_lookup(cfqd, current->io_context);
867 if (!cic)
868 return false;
870 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
871 return cfqq == RQ_CFQQ(rq);
874 static void __cfq_set_active_queue(struct cfq_data *cfqd,
875 struct cfq_queue *cfqq)
877 if (cfqq) {
878 cfq_log_cfqq(cfqd, cfqq, "set_active");
879 cfqq->slice_end = 0;
880 cfqq->slice_dispatch = 0;
882 cfq_clear_cfqq_wait_request(cfqq);
883 cfq_clear_cfqq_must_dispatch(cfqq);
884 cfq_clear_cfqq_must_alloc_slice(cfqq);
885 cfq_clear_cfqq_fifo_expire(cfqq);
886 cfq_mark_cfqq_slice_new(cfqq);
888 del_timer(&cfqd->idle_slice_timer);
891 cfqd->active_queue = cfqq;
895 * current cfqq expired its slice (or was too idle), select new one
897 static void
898 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
899 bool timed_out)
901 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
903 if (cfq_cfqq_wait_request(cfqq))
904 del_timer(&cfqd->idle_slice_timer);
906 cfq_clear_cfqq_wait_request(cfqq);
909 * store what was left of this slice, if the queue idled/timed out
911 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
912 cfqq->slice_resid = cfqq->slice_end - jiffies;
913 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
916 cfq_resort_rr_list(cfqd, cfqq);
918 if (cfqq == cfqd->active_queue)
919 cfqd->active_queue = NULL;
921 if (cfqd->active_cic) {
922 put_io_context(cfqd->active_cic->ioc);
923 cfqd->active_cic = NULL;
927 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
929 struct cfq_queue *cfqq = cfqd->active_queue;
931 if (cfqq)
932 __cfq_slice_expired(cfqd, cfqq, timed_out);
936 * Get next queue for service. Unless we have a queue preemption,
937 * we'll simply select the first cfqq in the service tree.
939 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
941 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
942 return NULL;
944 return cfq_rb_first(&cfqd->service_tree);
948 * Get and set a new active queue for service.
950 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
951 struct cfq_queue *cfqq)
953 if (!cfqq) {
954 cfqq = cfq_get_next_queue(cfqd);
955 if (cfqq)
956 cfq_clear_cfqq_coop(cfqq);
959 __cfq_set_active_queue(cfqd, cfqq);
960 return cfqq;
963 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
964 struct request *rq)
966 if (blk_rq_pos(rq) >= cfqd->last_position)
967 return blk_rq_pos(rq) - cfqd->last_position;
968 else
969 return cfqd->last_position - blk_rq_pos(rq);
972 #define CFQQ_SEEK_THR 8 * 1024
973 #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
975 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
976 struct request *rq)
978 sector_t sdist = cfqq->seek_mean;
980 if (!sample_valid(cfqq->seek_samples))
981 sdist = CFQQ_SEEK_THR;
983 return cfq_dist_from_last(cfqd, rq) <= sdist;
986 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
987 struct cfq_queue *cur_cfqq)
989 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
990 struct rb_node *parent, *node;
991 struct cfq_queue *__cfqq;
992 sector_t sector = cfqd->last_position;
994 if (RB_EMPTY_ROOT(root))
995 return NULL;
998 * First, if we find a request starting at the end of the last
999 * request, choose it.
1001 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1002 if (__cfqq)
1003 return __cfqq;
1006 * If the exact sector wasn't found, the parent of the NULL leaf
1007 * will contain the closest sector.
1009 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1010 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1011 return __cfqq;
1013 if (blk_rq_pos(__cfqq->next_rq) < sector)
1014 node = rb_next(&__cfqq->p_node);
1015 else
1016 node = rb_prev(&__cfqq->p_node);
1017 if (!node)
1018 return NULL;
1020 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1021 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1022 return __cfqq;
1024 return NULL;
1028 * cfqd - obvious
1029 * cur_cfqq - passed in so that we don't decide that the current queue is
1030 * closely cooperating with itself.
1032 * So, basically we're assuming that that cur_cfqq has dispatched at least
1033 * one request, and that cfqd->last_position reflects a position on the disk
1034 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1035 * assumption.
1037 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1038 struct cfq_queue *cur_cfqq,
1039 bool probe)
1041 struct cfq_queue *cfqq;
1044 * We should notice if some of the queues are cooperating, eg
1045 * working closely on the same area of the disk. In that case,
1046 * we can group them together and don't waste time idling.
1048 cfqq = cfqq_close(cfqd, cur_cfqq);
1049 if (!cfqq)
1050 return NULL;
1053 * It only makes sense to merge sync queues.
1055 if (!cfq_cfqq_sync(cfqq))
1056 return NULL;
1058 if (cfq_cfqq_coop(cfqq))
1059 return NULL;
1061 if (!probe)
1062 cfq_mark_cfqq_coop(cfqq);
1063 return cfqq;
1066 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1068 struct cfq_queue *cfqq = cfqd->active_queue;
1069 struct cfq_io_context *cic;
1070 unsigned long sl;
1073 * SSD device without seek penalty, disable idling. But only do so
1074 * for devices that support queuing, otherwise we still have a problem
1075 * with sync vs async workloads.
1077 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1078 return;
1080 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1081 WARN_ON(cfq_cfqq_slice_new(cfqq));
1084 * idle is disabled, either manually or by past process history
1086 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1087 return;
1090 * still requests with the driver, don't idle
1092 if (rq_in_driver(cfqd))
1093 return;
1096 * task has exited, don't wait
1098 cic = cfqd->active_cic;
1099 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1100 return;
1103 * If our average think time is larger than the remaining time
1104 * slice, then don't idle. This avoids overrunning the allotted
1105 * time slice.
1107 if (sample_valid(cic->ttime_samples) &&
1108 (cfqq->slice_end - jiffies < cic->ttime_mean))
1109 return;
1111 cfq_mark_cfqq_wait_request(cfqq);
1114 * we don't want to idle for seeks, but we do want to allow
1115 * fair distribution of slice time for a process doing back-to-back
1116 * seeks. so allow a little bit of time for him to submit a new rq
1118 sl = cfqd->cfq_slice_idle;
1119 if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
1120 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1122 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1123 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1127 * Move request from internal lists to the request queue dispatch list.
1129 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1131 struct cfq_data *cfqd = q->elevator->elevator_data;
1132 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1134 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1136 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1137 cfq_remove_request(rq);
1138 cfqq->dispatched++;
1139 elv_dispatch_sort(q, rq);
1141 if (cfq_cfqq_sync(cfqq))
1142 cfqd->sync_flight++;
1146 * return expired entry, or NULL to just start from scratch in rbtree
1148 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1150 struct request *rq = NULL;
1152 if (cfq_cfqq_fifo_expire(cfqq))
1153 return NULL;
1155 cfq_mark_cfqq_fifo_expire(cfqq);
1157 if (list_empty(&cfqq->fifo))
1158 return NULL;
1160 rq = rq_entry_fifo(cfqq->fifo.next);
1161 if (time_before(jiffies, rq_fifo_time(rq)))
1162 rq = NULL;
1164 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1165 return rq;
1168 static inline int
1169 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1171 const int base_rq = cfqd->cfq_slice_async_rq;
1173 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1175 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1179 * Must be called with the queue_lock held.
1181 static int cfqq_process_refs(struct cfq_queue *cfqq)
1183 int process_refs, io_refs;
1185 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1186 process_refs = atomic_read(&cfqq->ref) - io_refs;
1187 BUG_ON(process_refs < 0);
1188 return process_refs;
1191 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1193 int process_refs;
1194 struct cfq_queue *__cfqq;
1196 /* Avoid a circular list and skip interim queue merges */
1197 while ((__cfqq = new_cfqq->new_cfqq)) {
1198 if (__cfqq == cfqq)
1199 return;
1200 new_cfqq = __cfqq;
1203 process_refs = cfqq_process_refs(cfqq);
1205 * If the process for the cfqq has gone away, there is no
1206 * sense in merging the queues.
1208 if (process_refs == 0)
1209 return;
1211 cfqq->new_cfqq = new_cfqq;
1212 atomic_add(process_refs, &new_cfqq->ref);
1216 * Select a queue for service. If we have a current active queue,
1217 * check whether to continue servicing it, or retrieve and set a new one.
1219 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1221 struct cfq_queue *cfqq, *new_cfqq = NULL;
1223 cfqq = cfqd->active_queue;
1224 if (!cfqq)
1225 goto new_queue;
1228 * The active queue has run out of time, expire it and select new.
1230 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1231 goto expire;
1234 * The active queue has requests and isn't expired, allow it to
1235 * dispatch.
1237 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1238 goto keep_queue;
1241 * If another queue has a request waiting within our mean seek
1242 * distance, let it run. The expire code will check for close
1243 * cooperators and put the close queue at the front of the service
1244 * tree. If possible, merge the expiring queue with the new cfqq.
1246 new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1247 if (new_cfqq) {
1248 if (!cfqq->new_cfqq)
1249 cfq_setup_merge(cfqq, new_cfqq);
1250 goto expire;
1254 * No requests pending. If the active queue still has requests in
1255 * flight or is idling for a new request, allow either of these
1256 * conditions to happen (or time out) before selecting a new queue.
1258 if (timer_pending(&cfqd->idle_slice_timer) ||
1259 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1260 cfqq = NULL;
1261 goto keep_queue;
1264 expire:
1265 cfq_slice_expired(cfqd, 0);
1266 new_queue:
1267 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1268 keep_queue:
1269 return cfqq;
1272 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1274 int dispatched = 0;
1276 while (cfqq->next_rq) {
1277 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1278 dispatched++;
1281 BUG_ON(!list_empty(&cfqq->fifo));
1282 return dispatched;
1286 * Drain our current requests. Used for barriers and when switching
1287 * io schedulers on-the-fly.
1289 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1291 struct cfq_queue *cfqq;
1292 int dispatched = 0;
1294 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1295 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1297 cfq_slice_expired(cfqd, 0);
1299 BUG_ON(cfqd->busy_queues);
1301 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1302 return dispatched;
1305 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1307 unsigned int max_dispatch;
1310 * Drain async requests before we start sync IO
1312 if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1313 return false;
1316 * If this is an async queue and we have sync IO in flight, let it wait
1318 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1319 return false;
1321 max_dispatch = cfqd->cfq_quantum;
1322 if (cfq_class_idle(cfqq))
1323 max_dispatch = 1;
1326 * Does this cfqq already have too much IO in flight?
1328 if (cfqq->dispatched >= max_dispatch) {
1330 * idle queue must always only have a single IO in flight
1332 if (cfq_class_idle(cfqq))
1333 return false;
1336 * We have other queues, don't allow more IO from this one
1338 if (cfqd->busy_queues > 1)
1339 return false;
1342 * Sole queue user, allow bigger slice
1344 max_dispatch *= 4;
1348 * Async queues must wait a bit before being allowed dispatch.
1349 * We also ramp up the dispatch depth gradually for async IO,
1350 * based on the last sync IO we serviced
1352 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1353 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1354 unsigned int depth;
1356 depth = last_sync / cfqd->cfq_slice[1];
1357 if (!depth && !cfqq->dispatched)
1358 depth = 1;
1359 if (depth < max_dispatch)
1360 max_dispatch = depth;
1364 * If we're below the current max, allow a dispatch
1366 return cfqq->dispatched < max_dispatch;
1370 * Dispatch a request from cfqq, moving them to the request queue
1371 * dispatch list.
1373 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1375 struct request *rq;
1377 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1379 if (!cfq_may_dispatch(cfqd, cfqq))
1380 return false;
1383 * follow expired path, else get first next available
1385 rq = cfq_check_fifo(cfqq);
1386 if (!rq)
1387 rq = cfqq->next_rq;
1390 * insert request into driver dispatch list
1392 cfq_dispatch_insert(cfqd->queue, rq);
1394 if (!cfqd->active_cic) {
1395 struct cfq_io_context *cic = RQ_CIC(rq);
1397 atomic_long_inc(&cic->ioc->refcount);
1398 cfqd->active_cic = cic;
1401 return true;
1405 * Find the cfqq that we need to service and move a request from that to the
1406 * dispatch list
1408 static int cfq_dispatch_requests(struct request_queue *q, int force)
1410 struct cfq_data *cfqd = q->elevator->elevator_data;
1411 struct cfq_queue *cfqq;
1413 if (!cfqd->busy_queues)
1414 return 0;
1416 if (unlikely(force))
1417 return cfq_forced_dispatch(cfqd);
1419 cfqq = cfq_select_queue(cfqd);
1420 if (!cfqq)
1421 return 0;
1424 * Dispatch a request from this cfqq, if it is allowed
1426 if (!cfq_dispatch_request(cfqd, cfqq))
1427 return 0;
1429 cfqq->slice_dispatch++;
1430 cfq_clear_cfqq_must_dispatch(cfqq);
1433 * expire an async queue immediately if it has used up its slice. idle
1434 * queue always expire after 1 dispatch round.
1436 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1437 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1438 cfq_class_idle(cfqq))) {
1439 cfqq->slice_end = jiffies + 1;
1440 cfq_slice_expired(cfqd, 0);
1443 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1444 return 1;
1448 * task holds one reference to the queue, dropped when task exits. each rq
1449 * in-flight on this queue also holds a reference, dropped when rq is freed.
1451 * queue lock must be held here.
1453 static void cfq_put_queue(struct cfq_queue *cfqq)
1455 struct cfq_data *cfqd = cfqq->cfqd;
1457 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1459 if (!atomic_dec_and_test(&cfqq->ref))
1460 return;
1462 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1463 BUG_ON(rb_first(&cfqq->sort_list));
1464 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1465 BUG_ON(cfq_cfqq_on_rr(cfqq));
1467 if (unlikely(cfqd->active_queue == cfqq)) {
1468 __cfq_slice_expired(cfqd, cfqq, 0);
1469 cfq_schedule_dispatch(cfqd);
1472 kmem_cache_free(cfq_pool, cfqq);
1476 * Must always be called with the rcu_read_lock() held
1478 static void
1479 __call_for_each_cic(struct io_context *ioc,
1480 void (*func)(struct io_context *, struct cfq_io_context *))
1482 struct cfq_io_context *cic;
1483 struct hlist_node *n;
1485 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1486 func(ioc, cic);
1490 * Call func for each cic attached to this ioc.
1492 static void
1493 call_for_each_cic(struct io_context *ioc,
1494 void (*func)(struct io_context *, struct cfq_io_context *))
1496 rcu_read_lock();
1497 __call_for_each_cic(ioc, func);
1498 rcu_read_unlock();
1501 static void cfq_cic_free_rcu(struct rcu_head *head)
1503 struct cfq_io_context *cic;
1505 cic = container_of(head, struct cfq_io_context, rcu_head);
1507 kmem_cache_free(cfq_ioc_pool, cic);
1508 elv_ioc_count_dec(cfq_ioc_count);
1510 if (ioc_gone) {
1512 * CFQ scheduler is exiting, grab exit lock and check
1513 * the pending io context count. If it hits zero,
1514 * complete ioc_gone and set it back to NULL
1516 spin_lock(&ioc_gone_lock);
1517 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1518 complete(ioc_gone);
1519 ioc_gone = NULL;
1521 spin_unlock(&ioc_gone_lock);
1525 static void cfq_cic_free(struct cfq_io_context *cic)
1527 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1530 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1532 unsigned long flags;
1534 BUG_ON(!cic->dead_key);
1536 spin_lock_irqsave(&ioc->lock, flags);
1537 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1538 hlist_del_rcu(&cic->cic_list);
1539 spin_unlock_irqrestore(&ioc->lock, flags);
1541 cfq_cic_free(cic);
1545 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1546 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1547 * and ->trim() which is called with the task lock held
1549 static void cfq_free_io_context(struct io_context *ioc)
1552 * ioc->refcount is zero here, or we are called from elv_unregister(),
1553 * so no more cic's are allowed to be linked into this ioc. So it
1554 * should be ok to iterate over the known list, we will see all cic's
1555 * since no new ones are added.
1557 __call_for_each_cic(ioc, cic_free_func);
1560 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1562 struct cfq_queue *__cfqq, *next;
1564 if (unlikely(cfqq == cfqd->active_queue)) {
1565 __cfq_slice_expired(cfqd, cfqq, 0);
1566 cfq_schedule_dispatch(cfqd);
1570 * If this queue was scheduled to merge with another queue, be
1571 * sure to drop the reference taken on that queue (and others in
1572 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
1574 __cfqq = cfqq->new_cfqq;
1575 while (__cfqq) {
1576 if (__cfqq == cfqq) {
1577 WARN(1, "cfqq->new_cfqq loop detected\n");
1578 break;
1580 next = __cfqq->new_cfqq;
1581 cfq_put_queue(__cfqq);
1582 __cfqq = next;
1585 cfq_put_queue(cfqq);
1588 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1589 struct cfq_io_context *cic)
1591 struct io_context *ioc = cic->ioc;
1593 list_del_init(&cic->queue_list);
1596 * Make sure key == NULL is seen for dead queues
1598 smp_wmb();
1599 cic->dead_key = (unsigned long) cic->key;
1600 cic->key = NULL;
1602 if (ioc->ioc_data == cic)
1603 rcu_assign_pointer(ioc->ioc_data, NULL);
1605 if (cic->cfqq[BLK_RW_ASYNC]) {
1606 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1607 cic->cfqq[BLK_RW_ASYNC] = NULL;
1610 if (cic->cfqq[BLK_RW_SYNC]) {
1611 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1612 cic->cfqq[BLK_RW_SYNC] = NULL;
1616 static void cfq_exit_single_io_context(struct io_context *ioc,
1617 struct cfq_io_context *cic)
1619 struct cfq_data *cfqd = cic->key;
1621 if (cfqd) {
1622 struct request_queue *q = cfqd->queue;
1623 unsigned long flags;
1625 spin_lock_irqsave(q->queue_lock, flags);
1628 * Ensure we get a fresh copy of the ->key to prevent
1629 * race between exiting task and queue
1631 smp_read_barrier_depends();
1632 if (cic->key)
1633 __cfq_exit_single_io_context(cfqd, cic);
1635 spin_unlock_irqrestore(q->queue_lock, flags);
1640 * The process that ioc belongs to has exited, we need to clean up
1641 * and put the internal structures we have that belongs to that process.
1643 static void cfq_exit_io_context(struct io_context *ioc)
1645 call_for_each_cic(ioc, cfq_exit_single_io_context);
1648 static struct cfq_io_context *
1649 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1651 struct cfq_io_context *cic;
1653 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1654 cfqd->queue->node);
1655 if (cic) {
1656 cic->last_end_request = jiffies;
1657 INIT_LIST_HEAD(&cic->queue_list);
1658 INIT_HLIST_NODE(&cic->cic_list);
1659 cic->dtor = cfq_free_io_context;
1660 cic->exit = cfq_exit_io_context;
1661 elv_ioc_count_inc(cfq_ioc_count);
1664 return cic;
1667 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1669 struct task_struct *tsk = current;
1670 int ioprio_class;
1672 if (!cfq_cfqq_prio_changed(cfqq))
1673 return;
1675 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1676 switch (ioprio_class) {
1677 default:
1678 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1679 case IOPRIO_CLASS_NONE:
1681 * no prio set, inherit CPU scheduling settings
1683 cfqq->ioprio = task_nice_ioprio(tsk);
1684 cfqq->ioprio_class = task_nice_ioclass(tsk);
1685 break;
1686 case IOPRIO_CLASS_RT:
1687 cfqq->ioprio = task_ioprio(ioc);
1688 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1689 break;
1690 case IOPRIO_CLASS_BE:
1691 cfqq->ioprio = task_ioprio(ioc);
1692 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1693 break;
1694 case IOPRIO_CLASS_IDLE:
1695 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1696 cfqq->ioprio = 7;
1697 cfq_clear_cfqq_idle_window(cfqq);
1698 break;
1702 * keep track of original prio settings in case we have to temporarily
1703 * elevate the priority of this queue
1705 cfqq->org_ioprio = cfqq->ioprio;
1706 cfqq->org_ioprio_class = cfqq->ioprio_class;
1707 cfq_clear_cfqq_prio_changed(cfqq);
1710 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1712 struct cfq_data *cfqd = cic->key;
1713 struct cfq_queue *cfqq;
1714 unsigned long flags;
1716 if (unlikely(!cfqd))
1717 return;
1719 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1721 cfqq = cic->cfqq[BLK_RW_ASYNC];
1722 if (cfqq) {
1723 struct cfq_queue *new_cfqq;
1724 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1725 GFP_ATOMIC);
1726 if (new_cfqq) {
1727 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1728 cfq_put_queue(cfqq);
1732 cfqq = cic->cfqq[BLK_RW_SYNC];
1733 if (cfqq)
1734 cfq_mark_cfqq_prio_changed(cfqq);
1736 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1739 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1741 call_for_each_cic(ioc, changed_ioprio);
1742 ioc->ioprio_changed = 0;
1745 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1746 pid_t pid, bool is_sync)
1748 RB_CLEAR_NODE(&cfqq->rb_node);
1749 RB_CLEAR_NODE(&cfqq->p_node);
1750 INIT_LIST_HEAD(&cfqq->fifo);
1752 atomic_set(&cfqq->ref, 0);
1753 cfqq->cfqd = cfqd;
1755 cfq_mark_cfqq_prio_changed(cfqq);
1757 if (is_sync) {
1758 if (!cfq_class_idle(cfqq))
1759 cfq_mark_cfqq_idle_window(cfqq);
1760 cfq_mark_cfqq_sync(cfqq);
1762 cfqq->pid = pid;
1765 static struct cfq_queue *
1766 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
1767 struct io_context *ioc, gfp_t gfp_mask)
1769 struct cfq_queue *cfqq, *new_cfqq = NULL;
1770 struct cfq_io_context *cic;
1772 retry:
1773 cic = cfq_cic_lookup(cfqd, ioc);
1774 /* cic always exists here */
1775 cfqq = cic_to_cfqq(cic, is_sync);
1778 * Always try a new alloc if we fell back to the OOM cfqq
1779 * originally, since it should just be a temporary situation.
1781 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1782 cfqq = NULL;
1783 if (new_cfqq) {
1784 cfqq = new_cfqq;
1785 new_cfqq = NULL;
1786 } else if (gfp_mask & __GFP_WAIT) {
1787 spin_unlock_irq(cfqd->queue->queue_lock);
1788 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1789 gfp_mask | __GFP_ZERO,
1790 cfqd->queue->node);
1791 spin_lock_irq(cfqd->queue->queue_lock);
1792 if (new_cfqq)
1793 goto retry;
1794 } else {
1795 cfqq = kmem_cache_alloc_node(cfq_pool,
1796 gfp_mask | __GFP_ZERO,
1797 cfqd->queue->node);
1800 if (cfqq) {
1801 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1802 cfq_init_prio_data(cfqq, ioc);
1803 cfq_log_cfqq(cfqd, cfqq, "alloced");
1804 } else
1805 cfqq = &cfqd->oom_cfqq;
1808 if (new_cfqq)
1809 kmem_cache_free(cfq_pool, new_cfqq);
1811 return cfqq;
1814 static struct cfq_queue **
1815 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1817 switch (ioprio_class) {
1818 case IOPRIO_CLASS_RT:
1819 return &cfqd->async_cfqq[0][ioprio];
1820 case IOPRIO_CLASS_BE:
1821 return &cfqd->async_cfqq[1][ioprio];
1822 case IOPRIO_CLASS_IDLE:
1823 return &cfqd->async_idle_cfqq;
1824 default:
1825 BUG();
1829 static struct cfq_queue *
1830 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
1831 gfp_t gfp_mask)
1833 const int ioprio = task_ioprio(ioc);
1834 const int ioprio_class = task_ioprio_class(ioc);
1835 struct cfq_queue **async_cfqq = NULL;
1836 struct cfq_queue *cfqq = NULL;
1838 if (!is_sync) {
1839 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1840 cfqq = *async_cfqq;
1843 if (!cfqq)
1844 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1847 * pin the queue now that it's allocated, scheduler exit will prune it
1849 if (!is_sync && !(*async_cfqq)) {
1850 atomic_inc(&cfqq->ref);
1851 *async_cfqq = cfqq;
1854 atomic_inc(&cfqq->ref);
1855 return cfqq;
1859 * We drop cfq io contexts lazily, so we may find a dead one.
1861 static void
1862 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1863 struct cfq_io_context *cic)
1865 unsigned long flags;
1867 WARN_ON(!list_empty(&cic->queue_list));
1869 spin_lock_irqsave(&ioc->lock, flags);
1871 BUG_ON(ioc->ioc_data == cic);
1873 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1874 hlist_del_rcu(&cic->cic_list);
1875 spin_unlock_irqrestore(&ioc->lock, flags);
1877 cfq_cic_free(cic);
1880 static struct cfq_io_context *
1881 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1883 struct cfq_io_context *cic;
1884 unsigned long flags;
1885 void *k;
1887 if (unlikely(!ioc))
1888 return NULL;
1890 rcu_read_lock();
1893 * we maintain a last-hit cache, to avoid browsing over the tree
1895 cic = rcu_dereference(ioc->ioc_data);
1896 if (cic && cic->key == cfqd) {
1897 rcu_read_unlock();
1898 return cic;
1901 do {
1902 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1903 rcu_read_unlock();
1904 if (!cic)
1905 break;
1906 /* ->key must be copied to avoid race with cfq_exit_queue() */
1907 k = cic->key;
1908 if (unlikely(!k)) {
1909 cfq_drop_dead_cic(cfqd, ioc, cic);
1910 rcu_read_lock();
1911 continue;
1914 spin_lock_irqsave(&ioc->lock, flags);
1915 rcu_assign_pointer(ioc->ioc_data, cic);
1916 spin_unlock_irqrestore(&ioc->lock, flags);
1917 break;
1918 } while (1);
1920 return cic;
1924 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1925 * the process specific cfq io context when entered from the block layer.
1926 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1928 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1929 struct cfq_io_context *cic, gfp_t gfp_mask)
1931 unsigned long flags;
1932 int ret;
1934 ret = radix_tree_preload(gfp_mask);
1935 if (!ret) {
1936 cic->ioc = ioc;
1937 cic->key = cfqd;
1939 spin_lock_irqsave(&ioc->lock, flags);
1940 ret = radix_tree_insert(&ioc->radix_root,
1941 (unsigned long) cfqd, cic);
1942 if (!ret)
1943 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1944 spin_unlock_irqrestore(&ioc->lock, flags);
1946 radix_tree_preload_end();
1948 if (!ret) {
1949 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1950 list_add(&cic->queue_list, &cfqd->cic_list);
1951 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1955 if (ret)
1956 printk(KERN_ERR "cfq: cic link failed!\n");
1958 return ret;
1962 * Setup general io context and cfq io context. There can be several cfq
1963 * io contexts per general io context, if this process is doing io to more
1964 * than one device managed by cfq.
1966 static struct cfq_io_context *
1967 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1969 struct io_context *ioc = NULL;
1970 struct cfq_io_context *cic;
1972 might_sleep_if(gfp_mask & __GFP_WAIT);
1974 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1975 if (!ioc)
1976 return NULL;
1978 cic = cfq_cic_lookup(cfqd, ioc);
1979 if (cic)
1980 goto out;
1982 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1983 if (cic == NULL)
1984 goto err;
1986 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1987 goto err_free;
1989 out:
1990 smp_read_barrier_depends();
1991 if (unlikely(ioc->ioprio_changed))
1992 cfq_ioc_set_ioprio(ioc);
1994 return cic;
1995 err_free:
1996 cfq_cic_free(cic);
1997 err:
1998 put_io_context(ioc);
1999 return NULL;
2002 static void
2003 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2005 unsigned long elapsed = jiffies - cic->last_end_request;
2006 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2008 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2009 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2010 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2013 static void
2014 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2015 struct request *rq)
2017 sector_t sdist;
2018 u64 total;
2020 if (!cfqq->last_request_pos)
2021 sdist = 0;
2022 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2023 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2024 else
2025 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2028 * Don't allow the seek distance to get too large from the
2029 * odd fragment, pagein, etc
2031 if (cfqq->seek_samples <= 60) /* second&third seek */
2032 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2033 else
2034 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2036 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2037 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2038 total = cfqq->seek_total + (cfqq->seek_samples/2);
2039 do_div(total, cfqq->seek_samples);
2040 cfqq->seek_mean = (sector_t)total;
2044 * Disable idle window if the process thinks too long or seeks so much that
2045 * it doesn't matter
2047 static void
2048 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2049 struct cfq_io_context *cic)
2051 int old_idle, enable_idle;
2054 * Don't idle for async or idle io prio class
2056 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2057 return;
2059 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2061 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2062 (!cfqd->cfq_latency && cfqd->hw_tag && CFQQ_SEEKY(cfqq)))
2063 enable_idle = 0;
2064 else if (sample_valid(cic->ttime_samples)) {
2065 unsigned int slice_idle = cfqd->cfq_slice_idle;
2066 if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
2067 slice_idle = msecs_to_jiffies(CFQ_MIN_TT);
2068 if (cic->ttime_mean > slice_idle)
2069 enable_idle = 0;
2070 else
2071 enable_idle = 1;
2074 if (old_idle != enable_idle) {
2075 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2076 if (enable_idle)
2077 cfq_mark_cfqq_idle_window(cfqq);
2078 else
2079 cfq_clear_cfqq_idle_window(cfqq);
2084 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2085 * no or if we aren't sure, a 1 will cause a preempt.
2087 static bool
2088 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2089 struct request *rq)
2091 struct cfq_queue *cfqq;
2093 cfqq = cfqd->active_queue;
2094 if (!cfqq)
2095 return false;
2097 if (cfq_slice_used(cfqq))
2098 return true;
2100 if (cfq_class_idle(new_cfqq))
2101 return false;
2103 if (cfq_class_idle(cfqq))
2104 return true;
2107 * if the new request is sync, but the currently running queue is
2108 * not, let the sync request have priority.
2110 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2111 return true;
2114 * So both queues are sync. Let the new request get disk time if
2115 * it's a metadata request and the current queue is doing regular IO.
2117 if (rq_is_meta(rq) && !cfqq->meta_pending)
2118 return false;
2121 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2123 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2124 return true;
2126 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2127 return false;
2130 * if this request is as-good as one we would expect from the
2131 * current cfqq, let it preempt
2133 if (cfq_rq_close(cfqd, cfqq, rq))
2134 return true;
2136 return false;
2140 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2141 * let it have half of its nominal slice.
2143 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2145 cfq_log_cfqq(cfqd, cfqq, "preempt");
2146 cfq_slice_expired(cfqd, 1);
2149 * Put the new queue at the front of the of the current list,
2150 * so we know that it will be selected next.
2152 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2154 cfq_service_tree_add(cfqd, cfqq, 1);
2156 cfqq->slice_end = 0;
2157 cfq_mark_cfqq_slice_new(cfqq);
2161 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2162 * something we should do about it
2164 static void
2165 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2166 struct request *rq)
2168 struct cfq_io_context *cic = RQ_CIC(rq);
2170 cfqd->rq_queued++;
2171 if (rq_is_meta(rq))
2172 cfqq->meta_pending++;
2174 cfq_update_io_thinktime(cfqd, cic);
2175 cfq_update_io_seektime(cfqd, cfqq, rq);
2176 cfq_update_idle_window(cfqd, cfqq, cic);
2178 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2180 if (cfqq == cfqd->active_queue) {
2182 * Remember that we saw a request from this process, but
2183 * don't start queuing just yet. Otherwise we risk seeing lots
2184 * of tiny requests, because we disrupt the normal plugging
2185 * and merging. If the request is already larger than a single
2186 * page, let it rip immediately. For that case we assume that
2187 * merging is already done. Ditto for a busy system that
2188 * has other work pending, don't risk delaying until the
2189 * idle timer unplug to continue working.
2191 if (cfq_cfqq_wait_request(cfqq)) {
2192 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2193 cfqd->busy_queues > 1) {
2194 del_timer(&cfqd->idle_slice_timer);
2195 __blk_run_queue(cfqd->queue);
2197 cfq_mark_cfqq_must_dispatch(cfqq);
2199 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2201 * not the active queue - expire current slice if it is
2202 * idle and has expired it's mean thinktime or this new queue
2203 * has some old slice time left and is of higher priority or
2204 * this new queue is RT and the current one is BE
2206 cfq_preempt_queue(cfqd, cfqq);
2207 __blk_run_queue(cfqd->queue);
2211 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2213 struct cfq_data *cfqd = q->elevator->elevator_data;
2214 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2216 cfq_log_cfqq(cfqd, cfqq, "insert_request");
2217 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2219 cfq_add_rq_rb(rq);
2221 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2222 list_add_tail(&rq->queuelist, &cfqq->fifo);
2224 cfq_rq_enqueued(cfqd, cfqq, rq);
2228 * Update hw_tag based on peak queue depth over 50 samples under
2229 * sufficient load.
2231 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2233 if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2234 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2236 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2237 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2238 return;
2240 if (cfqd->hw_tag_samples++ < 50)
2241 return;
2243 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2244 cfqd->hw_tag = 1;
2245 else
2246 cfqd->hw_tag = 0;
2248 cfqd->hw_tag_samples = 0;
2249 cfqd->rq_in_driver_peak = 0;
2252 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2254 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2255 struct cfq_data *cfqd = cfqq->cfqd;
2256 const int sync = rq_is_sync(rq);
2257 unsigned long now;
2259 now = jiffies;
2260 cfq_log_cfqq(cfqd, cfqq, "complete");
2262 cfq_update_hw_tag(cfqd);
2264 WARN_ON(!cfqd->rq_in_driver[sync]);
2265 WARN_ON(!cfqq->dispatched);
2266 cfqd->rq_in_driver[sync]--;
2267 cfqq->dispatched--;
2269 if (cfq_cfqq_sync(cfqq))
2270 cfqd->sync_flight--;
2272 if (sync) {
2273 RQ_CIC(rq)->last_end_request = now;
2274 cfqd->last_end_sync_rq = now;
2278 * If this is the active queue, check if it needs to be expired,
2279 * or if we want to idle in case it has no pending requests.
2281 if (cfqd->active_queue == cfqq) {
2282 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2284 if (cfq_cfqq_slice_new(cfqq)) {
2285 cfq_set_prio_slice(cfqd, cfqq);
2286 cfq_clear_cfqq_slice_new(cfqq);
2289 * If there are no requests waiting in this queue, and
2290 * there are other queues ready to issue requests, AND
2291 * those other queues are issuing requests within our
2292 * mean seek distance, give them a chance to run instead
2293 * of idling.
2295 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2296 cfq_slice_expired(cfqd, 1);
2297 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2298 sync && !rq_noidle(rq))
2299 cfq_arm_slice_timer(cfqd);
2302 if (!rq_in_driver(cfqd))
2303 cfq_schedule_dispatch(cfqd);
2307 * we temporarily boost lower priority queues if they are holding fs exclusive
2308 * resources. they are boosted to normal prio (CLASS_BE/4)
2310 static void cfq_prio_boost(struct cfq_queue *cfqq)
2312 if (has_fs_excl()) {
2314 * boost idle prio on transactions that would lock out other
2315 * users of the filesystem
2317 if (cfq_class_idle(cfqq))
2318 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2319 if (cfqq->ioprio > IOPRIO_NORM)
2320 cfqq->ioprio = IOPRIO_NORM;
2321 } else {
2323 * check if we need to unboost the queue
2325 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2326 cfqq->ioprio_class = cfqq->org_ioprio_class;
2327 if (cfqq->ioprio != cfqq->org_ioprio)
2328 cfqq->ioprio = cfqq->org_ioprio;
2332 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2334 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2335 cfq_mark_cfqq_must_alloc_slice(cfqq);
2336 return ELV_MQUEUE_MUST;
2339 return ELV_MQUEUE_MAY;
2342 static int cfq_may_queue(struct request_queue *q, int rw)
2344 struct cfq_data *cfqd = q->elevator->elevator_data;
2345 struct task_struct *tsk = current;
2346 struct cfq_io_context *cic;
2347 struct cfq_queue *cfqq;
2350 * don't force setup of a queue from here, as a call to may_queue
2351 * does not necessarily imply that a request actually will be queued.
2352 * so just lookup a possibly existing queue, or return 'may queue'
2353 * if that fails
2355 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2356 if (!cic)
2357 return ELV_MQUEUE_MAY;
2359 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2360 if (cfqq) {
2361 cfq_init_prio_data(cfqq, cic->ioc);
2362 cfq_prio_boost(cfqq);
2364 return __cfq_may_queue(cfqq);
2367 return ELV_MQUEUE_MAY;
2371 * queue lock held here
2373 static void cfq_put_request(struct request *rq)
2375 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2377 if (cfqq) {
2378 const int rw = rq_data_dir(rq);
2380 BUG_ON(!cfqq->allocated[rw]);
2381 cfqq->allocated[rw]--;
2383 put_io_context(RQ_CIC(rq)->ioc);
2385 rq->elevator_private = NULL;
2386 rq->elevator_private2 = NULL;
2388 cfq_put_queue(cfqq);
2392 static struct cfq_queue *
2393 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2394 struct cfq_queue *cfqq)
2396 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2397 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2398 cfq_put_queue(cfqq);
2399 return cic_to_cfqq(cic, 1);
2403 * Allocate cfq data structures associated with this request.
2405 static int
2406 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2408 struct cfq_data *cfqd = q->elevator->elevator_data;
2409 struct cfq_io_context *cic;
2410 const int rw = rq_data_dir(rq);
2411 const bool is_sync = rq_is_sync(rq);
2412 struct cfq_queue *cfqq;
2413 unsigned long flags;
2415 might_sleep_if(gfp_mask & __GFP_WAIT);
2417 cic = cfq_get_io_context(cfqd, gfp_mask);
2419 spin_lock_irqsave(q->queue_lock, flags);
2421 if (!cic)
2422 goto queue_fail;
2424 cfqq = cic_to_cfqq(cic, is_sync);
2425 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2426 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2427 cic_set_cfqq(cic, cfqq, is_sync);
2428 } else {
2430 * Check to see if this queue is scheduled to merge with
2431 * another, closely cooperating queue. The merging of
2432 * queues happens here as it must be done in process context.
2433 * The reference on new_cfqq was taken in merge_cfqqs.
2435 if (cfqq->new_cfqq)
2436 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2439 cfqq->allocated[rw]++;
2440 atomic_inc(&cfqq->ref);
2442 spin_unlock_irqrestore(q->queue_lock, flags);
2444 rq->elevator_private = cic;
2445 rq->elevator_private2 = cfqq;
2446 return 0;
2448 queue_fail:
2449 if (cic)
2450 put_io_context(cic->ioc);
2452 cfq_schedule_dispatch(cfqd);
2453 spin_unlock_irqrestore(q->queue_lock, flags);
2454 cfq_log(cfqd, "set_request fail");
2455 return 1;
2458 static void cfq_kick_queue(struct work_struct *work)
2460 struct cfq_data *cfqd =
2461 container_of(work, struct cfq_data, unplug_work);
2462 struct request_queue *q = cfqd->queue;
2464 spin_lock_irq(q->queue_lock);
2465 __blk_run_queue(cfqd->queue);
2466 spin_unlock_irq(q->queue_lock);
2470 * Timer running if the active_queue is currently idling inside its time slice
2472 static void cfq_idle_slice_timer(unsigned long data)
2474 struct cfq_data *cfqd = (struct cfq_data *) data;
2475 struct cfq_queue *cfqq;
2476 unsigned long flags;
2477 int timed_out = 1;
2479 cfq_log(cfqd, "idle timer fired");
2481 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2483 cfqq = cfqd->active_queue;
2484 if (cfqq) {
2485 timed_out = 0;
2488 * We saw a request before the queue expired, let it through
2490 if (cfq_cfqq_must_dispatch(cfqq))
2491 goto out_kick;
2494 * expired
2496 if (cfq_slice_used(cfqq))
2497 goto expire;
2500 * only expire and reinvoke request handler, if there are
2501 * other queues with pending requests
2503 if (!cfqd->busy_queues)
2504 goto out_cont;
2507 * not expired and it has a request pending, let it dispatch
2509 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2510 goto out_kick;
2512 expire:
2513 cfq_slice_expired(cfqd, timed_out);
2514 out_kick:
2515 cfq_schedule_dispatch(cfqd);
2516 out_cont:
2517 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2520 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2522 del_timer_sync(&cfqd->idle_slice_timer);
2523 cancel_work_sync(&cfqd->unplug_work);
2526 static void cfq_put_async_queues(struct cfq_data *cfqd)
2528 int i;
2530 for (i = 0; i < IOPRIO_BE_NR; i++) {
2531 if (cfqd->async_cfqq[0][i])
2532 cfq_put_queue(cfqd->async_cfqq[0][i]);
2533 if (cfqd->async_cfqq[1][i])
2534 cfq_put_queue(cfqd->async_cfqq[1][i]);
2537 if (cfqd->async_idle_cfqq)
2538 cfq_put_queue(cfqd->async_idle_cfqq);
2541 static void cfq_exit_queue(struct elevator_queue *e)
2543 struct cfq_data *cfqd = e->elevator_data;
2544 struct request_queue *q = cfqd->queue;
2546 cfq_shutdown_timer_wq(cfqd);
2548 spin_lock_irq(q->queue_lock);
2550 if (cfqd->active_queue)
2551 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2553 while (!list_empty(&cfqd->cic_list)) {
2554 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2555 struct cfq_io_context,
2556 queue_list);
2558 __cfq_exit_single_io_context(cfqd, cic);
2561 cfq_put_async_queues(cfqd);
2563 spin_unlock_irq(q->queue_lock);
2565 cfq_shutdown_timer_wq(cfqd);
2567 kfree(cfqd);
2570 static void *cfq_init_queue(struct request_queue *q)
2572 struct cfq_data *cfqd;
2573 int i;
2575 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2576 if (!cfqd)
2577 return NULL;
2579 cfqd->service_tree = CFQ_RB_ROOT;
2582 * Not strictly needed (since RB_ROOT just clears the node and we
2583 * zeroed cfqd on alloc), but better be safe in case someone decides
2584 * to add magic to the rb code
2586 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2587 cfqd->prio_trees[i] = RB_ROOT;
2590 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2591 * Grab a permanent reference to it, so that the normal code flow
2592 * will not attempt to free it.
2594 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2595 atomic_inc(&cfqd->oom_cfqq.ref);
2597 INIT_LIST_HEAD(&cfqd->cic_list);
2599 cfqd->queue = q;
2601 init_timer(&cfqd->idle_slice_timer);
2602 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2603 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2605 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2607 cfqd->cfq_quantum = cfq_quantum;
2608 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2609 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2610 cfqd->cfq_back_max = cfq_back_max;
2611 cfqd->cfq_back_penalty = cfq_back_penalty;
2612 cfqd->cfq_slice[0] = cfq_slice_async;
2613 cfqd->cfq_slice[1] = cfq_slice_sync;
2614 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2615 cfqd->cfq_slice_idle = cfq_slice_idle;
2616 cfqd->cfq_latency = 1;
2617 cfqd->hw_tag = 1;
2618 cfqd->last_end_sync_rq = jiffies;
2619 return cfqd;
2622 static void cfq_slab_kill(void)
2625 * Caller already ensured that pending RCU callbacks are completed,
2626 * so we should have no busy allocations at this point.
2628 if (cfq_pool)
2629 kmem_cache_destroy(cfq_pool);
2630 if (cfq_ioc_pool)
2631 kmem_cache_destroy(cfq_ioc_pool);
2634 static int __init cfq_slab_setup(void)
2636 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2637 if (!cfq_pool)
2638 goto fail;
2640 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2641 if (!cfq_ioc_pool)
2642 goto fail;
2644 return 0;
2645 fail:
2646 cfq_slab_kill();
2647 return -ENOMEM;
2651 * sysfs parts below -->
2653 static ssize_t
2654 cfq_var_show(unsigned int var, char *page)
2656 return sprintf(page, "%d\n", var);
2659 static ssize_t
2660 cfq_var_store(unsigned int *var, const char *page, size_t count)
2662 char *p = (char *) page;
2664 *var = simple_strtoul(p, &p, 10);
2665 return count;
2668 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2669 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2671 struct cfq_data *cfqd = e->elevator_data; \
2672 unsigned int __data = __VAR; \
2673 if (__CONV) \
2674 __data = jiffies_to_msecs(__data); \
2675 return cfq_var_show(__data, (page)); \
2677 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2678 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2679 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2680 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2681 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2682 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2683 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2684 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2685 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2686 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
2687 #undef SHOW_FUNCTION
2689 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2690 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2692 struct cfq_data *cfqd = e->elevator_data; \
2693 unsigned int __data; \
2694 int ret = cfq_var_store(&__data, (page), count); \
2695 if (__data < (MIN)) \
2696 __data = (MIN); \
2697 else if (__data > (MAX)) \
2698 __data = (MAX); \
2699 if (__CONV) \
2700 *(__PTR) = msecs_to_jiffies(__data); \
2701 else \
2702 *(__PTR) = __data; \
2703 return ret; \
2705 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2706 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2707 UINT_MAX, 1);
2708 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2709 UINT_MAX, 1);
2710 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2711 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2712 UINT_MAX, 0);
2713 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2714 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2715 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2716 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2717 UINT_MAX, 0);
2718 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
2719 #undef STORE_FUNCTION
2721 #define CFQ_ATTR(name) \
2722 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2724 static struct elv_fs_entry cfq_attrs[] = {
2725 CFQ_ATTR(quantum),
2726 CFQ_ATTR(fifo_expire_sync),
2727 CFQ_ATTR(fifo_expire_async),
2728 CFQ_ATTR(back_seek_max),
2729 CFQ_ATTR(back_seek_penalty),
2730 CFQ_ATTR(slice_sync),
2731 CFQ_ATTR(slice_async),
2732 CFQ_ATTR(slice_async_rq),
2733 CFQ_ATTR(slice_idle),
2734 CFQ_ATTR(low_latency),
2735 __ATTR_NULL
2738 static struct elevator_type iosched_cfq = {
2739 .ops = {
2740 .elevator_merge_fn = cfq_merge,
2741 .elevator_merged_fn = cfq_merged_request,
2742 .elevator_merge_req_fn = cfq_merged_requests,
2743 .elevator_allow_merge_fn = cfq_allow_merge,
2744 .elevator_dispatch_fn = cfq_dispatch_requests,
2745 .elevator_add_req_fn = cfq_insert_request,
2746 .elevator_activate_req_fn = cfq_activate_request,
2747 .elevator_deactivate_req_fn = cfq_deactivate_request,
2748 .elevator_queue_empty_fn = cfq_queue_empty,
2749 .elevator_completed_req_fn = cfq_completed_request,
2750 .elevator_former_req_fn = elv_rb_former_request,
2751 .elevator_latter_req_fn = elv_rb_latter_request,
2752 .elevator_set_req_fn = cfq_set_request,
2753 .elevator_put_req_fn = cfq_put_request,
2754 .elevator_may_queue_fn = cfq_may_queue,
2755 .elevator_init_fn = cfq_init_queue,
2756 .elevator_exit_fn = cfq_exit_queue,
2757 .trim = cfq_free_io_context,
2759 .elevator_attrs = cfq_attrs,
2760 .elevator_name = "cfq",
2761 .elevator_owner = THIS_MODULE,
2764 static int __init cfq_init(void)
2767 * could be 0 on HZ < 1000 setups
2769 if (!cfq_slice_async)
2770 cfq_slice_async = 1;
2771 if (!cfq_slice_idle)
2772 cfq_slice_idle = 1;
2774 if (cfq_slab_setup())
2775 return -ENOMEM;
2777 elv_register(&iosched_cfq);
2779 return 0;
2782 static void __exit cfq_exit(void)
2784 DECLARE_COMPLETION_ONSTACK(all_gone);
2785 elv_unregister(&iosched_cfq);
2786 ioc_gone = &all_gone;
2787 /* ioc_gone's update must be visible before reading ioc_count */
2788 smp_wmb();
2791 * this also protects us from entering cfq_slab_kill() with
2792 * pending RCU callbacks
2794 if (elv_ioc_count_read(cfq_ioc_count))
2795 wait_for_completion(&all_gone);
2796 cfq_slab_kill();
2799 module_init(cfq_init);
2800 module_exit(cfq_exit);
2802 MODULE_AUTHOR("Jens Axboe");
2803 MODULE_LICENSE("GPL");
2804 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");