rps: add CONFIG_RPS
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / core / dev.c
blobbcb3ed26af1cefe47b8854eeeb02b9c8d2c171f4
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <linux/if_bridge.h>
104 #include <linux/if_macvlan.h>
105 #include <net/dst.h>
106 #include <net/pkt_sched.h>
107 #include <net/checksum.h>
108 #include <net/xfrm.h>
109 #include <linux/highmem.h>
110 #include <linux/init.h>
111 #include <linux/kmod.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/wext.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
133 #include "net-sysfs.h"
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142 * The list of packet types we will receive (as opposed to discard)
143 * and the routines to invoke.
145 * Why 16. Because with 16 the only overlap we get on a hash of the
146 * low nibble of the protocol value is RARP/SNAP/X.25.
148 * NOTE: That is no longer true with the addition of VLAN tags. Not
149 * sure which should go first, but I bet it won't make much
150 * difference if we are running VLANs. The good news is that
151 * this protocol won't be in the list unless compiled in, so
152 * the average user (w/out VLANs) will not be adversely affected.
153 * --BLG
155 * 0800 IP
156 * 8100 802.1Q VLAN
157 * 0001 802.3
158 * 0002 AX.25
159 * 0004 802.2
160 * 8035 RARP
161 * 0005 SNAP
162 * 0805 X.25
163 * 0806 ARP
164 * 8137 IPX
165 * 0009 Localtalk
166 * 86DD IPv6
169 #define PTYPE_HASH_SIZE (16)
170 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
172 static DEFINE_SPINLOCK(ptype_lock);
173 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
174 static struct list_head ptype_all __read_mostly; /* Taps */
177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178 * semaphore.
180 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
182 * Writers must hold the rtnl semaphore while they loop through the
183 * dev_base_head list, and hold dev_base_lock for writing when they do the
184 * actual updates. This allows pure readers to access the list even
185 * while a writer is preparing to update it.
187 * To put it another way, dev_base_lock is held for writing only to
188 * protect against pure readers; the rtnl semaphore provides the
189 * protection against other writers.
191 * See, for example usages, register_netdevice() and
192 * unregister_netdevice(), which must be called with the rtnl
193 * semaphore held.
195 DEFINE_RWLOCK(dev_base_lock);
196 EXPORT_SYMBOL(dev_base_lock);
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 /* Device list insertion */
210 static int list_netdevice(struct net_device *dev)
212 struct net *net = dev_net(dev);
214 ASSERT_RTNL();
216 write_lock_bh(&dev_base_lock);
217 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
218 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
219 hlist_add_head_rcu(&dev->index_hlist,
220 dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
225 /* Device list removal
226 * caller must respect a RCU grace period before freeing/reusing dev
228 static void unlist_netdevice(struct net_device *dev)
230 ASSERT_RTNL();
232 /* Unlink dev from the device chain */
233 write_lock_bh(&dev_base_lock);
234 list_del_rcu(&dev->dev_list);
235 hlist_del_rcu(&dev->name_hlist);
236 hlist_del_rcu(&dev->index_hlist);
237 write_unlock_bh(&dev_base_lock);
241 * Our notifier list
244 static RAW_NOTIFIER_HEAD(netdev_chain);
247 * Device drivers call our routines to queue packets here. We empty the
248 * queue in the local softnet handler.
251 DEFINE_PER_CPU(struct softnet_data, softnet_data);
252 EXPORT_PER_CPU_SYMBOL(softnet_data);
254 #ifdef CONFIG_LOCKDEP
256 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
257 * according to dev->type
259 static const unsigned short netdev_lock_type[] =
260 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
261 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
262 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
263 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
264 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
265 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
266 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
267 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
268 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
269 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
270 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
271 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
272 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
273 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
274 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
275 ARPHRD_VOID, ARPHRD_NONE};
277 static const char *const netdev_lock_name[] =
278 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
279 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
280 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
281 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
282 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
283 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
284 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
285 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
286 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
287 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
288 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
289 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
290 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
291 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
292 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
293 "_xmit_VOID", "_xmit_NONE"};
295 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
296 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
298 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
300 int i;
302 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
303 if (netdev_lock_type[i] == dev_type)
304 return i;
305 /* the last key is used by default */
306 return ARRAY_SIZE(netdev_lock_type) - 1;
309 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
310 unsigned short dev_type)
312 int i;
314 i = netdev_lock_pos(dev_type);
315 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
316 netdev_lock_name[i]);
319 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
321 int i;
323 i = netdev_lock_pos(dev->type);
324 lockdep_set_class_and_name(&dev->addr_list_lock,
325 &netdev_addr_lock_key[i],
326 netdev_lock_name[i]);
328 #else
329 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
330 unsigned short dev_type)
333 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 #endif
338 /*******************************************************************************
340 Protocol management and registration routines
342 *******************************************************************************/
345 * Add a protocol ID to the list. Now that the input handler is
346 * smarter we can dispense with all the messy stuff that used to be
347 * here.
349 * BEWARE!!! Protocol handlers, mangling input packets,
350 * MUST BE last in hash buckets and checking protocol handlers
351 * MUST start from promiscuous ptype_all chain in net_bh.
352 * It is true now, do not change it.
353 * Explanation follows: if protocol handler, mangling packet, will
354 * be the first on list, it is not able to sense, that packet
355 * is cloned and should be copied-on-write, so that it will
356 * change it and subsequent readers will get broken packet.
357 * --ANK (980803)
361 * dev_add_pack - add packet handler
362 * @pt: packet type declaration
364 * Add a protocol handler to the networking stack. The passed &packet_type
365 * is linked into kernel lists and may not be freed until it has been
366 * removed from the kernel lists.
368 * This call does not sleep therefore it can not
369 * guarantee all CPU's that are in middle of receiving packets
370 * will see the new packet type (until the next received packet).
373 void dev_add_pack(struct packet_type *pt)
375 int hash;
377 spin_lock_bh(&ptype_lock);
378 if (pt->type == htons(ETH_P_ALL))
379 list_add_rcu(&pt->list, &ptype_all);
380 else {
381 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
382 list_add_rcu(&pt->list, &ptype_base[hash]);
384 spin_unlock_bh(&ptype_lock);
386 EXPORT_SYMBOL(dev_add_pack);
389 * __dev_remove_pack - remove packet handler
390 * @pt: packet type declaration
392 * Remove a protocol handler that was previously added to the kernel
393 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
394 * from the kernel lists and can be freed or reused once this function
395 * returns.
397 * The packet type might still be in use by receivers
398 * and must not be freed until after all the CPU's have gone
399 * through a quiescent state.
401 void __dev_remove_pack(struct packet_type *pt)
403 struct list_head *head;
404 struct packet_type *pt1;
406 spin_lock_bh(&ptype_lock);
408 if (pt->type == htons(ETH_P_ALL))
409 head = &ptype_all;
410 else
411 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
413 list_for_each_entry(pt1, head, list) {
414 if (pt == pt1) {
415 list_del_rcu(&pt->list);
416 goto out;
420 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
421 out:
422 spin_unlock_bh(&ptype_lock);
424 EXPORT_SYMBOL(__dev_remove_pack);
427 * dev_remove_pack - remove packet handler
428 * @pt: packet type declaration
430 * Remove a protocol handler that was previously added to the kernel
431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
432 * from the kernel lists and can be freed or reused once this function
433 * returns.
435 * This call sleeps to guarantee that no CPU is looking at the packet
436 * type after return.
438 void dev_remove_pack(struct packet_type *pt)
440 __dev_remove_pack(pt);
442 synchronize_net();
444 EXPORT_SYMBOL(dev_remove_pack);
446 /******************************************************************************
448 Device Boot-time Settings Routines
450 *******************************************************************************/
452 /* Boot time configuration table */
453 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
456 * netdev_boot_setup_add - add new setup entry
457 * @name: name of the device
458 * @map: configured settings for the device
460 * Adds new setup entry to the dev_boot_setup list. The function
461 * returns 0 on error and 1 on success. This is a generic routine to
462 * all netdevices.
464 static int netdev_boot_setup_add(char *name, struct ifmap *map)
466 struct netdev_boot_setup *s;
467 int i;
469 s = dev_boot_setup;
470 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
471 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
472 memset(s[i].name, 0, sizeof(s[i].name));
473 strlcpy(s[i].name, name, IFNAMSIZ);
474 memcpy(&s[i].map, map, sizeof(s[i].map));
475 break;
479 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
483 * netdev_boot_setup_check - check boot time settings
484 * @dev: the netdevice
486 * Check boot time settings for the device.
487 * The found settings are set for the device to be used
488 * later in the device probing.
489 * Returns 0 if no settings found, 1 if they are.
491 int netdev_boot_setup_check(struct net_device *dev)
493 struct netdev_boot_setup *s = dev_boot_setup;
494 int i;
496 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
497 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
498 !strcmp(dev->name, s[i].name)) {
499 dev->irq = s[i].map.irq;
500 dev->base_addr = s[i].map.base_addr;
501 dev->mem_start = s[i].map.mem_start;
502 dev->mem_end = s[i].map.mem_end;
503 return 1;
506 return 0;
508 EXPORT_SYMBOL(netdev_boot_setup_check);
512 * netdev_boot_base - get address from boot time settings
513 * @prefix: prefix for network device
514 * @unit: id for network device
516 * Check boot time settings for the base address of device.
517 * The found settings are set for the device to be used
518 * later in the device probing.
519 * Returns 0 if no settings found.
521 unsigned long netdev_boot_base(const char *prefix, int unit)
523 const struct netdev_boot_setup *s = dev_boot_setup;
524 char name[IFNAMSIZ];
525 int i;
527 sprintf(name, "%s%d", prefix, unit);
530 * If device already registered then return base of 1
531 * to indicate not to probe for this interface
533 if (__dev_get_by_name(&init_net, name))
534 return 1;
536 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
537 if (!strcmp(name, s[i].name))
538 return s[i].map.base_addr;
539 return 0;
543 * Saves at boot time configured settings for any netdevice.
545 int __init netdev_boot_setup(char *str)
547 int ints[5];
548 struct ifmap map;
550 str = get_options(str, ARRAY_SIZE(ints), ints);
551 if (!str || !*str)
552 return 0;
554 /* Save settings */
555 memset(&map, 0, sizeof(map));
556 if (ints[0] > 0)
557 map.irq = ints[1];
558 if (ints[0] > 1)
559 map.base_addr = ints[2];
560 if (ints[0] > 2)
561 map.mem_start = ints[3];
562 if (ints[0] > 3)
563 map.mem_end = ints[4];
565 /* Add new entry to the list */
566 return netdev_boot_setup_add(str, &map);
569 __setup("netdev=", netdev_boot_setup);
571 /*******************************************************************************
573 Device Interface Subroutines
575 *******************************************************************************/
578 * __dev_get_by_name - find a device by its name
579 * @net: the applicable net namespace
580 * @name: name to find
582 * Find an interface by name. Must be called under RTNL semaphore
583 * or @dev_base_lock. If the name is found a pointer to the device
584 * is returned. If the name is not found then %NULL is returned. The
585 * reference counters are not incremented so the caller must be
586 * careful with locks.
589 struct net_device *__dev_get_by_name(struct net *net, const char *name)
591 struct hlist_node *p;
592 struct net_device *dev;
593 struct hlist_head *head = dev_name_hash(net, name);
595 hlist_for_each_entry(dev, p, head, name_hlist)
596 if (!strncmp(dev->name, name, IFNAMSIZ))
597 return dev;
599 return NULL;
601 EXPORT_SYMBOL(__dev_get_by_name);
604 * dev_get_by_name_rcu - find a device by its name
605 * @net: the applicable net namespace
606 * @name: name to find
608 * Find an interface by name.
609 * If the name is found a pointer to the device is returned.
610 * If the name is not found then %NULL is returned.
611 * The reference counters are not incremented so the caller must be
612 * careful with locks. The caller must hold RCU lock.
615 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
617 struct hlist_node *p;
618 struct net_device *dev;
619 struct hlist_head *head = dev_name_hash(net, name);
621 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
622 if (!strncmp(dev->name, name, IFNAMSIZ))
623 return dev;
625 return NULL;
627 EXPORT_SYMBOL(dev_get_by_name_rcu);
630 * dev_get_by_name - find a device by its name
631 * @net: the applicable net namespace
632 * @name: name to find
634 * Find an interface by name. This can be called from any
635 * context and does its own locking. The returned handle has
636 * the usage count incremented and the caller must use dev_put() to
637 * release it when it is no longer needed. %NULL is returned if no
638 * matching device is found.
641 struct net_device *dev_get_by_name(struct net *net, const char *name)
643 struct net_device *dev;
645 rcu_read_lock();
646 dev = dev_get_by_name_rcu(net, name);
647 if (dev)
648 dev_hold(dev);
649 rcu_read_unlock();
650 return dev;
652 EXPORT_SYMBOL(dev_get_by_name);
655 * __dev_get_by_index - find a device by its ifindex
656 * @net: the applicable net namespace
657 * @ifindex: index of device
659 * Search for an interface by index. Returns %NULL if the device
660 * is not found or a pointer to the device. The device has not
661 * had its reference counter increased so the caller must be careful
662 * about locking. The caller must hold either the RTNL semaphore
663 * or @dev_base_lock.
666 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
668 struct hlist_node *p;
669 struct net_device *dev;
670 struct hlist_head *head = dev_index_hash(net, ifindex);
672 hlist_for_each_entry(dev, p, head, index_hlist)
673 if (dev->ifindex == ifindex)
674 return dev;
676 return NULL;
678 EXPORT_SYMBOL(__dev_get_by_index);
681 * dev_get_by_index_rcu - find a device by its ifindex
682 * @net: the applicable net namespace
683 * @ifindex: index of device
685 * Search for an interface by index. Returns %NULL if the device
686 * is not found or a pointer to the device. The device has not
687 * had its reference counter increased so the caller must be careful
688 * about locking. The caller must hold RCU lock.
691 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
693 struct hlist_node *p;
694 struct net_device *dev;
695 struct hlist_head *head = dev_index_hash(net, ifindex);
697 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
698 if (dev->ifindex == ifindex)
699 return dev;
701 return NULL;
703 EXPORT_SYMBOL(dev_get_by_index_rcu);
707 * dev_get_by_index - find a device by its ifindex
708 * @net: the applicable net namespace
709 * @ifindex: index of device
711 * Search for an interface by index. Returns NULL if the device
712 * is not found or a pointer to the device. The device returned has
713 * had a reference added and the pointer is safe until the user calls
714 * dev_put to indicate they have finished with it.
717 struct net_device *dev_get_by_index(struct net *net, int ifindex)
719 struct net_device *dev;
721 rcu_read_lock();
722 dev = dev_get_by_index_rcu(net, ifindex);
723 if (dev)
724 dev_hold(dev);
725 rcu_read_unlock();
726 return dev;
728 EXPORT_SYMBOL(dev_get_by_index);
731 * dev_getbyhwaddr - find a device by its hardware address
732 * @net: the applicable net namespace
733 * @type: media type of device
734 * @ha: hardware address
736 * Search for an interface by MAC address. Returns NULL if the device
737 * is not found or a pointer to the device. The caller must hold the
738 * rtnl semaphore. The returned device has not had its ref count increased
739 * and the caller must therefore be careful about locking
741 * BUGS:
742 * If the API was consistent this would be __dev_get_by_hwaddr
745 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
747 struct net_device *dev;
749 ASSERT_RTNL();
751 for_each_netdev(net, dev)
752 if (dev->type == type &&
753 !memcmp(dev->dev_addr, ha, dev->addr_len))
754 return dev;
756 return NULL;
758 EXPORT_SYMBOL(dev_getbyhwaddr);
760 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
762 struct net_device *dev;
764 ASSERT_RTNL();
765 for_each_netdev(net, dev)
766 if (dev->type == type)
767 return dev;
769 return NULL;
771 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
773 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
775 struct net_device *dev, *ret = NULL;
777 rcu_read_lock();
778 for_each_netdev_rcu(net, dev)
779 if (dev->type == type) {
780 dev_hold(dev);
781 ret = dev;
782 break;
784 rcu_read_unlock();
785 return ret;
787 EXPORT_SYMBOL(dev_getfirstbyhwtype);
790 * dev_get_by_flags - find any device with given flags
791 * @net: the applicable net namespace
792 * @if_flags: IFF_* values
793 * @mask: bitmask of bits in if_flags to check
795 * Search for any interface with the given flags. Returns NULL if a device
796 * is not found or a pointer to the device. The device returned has
797 * had a reference added and the pointer is safe until the user calls
798 * dev_put to indicate they have finished with it.
801 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
802 unsigned short mask)
804 struct net_device *dev, *ret;
806 ret = NULL;
807 rcu_read_lock();
808 for_each_netdev_rcu(net, dev) {
809 if (((dev->flags ^ if_flags) & mask) == 0) {
810 dev_hold(dev);
811 ret = dev;
812 break;
815 rcu_read_unlock();
816 return ret;
818 EXPORT_SYMBOL(dev_get_by_flags);
821 * dev_valid_name - check if name is okay for network device
822 * @name: name string
824 * Network device names need to be valid file names to
825 * to allow sysfs to work. We also disallow any kind of
826 * whitespace.
828 int dev_valid_name(const char *name)
830 if (*name == '\0')
831 return 0;
832 if (strlen(name) >= IFNAMSIZ)
833 return 0;
834 if (!strcmp(name, ".") || !strcmp(name, ".."))
835 return 0;
837 while (*name) {
838 if (*name == '/' || isspace(*name))
839 return 0;
840 name++;
842 return 1;
844 EXPORT_SYMBOL(dev_valid_name);
847 * __dev_alloc_name - allocate a name for a device
848 * @net: network namespace to allocate the device name in
849 * @name: name format string
850 * @buf: scratch buffer and result name string
852 * Passed a format string - eg "lt%d" it will try and find a suitable
853 * id. It scans list of devices to build up a free map, then chooses
854 * the first empty slot. The caller must hold the dev_base or rtnl lock
855 * while allocating the name and adding the device in order to avoid
856 * duplicates.
857 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
858 * Returns the number of the unit assigned or a negative errno code.
861 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
863 int i = 0;
864 const char *p;
865 const int max_netdevices = 8*PAGE_SIZE;
866 unsigned long *inuse;
867 struct net_device *d;
869 p = strnchr(name, IFNAMSIZ-1, '%');
870 if (p) {
872 * Verify the string as this thing may have come from
873 * the user. There must be either one "%d" and no other "%"
874 * characters.
876 if (p[1] != 'd' || strchr(p + 2, '%'))
877 return -EINVAL;
879 /* Use one page as a bit array of possible slots */
880 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
881 if (!inuse)
882 return -ENOMEM;
884 for_each_netdev(net, d) {
885 if (!sscanf(d->name, name, &i))
886 continue;
887 if (i < 0 || i >= max_netdevices)
888 continue;
890 /* avoid cases where sscanf is not exact inverse of printf */
891 snprintf(buf, IFNAMSIZ, name, i);
892 if (!strncmp(buf, d->name, IFNAMSIZ))
893 set_bit(i, inuse);
896 i = find_first_zero_bit(inuse, max_netdevices);
897 free_page((unsigned long) inuse);
900 if (buf != name)
901 snprintf(buf, IFNAMSIZ, name, i);
902 if (!__dev_get_by_name(net, buf))
903 return i;
905 /* It is possible to run out of possible slots
906 * when the name is long and there isn't enough space left
907 * for the digits, or if all bits are used.
909 return -ENFILE;
913 * dev_alloc_name - allocate a name for a device
914 * @dev: device
915 * @name: name format string
917 * Passed a format string - eg "lt%d" it will try and find a suitable
918 * id. It scans list of devices to build up a free map, then chooses
919 * the first empty slot. The caller must hold the dev_base or rtnl lock
920 * while allocating the name and adding the device in order to avoid
921 * duplicates.
922 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
923 * Returns the number of the unit assigned or a negative errno code.
926 int dev_alloc_name(struct net_device *dev, const char *name)
928 char buf[IFNAMSIZ];
929 struct net *net;
930 int ret;
932 BUG_ON(!dev_net(dev));
933 net = dev_net(dev);
934 ret = __dev_alloc_name(net, name, buf);
935 if (ret >= 0)
936 strlcpy(dev->name, buf, IFNAMSIZ);
937 return ret;
939 EXPORT_SYMBOL(dev_alloc_name);
941 static int dev_get_valid_name(struct net *net, const char *name, char *buf,
942 bool fmt)
944 if (!dev_valid_name(name))
945 return -EINVAL;
947 if (fmt && strchr(name, '%'))
948 return __dev_alloc_name(net, name, buf);
949 else if (__dev_get_by_name(net, name))
950 return -EEXIST;
951 else if (buf != name)
952 strlcpy(buf, name, IFNAMSIZ);
954 return 0;
958 * dev_change_name - change name of a device
959 * @dev: device
960 * @newname: name (or format string) must be at least IFNAMSIZ
962 * Change name of a device, can pass format strings "eth%d".
963 * for wildcarding.
965 int dev_change_name(struct net_device *dev, const char *newname)
967 char oldname[IFNAMSIZ];
968 int err = 0;
969 int ret;
970 struct net *net;
972 ASSERT_RTNL();
973 BUG_ON(!dev_net(dev));
975 net = dev_net(dev);
976 if (dev->flags & IFF_UP)
977 return -EBUSY;
979 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
980 return 0;
982 memcpy(oldname, dev->name, IFNAMSIZ);
984 err = dev_get_valid_name(net, newname, dev->name, 1);
985 if (err < 0)
986 return err;
988 rollback:
989 /* For now only devices in the initial network namespace
990 * are in sysfs.
992 if (net_eq(net, &init_net)) {
993 ret = device_rename(&dev->dev, dev->name);
994 if (ret) {
995 memcpy(dev->name, oldname, IFNAMSIZ);
996 return ret;
1000 write_lock_bh(&dev_base_lock);
1001 hlist_del(&dev->name_hlist);
1002 write_unlock_bh(&dev_base_lock);
1004 synchronize_rcu();
1006 write_lock_bh(&dev_base_lock);
1007 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1008 write_unlock_bh(&dev_base_lock);
1010 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1011 ret = notifier_to_errno(ret);
1013 if (ret) {
1014 /* err >= 0 after dev_alloc_name() or stores the first errno */
1015 if (err >= 0) {
1016 err = ret;
1017 memcpy(dev->name, oldname, IFNAMSIZ);
1018 goto rollback;
1019 } else {
1020 printk(KERN_ERR
1021 "%s: name change rollback failed: %d.\n",
1022 dev->name, ret);
1026 return err;
1030 * dev_set_alias - change ifalias of a device
1031 * @dev: device
1032 * @alias: name up to IFALIASZ
1033 * @len: limit of bytes to copy from info
1035 * Set ifalias for a device,
1037 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1039 ASSERT_RTNL();
1041 if (len >= IFALIASZ)
1042 return -EINVAL;
1044 if (!len) {
1045 if (dev->ifalias) {
1046 kfree(dev->ifalias);
1047 dev->ifalias = NULL;
1049 return 0;
1052 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1053 if (!dev->ifalias)
1054 return -ENOMEM;
1056 strlcpy(dev->ifalias, alias, len+1);
1057 return len;
1062 * netdev_features_change - device changes features
1063 * @dev: device to cause notification
1065 * Called to indicate a device has changed features.
1067 void netdev_features_change(struct net_device *dev)
1069 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1071 EXPORT_SYMBOL(netdev_features_change);
1074 * netdev_state_change - device changes state
1075 * @dev: device to cause notification
1077 * Called to indicate a device has changed state. This function calls
1078 * the notifier chains for netdev_chain and sends a NEWLINK message
1079 * to the routing socket.
1081 void netdev_state_change(struct net_device *dev)
1083 if (dev->flags & IFF_UP) {
1084 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1085 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1088 EXPORT_SYMBOL(netdev_state_change);
1090 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1092 return call_netdevice_notifiers(event, dev);
1094 EXPORT_SYMBOL(netdev_bonding_change);
1097 * dev_load - load a network module
1098 * @net: the applicable net namespace
1099 * @name: name of interface
1101 * If a network interface is not present and the process has suitable
1102 * privileges this function loads the module. If module loading is not
1103 * available in this kernel then it becomes a nop.
1106 void dev_load(struct net *net, const char *name)
1108 struct net_device *dev;
1110 rcu_read_lock();
1111 dev = dev_get_by_name_rcu(net, name);
1112 rcu_read_unlock();
1114 if (!dev && capable(CAP_NET_ADMIN))
1115 request_module("%s", name);
1117 EXPORT_SYMBOL(dev_load);
1119 static int __dev_open(struct net_device *dev)
1121 const struct net_device_ops *ops = dev->netdev_ops;
1122 int ret;
1124 ASSERT_RTNL();
1127 * Is it even present?
1129 if (!netif_device_present(dev))
1130 return -ENODEV;
1132 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1133 ret = notifier_to_errno(ret);
1134 if (ret)
1135 return ret;
1138 * Call device private open method
1140 set_bit(__LINK_STATE_START, &dev->state);
1142 if (ops->ndo_validate_addr)
1143 ret = ops->ndo_validate_addr(dev);
1145 if (!ret && ops->ndo_open)
1146 ret = ops->ndo_open(dev);
1149 * If it went open OK then:
1152 if (ret)
1153 clear_bit(__LINK_STATE_START, &dev->state);
1154 else {
1156 * Set the flags.
1158 dev->flags |= IFF_UP;
1161 * Enable NET_DMA
1163 net_dmaengine_get();
1166 * Initialize multicasting status
1168 dev_set_rx_mode(dev);
1171 * Wakeup transmit queue engine
1173 dev_activate(dev);
1176 return ret;
1180 * dev_open - prepare an interface for use.
1181 * @dev: device to open
1183 * Takes a device from down to up state. The device's private open
1184 * function is invoked and then the multicast lists are loaded. Finally
1185 * the device is moved into the up state and a %NETDEV_UP message is
1186 * sent to the netdev notifier chain.
1188 * Calling this function on an active interface is a nop. On a failure
1189 * a negative errno code is returned.
1191 int dev_open(struct net_device *dev)
1193 int ret;
1196 * Is it already up?
1198 if (dev->flags & IFF_UP)
1199 return 0;
1202 * Open device
1204 ret = __dev_open(dev);
1205 if (ret < 0)
1206 return ret;
1209 * ... and announce new interface.
1211 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1212 call_netdevice_notifiers(NETDEV_UP, dev);
1214 return ret;
1216 EXPORT_SYMBOL(dev_open);
1218 static int __dev_close(struct net_device *dev)
1220 const struct net_device_ops *ops = dev->netdev_ops;
1222 ASSERT_RTNL();
1223 might_sleep();
1226 * Tell people we are going down, so that they can
1227 * prepare to death, when device is still operating.
1229 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1231 clear_bit(__LINK_STATE_START, &dev->state);
1233 /* Synchronize to scheduled poll. We cannot touch poll list,
1234 * it can be even on different cpu. So just clear netif_running().
1236 * dev->stop() will invoke napi_disable() on all of it's
1237 * napi_struct instances on this device.
1239 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1241 dev_deactivate(dev);
1244 * Call the device specific close. This cannot fail.
1245 * Only if device is UP
1247 * We allow it to be called even after a DETACH hot-plug
1248 * event.
1250 if (ops->ndo_stop)
1251 ops->ndo_stop(dev);
1254 * Device is now down.
1257 dev->flags &= ~IFF_UP;
1260 * Shutdown NET_DMA
1262 net_dmaengine_put();
1264 return 0;
1268 * dev_close - shutdown an interface.
1269 * @dev: device to shutdown
1271 * This function moves an active device into down state. A
1272 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1273 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1274 * chain.
1276 int dev_close(struct net_device *dev)
1278 if (!(dev->flags & IFF_UP))
1279 return 0;
1281 __dev_close(dev);
1284 * Tell people we are down
1286 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1287 call_netdevice_notifiers(NETDEV_DOWN, dev);
1289 return 0;
1291 EXPORT_SYMBOL(dev_close);
1295 * dev_disable_lro - disable Large Receive Offload on a device
1296 * @dev: device
1298 * Disable Large Receive Offload (LRO) on a net device. Must be
1299 * called under RTNL. This is needed if received packets may be
1300 * forwarded to another interface.
1302 void dev_disable_lro(struct net_device *dev)
1304 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1305 dev->ethtool_ops->set_flags) {
1306 u32 flags = dev->ethtool_ops->get_flags(dev);
1307 if (flags & ETH_FLAG_LRO) {
1308 flags &= ~ETH_FLAG_LRO;
1309 dev->ethtool_ops->set_flags(dev, flags);
1312 WARN_ON(dev->features & NETIF_F_LRO);
1314 EXPORT_SYMBOL(dev_disable_lro);
1317 static int dev_boot_phase = 1;
1320 * Device change register/unregister. These are not inline or static
1321 * as we export them to the world.
1325 * register_netdevice_notifier - register a network notifier block
1326 * @nb: notifier
1328 * Register a notifier to be called when network device events occur.
1329 * The notifier passed is linked into the kernel structures and must
1330 * not be reused until it has been unregistered. A negative errno code
1331 * is returned on a failure.
1333 * When registered all registration and up events are replayed
1334 * to the new notifier to allow device to have a race free
1335 * view of the network device list.
1338 int register_netdevice_notifier(struct notifier_block *nb)
1340 struct net_device *dev;
1341 struct net_device *last;
1342 struct net *net;
1343 int err;
1345 rtnl_lock();
1346 err = raw_notifier_chain_register(&netdev_chain, nb);
1347 if (err)
1348 goto unlock;
1349 if (dev_boot_phase)
1350 goto unlock;
1351 for_each_net(net) {
1352 for_each_netdev(net, dev) {
1353 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1354 err = notifier_to_errno(err);
1355 if (err)
1356 goto rollback;
1358 if (!(dev->flags & IFF_UP))
1359 continue;
1361 nb->notifier_call(nb, NETDEV_UP, dev);
1365 unlock:
1366 rtnl_unlock();
1367 return err;
1369 rollback:
1370 last = dev;
1371 for_each_net(net) {
1372 for_each_netdev(net, dev) {
1373 if (dev == last)
1374 break;
1376 if (dev->flags & IFF_UP) {
1377 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1378 nb->notifier_call(nb, NETDEV_DOWN, dev);
1380 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1381 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1385 raw_notifier_chain_unregister(&netdev_chain, nb);
1386 goto unlock;
1388 EXPORT_SYMBOL(register_netdevice_notifier);
1391 * unregister_netdevice_notifier - unregister a network notifier block
1392 * @nb: notifier
1394 * Unregister a notifier previously registered by
1395 * register_netdevice_notifier(). The notifier is unlinked into the
1396 * kernel structures and may then be reused. A negative errno code
1397 * is returned on a failure.
1400 int unregister_netdevice_notifier(struct notifier_block *nb)
1402 int err;
1404 rtnl_lock();
1405 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1406 rtnl_unlock();
1407 return err;
1409 EXPORT_SYMBOL(unregister_netdevice_notifier);
1412 * call_netdevice_notifiers - call all network notifier blocks
1413 * @val: value passed unmodified to notifier function
1414 * @dev: net_device pointer passed unmodified to notifier function
1416 * Call all network notifier blocks. Parameters and return value
1417 * are as for raw_notifier_call_chain().
1420 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1422 return raw_notifier_call_chain(&netdev_chain, val, dev);
1425 /* When > 0 there are consumers of rx skb time stamps */
1426 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1428 void net_enable_timestamp(void)
1430 atomic_inc(&netstamp_needed);
1432 EXPORT_SYMBOL(net_enable_timestamp);
1434 void net_disable_timestamp(void)
1436 atomic_dec(&netstamp_needed);
1438 EXPORT_SYMBOL(net_disable_timestamp);
1440 static inline void net_timestamp(struct sk_buff *skb)
1442 if (atomic_read(&netstamp_needed))
1443 __net_timestamp(skb);
1444 else
1445 skb->tstamp.tv64 = 0;
1449 * dev_forward_skb - loopback an skb to another netif
1451 * @dev: destination network device
1452 * @skb: buffer to forward
1454 * return values:
1455 * NET_RX_SUCCESS (no congestion)
1456 * NET_RX_DROP (packet was dropped)
1458 * dev_forward_skb can be used for injecting an skb from the
1459 * start_xmit function of one device into the receive queue
1460 * of another device.
1462 * The receiving device may be in another namespace, so
1463 * we have to clear all information in the skb that could
1464 * impact namespace isolation.
1466 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1468 skb_orphan(skb);
1470 if (!(dev->flags & IFF_UP))
1471 return NET_RX_DROP;
1473 if (skb->len > (dev->mtu + dev->hard_header_len))
1474 return NET_RX_DROP;
1476 skb_set_dev(skb, dev);
1477 skb->tstamp.tv64 = 0;
1478 skb->pkt_type = PACKET_HOST;
1479 skb->protocol = eth_type_trans(skb, dev);
1480 return netif_rx(skb);
1482 EXPORT_SYMBOL_GPL(dev_forward_skb);
1485 * Support routine. Sends outgoing frames to any network
1486 * taps currently in use.
1489 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1491 struct packet_type *ptype;
1493 #ifdef CONFIG_NET_CLS_ACT
1494 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1495 net_timestamp(skb);
1496 #else
1497 net_timestamp(skb);
1498 #endif
1500 rcu_read_lock();
1501 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1502 /* Never send packets back to the socket
1503 * they originated from - MvS (miquels@drinkel.ow.org)
1505 if ((ptype->dev == dev || !ptype->dev) &&
1506 (ptype->af_packet_priv == NULL ||
1507 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1508 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1509 if (!skb2)
1510 break;
1512 /* skb->nh should be correctly
1513 set by sender, so that the second statement is
1514 just protection against buggy protocols.
1516 skb_reset_mac_header(skb2);
1518 if (skb_network_header(skb2) < skb2->data ||
1519 skb2->network_header > skb2->tail) {
1520 if (net_ratelimit())
1521 printk(KERN_CRIT "protocol %04x is "
1522 "buggy, dev %s\n",
1523 skb2->protocol, dev->name);
1524 skb_reset_network_header(skb2);
1527 skb2->transport_header = skb2->network_header;
1528 skb2->pkt_type = PACKET_OUTGOING;
1529 ptype->func(skb2, skb->dev, ptype, skb->dev);
1532 rcu_read_unlock();
1536 static inline void __netif_reschedule(struct Qdisc *q)
1538 struct softnet_data *sd;
1539 unsigned long flags;
1541 local_irq_save(flags);
1542 sd = &__get_cpu_var(softnet_data);
1543 q->next_sched = sd->output_queue;
1544 sd->output_queue = q;
1545 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1546 local_irq_restore(flags);
1549 void __netif_schedule(struct Qdisc *q)
1551 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1552 __netif_reschedule(q);
1554 EXPORT_SYMBOL(__netif_schedule);
1556 void dev_kfree_skb_irq(struct sk_buff *skb)
1558 if (atomic_dec_and_test(&skb->users)) {
1559 struct softnet_data *sd;
1560 unsigned long flags;
1562 local_irq_save(flags);
1563 sd = &__get_cpu_var(softnet_data);
1564 skb->next = sd->completion_queue;
1565 sd->completion_queue = skb;
1566 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1567 local_irq_restore(flags);
1570 EXPORT_SYMBOL(dev_kfree_skb_irq);
1572 void dev_kfree_skb_any(struct sk_buff *skb)
1574 if (in_irq() || irqs_disabled())
1575 dev_kfree_skb_irq(skb);
1576 else
1577 dev_kfree_skb(skb);
1579 EXPORT_SYMBOL(dev_kfree_skb_any);
1583 * netif_device_detach - mark device as removed
1584 * @dev: network device
1586 * Mark device as removed from system and therefore no longer available.
1588 void netif_device_detach(struct net_device *dev)
1590 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1591 netif_running(dev)) {
1592 netif_tx_stop_all_queues(dev);
1595 EXPORT_SYMBOL(netif_device_detach);
1598 * netif_device_attach - mark device as attached
1599 * @dev: network device
1601 * Mark device as attached from system and restart if needed.
1603 void netif_device_attach(struct net_device *dev)
1605 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1606 netif_running(dev)) {
1607 netif_tx_wake_all_queues(dev);
1608 __netdev_watchdog_up(dev);
1611 EXPORT_SYMBOL(netif_device_attach);
1613 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1615 return ((features & NETIF_F_GEN_CSUM) ||
1616 ((features & NETIF_F_IP_CSUM) &&
1617 protocol == htons(ETH_P_IP)) ||
1618 ((features & NETIF_F_IPV6_CSUM) &&
1619 protocol == htons(ETH_P_IPV6)) ||
1620 ((features & NETIF_F_FCOE_CRC) &&
1621 protocol == htons(ETH_P_FCOE)));
1624 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1626 if (can_checksum_protocol(dev->features, skb->protocol))
1627 return true;
1629 if (skb->protocol == htons(ETH_P_8021Q)) {
1630 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1631 if (can_checksum_protocol(dev->features & dev->vlan_features,
1632 veh->h_vlan_encapsulated_proto))
1633 return true;
1636 return false;
1640 * skb_dev_set -- assign a new device to a buffer
1641 * @skb: buffer for the new device
1642 * @dev: network device
1644 * If an skb is owned by a device already, we have to reset
1645 * all data private to the namespace a device belongs to
1646 * before assigning it a new device.
1648 #ifdef CONFIG_NET_NS
1649 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1651 skb_dst_drop(skb);
1652 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1653 secpath_reset(skb);
1654 nf_reset(skb);
1655 skb_init_secmark(skb);
1656 skb->mark = 0;
1657 skb->priority = 0;
1658 skb->nf_trace = 0;
1659 skb->ipvs_property = 0;
1660 #ifdef CONFIG_NET_SCHED
1661 skb->tc_index = 0;
1662 #endif
1664 skb->dev = dev;
1666 EXPORT_SYMBOL(skb_set_dev);
1667 #endif /* CONFIG_NET_NS */
1670 * Invalidate hardware checksum when packet is to be mangled, and
1671 * complete checksum manually on outgoing path.
1673 int skb_checksum_help(struct sk_buff *skb)
1675 __wsum csum;
1676 int ret = 0, offset;
1678 if (skb->ip_summed == CHECKSUM_COMPLETE)
1679 goto out_set_summed;
1681 if (unlikely(skb_shinfo(skb)->gso_size)) {
1682 /* Let GSO fix up the checksum. */
1683 goto out_set_summed;
1686 offset = skb->csum_start - skb_headroom(skb);
1687 BUG_ON(offset >= skb_headlen(skb));
1688 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1690 offset += skb->csum_offset;
1691 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1693 if (skb_cloned(skb) &&
1694 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1695 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1696 if (ret)
1697 goto out;
1700 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1701 out_set_summed:
1702 skb->ip_summed = CHECKSUM_NONE;
1703 out:
1704 return ret;
1706 EXPORT_SYMBOL(skb_checksum_help);
1709 * skb_gso_segment - Perform segmentation on skb.
1710 * @skb: buffer to segment
1711 * @features: features for the output path (see dev->features)
1713 * This function segments the given skb and returns a list of segments.
1715 * It may return NULL if the skb requires no segmentation. This is
1716 * only possible when GSO is used for verifying header integrity.
1718 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1720 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1721 struct packet_type *ptype;
1722 __be16 type = skb->protocol;
1723 int err;
1725 skb_reset_mac_header(skb);
1726 skb->mac_len = skb->network_header - skb->mac_header;
1727 __skb_pull(skb, skb->mac_len);
1729 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1730 struct net_device *dev = skb->dev;
1731 struct ethtool_drvinfo info = {};
1733 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1734 dev->ethtool_ops->get_drvinfo(dev, &info);
1736 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1737 "ip_summed=%d",
1738 info.driver, dev ? dev->features : 0L,
1739 skb->sk ? skb->sk->sk_route_caps : 0L,
1740 skb->len, skb->data_len, skb->ip_summed);
1742 if (skb_header_cloned(skb) &&
1743 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1744 return ERR_PTR(err);
1747 rcu_read_lock();
1748 list_for_each_entry_rcu(ptype,
1749 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1750 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1751 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1752 err = ptype->gso_send_check(skb);
1753 segs = ERR_PTR(err);
1754 if (err || skb_gso_ok(skb, features))
1755 break;
1756 __skb_push(skb, (skb->data -
1757 skb_network_header(skb)));
1759 segs = ptype->gso_segment(skb, features);
1760 break;
1763 rcu_read_unlock();
1765 __skb_push(skb, skb->data - skb_mac_header(skb));
1767 return segs;
1769 EXPORT_SYMBOL(skb_gso_segment);
1771 /* Take action when hardware reception checksum errors are detected. */
1772 #ifdef CONFIG_BUG
1773 void netdev_rx_csum_fault(struct net_device *dev)
1775 if (net_ratelimit()) {
1776 printk(KERN_ERR "%s: hw csum failure.\n",
1777 dev ? dev->name : "<unknown>");
1778 dump_stack();
1781 EXPORT_SYMBOL(netdev_rx_csum_fault);
1782 #endif
1784 /* Actually, we should eliminate this check as soon as we know, that:
1785 * 1. IOMMU is present and allows to map all the memory.
1786 * 2. No high memory really exists on this machine.
1789 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1791 #ifdef CONFIG_HIGHMEM
1792 int i;
1794 if (dev->features & NETIF_F_HIGHDMA)
1795 return 0;
1797 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1798 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1799 return 1;
1801 #endif
1802 return 0;
1805 struct dev_gso_cb {
1806 void (*destructor)(struct sk_buff *skb);
1809 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1811 static void dev_gso_skb_destructor(struct sk_buff *skb)
1813 struct dev_gso_cb *cb;
1815 do {
1816 struct sk_buff *nskb = skb->next;
1818 skb->next = nskb->next;
1819 nskb->next = NULL;
1820 kfree_skb(nskb);
1821 } while (skb->next);
1823 cb = DEV_GSO_CB(skb);
1824 if (cb->destructor)
1825 cb->destructor(skb);
1829 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1830 * @skb: buffer to segment
1832 * This function segments the given skb and stores the list of segments
1833 * in skb->next.
1835 static int dev_gso_segment(struct sk_buff *skb)
1837 struct net_device *dev = skb->dev;
1838 struct sk_buff *segs;
1839 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1840 NETIF_F_SG : 0);
1842 segs = skb_gso_segment(skb, features);
1844 /* Verifying header integrity only. */
1845 if (!segs)
1846 return 0;
1848 if (IS_ERR(segs))
1849 return PTR_ERR(segs);
1851 skb->next = segs;
1852 DEV_GSO_CB(skb)->destructor = skb->destructor;
1853 skb->destructor = dev_gso_skb_destructor;
1855 return 0;
1858 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1859 struct netdev_queue *txq)
1861 const struct net_device_ops *ops = dev->netdev_ops;
1862 int rc = NETDEV_TX_OK;
1864 if (likely(!skb->next)) {
1865 if (!list_empty(&ptype_all))
1866 dev_queue_xmit_nit(skb, dev);
1868 if (netif_needs_gso(dev, skb)) {
1869 if (unlikely(dev_gso_segment(skb)))
1870 goto out_kfree_skb;
1871 if (skb->next)
1872 goto gso;
1876 * If device doesnt need skb->dst, release it right now while
1877 * its hot in this cpu cache
1879 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1880 skb_dst_drop(skb);
1882 rc = ops->ndo_start_xmit(skb, dev);
1883 if (rc == NETDEV_TX_OK)
1884 txq_trans_update(txq);
1886 * TODO: if skb_orphan() was called by
1887 * dev->hard_start_xmit() (for example, the unmodified
1888 * igb driver does that; bnx2 doesn't), then
1889 * skb_tx_software_timestamp() will be unable to send
1890 * back the time stamp.
1892 * How can this be prevented? Always create another
1893 * reference to the socket before calling
1894 * dev->hard_start_xmit()? Prevent that skb_orphan()
1895 * does anything in dev->hard_start_xmit() by clearing
1896 * the skb destructor before the call and restoring it
1897 * afterwards, then doing the skb_orphan() ourselves?
1899 return rc;
1902 gso:
1903 do {
1904 struct sk_buff *nskb = skb->next;
1906 skb->next = nskb->next;
1907 nskb->next = NULL;
1910 * If device doesnt need nskb->dst, release it right now while
1911 * its hot in this cpu cache
1913 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1914 skb_dst_drop(nskb);
1916 rc = ops->ndo_start_xmit(nskb, dev);
1917 if (unlikely(rc != NETDEV_TX_OK)) {
1918 if (rc & ~NETDEV_TX_MASK)
1919 goto out_kfree_gso_skb;
1920 nskb->next = skb->next;
1921 skb->next = nskb;
1922 return rc;
1924 txq_trans_update(txq);
1925 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1926 return NETDEV_TX_BUSY;
1927 } while (skb->next);
1929 out_kfree_gso_skb:
1930 if (likely(skb->next == NULL))
1931 skb->destructor = DEV_GSO_CB(skb)->destructor;
1932 out_kfree_skb:
1933 kfree_skb(skb);
1934 return rc;
1937 static u32 hashrnd __read_mostly;
1939 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1941 u32 hash;
1943 if (skb_rx_queue_recorded(skb)) {
1944 hash = skb_get_rx_queue(skb);
1945 while (unlikely(hash >= dev->real_num_tx_queues))
1946 hash -= dev->real_num_tx_queues;
1947 return hash;
1950 if (skb->sk && skb->sk->sk_hash)
1951 hash = skb->sk->sk_hash;
1952 else
1953 hash = skb->protocol;
1955 hash = jhash_1word(hash, hashrnd);
1957 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1959 EXPORT_SYMBOL(skb_tx_hash);
1961 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1963 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1964 if (net_ratelimit()) {
1965 netdev_warn(dev, "selects TX queue %d, but "
1966 "real number of TX queues is %d\n",
1967 queue_index, dev->real_num_tx_queues);
1969 return 0;
1971 return queue_index;
1974 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1975 struct sk_buff *skb)
1977 u16 queue_index;
1978 struct sock *sk = skb->sk;
1980 if (sk_tx_queue_recorded(sk)) {
1981 queue_index = sk_tx_queue_get(sk);
1982 } else {
1983 const struct net_device_ops *ops = dev->netdev_ops;
1985 if (ops->ndo_select_queue) {
1986 queue_index = ops->ndo_select_queue(dev, skb);
1987 queue_index = dev_cap_txqueue(dev, queue_index);
1988 } else {
1989 queue_index = 0;
1990 if (dev->real_num_tx_queues > 1)
1991 queue_index = skb_tx_hash(dev, skb);
1993 if (sk && sk->sk_dst_cache)
1994 sk_tx_queue_set(sk, queue_index);
1998 skb_set_queue_mapping(skb, queue_index);
1999 return netdev_get_tx_queue(dev, queue_index);
2002 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2003 struct net_device *dev,
2004 struct netdev_queue *txq)
2006 spinlock_t *root_lock = qdisc_lock(q);
2007 int rc;
2009 spin_lock(root_lock);
2010 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2011 kfree_skb(skb);
2012 rc = NET_XMIT_DROP;
2013 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2014 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2016 * This is a work-conserving queue; there are no old skbs
2017 * waiting to be sent out; and the qdisc is not running -
2018 * xmit the skb directly.
2020 __qdisc_update_bstats(q, skb->len);
2021 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2022 __qdisc_run(q);
2023 else
2024 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2026 rc = NET_XMIT_SUCCESS;
2027 } else {
2028 rc = qdisc_enqueue_root(skb, q);
2029 qdisc_run(q);
2031 spin_unlock(root_lock);
2033 return rc;
2037 * Returns true if either:
2038 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2039 * 2. skb is fragmented and the device does not support SG, or if
2040 * at least one of fragments is in highmem and device does not
2041 * support DMA from it.
2043 static inline int skb_needs_linearize(struct sk_buff *skb,
2044 struct net_device *dev)
2046 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2047 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2048 illegal_highdma(dev, skb)));
2052 * dev_queue_xmit - transmit a buffer
2053 * @skb: buffer to transmit
2055 * Queue a buffer for transmission to a network device. The caller must
2056 * have set the device and priority and built the buffer before calling
2057 * this function. The function can be called from an interrupt.
2059 * A negative errno code is returned on a failure. A success does not
2060 * guarantee the frame will be transmitted as it may be dropped due
2061 * to congestion or traffic shaping.
2063 * -----------------------------------------------------------------------------------
2064 * I notice this method can also return errors from the queue disciplines,
2065 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2066 * be positive.
2068 * Regardless of the return value, the skb is consumed, so it is currently
2069 * difficult to retry a send to this method. (You can bump the ref count
2070 * before sending to hold a reference for retry if you are careful.)
2072 * When calling this method, interrupts MUST be enabled. This is because
2073 * the BH enable code must have IRQs enabled so that it will not deadlock.
2074 * --BLG
2076 int dev_queue_xmit(struct sk_buff *skb)
2078 struct net_device *dev = skb->dev;
2079 struct netdev_queue *txq;
2080 struct Qdisc *q;
2081 int rc = -ENOMEM;
2083 /* GSO will handle the following emulations directly. */
2084 if (netif_needs_gso(dev, skb))
2085 goto gso;
2087 /* Convert a paged skb to linear, if required */
2088 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2089 goto out_kfree_skb;
2091 /* If packet is not checksummed and device does not support
2092 * checksumming for this protocol, complete checksumming here.
2094 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2095 skb_set_transport_header(skb, skb->csum_start -
2096 skb_headroom(skb));
2097 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2098 goto out_kfree_skb;
2101 gso:
2102 /* Disable soft irqs for various locks below. Also
2103 * stops preemption for RCU.
2105 rcu_read_lock_bh();
2107 txq = dev_pick_tx(dev, skb);
2108 q = rcu_dereference_bh(txq->qdisc);
2110 #ifdef CONFIG_NET_CLS_ACT
2111 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2112 #endif
2113 if (q->enqueue) {
2114 rc = __dev_xmit_skb(skb, q, dev, txq);
2115 goto out;
2118 /* The device has no queue. Common case for software devices:
2119 loopback, all the sorts of tunnels...
2121 Really, it is unlikely that netif_tx_lock protection is necessary
2122 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2123 counters.)
2124 However, it is possible, that they rely on protection
2125 made by us here.
2127 Check this and shot the lock. It is not prone from deadlocks.
2128 Either shot noqueue qdisc, it is even simpler 8)
2130 if (dev->flags & IFF_UP) {
2131 int cpu = smp_processor_id(); /* ok because BHs are off */
2133 if (txq->xmit_lock_owner != cpu) {
2135 HARD_TX_LOCK(dev, txq, cpu);
2137 if (!netif_tx_queue_stopped(txq)) {
2138 rc = dev_hard_start_xmit(skb, dev, txq);
2139 if (dev_xmit_complete(rc)) {
2140 HARD_TX_UNLOCK(dev, txq);
2141 goto out;
2144 HARD_TX_UNLOCK(dev, txq);
2145 if (net_ratelimit())
2146 printk(KERN_CRIT "Virtual device %s asks to "
2147 "queue packet!\n", dev->name);
2148 } else {
2149 /* Recursion is detected! It is possible,
2150 * unfortunately */
2151 if (net_ratelimit())
2152 printk(KERN_CRIT "Dead loop on virtual device "
2153 "%s, fix it urgently!\n", dev->name);
2157 rc = -ENETDOWN;
2158 rcu_read_unlock_bh();
2160 out_kfree_skb:
2161 kfree_skb(skb);
2162 return rc;
2163 out:
2164 rcu_read_unlock_bh();
2165 return rc;
2167 EXPORT_SYMBOL(dev_queue_xmit);
2170 /*=======================================================================
2171 Receiver routines
2172 =======================================================================*/
2174 int netdev_max_backlog __read_mostly = 1000;
2175 int netdev_budget __read_mostly = 300;
2176 int weight_p __read_mostly = 64; /* old backlog weight */
2178 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2180 #ifdef CONFIG_RPS
2182 * get_rps_cpu is called from netif_receive_skb and returns the target
2183 * CPU from the RPS map of the receiving queue for a given skb.
2185 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb)
2187 struct ipv6hdr *ip6;
2188 struct iphdr *ip;
2189 struct netdev_rx_queue *rxqueue;
2190 struct rps_map *map;
2191 int cpu = -1;
2192 u8 ip_proto;
2193 u32 addr1, addr2, ports, ihl;
2195 rcu_read_lock();
2197 if (skb_rx_queue_recorded(skb)) {
2198 u16 index = skb_get_rx_queue(skb);
2199 if (unlikely(index >= dev->num_rx_queues)) {
2200 if (net_ratelimit()) {
2201 netdev_warn(dev, "received packet on queue "
2202 "%u, but number of RX queues is %u\n",
2203 index, dev->num_rx_queues);
2205 goto done;
2207 rxqueue = dev->_rx + index;
2208 } else
2209 rxqueue = dev->_rx;
2211 if (!rxqueue->rps_map)
2212 goto done;
2214 if (skb->rxhash)
2215 goto got_hash; /* Skip hash computation on packet header */
2217 switch (skb->protocol) {
2218 case __constant_htons(ETH_P_IP):
2219 if (!pskb_may_pull(skb, sizeof(*ip)))
2220 goto done;
2222 ip = (struct iphdr *) skb->data;
2223 ip_proto = ip->protocol;
2224 addr1 = ip->saddr;
2225 addr2 = ip->daddr;
2226 ihl = ip->ihl;
2227 break;
2228 case __constant_htons(ETH_P_IPV6):
2229 if (!pskb_may_pull(skb, sizeof(*ip6)))
2230 goto done;
2232 ip6 = (struct ipv6hdr *) skb->data;
2233 ip_proto = ip6->nexthdr;
2234 addr1 = ip6->saddr.s6_addr32[3];
2235 addr2 = ip6->daddr.s6_addr32[3];
2236 ihl = (40 >> 2);
2237 break;
2238 default:
2239 goto done;
2241 ports = 0;
2242 switch (ip_proto) {
2243 case IPPROTO_TCP:
2244 case IPPROTO_UDP:
2245 case IPPROTO_DCCP:
2246 case IPPROTO_ESP:
2247 case IPPROTO_AH:
2248 case IPPROTO_SCTP:
2249 case IPPROTO_UDPLITE:
2250 if (pskb_may_pull(skb, (ihl * 4) + 4))
2251 ports = *((u32 *) (skb->data + (ihl * 4)));
2252 break;
2254 default:
2255 break;
2258 skb->rxhash = jhash_3words(addr1, addr2, ports, hashrnd);
2259 if (!skb->rxhash)
2260 skb->rxhash = 1;
2262 got_hash:
2263 map = rcu_dereference(rxqueue->rps_map);
2264 if (map) {
2265 u16 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2267 if (cpu_online(tcpu)) {
2268 cpu = tcpu;
2269 goto done;
2273 done:
2274 rcu_read_unlock();
2275 return cpu;
2279 * This structure holds the per-CPU mask of CPUs for which IPIs are scheduled
2280 * to be sent to kick remote softirq processing. There are two masks since
2281 * the sending of IPIs must be done with interrupts enabled. The select field
2282 * indicates the current mask that enqueue_backlog uses to schedule IPIs.
2283 * select is flipped before net_rps_action is called while still under lock,
2284 * net_rps_action then uses the non-selected mask to send the IPIs and clears
2285 * it without conflicting with enqueue_backlog operation.
2287 struct rps_remote_softirq_cpus {
2288 cpumask_t mask[2];
2289 int select;
2291 static DEFINE_PER_CPU(struct rps_remote_softirq_cpus, rps_remote_softirq_cpus);
2293 /* Called from hardirq (IPI) context */
2294 static void trigger_softirq(void *data)
2296 struct softnet_data *queue = data;
2297 __napi_schedule(&queue->backlog);
2298 __get_cpu_var(netdev_rx_stat).received_rps++;
2300 #endif /* CONFIG_SMP */
2303 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2304 * queue (may be a remote CPU queue).
2306 static int enqueue_to_backlog(struct sk_buff *skb, int cpu)
2308 struct softnet_data *queue;
2309 unsigned long flags;
2311 queue = &per_cpu(softnet_data, cpu);
2313 local_irq_save(flags);
2314 __get_cpu_var(netdev_rx_stat).total++;
2316 spin_lock(&queue->input_pkt_queue.lock);
2317 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2318 if (queue->input_pkt_queue.qlen) {
2319 enqueue:
2320 __skb_queue_tail(&queue->input_pkt_queue, skb);
2321 spin_unlock_irqrestore(&queue->input_pkt_queue.lock,
2322 flags);
2323 return NET_RX_SUCCESS;
2326 /* Schedule NAPI for backlog device */
2327 if (napi_schedule_prep(&queue->backlog)) {
2328 #ifdef CONFIG_RPS
2329 if (cpu != smp_processor_id()) {
2330 struct rps_remote_softirq_cpus *rcpus =
2331 &__get_cpu_var(rps_remote_softirq_cpus);
2333 cpu_set(cpu, rcpus->mask[rcpus->select]);
2334 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2335 } else
2336 __napi_schedule(&queue->backlog);
2337 #else
2338 __napi_schedule(&queue->backlog);
2339 #endif
2341 goto enqueue;
2344 spin_unlock(&queue->input_pkt_queue.lock);
2346 __get_cpu_var(netdev_rx_stat).dropped++;
2347 local_irq_restore(flags);
2349 kfree_skb(skb);
2350 return NET_RX_DROP;
2354 * netif_rx - post buffer to the network code
2355 * @skb: buffer to post
2357 * This function receives a packet from a device driver and queues it for
2358 * the upper (protocol) levels to process. It always succeeds. The buffer
2359 * may be dropped during processing for congestion control or by the
2360 * protocol layers.
2362 * return values:
2363 * NET_RX_SUCCESS (no congestion)
2364 * NET_RX_DROP (packet was dropped)
2368 int netif_rx(struct sk_buff *skb)
2370 int cpu;
2372 /* if netpoll wants it, pretend we never saw it */
2373 if (netpoll_rx(skb))
2374 return NET_RX_DROP;
2376 if (!skb->tstamp.tv64)
2377 net_timestamp(skb);
2379 #ifdef CONFIG_RPS
2380 cpu = get_rps_cpu(skb->dev, skb);
2381 if (cpu < 0)
2382 cpu = smp_processor_id();
2383 #else
2384 cpu = smp_processor_id();
2385 #endif
2387 return enqueue_to_backlog(skb, cpu);
2389 EXPORT_SYMBOL(netif_rx);
2391 int netif_rx_ni(struct sk_buff *skb)
2393 int err;
2395 preempt_disable();
2396 err = netif_rx(skb);
2397 if (local_softirq_pending())
2398 do_softirq();
2399 preempt_enable();
2401 return err;
2403 EXPORT_SYMBOL(netif_rx_ni);
2405 static void net_tx_action(struct softirq_action *h)
2407 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2409 if (sd->completion_queue) {
2410 struct sk_buff *clist;
2412 local_irq_disable();
2413 clist = sd->completion_queue;
2414 sd->completion_queue = NULL;
2415 local_irq_enable();
2417 while (clist) {
2418 struct sk_buff *skb = clist;
2419 clist = clist->next;
2421 WARN_ON(atomic_read(&skb->users));
2422 __kfree_skb(skb);
2426 if (sd->output_queue) {
2427 struct Qdisc *head;
2429 local_irq_disable();
2430 head = sd->output_queue;
2431 sd->output_queue = NULL;
2432 local_irq_enable();
2434 while (head) {
2435 struct Qdisc *q = head;
2436 spinlock_t *root_lock;
2438 head = head->next_sched;
2440 root_lock = qdisc_lock(q);
2441 if (spin_trylock(root_lock)) {
2442 smp_mb__before_clear_bit();
2443 clear_bit(__QDISC_STATE_SCHED,
2444 &q->state);
2445 qdisc_run(q);
2446 spin_unlock(root_lock);
2447 } else {
2448 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2449 &q->state)) {
2450 __netif_reschedule(q);
2451 } else {
2452 smp_mb__before_clear_bit();
2453 clear_bit(__QDISC_STATE_SCHED,
2454 &q->state);
2461 static inline int deliver_skb(struct sk_buff *skb,
2462 struct packet_type *pt_prev,
2463 struct net_device *orig_dev)
2465 atomic_inc(&skb->users);
2466 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2469 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2471 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2472 /* This hook is defined here for ATM LANE */
2473 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2474 unsigned char *addr) __read_mostly;
2475 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2476 #endif
2479 * If bridge module is loaded call bridging hook.
2480 * returns NULL if packet was consumed.
2482 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2483 struct sk_buff *skb) __read_mostly;
2484 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2486 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2487 struct packet_type **pt_prev, int *ret,
2488 struct net_device *orig_dev)
2490 struct net_bridge_port *port;
2492 if (skb->pkt_type == PACKET_LOOPBACK ||
2493 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2494 return skb;
2496 if (*pt_prev) {
2497 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2498 *pt_prev = NULL;
2501 return br_handle_frame_hook(port, skb);
2503 #else
2504 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2505 #endif
2507 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2508 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2509 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2511 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2512 struct packet_type **pt_prev,
2513 int *ret,
2514 struct net_device *orig_dev)
2516 if (skb->dev->macvlan_port == NULL)
2517 return skb;
2519 if (*pt_prev) {
2520 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2521 *pt_prev = NULL;
2523 return macvlan_handle_frame_hook(skb);
2525 #else
2526 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2527 #endif
2529 #ifdef CONFIG_NET_CLS_ACT
2530 /* TODO: Maybe we should just force sch_ingress to be compiled in
2531 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2532 * a compare and 2 stores extra right now if we dont have it on
2533 * but have CONFIG_NET_CLS_ACT
2534 * NOTE: This doesnt stop any functionality; if you dont have
2535 * the ingress scheduler, you just cant add policies on ingress.
2538 static int ing_filter(struct sk_buff *skb)
2540 struct net_device *dev = skb->dev;
2541 u32 ttl = G_TC_RTTL(skb->tc_verd);
2542 struct netdev_queue *rxq;
2543 int result = TC_ACT_OK;
2544 struct Qdisc *q;
2546 if (MAX_RED_LOOP < ttl++) {
2547 printk(KERN_WARNING
2548 "Redir loop detected Dropping packet (%d->%d)\n",
2549 skb->skb_iif, dev->ifindex);
2550 return TC_ACT_SHOT;
2553 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2554 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2556 rxq = &dev->rx_queue;
2558 q = rxq->qdisc;
2559 if (q != &noop_qdisc) {
2560 spin_lock(qdisc_lock(q));
2561 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2562 result = qdisc_enqueue_root(skb, q);
2563 spin_unlock(qdisc_lock(q));
2566 return result;
2569 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2570 struct packet_type **pt_prev,
2571 int *ret, struct net_device *orig_dev)
2573 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2574 goto out;
2576 if (*pt_prev) {
2577 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2578 *pt_prev = NULL;
2579 } else {
2580 /* Huh? Why does turning on AF_PACKET affect this? */
2581 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2584 switch (ing_filter(skb)) {
2585 case TC_ACT_SHOT:
2586 case TC_ACT_STOLEN:
2587 kfree_skb(skb);
2588 return NULL;
2591 out:
2592 skb->tc_verd = 0;
2593 return skb;
2595 #endif
2598 * netif_nit_deliver - deliver received packets to network taps
2599 * @skb: buffer
2601 * This function is used to deliver incoming packets to network
2602 * taps. It should be used when the normal netif_receive_skb path
2603 * is bypassed, for example because of VLAN acceleration.
2605 void netif_nit_deliver(struct sk_buff *skb)
2607 struct packet_type *ptype;
2609 if (list_empty(&ptype_all))
2610 return;
2612 skb_reset_network_header(skb);
2613 skb_reset_transport_header(skb);
2614 skb->mac_len = skb->network_header - skb->mac_header;
2616 rcu_read_lock();
2617 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2618 if (!ptype->dev || ptype->dev == skb->dev)
2619 deliver_skb(skb, ptype, skb->dev);
2621 rcu_read_unlock();
2624 int __netif_receive_skb(struct sk_buff *skb)
2626 struct packet_type *ptype, *pt_prev;
2627 struct net_device *orig_dev;
2628 struct net_device *master;
2629 struct net_device *null_or_orig;
2630 struct net_device *null_or_bond;
2631 int ret = NET_RX_DROP;
2632 __be16 type;
2634 if (!skb->tstamp.tv64)
2635 net_timestamp(skb);
2637 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2638 return NET_RX_SUCCESS;
2640 /* if we've gotten here through NAPI, check netpoll */
2641 if (netpoll_receive_skb(skb))
2642 return NET_RX_DROP;
2644 if (!skb->skb_iif)
2645 skb->skb_iif = skb->dev->ifindex;
2647 null_or_orig = NULL;
2648 orig_dev = skb->dev;
2649 master = ACCESS_ONCE(orig_dev->master);
2650 if (master) {
2651 if (skb_bond_should_drop(skb, master))
2652 null_or_orig = orig_dev; /* deliver only exact match */
2653 else
2654 skb->dev = master;
2657 __get_cpu_var(netdev_rx_stat).total++;
2659 skb_reset_network_header(skb);
2660 skb_reset_transport_header(skb);
2661 skb->mac_len = skb->network_header - skb->mac_header;
2663 pt_prev = NULL;
2665 rcu_read_lock();
2667 #ifdef CONFIG_NET_CLS_ACT
2668 if (skb->tc_verd & TC_NCLS) {
2669 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2670 goto ncls;
2672 #endif
2674 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2675 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2676 ptype->dev == orig_dev) {
2677 if (pt_prev)
2678 ret = deliver_skb(skb, pt_prev, orig_dev);
2679 pt_prev = ptype;
2683 #ifdef CONFIG_NET_CLS_ACT
2684 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2685 if (!skb)
2686 goto out;
2687 ncls:
2688 #endif
2690 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2691 if (!skb)
2692 goto out;
2693 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2694 if (!skb)
2695 goto out;
2698 * Make sure frames received on VLAN interfaces stacked on
2699 * bonding interfaces still make their way to any base bonding
2700 * device that may have registered for a specific ptype. The
2701 * handler may have to adjust skb->dev and orig_dev.
2703 null_or_bond = NULL;
2704 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2705 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2706 null_or_bond = vlan_dev_real_dev(skb->dev);
2709 type = skb->protocol;
2710 list_for_each_entry_rcu(ptype,
2711 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2712 if (ptype->type == type && (ptype->dev == null_or_orig ||
2713 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2714 ptype->dev == null_or_bond)) {
2715 if (pt_prev)
2716 ret = deliver_skb(skb, pt_prev, orig_dev);
2717 pt_prev = ptype;
2721 if (pt_prev) {
2722 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2723 } else {
2724 kfree_skb(skb);
2725 /* Jamal, now you will not able to escape explaining
2726 * me how you were going to use this. :-)
2728 ret = NET_RX_DROP;
2731 out:
2732 rcu_read_unlock();
2733 return ret;
2737 * netif_receive_skb - process receive buffer from network
2738 * @skb: buffer to process
2740 * netif_receive_skb() is the main receive data processing function.
2741 * It always succeeds. The buffer may be dropped during processing
2742 * for congestion control or by the protocol layers.
2744 * This function may only be called from softirq context and interrupts
2745 * should be enabled.
2747 * Return values (usually ignored):
2748 * NET_RX_SUCCESS: no congestion
2749 * NET_RX_DROP: packet was dropped
2751 int netif_receive_skb(struct sk_buff *skb)
2753 #ifdef CONFIG_RPS
2754 int cpu;
2756 cpu = get_rps_cpu(skb->dev, skb);
2758 if (cpu < 0)
2759 return __netif_receive_skb(skb);
2760 else
2761 return enqueue_to_backlog(skb, cpu);
2762 #else
2763 return __netif_receive_skb(skb);
2764 #endif
2766 EXPORT_SYMBOL(netif_receive_skb);
2768 /* Network device is going away, flush any packets still pending */
2769 static void flush_backlog(struct net_device *dev, int cpu)
2771 struct softnet_data *queue = &per_cpu(softnet_data, cpu);
2772 struct sk_buff *skb, *tmp;
2773 unsigned long flags;
2775 spin_lock_irqsave(&queue->input_pkt_queue.lock, flags);
2776 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2777 if (skb->dev == dev) {
2778 __skb_unlink(skb, &queue->input_pkt_queue);
2779 kfree_skb(skb);
2781 spin_unlock_irqrestore(&queue->input_pkt_queue.lock, flags);
2784 static int napi_gro_complete(struct sk_buff *skb)
2786 struct packet_type *ptype;
2787 __be16 type = skb->protocol;
2788 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2789 int err = -ENOENT;
2791 if (NAPI_GRO_CB(skb)->count == 1) {
2792 skb_shinfo(skb)->gso_size = 0;
2793 goto out;
2796 rcu_read_lock();
2797 list_for_each_entry_rcu(ptype, head, list) {
2798 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2799 continue;
2801 err = ptype->gro_complete(skb);
2802 break;
2804 rcu_read_unlock();
2806 if (err) {
2807 WARN_ON(&ptype->list == head);
2808 kfree_skb(skb);
2809 return NET_RX_SUCCESS;
2812 out:
2813 return netif_receive_skb(skb);
2816 static void napi_gro_flush(struct napi_struct *napi)
2818 struct sk_buff *skb, *next;
2820 for (skb = napi->gro_list; skb; skb = next) {
2821 next = skb->next;
2822 skb->next = NULL;
2823 napi_gro_complete(skb);
2826 napi->gro_count = 0;
2827 napi->gro_list = NULL;
2830 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2832 struct sk_buff **pp = NULL;
2833 struct packet_type *ptype;
2834 __be16 type = skb->protocol;
2835 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2836 int same_flow;
2837 int mac_len;
2838 enum gro_result ret;
2840 if (!(skb->dev->features & NETIF_F_GRO))
2841 goto normal;
2843 if (skb_is_gso(skb) || skb_has_frags(skb))
2844 goto normal;
2846 rcu_read_lock();
2847 list_for_each_entry_rcu(ptype, head, list) {
2848 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2849 continue;
2851 skb_set_network_header(skb, skb_gro_offset(skb));
2852 mac_len = skb->network_header - skb->mac_header;
2853 skb->mac_len = mac_len;
2854 NAPI_GRO_CB(skb)->same_flow = 0;
2855 NAPI_GRO_CB(skb)->flush = 0;
2856 NAPI_GRO_CB(skb)->free = 0;
2858 pp = ptype->gro_receive(&napi->gro_list, skb);
2859 break;
2861 rcu_read_unlock();
2863 if (&ptype->list == head)
2864 goto normal;
2866 same_flow = NAPI_GRO_CB(skb)->same_flow;
2867 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2869 if (pp) {
2870 struct sk_buff *nskb = *pp;
2872 *pp = nskb->next;
2873 nskb->next = NULL;
2874 napi_gro_complete(nskb);
2875 napi->gro_count--;
2878 if (same_flow)
2879 goto ok;
2881 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2882 goto normal;
2884 napi->gro_count++;
2885 NAPI_GRO_CB(skb)->count = 1;
2886 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2887 skb->next = napi->gro_list;
2888 napi->gro_list = skb;
2889 ret = GRO_HELD;
2891 pull:
2892 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2893 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2895 BUG_ON(skb->end - skb->tail < grow);
2897 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2899 skb->tail += grow;
2900 skb->data_len -= grow;
2902 skb_shinfo(skb)->frags[0].page_offset += grow;
2903 skb_shinfo(skb)->frags[0].size -= grow;
2905 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2906 put_page(skb_shinfo(skb)->frags[0].page);
2907 memmove(skb_shinfo(skb)->frags,
2908 skb_shinfo(skb)->frags + 1,
2909 --skb_shinfo(skb)->nr_frags);
2914 return ret;
2916 normal:
2917 ret = GRO_NORMAL;
2918 goto pull;
2920 EXPORT_SYMBOL(dev_gro_receive);
2922 static gro_result_t
2923 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2925 struct sk_buff *p;
2927 if (netpoll_rx_on(skb))
2928 return GRO_NORMAL;
2930 for (p = napi->gro_list; p; p = p->next) {
2931 NAPI_GRO_CB(p)->same_flow =
2932 (p->dev == skb->dev) &&
2933 !compare_ether_header(skb_mac_header(p),
2934 skb_gro_mac_header(skb));
2935 NAPI_GRO_CB(p)->flush = 0;
2938 return dev_gro_receive(napi, skb);
2941 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
2943 switch (ret) {
2944 case GRO_NORMAL:
2945 if (netif_receive_skb(skb))
2946 ret = GRO_DROP;
2947 break;
2949 case GRO_DROP:
2950 case GRO_MERGED_FREE:
2951 kfree_skb(skb);
2952 break;
2954 case GRO_HELD:
2955 case GRO_MERGED:
2956 break;
2959 return ret;
2961 EXPORT_SYMBOL(napi_skb_finish);
2963 void skb_gro_reset_offset(struct sk_buff *skb)
2965 NAPI_GRO_CB(skb)->data_offset = 0;
2966 NAPI_GRO_CB(skb)->frag0 = NULL;
2967 NAPI_GRO_CB(skb)->frag0_len = 0;
2969 if (skb->mac_header == skb->tail &&
2970 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2971 NAPI_GRO_CB(skb)->frag0 =
2972 page_address(skb_shinfo(skb)->frags[0].page) +
2973 skb_shinfo(skb)->frags[0].page_offset;
2974 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2977 EXPORT_SYMBOL(skb_gro_reset_offset);
2979 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2981 skb_gro_reset_offset(skb);
2983 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2985 EXPORT_SYMBOL(napi_gro_receive);
2987 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2989 __skb_pull(skb, skb_headlen(skb));
2990 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2992 napi->skb = skb;
2994 EXPORT_SYMBOL(napi_reuse_skb);
2996 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2998 struct sk_buff *skb = napi->skb;
3000 if (!skb) {
3001 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3002 if (skb)
3003 napi->skb = skb;
3005 return skb;
3007 EXPORT_SYMBOL(napi_get_frags);
3009 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3010 gro_result_t ret)
3012 switch (ret) {
3013 case GRO_NORMAL:
3014 case GRO_HELD:
3015 skb->protocol = eth_type_trans(skb, skb->dev);
3017 if (ret == GRO_HELD)
3018 skb_gro_pull(skb, -ETH_HLEN);
3019 else if (netif_receive_skb(skb))
3020 ret = GRO_DROP;
3021 break;
3023 case GRO_DROP:
3024 case GRO_MERGED_FREE:
3025 napi_reuse_skb(napi, skb);
3026 break;
3028 case GRO_MERGED:
3029 break;
3032 return ret;
3034 EXPORT_SYMBOL(napi_frags_finish);
3036 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3038 struct sk_buff *skb = napi->skb;
3039 struct ethhdr *eth;
3040 unsigned int hlen;
3041 unsigned int off;
3043 napi->skb = NULL;
3045 skb_reset_mac_header(skb);
3046 skb_gro_reset_offset(skb);
3048 off = skb_gro_offset(skb);
3049 hlen = off + sizeof(*eth);
3050 eth = skb_gro_header_fast(skb, off);
3051 if (skb_gro_header_hard(skb, hlen)) {
3052 eth = skb_gro_header_slow(skb, hlen, off);
3053 if (unlikely(!eth)) {
3054 napi_reuse_skb(napi, skb);
3055 skb = NULL;
3056 goto out;
3060 skb_gro_pull(skb, sizeof(*eth));
3063 * This works because the only protocols we care about don't require
3064 * special handling. We'll fix it up properly at the end.
3066 skb->protocol = eth->h_proto;
3068 out:
3069 return skb;
3071 EXPORT_SYMBOL(napi_frags_skb);
3073 gro_result_t napi_gro_frags(struct napi_struct *napi)
3075 struct sk_buff *skb = napi_frags_skb(napi);
3077 if (!skb)
3078 return GRO_DROP;
3080 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3082 EXPORT_SYMBOL(napi_gro_frags);
3084 static int process_backlog(struct napi_struct *napi, int quota)
3086 int work = 0;
3087 struct softnet_data *queue = &__get_cpu_var(softnet_data);
3088 unsigned long start_time = jiffies;
3090 napi->weight = weight_p;
3091 do {
3092 struct sk_buff *skb;
3094 spin_lock_irq(&queue->input_pkt_queue.lock);
3095 skb = __skb_dequeue(&queue->input_pkt_queue);
3096 if (!skb) {
3097 __napi_complete(napi);
3098 spin_unlock_irq(&queue->input_pkt_queue.lock);
3099 break;
3101 spin_unlock_irq(&queue->input_pkt_queue.lock);
3103 __netif_receive_skb(skb);
3104 } while (++work < quota && jiffies == start_time);
3106 return work;
3110 * __napi_schedule - schedule for receive
3111 * @n: entry to schedule
3113 * The entry's receive function will be scheduled to run
3115 void __napi_schedule(struct napi_struct *n)
3117 unsigned long flags;
3119 local_irq_save(flags);
3120 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
3121 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3122 local_irq_restore(flags);
3124 EXPORT_SYMBOL(__napi_schedule);
3126 void __napi_complete(struct napi_struct *n)
3128 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3129 BUG_ON(n->gro_list);
3131 list_del(&n->poll_list);
3132 smp_mb__before_clear_bit();
3133 clear_bit(NAPI_STATE_SCHED, &n->state);
3135 EXPORT_SYMBOL(__napi_complete);
3137 void napi_complete(struct napi_struct *n)
3139 unsigned long flags;
3142 * don't let napi dequeue from the cpu poll list
3143 * just in case its running on a different cpu
3145 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3146 return;
3148 napi_gro_flush(n);
3149 local_irq_save(flags);
3150 __napi_complete(n);
3151 local_irq_restore(flags);
3153 EXPORT_SYMBOL(napi_complete);
3155 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3156 int (*poll)(struct napi_struct *, int), int weight)
3158 INIT_LIST_HEAD(&napi->poll_list);
3159 napi->gro_count = 0;
3160 napi->gro_list = NULL;
3161 napi->skb = NULL;
3162 napi->poll = poll;
3163 napi->weight = weight;
3164 list_add(&napi->dev_list, &dev->napi_list);
3165 napi->dev = dev;
3166 #ifdef CONFIG_NETPOLL
3167 spin_lock_init(&napi->poll_lock);
3168 napi->poll_owner = -1;
3169 #endif
3170 set_bit(NAPI_STATE_SCHED, &napi->state);
3172 EXPORT_SYMBOL(netif_napi_add);
3174 void netif_napi_del(struct napi_struct *napi)
3176 struct sk_buff *skb, *next;
3178 list_del_init(&napi->dev_list);
3179 napi_free_frags(napi);
3181 for (skb = napi->gro_list; skb; skb = next) {
3182 next = skb->next;
3183 skb->next = NULL;
3184 kfree_skb(skb);
3187 napi->gro_list = NULL;
3188 napi->gro_count = 0;
3190 EXPORT_SYMBOL(netif_napi_del);
3192 #ifdef CONFIG_RPS
3194 * net_rps_action sends any pending IPI's for rps. This is only called from
3195 * softirq and interrupts must be enabled.
3197 static void net_rps_action(cpumask_t *mask)
3199 int cpu;
3201 /* Send pending IPI's to kick RPS processing on remote cpus. */
3202 for_each_cpu_mask_nr(cpu, *mask) {
3203 struct softnet_data *queue = &per_cpu(softnet_data, cpu);
3204 if (cpu_online(cpu))
3205 __smp_call_function_single(cpu, &queue->csd, 0);
3207 cpus_clear(*mask);
3209 #endif
3211 static void net_rx_action(struct softirq_action *h)
3213 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
3214 unsigned long time_limit = jiffies + 2;
3215 int budget = netdev_budget;
3216 void *have;
3217 #ifdef CONFIG_RPS
3218 int select;
3219 struct rps_remote_softirq_cpus *rcpus;
3220 #endif
3222 local_irq_disable();
3224 while (!list_empty(list)) {
3225 struct napi_struct *n;
3226 int work, weight;
3228 /* If softirq window is exhuasted then punt.
3229 * Allow this to run for 2 jiffies since which will allow
3230 * an average latency of 1.5/HZ.
3232 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3233 goto softnet_break;
3235 local_irq_enable();
3237 /* Even though interrupts have been re-enabled, this
3238 * access is safe because interrupts can only add new
3239 * entries to the tail of this list, and only ->poll()
3240 * calls can remove this head entry from the list.
3242 n = list_first_entry(list, struct napi_struct, poll_list);
3244 have = netpoll_poll_lock(n);
3246 weight = n->weight;
3248 /* This NAPI_STATE_SCHED test is for avoiding a race
3249 * with netpoll's poll_napi(). Only the entity which
3250 * obtains the lock and sees NAPI_STATE_SCHED set will
3251 * actually make the ->poll() call. Therefore we avoid
3252 * accidently calling ->poll() when NAPI is not scheduled.
3254 work = 0;
3255 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3256 work = n->poll(n, weight);
3257 trace_napi_poll(n);
3260 WARN_ON_ONCE(work > weight);
3262 budget -= work;
3264 local_irq_disable();
3266 /* Drivers must not modify the NAPI state if they
3267 * consume the entire weight. In such cases this code
3268 * still "owns" the NAPI instance and therefore can
3269 * move the instance around on the list at-will.
3271 if (unlikely(work == weight)) {
3272 if (unlikely(napi_disable_pending(n))) {
3273 local_irq_enable();
3274 napi_complete(n);
3275 local_irq_disable();
3276 } else
3277 list_move_tail(&n->poll_list, list);
3280 netpoll_poll_unlock(have);
3282 out:
3283 #ifdef CONFIG_RPS
3284 rcpus = &__get_cpu_var(rps_remote_softirq_cpus);
3285 select = rcpus->select;
3286 rcpus->select ^= 1;
3288 local_irq_enable();
3290 net_rps_action(&rcpus->mask[select]);
3291 #else
3292 local_irq_enable();
3293 #endif
3295 #ifdef CONFIG_NET_DMA
3297 * There may not be any more sk_buffs coming right now, so push
3298 * any pending DMA copies to hardware
3300 dma_issue_pending_all();
3301 #endif
3303 return;
3305 softnet_break:
3306 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3307 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3308 goto out;
3311 static gifconf_func_t *gifconf_list[NPROTO];
3314 * register_gifconf - register a SIOCGIF handler
3315 * @family: Address family
3316 * @gifconf: Function handler
3318 * Register protocol dependent address dumping routines. The handler
3319 * that is passed must not be freed or reused until it has been replaced
3320 * by another handler.
3322 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3324 if (family >= NPROTO)
3325 return -EINVAL;
3326 gifconf_list[family] = gifconf;
3327 return 0;
3329 EXPORT_SYMBOL(register_gifconf);
3333 * Map an interface index to its name (SIOCGIFNAME)
3337 * We need this ioctl for efficient implementation of the
3338 * if_indextoname() function required by the IPv6 API. Without
3339 * it, we would have to search all the interfaces to find a
3340 * match. --pb
3343 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3345 struct net_device *dev;
3346 struct ifreq ifr;
3349 * Fetch the caller's info block.
3352 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3353 return -EFAULT;
3355 rcu_read_lock();
3356 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3357 if (!dev) {
3358 rcu_read_unlock();
3359 return -ENODEV;
3362 strcpy(ifr.ifr_name, dev->name);
3363 rcu_read_unlock();
3365 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3366 return -EFAULT;
3367 return 0;
3371 * Perform a SIOCGIFCONF call. This structure will change
3372 * size eventually, and there is nothing I can do about it.
3373 * Thus we will need a 'compatibility mode'.
3376 static int dev_ifconf(struct net *net, char __user *arg)
3378 struct ifconf ifc;
3379 struct net_device *dev;
3380 char __user *pos;
3381 int len;
3382 int total;
3383 int i;
3386 * Fetch the caller's info block.
3389 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3390 return -EFAULT;
3392 pos = ifc.ifc_buf;
3393 len = ifc.ifc_len;
3396 * Loop over the interfaces, and write an info block for each.
3399 total = 0;
3400 for_each_netdev(net, dev) {
3401 for (i = 0; i < NPROTO; i++) {
3402 if (gifconf_list[i]) {
3403 int done;
3404 if (!pos)
3405 done = gifconf_list[i](dev, NULL, 0);
3406 else
3407 done = gifconf_list[i](dev, pos + total,
3408 len - total);
3409 if (done < 0)
3410 return -EFAULT;
3411 total += done;
3417 * All done. Write the updated control block back to the caller.
3419 ifc.ifc_len = total;
3422 * Both BSD and Solaris return 0 here, so we do too.
3424 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3427 #ifdef CONFIG_PROC_FS
3429 * This is invoked by the /proc filesystem handler to display a device
3430 * in detail.
3432 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3433 __acquires(RCU)
3435 struct net *net = seq_file_net(seq);
3436 loff_t off;
3437 struct net_device *dev;
3439 rcu_read_lock();
3440 if (!*pos)
3441 return SEQ_START_TOKEN;
3443 off = 1;
3444 for_each_netdev_rcu(net, dev)
3445 if (off++ == *pos)
3446 return dev;
3448 return NULL;
3451 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3453 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3454 first_net_device(seq_file_net(seq)) :
3455 next_net_device((struct net_device *)v);
3457 ++*pos;
3458 return rcu_dereference(dev);
3461 void dev_seq_stop(struct seq_file *seq, void *v)
3462 __releases(RCU)
3464 rcu_read_unlock();
3467 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3469 const struct net_device_stats *stats = dev_get_stats(dev);
3471 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3472 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3473 dev->name, stats->rx_bytes, stats->rx_packets,
3474 stats->rx_errors,
3475 stats->rx_dropped + stats->rx_missed_errors,
3476 stats->rx_fifo_errors,
3477 stats->rx_length_errors + stats->rx_over_errors +
3478 stats->rx_crc_errors + stats->rx_frame_errors,
3479 stats->rx_compressed, stats->multicast,
3480 stats->tx_bytes, stats->tx_packets,
3481 stats->tx_errors, stats->tx_dropped,
3482 stats->tx_fifo_errors, stats->collisions,
3483 stats->tx_carrier_errors +
3484 stats->tx_aborted_errors +
3485 stats->tx_window_errors +
3486 stats->tx_heartbeat_errors,
3487 stats->tx_compressed);
3491 * Called from the PROCfs module. This now uses the new arbitrary sized
3492 * /proc/net interface to create /proc/net/dev
3494 static int dev_seq_show(struct seq_file *seq, void *v)
3496 if (v == SEQ_START_TOKEN)
3497 seq_puts(seq, "Inter-| Receive "
3498 " | Transmit\n"
3499 " face |bytes packets errs drop fifo frame "
3500 "compressed multicast|bytes packets errs "
3501 "drop fifo colls carrier compressed\n");
3502 else
3503 dev_seq_printf_stats(seq, v);
3504 return 0;
3507 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3509 struct netif_rx_stats *rc = NULL;
3511 while (*pos < nr_cpu_ids)
3512 if (cpu_online(*pos)) {
3513 rc = &per_cpu(netdev_rx_stat, *pos);
3514 break;
3515 } else
3516 ++*pos;
3517 return rc;
3520 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3522 return softnet_get_online(pos);
3525 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3527 ++*pos;
3528 return softnet_get_online(pos);
3531 static void softnet_seq_stop(struct seq_file *seq, void *v)
3535 static int softnet_seq_show(struct seq_file *seq, void *v)
3537 struct netif_rx_stats *s = v;
3539 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3540 s->total, s->dropped, s->time_squeeze, 0,
3541 0, 0, 0, 0, /* was fastroute */
3542 s->cpu_collision, s->received_rps);
3543 return 0;
3546 static const struct seq_operations dev_seq_ops = {
3547 .start = dev_seq_start,
3548 .next = dev_seq_next,
3549 .stop = dev_seq_stop,
3550 .show = dev_seq_show,
3553 static int dev_seq_open(struct inode *inode, struct file *file)
3555 return seq_open_net(inode, file, &dev_seq_ops,
3556 sizeof(struct seq_net_private));
3559 static const struct file_operations dev_seq_fops = {
3560 .owner = THIS_MODULE,
3561 .open = dev_seq_open,
3562 .read = seq_read,
3563 .llseek = seq_lseek,
3564 .release = seq_release_net,
3567 static const struct seq_operations softnet_seq_ops = {
3568 .start = softnet_seq_start,
3569 .next = softnet_seq_next,
3570 .stop = softnet_seq_stop,
3571 .show = softnet_seq_show,
3574 static int softnet_seq_open(struct inode *inode, struct file *file)
3576 return seq_open(file, &softnet_seq_ops);
3579 static const struct file_operations softnet_seq_fops = {
3580 .owner = THIS_MODULE,
3581 .open = softnet_seq_open,
3582 .read = seq_read,
3583 .llseek = seq_lseek,
3584 .release = seq_release,
3587 static void *ptype_get_idx(loff_t pos)
3589 struct packet_type *pt = NULL;
3590 loff_t i = 0;
3591 int t;
3593 list_for_each_entry_rcu(pt, &ptype_all, list) {
3594 if (i == pos)
3595 return pt;
3596 ++i;
3599 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3600 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3601 if (i == pos)
3602 return pt;
3603 ++i;
3606 return NULL;
3609 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3610 __acquires(RCU)
3612 rcu_read_lock();
3613 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3616 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3618 struct packet_type *pt;
3619 struct list_head *nxt;
3620 int hash;
3622 ++*pos;
3623 if (v == SEQ_START_TOKEN)
3624 return ptype_get_idx(0);
3626 pt = v;
3627 nxt = pt->list.next;
3628 if (pt->type == htons(ETH_P_ALL)) {
3629 if (nxt != &ptype_all)
3630 goto found;
3631 hash = 0;
3632 nxt = ptype_base[0].next;
3633 } else
3634 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3636 while (nxt == &ptype_base[hash]) {
3637 if (++hash >= PTYPE_HASH_SIZE)
3638 return NULL;
3639 nxt = ptype_base[hash].next;
3641 found:
3642 return list_entry(nxt, struct packet_type, list);
3645 static void ptype_seq_stop(struct seq_file *seq, void *v)
3646 __releases(RCU)
3648 rcu_read_unlock();
3651 static int ptype_seq_show(struct seq_file *seq, void *v)
3653 struct packet_type *pt = v;
3655 if (v == SEQ_START_TOKEN)
3656 seq_puts(seq, "Type Device Function\n");
3657 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3658 if (pt->type == htons(ETH_P_ALL))
3659 seq_puts(seq, "ALL ");
3660 else
3661 seq_printf(seq, "%04x", ntohs(pt->type));
3663 seq_printf(seq, " %-8s %pF\n",
3664 pt->dev ? pt->dev->name : "", pt->func);
3667 return 0;
3670 static const struct seq_operations ptype_seq_ops = {
3671 .start = ptype_seq_start,
3672 .next = ptype_seq_next,
3673 .stop = ptype_seq_stop,
3674 .show = ptype_seq_show,
3677 static int ptype_seq_open(struct inode *inode, struct file *file)
3679 return seq_open_net(inode, file, &ptype_seq_ops,
3680 sizeof(struct seq_net_private));
3683 static const struct file_operations ptype_seq_fops = {
3684 .owner = THIS_MODULE,
3685 .open = ptype_seq_open,
3686 .read = seq_read,
3687 .llseek = seq_lseek,
3688 .release = seq_release_net,
3692 static int __net_init dev_proc_net_init(struct net *net)
3694 int rc = -ENOMEM;
3696 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3697 goto out;
3698 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3699 goto out_dev;
3700 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3701 goto out_softnet;
3703 if (wext_proc_init(net))
3704 goto out_ptype;
3705 rc = 0;
3706 out:
3707 return rc;
3708 out_ptype:
3709 proc_net_remove(net, "ptype");
3710 out_softnet:
3711 proc_net_remove(net, "softnet_stat");
3712 out_dev:
3713 proc_net_remove(net, "dev");
3714 goto out;
3717 static void __net_exit dev_proc_net_exit(struct net *net)
3719 wext_proc_exit(net);
3721 proc_net_remove(net, "ptype");
3722 proc_net_remove(net, "softnet_stat");
3723 proc_net_remove(net, "dev");
3726 static struct pernet_operations __net_initdata dev_proc_ops = {
3727 .init = dev_proc_net_init,
3728 .exit = dev_proc_net_exit,
3731 static int __init dev_proc_init(void)
3733 return register_pernet_subsys(&dev_proc_ops);
3735 #else
3736 #define dev_proc_init() 0
3737 #endif /* CONFIG_PROC_FS */
3741 * netdev_set_master - set up master/slave pair
3742 * @slave: slave device
3743 * @master: new master device
3745 * Changes the master device of the slave. Pass %NULL to break the
3746 * bonding. The caller must hold the RTNL semaphore. On a failure
3747 * a negative errno code is returned. On success the reference counts
3748 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3749 * function returns zero.
3751 int netdev_set_master(struct net_device *slave, struct net_device *master)
3753 struct net_device *old = slave->master;
3755 ASSERT_RTNL();
3757 if (master) {
3758 if (old)
3759 return -EBUSY;
3760 dev_hold(master);
3763 slave->master = master;
3765 if (old) {
3766 synchronize_net();
3767 dev_put(old);
3769 if (master)
3770 slave->flags |= IFF_SLAVE;
3771 else
3772 slave->flags &= ~IFF_SLAVE;
3774 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3775 return 0;
3777 EXPORT_SYMBOL(netdev_set_master);
3779 static void dev_change_rx_flags(struct net_device *dev, int flags)
3781 const struct net_device_ops *ops = dev->netdev_ops;
3783 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3784 ops->ndo_change_rx_flags(dev, flags);
3787 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3789 unsigned short old_flags = dev->flags;
3790 uid_t uid;
3791 gid_t gid;
3793 ASSERT_RTNL();
3795 dev->flags |= IFF_PROMISC;
3796 dev->promiscuity += inc;
3797 if (dev->promiscuity == 0) {
3799 * Avoid overflow.
3800 * If inc causes overflow, untouch promisc and return error.
3802 if (inc < 0)
3803 dev->flags &= ~IFF_PROMISC;
3804 else {
3805 dev->promiscuity -= inc;
3806 printk(KERN_WARNING "%s: promiscuity touches roof, "
3807 "set promiscuity failed, promiscuity feature "
3808 "of device might be broken.\n", dev->name);
3809 return -EOVERFLOW;
3812 if (dev->flags != old_flags) {
3813 printk(KERN_INFO "device %s %s promiscuous mode\n",
3814 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3815 "left");
3816 if (audit_enabled) {
3817 current_uid_gid(&uid, &gid);
3818 audit_log(current->audit_context, GFP_ATOMIC,
3819 AUDIT_ANOM_PROMISCUOUS,
3820 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3821 dev->name, (dev->flags & IFF_PROMISC),
3822 (old_flags & IFF_PROMISC),
3823 audit_get_loginuid(current),
3824 uid, gid,
3825 audit_get_sessionid(current));
3828 dev_change_rx_flags(dev, IFF_PROMISC);
3830 return 0;
3834 * dev_set_promiscuity - update promiscuity count on a device
3835 * @dev: device
3836 * @inc: modifier
3838 * Add or remove promiscuity from a device. While the count in the device
3839 * remains above zero the interface remains promiscuous. Once it hits zero
3840 * the device reverts back to normal filtering operation. A negative inc
3841 * value is used to drop promiscuity on the device.
3842 * Return 0 if successful or a negative errno code on error.
3844 int dev_set_promiscuity(struct net_device *dev, int inc)
3846 unsigned short old_flags = dev->flags;
3847 int err;
3849 err = __dev_set_promiscuity(dev, inc);
3850 if (err < 0)
3851 return err;
3852 if (dev->flags != old_flags)
3853 dev_set_rx_mode(dev);
3854 return err;
3856 EXPORT_SYMBOL(dev_set_promiscuity);
3859 * dev_set_allmulti - update allmulti count on a device
3860 * @dev: device
3861 * @inc: modifier
3863 * Add or remove reception of all multicast frames to a device. While the
3864 * count in the device remains above zero the interface remains listening
3865 * to all interfaces. Once it hits zero the device reverts back to normal
3866 * filtering operation. A negative @inc value is used to drop the counter
3867 * when releasing a resource needing all multicasts.
3868 * Return 0 if successful or a negative errno code on error.
3871 int dev_set_allmulti(struct net_device *dev, int inc)
3873 unsigned short old_flags = dev->flags;
3875 ASSERT_RTNL();
3877 dev->flags |= IFF_ALLMULTI;
3878 dev->allmulti += inc;
3879 if (dev->allmulti == 0) {
3881 * Avoid overflow.
3882 * If inc causes overflow, untouch allmulti and return error.
3884 if (inc < 0)
3885 dev->flags &= ~IFF_ALLMULTI;
3886 else {
3887 dev->allmulti -= inc;
3888 printk(KERN_WARNING "%s: allmulti touches roof, "
3889 "set allmulti failed, allmulti feature of "
3890 "device might be broken.\n", dev->name);
3891 return -EOVERFLOW;
3894 if (dev->flags ^ old_flags) {
3895 dev_change_rx_flags(dev, IFF_ALLMULTI);
3896 dev_set_rx_mode(dev);
3898 return 0;
3900 EXPORT_SYMBOL(dev_set_allmulti);
3903 * Upload unicast and multicast address lists to device and
3904 * configure RX filtering. When the device doesn't support unicast
3905 * filtering it is put in promiscuous mode while unicast addresses
3906 * are present.
3908 void __dev_set_rx_mode(struct net_device *dev)
3910 const struct net_device_ops *ops = dev->netdev_ops;
3912 /* dev_open will call this function so the list will stay sane. */
3913 if (!(dev->flags&IFF_UP))
3914 return;
3916 if (!netif_device_present(dev))
3917 return;
3919 if (ops->ndo_set_rx_mode)
3920 ops->ndo_set_rx_mode(dev);
3921 else {
3922 /* Unicast addresses changes may only happen under the rtnl,
3923 * therefore calling __dev_set_promiscuity here is safe.
3925 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
3926 __dev_set_promiscuity(dev, 1);
3927 dev->uc_promisc = 1;
3928 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
3929 __dev_set_promiscuity(dev, -1);
3930 dev->uc_promisc = 0;
3933 if (ops->ndo_set_multicast_list)
3934 ops->ndo_set_multicast_list(dev);
3938 void dev_set_rx_mode(struct net_device *dev)
3940 netif_addr_lock_bh(dev);
3941 __dev_set_rx_mode(dev);
3942 netif_addr_unlock_bh(dev);
3945 /* hw addresses list handling functions */
3947 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3948 int addr_len, unsigned char addr_type)
3950 struct netdev_hw_addr *ha;
3951 int alloc_size;
3953 if (addr_len > MAX_ADDR_LEN)
3954 return -EINVAL;
3956 list_for_each_entry(ha, &list->list, list) {
3957 if (!memcmp(ha->addr, addr, addr_len) &&
3958 ha->type == addr_type) {
3959 ha->refcount++;
3960 return 0;
3965 alloc_size = sizeof(*ha);
3966 if (alloc_size < L1_CACHE_BYTES)
3967 alloc_size = L1_CACHE_BYTES;
3968 ha = kmalloc(alloc_size, GFP_ATOMIC);
3969 if (!ha)
3970 return -ENOMEM;
3971 memcpy(ha->addr, addr, addr_len);
3972 ha->type = addr_type;
3973 ha->refcount = 1;
3974 ha->synced = false;
3975 list_add_tail_rcu(&ha->list, &list->list);
3976 list->count++;
3977 return 0;
3980 static void ha_rcu_free(struct rcu_head *head)
3982 struct netdev_hw_addr *ha;
3984 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3985 kfree(ha);
3988 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3989 int addr_len, unsigned char addr_type)
3991 struct netdev_hw_addr *ha;
3993 list_for_each_entry(ha, &list->list, list) {
3994 if (!memcmp(ha->addr, addr, addr_len) &&
3995 (ha->type == addr_type || !addr_type)) {
3996 if (--ha->refcount)
3997 return 0;
3998 list_del_rcu(&ha->list);
3999 call_rcu(&ha->rcu_head, ha_rcu_free);
4000 list->count--;
4001 return 0;
4004 return -ENOENT;
4007 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
4008 struct netdev_hw_addr_list *from_list,
4009 int addr_len,
4010 unsigned char addr_type)
4012 int err;
4013 struct netdev_hw_addr *ha, *ha2;
4014 unsigned char type;
4016 list_for_each_entry(ha, &from_list->list, list) {
4017 type = addr_type ? addr_type : ha->type;
4018 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
4019 if (err)
4020 goto unroll;
4022 return 0;
4024 unroll:
4025 list_for_each_entry(ha2, &from_list->list, list) {
4026 if (ha2 == ha)
4027 break;
4028 type = addr_type ? addr_type : ha2->type;
4029 __hw_addr_del(to_list, ha2->addr, addr_len, type);
4031 return err;
4034 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
4035 struct netdev_hw_addr_list *from_list,
4036 int addr_len,
4037 unsigned char addr_type)
4039 struct netdev_hw_addr *ha;
4040 unsigned char type;
4042 list_for_each_entry(ha, &from_list->list, list) {
4043 type = addr_type ? addr_type : ha->type;
4044 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
4048 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4049 struct netdev_hw_addr_list *from_list,
4050 int addr_len)
4052 int err = 0;
4053 struct netdev_hw_addr *ha, *tmp;
4055 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
4056 if (!ha->synced) {
4057 err = __hw_addr_add(to_list, ha->addr,
4058 addr_len, ha->type);
4059 if (err)
4060 break;
4061 ha->synced = true;
4062 ha->refcount++;
4063 } else if (ha->refcount == 1) {
4064 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
4065 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
4068 return err;
4071 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4072 struct netdev_hw_addr_list *from_list,
4073 int addr_len)
4075 struct netdev_hw_addr *ha, *tmp;
4077 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
4078 if (ha->synced) {
4079 __hw_addr_del(to_list, ha->addr,
4080 addr_len, ha->type);
4081 ha->synced = false;
4082 __hw_addr_del(from_list, ha->addr,
4083 addr_len, ha->type);
4088 static void __hw_addr_flush(struct netdev_hw_addr_list *list)
4090 struct netdev_hw_addr *ha, *tmp;
4092 list_for_each_entry_safe(ha, tmp, &list->list, list) {
4093 list_del_rcu(&ha->list);
4094 call_rcu(&ha->rcu_head, ha_rcu_free);
4096 list->count = 0;
4099 static void __hw_addr_init(struct netdev_hw_addr_list *list)
4101 INIT_LIST_HEAD(&list->list);
4102 list->count = 0;
4105 /* Device addresses handling functions */
4107 static void dev_addr_flush(struct net_device *dev)
4109 /* rtnl_mutex must be held here */
4111 __hw_addr_flush(&dev->dev_addrs);
4112 dev->dev_addr = NULL;
4115 static int dev_addr_init(struct net_device *dev)
4117 unsigned char addr[MAX_ADDR_LEN];
4118 struct netdev_hw_addr *ha;
4119 int err;
4121 /* rtnl_mutex must be held here */
4123 __hw_addr_init(&dev->dev_addrs);
4124 memset(addr, 0, sizeof(addr));
4125 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
4126 NETDEV_HW_ADDR_T_LAN);
4127 if (!err) {
4129 * Get the first (previously created) address from the list
4130 * and set dev_addr pointer to this location.
4132 ha = list_first_entry(&dev->dev_addrs.list,
4133 struct netdev_hw_addr, list);
4134 dev->dev_addr = ha->addr;
4136 return err;
4140 * dev_addr_add - Add a device address
4141 * @dev: device
4142 * @addr: address to add
4143 * @addr_type: address type
4145 * Add a device address to the device or increase the reference count if
4146 * it already exists.
4148 * The caller must hold the rtnl_mutex.
4150 int dev_addr_add(struct net_device *dev, unsigned char *addr,
4151 unsigned char addr_type)
4153 int err;
4155 ASSERT_RTNL();
4157 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
4158 if (!err)
4159 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4160 return err;
4162 EXPORT_SYMBOL(dev_addr_add);
4165 * dev_addr_del - Release a device address.
4166 * @dev: device
4167 * @addr: address to delete
4168 * @addr_type: address type
4170 * Release reference to a device address and remove it from the device
4171 * if the reference count drops to zero.
4173 * The caller must hold the rtnl_mutex.
4175 int dev_addr_del(struct net_device *dev, unsigned char *addr,
4176 unsigned char addr_type)
4178 int err;
4179 struct netdev_hw_addr *ha;
4181 ASSERT_RTNL();
4184 * We can not remove the first address from the list because
4185 * dev->dev_addr points to that.
4187 ha = list_first_entry(&dev->dev_addrs.list,
4188 struct netdev_hw_addr, list);
4189 if (ha->addr == dev->dev_addr && ha->refcount == 1)
4190 return -ENOENT;
4192 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
4193 addr_type);
4194 if (!err)
4195 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4196 return err;
4198 EXPORT_SYMBOL(dev_addr_del);
4201 * dev_addr_add_multiple - Add device addresses from another device
4202 * @to_dev: device to which addresses will be added
4203 * @from_dev: device from which addresses will be added
4204 * @addr_type: address type - 0 means type will be used from from_dev
4206 * Add device addresses of the one device to another.
4208 * The caller must hold the rtnl_mutex.
4210 int dev_addr_add_multiple(struct net_device *to_dev,
4211 struct net_device *from_dev,
4212 unsigned char addr_type)
4214 int err;
4216 ASSERT_RTNL();
4218 if (from_dev->addr_len != to_dev->addr_len)
4219 return -EINVAL;
4220 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
4221 to_dev->addr_len, addr_type);
4222 if (!err)
4223 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4224 return err;
4226 EXPORT_SYMBOL(dev_addr_add_multiple);
4229 * dev_addr_del_multiple - Delete device addresses by another device
4230 * @to_dev: device where the addresses will be deleted
4231 * @from_dev: device by which addresses the addresses will be deleted
4232 * @addr_type: address type - 0 means type will used from from_dev
4234 * Deletes addresses in to device by the list of addresses in from device.
4236 * The caller must hold the rtnl_mutex.
4238 int dev_addr_del_multiple(struct net_device *to_dev,
4239 struct net_device *from_dev,
4240 unsigned char addr_type)
4242 ASSERT_RTNL();
4244 if (from_dev->addr_len != to_dev->addr_len)
4245 return -EINVAL;
4246 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
4247 to_dev->addr_len, addr_type);
4248 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4249 return 0;
4251 EXPORT_SYMBOL(dev_addr_del_multiple);
4253 /* multicast addresses handling functions */
4255 int __dev_addr_delete(struct dev_addr_list **list, int *count,
4256 void *addr, int alen, int glbl)
4258 struct dev_addr_list *da;
4260 for (; (da = *list) != NULL; list = &da->next) {
4261 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4262 alen == da->da_addrlen) {
4263 if (glbl) {
4264 int old_glbl = da->da_gusers;
4265 da->da_gusers = 0;
4266 if (old_glbl == 0)
4267 break;
4269 if (--da->da_users)
4270 return 0;
4272 *list = da->next;
4273 kfree(da);
4274 (*count)--;
4275 return 0;
4278 return -ENOENT;
4281 int __dev_addr_add(struct dev_addr_list **list, int *count,
4282 void *addr, int alen, int glbl)
4284 struct dev_addr_list *da;
4286 for (da = *list; da != NULL; da = da->next) {
4287 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4288 da->da_addrlen == alen) {
4289 if (glbl) {
4290 int old_glbl = da->da_gusers;
4291 da->da_gusers = 1;
4292 if (old_glbl)
4293 return 0;
4295 da->da_users++;
4296 return 0;
4300 da = kzalloc(sizeof(*da), GFP_ATOMIC);
4301 if (da == NULL)
4302 return -ENOMEM;
4303 memcpy(da->da_addr, addr, alen);
4304 da->da_addrlen = alen;
4305 da->da_users = 1;
4306 da->da_gusers = glbl ? 1 : 0;
4307 da->next = *list;
4308 *list = da;
4309 (*count)++;
4310 return 0;
4314 * dev_unicast_delete - Release secondary unicast address.
4315 * @dev: device
4316 * @addr: address to delete
4318 * Release reference to a secondary unicast address and remove it
4319 * from the device if the reference count drops to zero.
4321 * The caller must hold the rtnl_mutex.
4323 int dev_unicast_delete(struct net_device *dev, void *addr)
4325 int err;
4327 ASSERT_RTNL();
4329 netif_addr_lock_bh(dev);
4330 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
4331 NETDEV_HW_ADDR_T_UNICAST);
4332 if (!err)
4333 __dev_set_rx_mode(dev);
4334 netif_addr_unlock_bh(dev);
4335 return err;
4337 EXPORT_SYMBOL(dev_unicast_delete);
4340 * dev_unicast_add - add a secondary unicast address
4341 * @dev: device
4342 * @addr: address to add
4344 * Add a secondary unicast address to the device or increase
4345 * the reference count if it already exists.
4347 * The caller must hold the rtnl_mutex.
4349 int dev_unicast_add(struct net_device *dev, void *addr)
4351 int err;
4353 ASSERT_RTNL();
4355 netif_addr_lock_bh(dev);
4356 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
4357 NETDEV_HW_ADDR_T_UNICAST);
4358 if (!err)
4359 __dev_set_rx_mode(dev);
4360 netif_addr_unlock_bh(dev);
4361 return err;
4363 EXPORT_SYMBOL(dev_unicast_add);
4365 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
4366 struct dev_addr_list **from, int *from_count)
4368 struct dev_addr_list *da, *next;
4369 int err = 0;
4371 da = *from;
4372 while (da != NULL) {
4373 next = da->next;
4374 if (!da->da_synced) {
4375 err = __dev_addr_add(to, to_count,
4376 da->da_addr, da->da_addrlen, 0);
4377 if (err < 0)
4378 break;
4379 da->da_synced = 1;
4380 da->da_users++;
4381 } else if (da->da_users == 1) {
4382 __dev_addr_delete(to, to_count,
4383 da->da_addr, da->da_addrlen, 0);
4384 __dev_addr_delete(from, from_count,
4385 da->da_addr, da->da_addrlen, 0);
4387 da = next;
4389 return err;
4391 EXPORT_SYMBOL_GPL(__dev_addr_sync);
4393 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
4394 struct dev_addr_list **from, int *from_count)
4396 struct dev_addr_list *da, *next;
4398 da = *from;
4399 while (da != NULL) {
4400 next = da->next;
4401 if (da->da_synced) {
4402 __dev_addr_delete(to, to_count,
4403 da->da_addr, da->da_addrlen, 0);
4404 da->da_synced = 0;
4405 __dev_addr_delete(from, from_count,
4406 da->da_addr, da->da_addrlen, 0);
4408 da = next;
4411 EXPORT_SYMBOL_GPL(__dev_addr_unsync);
4414 * dev_unicast_sync - Synchronize device's unicast list to another device
4415 * @to: destination device
4416 * @from: source device
4418 * Add newly added addresses to the destination device and release
4419 * addresses that have no users left. The source device must be
4420 * locked by netif_tx_lock_bh.
4422 * This function is intended to be called from the dev->set_rx_mode
4423 * function of layered software devices.
4425 int dev_unicast_sync(struct net_device *to, struct net_device *from)
4427 int err = 0;
4429 if (to->addr_len != from->addr_len)
4430 return -EINVAL;
4432 netif_addr_lock_bh(to);
4433 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4434 if (!err)
4435 __dev_set_rx_mode(to);
4436 netif_addr_unlock_bh(to);
4437 return err;
4439 EXPORT_SYMBOL(dev_unicast_sync);
4442 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4443 * @to: destination device
4444 * @from: source device
4446 * Remove all addresses that were added to the destination device by
4447 * dev_unicast_sync(). This function is intended to be called from the
4448 * dev->stop function of layered software devices.
4450 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4452 if (to->addr_len != from->addr_len)
4453 return;
4455 netif_addr_lock_bh(from);
4456 netif_addr_lock(to);
4457 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4458 __dev_set_rx_mode(to);
4459 netif_addr_unlock(to);
4460 netif_addr_unlock_bh(from);
4462 EXPORT_SYMBOL(dev_unicast_unsync);
4464 void dev_unicast_flush(struct net_device *dev)
4466 netif_addr_lock_bh(dev);
4467 __hw_addr_flush(&dev->uc);
4468 netif_addr_unlock_bh(dev);
4470 EXPORT_SYMBOL(dev_unicast_flush);
4472 static void dev_unicast_init(struct net_device *dev)
4474 __hw_addr_init(&dev->uc);
4478 static void __dev_addr_discard(struct dev_addr_list **list)
4480 struct dev_addr_list *tmp;
4482 while (*list != NULL) {
4483 tmp = *list;
4484 *list = tmp->next;
4485 if (tmp->da_users > tmp->da_gusers)
4486 printk("__dev_addr_discard: address leakage! "
4487 "da_users=%d\n", tmp->da_users);
4488 kfree(tmp);
4492 void dev_addr_discard(struct net_device *dev)
4494 netif_addr_lock_bh(dev);
4496 __dev_addr_discard(&dev->mc_list);
4497 netdev_mc_count(dev) = 0;
4499 netif_addr_unlock_bh(dev);
4501 EXPORT_SYMBOL(dev_addr_discard);
4504 * dev_get_flags - get flags reported to userspace
4505 * @dev: device
4507 * Get the combination of flag bits exported through APIs to userspace.
4509 unsigned dev_get_flags(const struct net_device *dev)
4511 unsigned flags;
4513 flags = (dev->flags & ~(IFF_PROMISC |
4514 IFF_ALLMULTI |
4515 IFF_RUNNING |
4516 IFF_LOWER_UP |
4517 IFF_DORMANT)) |
4518 (dev->gflags & (IFF_PROMISC |
4519 IFF_ALLMULTI));
4521 if (netif_running(dev)) {
4522 if (netif_oper_up(dev))
4523 flags |= IFF_RUNNING;
4524 if (netif_carrier_ok(dev))
4525 flags |= IFF_LOWER_UP;
4526 if (netif_dormant(dev))
4527 flags |= IFF_DORMANT;
4530 return flags;
4532 EXPORT_SYMBOL(dev_get_flags);
4534 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4536 int old_flags = dev->flags;
4537 int ret;
4539 ASSERT_RTNL();
4542 * Set the flags on our device.
4545 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4546 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4547 IFF_AUTOMEDIA)) |
4548 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4549 IFF_ALLMULTI));
4552 * Load in the correct multicast list now the flags have changed.
4555 if ((old_flags ^ flags) & IFF_MULTICAST)
4556 dev_change_rx_flags(dev, IFF_MULTICAST);
4558 dev_set_rx_mode(dev);
4561 * Have we downed the interface. We handle IFF_UP ourselves
4562 * according to user attempts to set it, rather than blindly
4563 * setting it.
4566 ret = 0;
4567 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4568 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4570 if (!ret)
4571 dev_set_rx_mode(dev);
4574 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4575 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4577 dev->gflags ^= IFF_PROMISC;
4578 dev_set_promiscuity(dev, inc);
4581 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4582 is important. Some (broken) drivers set IFF_PROMISC, when
4583 IFF_ALLMULTI is requested not asking us and not reporting.
4585 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4586 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4588 dev->gflags ^= IFF_ALLMULTI;
4589 dev_set_allmulti(dev, inc);
4592 return ret;
4595 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4597 unsigned int changes = dev->flags ^ old_flags;
4599 if (changes & IFF_UP) {
4600 if (dev->flags & IFF_UP)
4601 call_netdevice_notifiers(NETDEV_UP, dev);
4602 else
4603 call_netdevice_notifiers(NETDEV_DOWN, dev);
4606 if (dev->flags & IFF_UP &&
4607 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4608 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4612 * dev_change_flags - change device settings
4613 * @dev: device
4614 * @flags: device state flags
4616 * Change settings on device based state flags. The flags are
4617 * in the userspace exported format.
4619 int dev_change_flags(struct net_device *dev, unsigned flags)
4621 int ret, changes;
4622 int old_flags = dev->flags;
4624 ret = __dev_change_flags(dev, flags);
4625 if (ret < 0)
4626 return ret;
4628 changes = old_flags ^ dev->flags;
4629 if (changes)
4630 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4632 __dev_notify_flags(dev, old_flags);
4633 return ret;
4635 EXPORT_SYMBOL(dev_change_flags);
4638 * dev_set_mtu - Change maximum transfer unit
4639 * @dev: device
4640 * @new_mtu: new transfer unit
4642 * Change the maximum transfer size of the network device.
4644 int dev_set_mtu(struct net_device *dev, int new_mtu)
4646 const struct net_device_ops *ops = dev->netdev_ops;
4647 int err;
4649 if (new_mtu == dev->mtu)
4650 return 0;
4652 /* MTU must be positive. */
4653 if (new_mtu < 0)
4654 return -EINVAL;
4656 if (!netif_device_present(dev))
4657 return -ENODEV;
4659 err = 0;
4660 if (ops->ndo_change_mtu)
4661 err = ops->ndo_change_mtu(dev, new_mtu);
4662 else
4663 dev->mtu = new_mtu;
4665 if (!err && dev->flags & IFF_UP)
4666 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4667 return err;
4669 EXPORT_SYMBOL(dev_set_mtu);
4672 * dev_set_mac_address - Change Media Access Control Address
4673 * @dev: device
4674 * @sa: new address
4676 * Change the hardware (MAC) address of the device
4678 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4680 const struct net_device_ops *ops = dev->netdev_ops;
4681 int err;
4683 if (!ops->ndo_set_mac_address)
4684 return -EOPNOTSUPP;
4685 if (sa->sa_family != dev->type)
4686 return -EINVAL;
4687 if (!netif_device_present(dev))
4688 return -ENODEV;
4689 err = ops->ndo_set_mac_address(dev, sa);
4690 if (!err)
4691 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4692 return err;
4694 EXPORT_SYMBOL(dev_set_mac_address);
4697 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4699 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4701 int err;
4702 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4704 if (!dev)
4705 return -ENODEV;
4707 switch (cmd) {
4708 case SIOCGIFFLAGS: /* Get interface flags */
4709 ifr->ifr_flags = (short) dev_get_flags(dev);
4710 return 0;
4712 case SIOCGIFMETRIC: /* Get the metric on the interface
4713 (currently unused) */
4714 ifr->ifr_metric = 0;
4715 return 0;
4717 case SIOCGIFMTU: /* Get the MTU of a device */
4718 ifr->ifr_mtu = dev->mtu;
4719 return 0;
4721 case SIOCGIFHWADDR:
4722 if (!dev->addr_len)
4723 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4724 else
4725 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4726 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4727 ifr->ifr_hwaddr.sa_family = dev->type;
4728 return 0;
4730 case SIOCGIFSLAVE:
4731 err = -EINVAL;
4732 break;
4734 case SIOCGIFMAP:
4735 ifr->ifr_map.mem_start = dev->mem_start;
4736 ifr->ifr_map.mem_end = dev->mem_end;
4737 ifr->ifr_map.base_addr = dev->base_addr;
4738 ifr->ifr_map.irq = dev->irq;
4739 ifr->ifr_map.dma = dev->dma;
4740 ifr->ifr_map.port = dev->if_port;
4741 return 0;
4743 case SIOCGIFINDEX:
4744 ifr->ifr_ifindex = dev->ifindex;
4745 return 0;
4747 case SIOCGIFTXQLEN:
4748 ifr->ifr_qlen = dev->tx_queue_len;
4749 return 0;
4751 default:
4752 /* dev_ioctl() should ensure this case
4753 * is never reached
4755 WARN_ON(1);
4756 err = -EINVAL;
4757 break;
4760 return err;
4764 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4766 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4768 int err;
4769 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4770 const struct net_device_ops *ops;
4772 if (!dev)
4773 return -ENODEV;
4775 ops = dev->netdev_ops;
4777 switch (cmd) {
4778 case SIOCSIFFLAGS: /* Set interface flags */
4779 return dev_change_flags(dev, ifr->ifr_flags);
4781 case SIOCSIFMETRIC: /* Set the metric on the interface
4782 (currently unused) */
4783 return -EOPNOTSUPP;
4785 case SIOCSIFMTU: /* Set the MTU of a device */
4786 return dev_set_mtu(dev, ifr->ifr_mtu);
4788 case SIOCSIFHWADDR:
4789 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4791 case SIOCSIFHWBROADCAST:
4792 if (ifr->ifr_hwaddr.sa_family != dev->type)
4793 return -EINVAL;
4794 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4795 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4796 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4797 return 0;
4799 case SIOCSIFMAP:
4800 if (ops->ndo_set_config) {
4801 if (!netif_device_present(dev))
4802 return -ENODEV;
4803 return ops->ndo_set_config(dev, &ifr->ifr_map);
4805 return -EOPNOTSUPP;
4807 case SIOCADDMULTI:
4808 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4809 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4810 return -EINVAL;
4811 if (!netif_device_present(dev))
4812 return -ENODEV;
4813 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4814 dev->addr_len, 1);
4816 case SIOCDELMULTI:
4817 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4818 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4819 return -EINVAL;
4820 if (!netif_device_present(dev))
4821 return -ENODEV;
4822 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4823 dev->addr_len, 1);
4825 case SIOCSIFTXQLEN:
4826 if (ifr->ifr_qlen < 0)
4827 return -EINVAL;
4828 dev->tx_queue_len = ifr->ifr_qlen;
4829 return 0;
4831 case SIOCSIFNAME:
4832 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4833 return dev_change_name(dev, ifr->ifr_newname);
4836 * Unknown or private ioctl
4838 default:
4839 if ((cmd >= SIOCDEVPRIVATE &&
4840 cmd <= SIOCDEVPRIVATE + 15) ||
4841 cmd == SIOCBONDENSLAVE ||
4842 cmd == SIOCBONDRELEASE ||
4843 cmd == SIOCBONDSETHWADDR ||
4844 cmd == SIOCBONDSLAVEINFOQUERY ||
4845 cmd == SIOCBONDINFOQUERY ||
4846 cmd == SIOCBONDCHANGEACTIVE ||
4847 cmd == SIOCGMIIPHY ||
4848 cmd == SIOCGMIIREG ||
4849 cmd == SIOCSMIIREG ||
4850 cmd == SIOCBRADDIF ||
4851 cmd == SIOCBRDELIF ||
4852 cmd == SIOCSHWTSTAMP ||
4853 cmd == SIOCWANDEV) {
4854 err = -EOPNOTSUPP;
4855 if (ops->ndo_do_ioctl) {
4856 if (netif_device_present(dev))
4857 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4858 else
4859 err = -ENODEV;
4861 } else
4862 err = -EINVAL;
4865 return err;
4869 * This function handles all "interface"-type I/O control requests. The actual
4870 * 'doing' part of this is dev_ifsioc above.
4874 * dev_ioctl - network device ioctl
4875 * @net: the applicable net namespace
4876 * @cmd: command to issue
4877 * @arg: pointer to a struct ifreq in user space
4879 * Issue ioctl functions to devices. This is normally called by the
4880 * user space syscall interfaces but can sometimes be useful for
4881 * other purposes. The return value is the return from the syscall if
4882 * positive or a negative errno code on error.
4885 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4887 struct ifreq ifr;
4888 int ret;
4889 char *colon;
4891 /* One special case: SIOCGIFCONF takes ifconf argument
4892 and requires shared lock, because it sleeps writing
4893 to user space.
4896 if (cmd == SIOCGIFCONF) {
4897 rtnl_lock();
4898 ret = dev_ifconf(net, (char __user *) arg);
4899 rtnl_unlock();
4900 return ret;
4902 if (cmd == SIOCGIFNAME)
4903 return dev_ifname(net, (struct ifreq __user *)arg);
4905 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4906 return -EFAULT;
4908 ifr.ifr_name[IFNAMSIZ-1] = 0;
4910 colon = strchr(ifr.ifr_name, ':');
4911 if (colon)
4912 *colon = 0;
4915 * See which interface the caller is talking about.
4918 switch (cmd) {
4920 * These ioctl calls:
4921 * - can be done by all.
4922 * - atomic and do not require locking.
4923 * - return a value
4925 case SIOCGIFFLAGS:
4926 case SIOCGIFMETRIC:
4927 case SIOCGIFMTU:
4928 case SIOCGIFHWADDR:
4929 case SIOCGIFSLAVE:
4930 case SIOCGIFMAP:
4931 case SIOCGIFINDEX:
4932 case SIOCGIFTXQLEN:
4933 dev_load(net, ifr.ifr_name);
4934 rcu_read_lock();
4935 ret = dev_ifsioc_locked(net, &ifr, cmd);
4936 rcu_read_unlock();
4937 if (!ret) {
4938 if (colon)
4939 *colon = ':';
4940 if (copy_to_user(arg, &ifr,
4941 sizeof(struct ifreq)))
4942 ret = -EFAULT;
4944 return ret;
4946 case SIOCETHTOOL:
4947 dev_load(net, ifr.ifr_name);
4948 rtnl_lock();
4949 ret = dev_ethtool(net, &ifr);
4950 rtnl_unlock();
4951 if (!ret) {
4952 if (colon)
4953 *colon = ':';
4954 if (copy_to_user(arg, &ifr,
4955 sizeof(struct ifreq)))
4956 ret = -EFAULT;
4958 return ret;
4961 * These ioctl calls:
4962 * - require superuser power.
4963 * - require strict serialization.
4964 * - return a value
4966 case SIOCGMIIPHY:
4967 case SIOCGMIIREG:
4968 case SIOCSIFNAME:
4969 if (!capable(CAP_NET_ADMIN))
4970 return -EPERM;
4971 dev_load(net, ifr.ifr_name);
4972 rtnl_lock();
4973 ret = dev_ifsioc(net, &ifr, cmd);
4974 rtnl_unlock();
4975 if (!ret) {
4976 if (colon)
4977 *colon = ':';
4978 if (copy_to_user(arg, &ifr,
4979 sizeof(struct ifreq)))
4980 ret = -EFAULT;
4982 return ret;
4985 * These ioctl calls:
4986 * - require superuser power.
4987 * - require strict serialization.
4988 * - do not return a value
4990 case SIOCSIFFLAGS:
4991 case SIOCSIFMETRIC:
4992 case SIOCSIFMTU:
4993 case SIOCSIFMAP:
4994 case SIOCSIFHWADDR:
4995 case SIOCSIFSLAVE:
4996 case SIOCADDMULTI:
4997 case SIOCDELMULTI:
4998 case SIOCSIFHWBROADCAST:
4999 case SIOCSIFTXQLEN:
5000 case SIOCSMIIREG:
5001 case SIOCBONDENSLAVE:
5002 case SIOCBONDRELEASE:
5003 case SIOCBONDSETHWADDR:
5004 case SIOCBONDCHANGEACTIVE:
5005 case SIOCBRADDIF:
5006 case SIOCBRDELIF:
5007 case SIOCSHWTSTAMP:
5008 if (!capable(CAP_NET_ADMIN))
5009 return -EPERM;
5010 /* fall through */
5011 case SIOCBONDSLAVEINFOQUERY:
5012 case SIOCBONDINFOQUERY:
5013 dev_load(net, ifr.ifr_name);
5014 rtnl_lock();
5015 ret = dev_ifsioc(net, &ifr, cmd);
5016 rtnl_unlock();
5017 return ret;
5019 case SIOCGIFMEM:
5020 /* Get the per device memory space. We can add this but
5021 * currently do not support it */
5022 case SIOCSIFMEM:
5023 /* Set the per device memory buffer space.
5024 * Not applicable in our case */
5025 case SIOCSIFLINK:
5026 return -EINVAL;
5029 * Unknown or private ioctl.
5031 default:
5032 if (cmd == SIOCWANDEV ||
5033 (cmd >= SIOCDEVPRIVATE &&
5034 cmd <= SIOCDEVPRIVATE + 15)) {
5035 dev_load(net, ifr.ifr_name);
5036 rtnl_lock();
5037 ret = dev_ifsioc(net, &ifr, cmd);
5038 rtnl_unlock();
5039 if (!ret && copy_to_user(arg, &ifr,
5040 sizeof(struct ifreq)))
5041 ret = -EFAULT;
5042 return ret;
5044 /* Take care of Wireless Extensions */
5045 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5046 return wext_handle_ioctl(net, &ifr, cmd, arg);
5047 return -EINVAL;
5053 * dev_new_index - allocate an ifindex
5054 * @net: the applicable net namespace
5056 * Returns a suitable unique value for a new device interface
5057 * number. The caller must hold the rtnl semaphore or the
5058 * dev_base_lock to be sure it remains unique.
5060 static int dev_new_index(struct net *net)
5062 static int ifindex;
5063 for (;;) {
5064 if (++ifindex <= 0)
5065 ifindex = 1;
5066 if (!__dev_get_by_index(net, ifindex))
5067 return ifindex;
5071 /* Delayed registration/unregisteration */
5072 static LIST_HEAD(net_todo_list);
5074 static void net_set_todo(struct net_device *dev)
5076 list_add_tail(&dev->todo_list, &net_todo_list);
5079 static void rollback_registered_many(struct list_head *head)
5081 struct net_device *dev, *tmp;
5083 BUG_ON(dev_boot_phase);
5084 ASSERT_RTNL();
5086 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5087 /* Some devices call without registering
5088 * for initialization unwind. Remove those
5089 * devices and proceed with the remaining.
5091 if (dev->reg_state == NETREG_UNINITIALIZED) {
5092 pr_debug("unregister_netdevice: device %s/%p never "
5093 "was registered\n", dev->name, dev);
5095 WARN_ON(1);
5096 list_del(&dev->unreg_list);
5097 continue;
5100 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5102 /* If device is running, close it first. */
5103 dev_close(dev);
5105 /* And unlink it from device chain. */
5106 unlist_netdevice(dev);
5108 dev->reg_state = NETREG_UNREGISTERING;
5111 synchronize_net();
5113 list_for_each_entry(dev, head, unreg_list) {
5114 /* Shutdown queueing discipline. */
5115 dev_shutdown(dev);
5118 /* Notify protocols, that we are about to destroy
5119 this device. They should clean all the things.
5121 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5123 if (!dev->rtnl_link_ops ||
5124 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5125 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5128 * Flush the unicast and multicast chains
5130 dev_unicast_flush(dev);
5131 dev_addr_discard(dev);
5133 if (dev->netdev_ops->ndo_uninit)
5134 dev->netdev_ops->ndo_uninit(dev);
5136 /* Notifier chain MUST detach us from master device. */
5137 WARN_ON(dev->master);
5139 /* Remove entries from kobject tree */
5140 netdev_unregister_kobject(dev);
5143 /* Process any work delayed until the end of the batch */
5144 dev = list_first_entry(head, struct net_device, unreg_list);
5145 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5147 synchronize_net();
5149 list_for_each_entry(dev, head, unreg_list)
5150 dev_put(dev);
5153 static void rollback_registered(struct net_device *dev)
5155 LIST_HEAD(single);
5157 list_add(&dev->unreg_list, &single);
5158 rollback_registered_many(&single);
5161 static void __netdev_init_queue_locks_one(struct net_device *dev,
5162 struct netdev_queue *dev_queue,
5163 void *_unused)
5165 spin_lock_init(&dev_queue->_xmit_lock);
5166 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
5167 dev_queue->xmit_lock_owner = -1;
5170 static void netdev_init_queue_locks(struct net_device *dev)
5172 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
5173 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
5176 unsigned long netdev_fix_features(unsigned long features, const char *name)
5178 /* Fix illegal SG+CSUM combinations. */
5179 if ((features & NETIF_F_SG) &&
5180 !(features & NETIF_F_ALL_CSUM)) {
5181 if (name)
5182 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5183 "checksum feature.\n", name);
5184 features &= ~NETIF_F_SG;
5187 /* TSO requires that SG is present as well. */
5188 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5189 if (name)
5190 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5191 "SG feature.\n", name);
5192 features &= ~NETIF_F_TSO;
5195 if (features & NETIF_F_UFO) {
5196 if (!(features & NETIF_F_GEN_CSUM)) {
5197 if (name)
5198 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5199 "since no NETIF_F_HW_CSUM feature.\n",
5200 name);
5201 features &= ~NETIF_F_UFO;
5204 if (!(features & NETIF_F_SG)) {
5205 if (name)
5206 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5207 "since no NETIF_F_SG feature.\n", name);
5208 features &= ~NETIF_F_UFO;
5212 return features;
5214 EXPORT_SYMBOL(netdev_fix_features);
5217 * netif_stacked_transfer_operstate - transfer operstate
5218 * @rootdev: the root or lower level device to transfer state from
5219 * @dev: the device to transfer operstate to
5221 * Transfer operational state from root to device. This is normally
5222 * called when a stacking relationship exists between the root
5223 * device and the device(a leaf device).
5225 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5226 struct net_device *dev)
5228 if (rootdev->operstate == IF_OPER_DORMANT)
5229 netif_dormant_on(dev);
5230 else
5231 netif_dormant_off(dev);
5233 if (netif_carrier_ok(rootdev)) {
5234 if (!netif_carrier_ok(dev))
5235 netif_carrier_on(dev);
5236 } else {
5237 if (netif_carrier_ok(dev))
5238 netif_carrier_off(dev);
5241 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5244 * register_netdevice - register a network device
5245 * @dev: device to register
5247 * Take a completed network device structure and add it to the kernel
5248 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5249 * chain. 0 is returned on success. A negative errno code is returned
5250 * on a failure to set up the device, or if the name is a duplicate.
5252 * Callers must hold the rtnl semaphore. You may want
5253 * register_netdev() instead of this.
5255 * BUGS:
5256 * The locking appears insufficient to guarantee two parallel registers
5257 * will not get the same name.
5260 int register_netdevice(struct net_device *dev)
5262 int ret;
5263 struct net *net = dev_net(dev);
5265 BUG_ON(dev_boot_phase);
5266 ASSERT_RTNL();
5268 might_sleep();
5270 /* When net_device's are persistent, this will be fatal. */
5271 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5272 BUG_ON(!net);
5274 spin_lock_init(&dev->addr_list_lock);
5275 netdev_set_addr_lockdep_class(dev);
5276 netdev_init_queue_locks(dev);
5278 dev->iflink = -1;
5280 #ifdef CONFIG_RPS
5281 if (!dev->num_rx_queues) {
5283 * Allocate a single RX queue if driver never called
5284 * alloc_netdev_mq
5287 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
5288 if (!dev->_rx) {
5289 ret = -ENOMEM;
5290 goto out;
5293 dev->_rx->first = dev->_rx;
5294 atomic_set(&dev->_rx->count, 1);
5295 dev->num_rx_queues = 1;
5297 #endif
5298 /* Init, if this function is available */
5299 if (dev->netdev_ops->ndo_init) {
5300 ret = dev->netdev_ops->ndo_init(dev);
5301 if (ret) {
5302 if (ret > 0)
5303 ret = -EIO;
5304 goto out;
5308 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
5309 if (ret)
5310 goto err_uninit;
5312 dev->ifindex = dev_new_index(net);
5313 if (dev->iflink == -1)
5314 dev->iflink = dev->ifindex;
5316 /* Fix illegal checksum combinations */
5317 if ((dev->features & NETIF_F_HW_CSUM) &&
5318 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5319 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5320 dev->name);
5321 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5324 if ((dev->features & NETIF_F_NO_CSUM) &&
5325 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5326 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5327 dev->name);
5328 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5331 dev->features = netdev_fix_features(dev->features, dev->name);
5333 /* Enable software GSO if SG is supported. */
5334 if (dev->features & NETIF_F_SG)
5335 dev->features |= NETIF_F_GSO;
5337 netdev_initialize_kobject(dev);
5339 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5340 ret = notifier_to_errno(ret);
5341 if (ret)
5342 goto err_uninit;
5344 ret = netdev_register_kobject(dev);
5345 if (ret)
5346 goto err_uninit;
5347 dev->reg_state = NETREG_REGISTERED;
5350 * Default initial state at registry is that the
5351 * device is present.
5354 set_bit(__LINK_STATE_PRESENT, &dev->state);
5356 dev_init_scheduler(dev);
5357 dev_hold(dev);
5358 list_netdevice(dev);
5360 /* Notify protocols, that a new device appeared. */
5361 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5362 ret = notifier_to_errno(ret);
5363 if (ret) {
5364 rollback_registered(dev);
5365 dev->reg_state = NETREG_UNREGISTERED;
5368 * Prevent userspace races by waiting until the network
5369 * device is fully setup before sending notifications.
5371 if (!dev->rtnl_link_ops ||
5372 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5373 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5375 out:
5376 return ret;
5378 err_uninit:
5379 if (dev->netdev_ops->ndo_uninit)
5380 dev->netdev_ops->ndo_uninit(dev);
5381 goto out;
5383 EXPORT_SYMBOL(register_netdevice);
5386 * init_dummy_netdev - init a dummy network device for NAPI
5387 * @dev: device to init
5389 * This takes a network device structure and initialize the minimum
5390 * amount of fields so it can be used to schedule NAPI polls without
5391 * registering a full blown interface. This is to be used by drivers
5392 * that need to tie several hardware interfaces to a single NAPI
5393 * poll scheduler due to HW limitations.
5395 int init_dummy_netdev(struct net_device *dev)
5397 /* Clear everything. Note we don't initialize spinlocks
5398 * are they aren't supposed to be taken by any of the
5399 * NAPI code and this dummy netdev is supposed to be
5400 * only ever used for NAPI polls
5402 memset(dev, 0, sizeof(struct net_device));
5404 /* make sure we BUG if trying to hit standard
5405 * register/unregister code path
5407 dev->reg_state = NETREG_DUMMY;
5409 /* initialize the ref count */
5410 atomic_set(&dev->refcnt, 1);
5412 /* NAPI wants this */
5413 INIT_LIST_HEAD(&dev->napi_list);
5415 /* a dummy interface is started by default */
5416 set_bit(__LINK_STATE_PRESENT, &dev->state);
5417 set_bit(__LINK_STATE_START, &dev->state);
5419 return 0;
5421 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5425 * register_netdev - register a network device
5426 * @dev: device to register
5428 * Take a completed network device structure and add it to the kernel
5429 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5430 * chain. 0 is returned on success. A negative errno code is returned
5431 * on a failure to set up the device, or if the name is a duplicate.
5433 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5434 * and expands the device name if you passed a format string to
5435 * alloc_netdev.
5437 int register_netdev(struct net_device *dev)
5439 int err;
5441 rtnl_lock();
5444 * If the name is a format string the caller wants us to do a
5445 * name allocation.
5447 if (strchr(dev->name, '%')) {
5448 err = dev_alloc_name(dev, dev->name);
5449 if (err < 0)
5450 goto out;
5453 err = register_netdevice(dev);
5454 out:
5455 rtnl_unlock();
5456 return err;
5458 EXPORT_SYMBOL(register_netdev);
5461 * netdev_wait_allrefs - wait until all references are gone.
5463 * This is called when unregistering network devices.
5465 * Any protocol or device that holds a reference should register
5466 * for netdevice notification, and cleanup and put back the
5467 * reference if they receive an UNREGISTER event.
5468 * We can get stuck here if buggy protocols don't correctly
5469 * call dev_put.
5471 static void netdev_wait_allrefs(struct net_device *dev)
5473 unsigned long rebroadcast_time, warning_time;
5475 linkwatch_forget_dev(dev);
5477 rebroadcast_time = warning_time = jiffies;
5478 while (atomic_read(&dev->refcnt) != 0) {
5479 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5480 rtnl_lock();
5482 /* Rebroadcast unregister notification */
5483 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5484 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5485 * should have already handle it the first time */
5487 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5488 &dev->state)) {
5489 /* We must not have linkwatch events
5490 * pending on unregister. If this
5491 * happens, we simply run the queue
5492 * unscheduled, resulting in a noop
5493 * for this device.
5495 linkwatch_run_queue();
5498 __rtnl_unlock();
5500 rebroadcast_time = jiffies;
5503 msleep(250);
5505 if (time_after(jiffies, warning_time + 10 * HZ)) {
5506 printk(KERN_EMERG "unregister_netdevice: "
5507 "waiting for %s to become free. Usage "
5508 "count = %d\n",
5509 dev->name, atomic_read(&dev->refcnt));
5510 warning_time = jiffies;
5515 /* The sequence is:
5517 * rtnl_lock();
5518 * ...
5519 * register_netdevice(x1);
5520 * register_netdevice(x2);
5521 * ...
5522 * unregister_netdevice(y1);
5523 * unregister_netdevice(y2);
5524 * ...
5525 * rtnl_unlock();
5526 * free_netdev(y1);
5527 * free_netdev(y2);
5529 * We are invoked by rtnl_unlock().
5530 * This allows us to deal with problems:
5531 * 1) We can delete sysfs objects which invoke hotplug
5532 * without deadlocking with linkwatch via keventd.
5533 * 2) Since we run with the RTNL semaphore not held, we can sleep
5534 * safely in order to wait for the netdev refcnt to drop to zero.
5536 * We must not return until all unregister events added during
5537 * the interval the lock was held have been completed.
5539 void netdev_run_todo(void)
5541 struct list_head list;
5543 /* Snapshot list, allow later requests */
5544 list_replace_init(&net_todo_list, &list);
5546 __rtnl_unlock();
5548 while (!list_empty(&list)) {
5549 struct net_device *dev
5550 = list_first_entry(&list, struct net_device, todo_list);
5551 int i;
5552 list_del(&dev->todo_list);
5554 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5555 printk(KERN_ERR "network todo '%s' but state %d\n",
5556 dev->name, dev->reg_state);
5557 dump_stack();
5558 continue;
5561 dev->reg_state = NETREG_UNREGISTERED;
5563 for_each_online_cpu(i)
5564 flush_backlog(dev, i);
5566 netdev_wait_allrefs(dev);
5568 /* paranoia */
5569 BUG_ON(atomic_read(&dev->refcnt));
5570 WARN_ON(dev->ip_ptr);
5571 WARN_ON(dev->ip6_ptr);
5572 WARN_ON(dev->dn_ptr);
5574 if (dev->destructor)
5575 dev->destructor(dev);
5577 /* Free network device */
5578 kobject_put(&dev->dev.kobj);
5583 * dev_txq_stats_fold - fold tx_queues stats
5584 * @dev: device to get statistics from
5585 * @stats: struct net_device_stats to hold results
5587 void dev_txq_stats_fold(const struct net_device *dev,
5588 struct net_device_stats *stats)
5590 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5591 unsigned int i;
5592 struct netdev_queue *txq;
5594 for (i = 0; i < dev->num_tx_queues; i++) {
5595 txq = netdev_get_tx_queue(dev, i);
5596 tx_bytes += txq->tx_bytes;
5597 tx_packets += txq->tx_packets;
5598 tx_dropped += txq->tx_dropped;
5600 if (tx_bytes || tx_packets || tx_dropped) {
5601 stats->tx_bytes = tx_bytes;
5602 stats->tx_packets = tx_packets;
5603 stats->tx_dropped = tx_dropped;
5606 EXPORT_SYMBOL(dev_txq_stats_fold);
5609 * dev_get_stats - get network device statistics
5610 * @dev: device to get statistics from
5612 * Get network statistics from device. The device driver may provide
5613 * its own method by setting dev->netdev_ops->get_stats; otherwise
5614 * the internal statistics structure is used.
5616 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5618 const struct net_device_ops *ops = dev->netdev_ops;
5620 if (ops->ndo_get_stats)
5621 return ops->ndo_get_stats(dev);
5623 dev_txq_stats_fold(dev, &dev->stats);
5624 return &dev->stats;
5626 EXPORT_SYMBOL(dev_get_stats);
5628 static void netdev_init_one_queue(struct net_device *dev,
5629 struct netdev_queue *queue,
5630 void *_unused)
5632 queue->dev = dev;
5635 static void netdev_init_queues(struct net_device *dev)
5637 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5638 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5639 spin_lock_init(&dev->tx_global_lock);
5643 * alloc_netdev_mq - allocate network device
5644 * @sizeof_priv: size of private data to allocate space for
5645 * @name: device name format string
5646 * @setup: callback to initialize device
5647 * @queue_count: the number of subqueues to allocate
5649 * Allocates a struct net_device with private data area for driver use
5650 * and performs basic initialization. Also allocates subquue structs
5651 * for each queue on the device at the end of the netdevice.
5653 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5654 void (*setup)(struct net_device *), unsigned int queue_count)
5656 struct netdev_queue *tx;
5657 struct net_device *dev;
5658 size_t alloc_size;
5659 struct net_device *p;
5660 #ifdef CONFIG_RPS
5661 struct netdev_rx_queue *rx;
5662 int i;
5663 #endif
5665 BUG_ON(strlen(name) >= sizeof(dev->name));
5667 alloc_size = sizeof(struct net_device);
5668 if (sizeof_priv) {
5669 /* ensure 32-byte alignment of private area */
5670 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5671 alloc_size += sizeof_priv;
5673 /* ensure 32-byte alignment of whole construct */
5674 alloc_size += NETDEV_ALIGN - 1;
5676 p = kzalloc(alloc_size, GFP_KERNEL);
5677 if (!p) {
5678 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5679 return NULL;
5682 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5683 if (!tx) {
5684 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5685 "tx qdiscs.\n");
5686 goto free_p;
5689 #ifdef CONFIG_RPS
5690 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5691 if (!rx) {
5692 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5693 "rx queues.\n");
5694 goto free_tx;
5697 atomic_set(&rx->count, queue_count);
5700 * Set a pointer to first element in the array which holds the
5701 * reference count.
5703 for (i = 0; i < queue_count; i++)
5704 rx[i].first = rx;
5705 #endif
5707 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5708 dev->padded = (char *)dev - (char *)p;
5710 if (dev_addr_init(dev))
5711 goto free_rx;
5713 dev_unicast_init(dev);
5715 dev_net_set(dev, &init_net);
5717 dev->_tx = tx;
5718 dev->num_tx_queues = queue_count;
5719 dev->real_num_tx_queues = queue_count;
5721 #ifdef CONFIG_RPS
5722 dev->_rx = rx;
5723 dev->num_rx_queues = queue_count;
5724 #endif
5726 dev->gso_max_size = GSO_MAX_SIZE;
5728 netdev_init_queues(dev);
5730 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5731 dev->ethtool_ntuple_list.count = 0;
5732 INIT_LIST_HEAD(&dev->napi_list);
5733 INIT_LIST_HEAD(&dev->unreg_list);
5734 INIT_LIST_HEAD(&dev->link_watch_list);
5735 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5736 setup(dev);
5737 strcpy(dev->name, name);
5738 return dev;
5740 free_rx:
5741 #ifdef CONFIG_RPS
5742 kfree(rx);
5743 free_tx:
5744 #endif
5745 kfree(tx);
5746 free_p:
5747 kfree(p);
5748 return NULL;
5750 EXPORT_SYMBOL(alloc_netdev_mq);
5753 * free_netdev - free network device
5754 * @dev: device
5756 * This function does the last stage of destroying an allocated device
5757 * interface. The reference to the device object is released.
5758 * If this is the last reference then it will be freed.
5760 void free_netdev(struct net_device *dev)
5762 struct napi_struct *p, *n;
5764 release_net(dev_net(dev));
5766 kfree(dev->_tx);
5768 /* Flush device addresses */
5769 dev_addr_flush(dev);
5771 /* Clear ethtool n-tuple list */
5772 ethtool_ntuple_flush(dev);
5774 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5775 netif_napi_del(p);
5777 /* Compatibility with error handling in drivers */
5778 if (dev->reg_state == NETREG_UNINITIALIZED) {
5779 kfree((char *)dev - dev->padded);
5780 return;
5783 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5784 dev->reg_state = NETREG_RELEASED;
5786 /* will free via device release */
5787 put_device(&dev->dev);
5789 EXPORT_SYMBOL(free_netdev);
5792 * synchronize_net - Synchronize with packet receive processing
5794 * Wait for packets currently being received to be done.
5795 * Does not block later packets from starting.
5797 void synchronize_net(void)
5799 might_sleep();
5800 synchronize_rcu();
5802 EXPORT_SYMBOL(synchronize_net);
5805 * unregister_netdevice_queue - remove device from the kernel
5806 * @dev: device
5807 * @head: list
5809 * This function shuts down a device interface and removes it
5810 * from the kernel tables.
5811 * If head not NULL, device is queued to be unregistered later.
5813 * Callers must hold the rtnl semaphore. You may want
5814 * unregister_netdev() instead of this.
5817 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5819 ASSERT_RTNL();
5821 if (head) {
5822 list_move_tail(&dev->unreg_list, head);
5823 } else {
5824 rollback_registered(dev);
5825 /* Finish processing unregister after unlock */
5826 net_set_todo(dev);
5829 EXPORT_SYMBOL(unregister_netdevice_queue);
5832 * unregister_netdevice_many - unregister many devices
5833 * @head: list of devices
5835 void unregister_netdevice_many(struct list_head *head)
5837 struct net_device *dev;
5839 if (!list_empty(head)) {
5840 rollback_registered_many(head);
5841 list_for_each_entry(dev, head, unreg_list)
5842 net_set_todo(dev);
5845 EXPORT_SYMBOL(unregister_netdevice_many);
5848 * unregister_netdev - remove device from the kernel
5849 * @dev: device
5851 * This function shuts down a device interface and removes it
5852 * from the kernel tables.
5854 * This is just a wrapper for unregister_netdevice that takes
5855 * the rtnl semaphore. In general you want to use this and not
5856 * unregister_netdevice.
5858 void unregister_netdev(struct net_device *dev)
5860 rtnl_lock();
5861 unregister_netdevice(dev);
5862 rtnl_unlock();
5864 EXPORT_SYMBOL(unregister_netdev);
5867 * dev_change_net_namespace - move device to different nethost namespace
5868 * @dev: device
5869 * @net: network namespace
5870 * @pat: If not NULL name pattern to try if the current device name
5871 * is already taken in the destination network namespace.
5873 * This function shuts down a device interface and moves it
5874 * to a new network namespace. On success 0 is returned, on
5875 * a failure a netagive errno code is returned.
5877 * Callers must hold the rtnl semaphore.
5880 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5882 int err;
5884 ASSERT_RTNL();
5886 /* Don't allow namespace local devices to be moved. */
5887 err = -EINVAL;
5888 if (dev->features & NETIF_F_NETNS_LOCAL)
5889 goto out;
5891 #ifdef CONFIG_SYSFS
5892 /* Don't allow real devices to be moved when sysfs
5893 * is enabled.
5895 err = -EINVAL;
5896 if (dev->dev.parent)
5897 goto out;
5898 #endif
5900 /* Ensure the device has been registrered */
5901 err = -EINVAL;
5902 if (dev->reg_state != NETREG_REGISTERED)
5903 goto out;
5905 /* Get out if there is nothing todo */
5906 err = 0;
5907 if (net_eq(dev_net(dev), net))
5908 goto out;
5910 /* Pick the destination device name, and ensure
5911 * we can use it in the destination network namespace.
5913 err = -EEXIST;
5914 if (__dev_get_by_name(net, dev->name)) {
5915 /* We get here if we can't use the current device name */
5916 if (!pat)
5917 goto out;
5918 if (dev_get_valid_name(net, pat, dev->name, 1))
5919 goto out;
5923 * And now a mini version of register_netdevice unregister_netdevice.
5926 /* If device is running close it first. */
5927 dev_close(dev);
5929 /* And unlink it from device chain */
5930 err = -ENODEV;
5931 unlist_netdevice(dev);
5933 synchronize_net();
5935 /* Shutdown queueing discipline. */
5936 dev_shutdown(dev);
5938 /* Notify protocols, that we are about to destroy
5939 this device. They should clean all the things.
5941 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5942 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5945 * Flush the unicast and multicast chains
5947 dev_unicast_flush(dev);
5948 dev_addr_discard(dev);
5950 netdev_unregister_kobject(dev);
5952 /* Actually switch the network namespace */
5953 dev_net_set(dev, net);
5955 /* If there is an ifindex conflict assign a new one */
5956 if (__dev_get_by_index(net, dev->ifindex)) {
5957 int iflink = (dev->iflink == dev->ifindex);
5958 dev->ifindex = dev_new_index(net);
5959 if (iflink)
5960 dev->iflink = dev->ifindex;
5963 /* Fixup kobjects */
5964 err = netdev_register_kobject(dev);
5965 WARN_ON(err);
5967 /* Add the device back in the hashes */
5968 list_netdevice(dev);
5970 /* Notify protocols, that a new device appeared. */
5971 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5974 * Prevent userspace races by waiting until the network
5975 * device is fully setup before sending notifications.
5977 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5979 synchronize_net();
5980 err = 0;
5981 out:
5982 return err;
5984 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5986 static int dev_cpu_callback(struct notifier_block *nfb,
5987 unsigned long action,
5988 void *ocpu)
5990 struct sk_buff **list_skb;
5991 struct Qdisc **list_net;
5992 struct sk_buff *skb;
5993 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5994 struct softnet_data *sd, *oldsd;
5996 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5997 return NOTIFY_OK;
5999 local_irq_disable();
6000 cpu = smp_processor_id();
6001 sd = &per_cpu(softnet_data, cpu);
6002 oldsd = &per_cpu(softnet_data, oldcpu);
6004 /* Find end of our completion_queue. */
6005 list_skb = &sd->completion_queue;
6006 while (*list_skb)
6007 list_skb = &(*list_skb)->next;
6008 /* Append completion queue from offline CPU. */
6009 *list_skb = oldsd->completion_queue;
6010 oldsd->completion_queue = NULL;
6012 /* Find end of our output_queue. */
6013 list_net = &sd->output_queue;
6014 while (*list_net)
6015 list_net = &(*list_net)->next_sched;
6016 /* Append output queue from offline CPU. */
6017 *list_net = oldsd->output_queue;
6018 oldsd->output_queue = NULL;
6020 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6021 local_irq_enable();
6023 /* Process offline CPU's input_pkt_queue */
6024 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
6025 netif_rx(skb);
6027 return NOTIFY_OK;
6032 * netdev_increment_features - increment feature set by one
6033 * @all: current feature set
6034 * @one: new feature set
6035 * @mask: mask feature set
6037 * Computes a new feature set after adding a device with feature set
6038 * @one to the master device with current feature set @all. Will not
6039 * enable anything that is off in @mask. Returns the new feature set.
6041 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
6042 unsigned long mask)
6044 /* If device needs checksumming, downgrade to it. */
6045 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6046 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6047 else if (mask & NETIF_F_ALL_CSUM) {
6048 /* If one device supports v4/v6 checksumming, set for all. */
6049 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6050 !(all & NETIF_F_GEN_CSUM)) {
6051 all &= ~NETIF_F_ALL_CSUM;
6052 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6055 /* If one device supports hw checksumming, set for all. */
6056 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6057 all &= ~NETIF_F_ALL_CSUM;
6058 all |= NETIF_F_HW_CSUM;
6062 one |= NETIF_F_ALL_CSUM;
6064 one |= all & NETIF_F_ONE_FOR_ALL;
6065 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6066 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6068 return all;
6070 EXPORT_SYMBOL(netdev_increment_features);
6072 static struct hlist_head *netdev_create_hash(void)
6074 int i;
6075 struct hlist_head *hash;
6077 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6078 if (hash != NULL)
6079 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6080 INIT_HLIST_HEAD(&hash[i]);
6082 return hash;
6085 /* Initialize per network namespace state */
6086 static int __net_init netdev_init(struct net *net)
6088 INIT_LIST_HEAD(&net->dev_base_head);
6090 net->dev_name_head = netdev_create_hash();
6091 if (net->dev_name_head == NULL)
6092 goto err_name;
6094 net->dev_index_head = netdev_create_hash();
6095 if (net->dev_index_head == NULL)
6096 goto err_idx;
6098 return 0;
6100 err_idx:
6101 kfree(net->dev_name_head);
6102 err_name:
6103 return -ENOMEM;
6107 * netdev_drivername - network driver for the device
6108 * @dev: network device
6109 * @buffer: buffer for resulting name
6110 * @len: size of buffer
6112 * Determine network driver for device.
6114 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6116 const struct device_driver *driver;
6117 const struct device *parent;
6119 if (len <= 0 || !buffer)
6120 return buffer;
6121 buffer[0] = 0;
6123 parent = dev->dev.parent;
6125 if (!parent)
6126 return buffer;
6128 driver = parent->driver;
6129 if (driver && driver->name)
6130 strlcpy(buffer, driver->name, len);
6131 return buffer;
6134 static void __net_exit netdev_exit(struct net *net)
6136 kfree(net->dev_name_head);
6137 kfree(net->dev_index_head);
6140 static struct pernet_operations __net_initdata netdev_net_ops = {
6141 .init = netdev_init,
6142 .exit = netdev_exit,
6145 static void __net_exit default_device_exit(struct net *net)
6147 struct net_device *dev, *aux;
6149 * Push all migratable network devices back to the
6150 * initial network namespace
6152 rtnl_lock();
6153 for_each_netdev_safe(net, dev, aux) {
6154 int err;
6155 char fb_name[IFNAMSIZ];
6157 /* Ignore unmoveable devices (i.e. loopback) */
6158 if (dev->features & NETIF_F_NETNS_LOCAL)
6159 continue;
6161 /* Leave virtual devices for the generic cleanup */
6162 if (dev->rtnl_link_ops)
6163 continue;
6165 /* Push remaing network devices to init_net */
6166 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6167 err = dev_change_net_namespace(dev, &init_net, fb_name);
6168 if (err) {
6169 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6170 __func__, dev->name, err);
6171 BUG();
6174 rtnl_unlock();
6177 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6179 /* At exit all network devices most be removed from a network
6180 * namespace. Do this in the reverse order of registeration.
6181 * Do this across as many network namespaces as possible to
6182 * improve batching efficiency.
6184 struct net_device *dev;
6185 struct net *net;
6186 LIST_HEAD(dev_kill_list);
6188 rtnl_lock();
6189 list_for_each_entry(net, net_list, exit_list) {
6190 for_each_netdev_reverse(net, dev) {
6191 if (dev->rtnl_link_ops)
6192 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6193 else
6194 unregister_netdevice_queue(dev, &dev_kill_list);
6197 unregister_netdevice_many(&dev_kill_list);
6198 rtnl_unlock();
6201 static struct pernet_operations __net_initdata default_device_ops = {
6202 .exit = default_device_exit,
6203 .exit_batch = default_device_exit_batch,
6207 * Initialize the DEV module. At boot time this walks the device list and
6208 * unhooks any devices that fail to initialise (normally hardware not
6209 * present) and leaves us with a valid list of present and active devices.
6214 * This is called single threaded during boot, so no need
6215 * to take the rtnl semaphore.
6217 static int __init net_dev_init(void)
6219 int i, rc = -ENOMEM;
6221 BUG_ON(!dev_boot_phase);
6223 if (dev_proc_init())
6224 goto out;
6226 if (netdev_kobject_init())
6227 goto out;
6229 INIT_LIST_HEAD(&ptype_all);
6230 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6231 INIT_LIST_HEAD(&ptype_base[i]);
6233 if (register_pernet_subsys(&netdev_net_ops))
6234 goto out;
6237 * Initialise the packet receive queues.
6240 for_each_possible_cpu(i) {
6241 struct softnet_data *queue;
6243 queue = &per_cpu(softnet_data, i);
6244 skb_queue_head_init(&queue->input_pkt_queue);
6245 queue->completion_queue = NULL;
6246 INIT_LIST_HEAD(&queue->poll_list);
6248 #ifdef CONFIG_RPS
6249 queue->csd.func = trigger_softirq;
6250 queue->csd.info = queue;
6251 queue->csd.flags = 0;
6252 #endif
6254 queue->backlog.poll = process_backlog;
6255 queue->backlog.weight = weight_p;
6256 queue->backlog.gro_list = NULL;
6257 queue->backlog.gro_count = 0;
6260 dev_boot_phase = 0;
6262 /* The loopback device is special if any other network devices
6263 * is present in a network namespace the loopback device must
6264 * be present. Since we now dynamically allocate and free the
6265 * loopback device ensure this invariant is maintained by
6266 * keeping the loopback device as the first device on the
6267 * list of network devices. Ensuring the loopback devices
6268 * is the first device that appears and the last network device
6269 * that disappears.
6271 if (register_pernet_device(&loopback_net_ops))
6272 goto out;
6274 if (register_pernet_device(&default_device_ops))
6275 goto out;
6277 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6278 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6280 hotcpu_notifier(dev_cpu_callback, 0);
6281 dst_init();
6282 dev_mcast_init();
6283 rc = 0;
6284 out:
6285 return rc;
6288 subsys_initcall(net_dev_init);
6290 static int __init initialize_hashrnd(void)
6292 get_random_bytes(&hashrnd, sizeof(hashrnd));
6293 return 0;
6296 late_initcall_sync(initialize_hashrnd);