ext4: Retry block allocation if we have free blocks left
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / inode.c
blobf97b3478eb894c4fcdc075e9bf4308e27e5f31dd
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
44 #define MPAGE_DA_EXTENT_TAIL 0x01
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47 loff_t new_size)
49 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50 new_size);
53 static void ext4_invalidatepage(struct page *page, unsigned long offset);
56 * Test whether an inode is a fast symlink.
58 static int ext4_inode_is_fast_symlink(struct inode *inode)
60 int ea_blocks = EXT4_I(inode)->i_file_acl ?
61 (inode->i_sb->s_blocksize >> 9) : 0;
63 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 * The ext4 forget function must perform a revoke if we are freeing data
68 * which has been journaled. Metadata (eg. indirect blocks) must be
69 * revoked in all cases.
71 * "bh" may be NULL: a metadata block may have been freed from memory
72 * but there may still be a record of it in the journal, and that record
73 * still needs to be revoked.
75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76 struct buffer_head *bh, ext4_fsblk_t blocknr)
78 int err;
80 might_sleep();
82 BUFFER_TRACE(bh, "enter");
84 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85 "data mode %lx\n",
86 bh, is_metadata, inode->i_mode,
87 test_opt(inode->i_sb, DATA_FLAGS));
89 /* Never use the revoke function if we are doing full data
90 * journaling: there is no need to, and a V1 superblock won't
91 * support it. Otherwise, only skip the revoke on un-journaled
92 * data blocks. */
94 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95 (!is_metadata && !ext4_should_journal_data(inode))) {
96 if (bh) {
97 BUFFER_TRACE(bh, "call jbd2_journal_forget");
98 return ext4_journal_forget(handle, bh);
100 return 0;
104 * data!=journal && (is_metadata || should_journal_data(inode))
106 BUFFER_TRACE(bh, "call ext4_journal_revoke");
107 err = ext4_journal_revoke(handle, blocknr, bh);
108 if (err)
109 ext4_abort(inode->i_sb, __func__,
110 "error %d when attempting revoke", err);
111 BUFFER_TRACE(bh, "exit");
112 return err;
116 * Work out how many blocks we need to proceed with the next chunk of a
117 * truncate transaction.
119 static unsigned long blocks_for_truncate(struct inode *inode)
121 ext4_lblk_t needed;
123 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
125 /* Give ourselves just enough room to cope with inodes in which
126 * i_blocks is corrupt: we've seen disk corruptions in the past
127 * which resulted in random data in an inode which looked enough
128 * like a regular file for ext4 to try to delete it. Things
129 * will go a bit crazy if that happens, but at least we should
130 * try not to panic the whole kernel. */
131 if (needed < 2)
132 needed = 2;
134 /* But we need to bound the transaction so we don't overflow the
135 * journal. */
136 if (needed > EXT4_MAX_TRANS_DATA)
137 needed = EXT4_MAX_TRANS_DATA;
139 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
143 * Truncate transactions can be complex and absolutely huge. So we need to
144 * be able to restart the transaction at a conventient checkpoint to make
145 * sure we don't overflow the journal.
147 * start_transaction gets us a new handle for a truncate transaction,
148 * and extend_transaction tries to extend the existing one a bit. If
149 * extend fails, we need to propagate the failure up and restart the
150 * transaction in the top-level truncate loop. --sct
152 static handle_t *start_transaction(struct inode *inode)
154 handle_t *result;
156 result = ext4_journal_start(inode, blocks_for_truncate(inode));
157 if (!IS_ERR(result))
158 return result;
160 ext4_std_error(inode->i_sb, PTR_ERR(result));
161 return result;
165 * Try to extend this transaction for the purposes of truncation.
167 * Returns 0 if we managed to create more room. If we can't create more
168 * room, and the transaction must be restarted we return 1.
170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
172 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
173 return 0;
174 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
175 return 0;
176 return 1;
180 * Restart the transaction associated with *handle. This does a commit,
181 * so before we call here everything must be consistently dirtied against
182 * this transaction.
184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
186 jbd_debug(2, "restarting handle %p\n", handle);
187 return ext4_journal_restart(handle, blocks_for_truncate(inode));
191 * Called at the last iput() if i_nlink is zero.
193 void ext4_delete_inode(struct inode *inode)
195 handle_t *handle;
196 int err;
198 if (ext4_should_order_data(inode))
199 ext4_begin_ordered_truncate(inode, 0);
200 truncate_inode_pages(&inode->i_data, 0);
202 if (is_bad_inode(inode))
203 goto no_delete;
205 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
206 if (IS_ERR(handle)) {
207 ext4_std_error(inode->i_sb, PTR_ERR(handle));
209 * If we're going to skip the normal cleanup, we still need to
210 * make sure that the in-core orphan linked list is properly
211 * cleaned up.
213 ext4_orphan_del(NULL, inode);
214 goto no_delete;
217 if (IS_SYNC(inode))
218 handle->h_sync = 1;
219 inode->i_size = 0;
220 err = ext4_mark_inode_dirty(handle, inode);
221 if (err) {
222 ext4_warning(inode->i_sb, __func__,
223 "couldn't mark inode dirty (err %d)", err);
224 goto stop_handle;
226 if (inode->i_blocks)
227 ext4_truncate(inode);
230 * ext4_ext_truncate() doesn't reserve any slop when it
231 * restarts journal transactions; therefore there may not be
232 * enough credits left in the handle to remove the inode from
233 * the orphan list and set the dtime field.
235 if (handle->h_buffer_credits < 3) {
236 err = ext4_journal_extend(handle, 3);
237 if (err > 0)
238 err = ext4_journal_restart(handle, 3);
239 if (err != 0) {
240 ext4_warning(inode->i_sb, __func__,
241 "couldn't extend journal (err %d)", err);
242 stop_handle:
243 ext4_journal_stop(handle);
244 goto no_delete;
249 * Kill off the orphan record which ext4_truncate created.
250 * AKPM: I think this can be inside the above `if'.
251 * Note that ext4_orphan_del() has to be able to cope with the
252 * deletion of a non-existent orphan - this is because we don't
253 * know if ext4_truncate() actually created an orphan record.
254 * (Well, we could do this if we need to, but heck - it works)
256 ext4_orphan_del(handle, inode);
257 EXT4_I(inode)->i_dtime = get_seconds();
260 * One subtle ordering requirement: if anything has gone wrong
261 * (transaction abort, IO errors, whatever), then we can still
262 * do these next steps (the fs will already have been marked as
263 * having errors), but we can't free the inode if the mark_dirty
264 * fails.
266 if (ext4_mark_inode_dirty(handle, inode))
267 /* If that failed, just do the required in-core inode clear. */
268 clear_inode(inode);
269 else
270 ext4_free_inode(handle, inode);
271 ext4_journal_stop(handle);
272 return;
273 no_delete:
274 clear_inode(inode); /* We must guarantee clearing of inode... */
277 typedef struct {
278 __le32 *p;
279 __le32 key;
280 struct buffer_head *bh;
281 } Indirect;
283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
285 p->key = *(p->p = v);
286 p->bh = bh;
290 * ext4_block_to_path - parse the block number into array of offsets
291 * @inode: inode in question (we are only interested in its superblock)
292 * @i_block: block number to be parsed
293 * @offsets: array to store the offsets in
294 * @boundary: set this non-zero if the referred-to block is likely to be
295 * followed (on disk) by an indirect block.
297 * To store the locations of file's data ext4 uses a data structure common
298 * for UNIX filesystems - tree of pointers anchored in the inode, with
299 * data blocks at leaves and indirect blocks in intermediate nodes.
300 * This function translates the block number into path in that tree -
301 * return value is the path length and @offsets[n] is the offset of
302 * pointer to (n+1)th node in the nth one. If @block is out of range
303 * (negative or too large) warning is printed and zero returned.
305 * Note: function doesn't find node addresses, so no IO is needed. All
306 * we need to know is the capacity of indirect blocks (taken from the
307 * inode->i_sb).
311 * Portability note: the last comparison (check that we fit into triple
312 * indirect block) is spelled differently, because otherwise on an
313 * architecture with 32-bit longs and 8Kb pages we might get into trouble
314 * if our filesystem had 8Kb blocks. We might use long long, but that would
315 * kill us on x86. Oh, well, at least the sign propagation does not matter -
316 * i_block would have to be negative in the very beginning, so we would not
317 * get there at all.
320 static int ext4_block_to_path(struct inode *inode,
321 ext4_lblk_t i_block,
322 ext4_lblk_t offsets[4], int *boundary)
324 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326 const long direct_blocks = EXT4_NDIR_BLOCKS,
327 indirect_blocks = ptrs,
328 double_blocks = (1 << (ptrs_bits * 2));
329 int n = 0;
330 int final = 0;
332 if (i_block < 0) {
333 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
334 } else if (i_block < direct_blocks) {
335 offsets[n++] = i_block;
336 final = direct_blocks;
337 } else if ((i_block -= direct_blocks) < indirect_blocks) {
338 offsets[n++] = EXT4_IND_BLOCK;
339 offsets[n++] = i_block;
340 final = ptrs;
341 } else if ((i_block -= indirect_blocks) < double_blocks) {
342 offsets[n++] = EXT4_DIND_BLOCK;
343 offsets[n++] = i_block >> ptrs_bits;
344 offsets[n++] = i_block & (ptrs - 1);
345 final = ptrs;
346 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347 offsets[n++] = EXT4_TIND_BLOCK;
348 offsets[n++] = i_block >> (ptrs_bits * 2);
349 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350 offsets[n++] = i_block & (ptrs - 1);
351 final = ptrs;
352 } else {
353 ext4_warning(inode->i_sb, "ext4_block_to_path",
354 "block %lu > max",
355 i_block + direct_blocks +
356 indirect_blocks + double_blocks);
358 if (boundary)
359 *boundary = final - 1 - (i_block & (ptrs - 1));
360 return n;
364 * ext4_get_branch - read the chain of indirect blocks leading to data
365 * @inode: inode in question
366 * @depth: depth of the chain (1 - direct pointer, etc.)
367 * @offsets: offsets of pointers in inode/indirect blocks
368 * @chain: place to store the result
369 * @err: here we store the error value
371 * Function fills the array of triples <key, p, bh> and returns %NULL
372 * if everything went OK or the pointer to the last filled triple
373 * (incomplete one) otherwise. Upon the return chain[i].key contains
374 * the number of (i+1)-th block in the chain (as it is stored in memory,
375 * i.e. little-endian 32-bit), chain[i].p contains the address of that
376 * number (it points into struct inode for i==0 and into the bh->b_data
377 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378 * block for i>0 and NULL for i==0. In other words, it holds the block
379 * numbers of the chain, addresses they were taken from (and where we can
380 * verify that chain did not change) and buffer_heads hosting these
381 * numbers.
383 * Function stops when it stumbles upon zero pointer (absent block)
384 * (pointer to last triple returned, *@err == 0)
385 * or when it gets an IO error reading an indirect block
386 * (ditto, *@err == -EIO)
387 * or when it reads all @depth-1 indirect blocks successfully and finds
388 * the whole chain, all way to the data (returns %NULL, *err == 0).
390 * Need to be called with
391 * down_read(&EXT4_I(inode)->i_data_sem)
393 static Indirect *ext4_get_branch(struct inode *inode, int depth,
394 ext4_lblk_t *offsets,
395 Indirect chain[4], int *err)
397 struct super_block *sb = inode->i_sb;
398 Indirect *p = chain;
399 struct buffer_head *bh;
401 *err = 0;
402 /* i_data is not going away, no lock needed */
403 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
404 if (!p->key)
405 goto no_block;
406 while (--depth) {
407 bh = sb_bread(sb, le32_to_cpu(p->key));
408 if (!bh)
409 goto failure;
410 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
411 /* Reader: end */
412 if (!p->key)
413 goto no_block;
415 return NULL;
417 failure:
418 *err = -EIO;
419 no_block:
420 return p;
424 * ext4_find_near - find a place for allocation with sufficient locality
425 * @inode: owner
426 * @ind: descriptor of indirect block.
428 * This function returns the preferred place for block allocation.
429 * It is used when heuristic for sequential allocation fails.
430 * Rules are:
431 * + if there is a block to the left of our position - allocate near it.
432 * + if pointer will live in indirect block - allocate near that block.
433 * + if pointer will live in inode - allocate in the same
434 * cylinder group.
436 * In the latter case we colour the starting block by the callers PID to
437 * prevent it from clashing with concurrent allocations for a different inode
438 * in the same block group. The PID is used here so that functionally related
439 * files will be close-by on-disk.
441 * Caller must make sure that @ind is valid and will stay that way.
443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
445 struct ext4_inode_info *ei = EXT4_I(inode);
446 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
447 __le32 *p;
448 ext4_fsblk_t bg_start;
449 ext4_fsblk_t last_block;
450 ext4_grpblk_t colour;
452 /* Try to find previous block */
453 for (p = ind->p - 1; p >= start; p--) {
454 if (*p)
455 return le32_to_cpu(*p);
458 /* No such thing, so let's try location of indirect block */
459 if (ind->bh)
460 return ind->bh->b_blocknr;
463 * It is going to be referred to from the inode itself? OK, just put it
464 * into the same cylinder group then.
466 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
467 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
469 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470 colour = (current->pid % 16) *
471 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
472 else
473 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
474 return bg_start + colour;
478 * ext4_find_goal - find a preferred place for allocation.
479 * @inode: owner
480 * @block: block we want
481 * @partial: pointer to the last triple within a chain
483 * Normally this function find the preferred place for block allocation,
484 * returns it.
486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
487 Indirect *partial)
489 struct ext4_block_alloc_info *block_i;
491 block_i = EXT4_I(inode)->i_block_alloc_info;
494 * try the heuristic for sequential allocation,
495 * failing that at least try to get decent locality.
497 if (block_i && (block == block_i->last_alloc_logical_block + 1)
498 && (block_i->last_alloc_physical_block != 0)) {
499 return block_i->last_alloc_physical_block + 1;
502 return ext4_find_near(inode, partial);
506 * ext4_blks_to_allocate: Look up the block map and count the number
507 * of direct blocks need to be allocated for the given branch.
509 * @branch: chain of indirect blocks
510 * @k: number of blocks need for indirect blocks
511 * @blks: number of data blocks to be mapped.
512 * @blocks_to_boundary: the offset in the indirect block
514 * return the total number of blocks to be allocate, including the
515 * direct and indirect blocks.
517 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
518 int blocks_to_boundary)
520 unsigned long count = 0;
523 * Simple case, [t,d]Indirect block(s) has not allocated yet
524 * then it's clear blocks on that path have not allocated
526 if (k > 0) {
527 /* right now we don't handle cross boundary allocation */
528 if (blks < blocks_to_boundary + 1)
529 count += blks;
530 else
531 count += blocks_to_boundary + 1;
532 return count;
535 count++;
536 while (count < blks && count <= blocks_to_boundary &&
537 le32_to_cpu(*(branch[0].p + count)) == 0) {
538 count++;
540 return count;
544 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
545 * @indirect_blks: the number of blocks need to allocate for indirect
546 * blocks
548 * @new_blocks: on return it will store the new block numbers for
549 * the indirect blocks(if needed) and the first direct block,
550 * @blks: on return it will store the total number of allocated
551 * direct blocks
553 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
554 ext4_lblk_t iblock, ext4_fsblk_t goal,
555 int indirect_blks, int blks,
556 ext4_fsblk_t new_blocks[4], int *err)
558 int target, i;
559 unsigned long count = 0, blk_allocated = 0;
560 int index = 0;
561 ext4_fsblk_t current_block = 0;
562 int ret = 0;
565 * Here we try to allocate the requested multiple blocks at once,
566 * on a best-effort basis.
567 * To build a branch, we should allocate blocks for
568 * the indirect blocks(if not allocated yet), and at least
569 * the first direct block of this branch. That's the
570 * minimum number of blocks need to allocate(required)
572 /* first we try to allocate the indirect blocks */
573 target = indirect_blks;
574 while (target > 0) {
575 count = target;
576 /* allocating blocks for indirect blocks and direct blocks */
577 current_block = ext4_new_meta_blocks(handle, inode,
578 goal, &count, err);
579 if (*err)
580 goto failed_out;
582 target -= count;
583 /* allocate blocks for indirect blocks */
584 while (index < indirect_blks && count) {
585 new_blocks[index++] = current_block++;
586 count--;
588 if (count > 0) {
590 * save the new block number
591 * for the first direct block
593 new_blocks[index] = current_block;
594 printk(KERN_INFO "%s returned more blocks than "
595 "requested\n", __func__);
596 WARN_ON(1);
597 break;
601 target = blks - count ;
602 blk_allocated = count;
603 if (!target)
604 goto allocated;
605 /* Now allocate data blocks */
606 count = target;
607 /* allocating blocks for data blocks */
608 current_block = ext4_new_blocks(handle, inode, iblock,
609 goal, &count, err);
610 if (*err && (target == blks)) {
612 * if the allocation failed and we didn't allocate
613 * any blocks before
615 goto failed_out;
617 if (!*err) {
618 if (target == blks) {
620 * save the new block number
621 * for the first direct block
623 new_blocks[index] = current_block;
625 blk_allocated += count;
627 allocated:
628 /* total number of blocks allocated for direct blocks */
629 ret = blk_allocated;
630 *err = 0;
631 return ret;
632 failed_out:
633 for (i = 0; i < index; i++)
634 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
635 return ret;
639 * ext4_alloc_branch - allocate and set up a chain of blocks.
640 * @inode: owner
641 * @indirect_blks: number of allocated indirect blocks
642 * @blks: number of allocated direct blocks
643 * @offsets: offsets (in the blocks) to store the pointers to next.
644 * @branch: place to store the chain in.
646 * This function allocates blocks, zeroes out all but the last one,
647 * links them into chain and (if we are synchronous) writes them to disk.
648 * In other words, it prepares a branch that can be spliced onto the
649 * inode. It stores the information about that chain in the branch[], in
650 * the same format as ext4_get_branch() would do. We are calling it after
651 * we had read the existing part of chain and partial points to the last
652 * triple of that (one with zero ->key). Upon the exit we have the same
653 * picture as after the successful ext4_get_block(), except that in one
654 * place chain is disconnected - *branch->p is still zero (we did not
655 * set the last link), but branch->key contains the number that should
656 * be placed into *branch->p to fill that gap.
658 * If allocation fails we free all blocks we've allocated (and forget
659 * their buffer_heads) and return the error value the from failed
660 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
661 * as described above and return 0.
663 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
664 ext4_lblk_t iblock, int indirect_blks,
665 int *blks, ext4_fsblk_t goal,
666 ext4_lblk_t *offsets, Indirect *branch)
668 int blocksize = inode->i_sb->s_blocksize;
669 int i, n = 0;
670 int err = 0;
671 struct buffer_head *bh;
672 int num;
673 ext4_fsblk_t new_blocks[4];
674 ext4_fsblk_t current_block;
676 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
677 *blks, new_blocks, &err);
678 if (err)
679 return err;
681 branch[0].key = cpu_to_le32(new_blocks[0]);
683 * metadata blocks and data blocks are allocated.
685 for (n = 1; n <= indirect_blks; n++) {
687 * Get buffer_head for parent block, zero it out
688 * and set the pointer to new one, then send
689 * parent to disk.
691 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
692 branch[n].bh = bh;
693 lock_buffer(bh);
694 BUFFER_TRACE(bh, "call get_create_access");
695 err = ext4_journal_get_create_access(handle, bh);
696 if (err) {
697 unlock_buffer(bh);
698 brelse(bh);
699 goto failed;
702 memset(bh->b_data, 0, blocksize);
703 branch[n].p = (__le32 *) bh->b_data + offsets[n];
704 branch[n].key = cpu_to_le32(new_blocks[n]);
705 *branch[n].p = branch[n].key;
706 if (n == indirect_blks) {
707 current_block = new_blocks[n];
709 * End of chain, update the last new metablock of
710 * the chain to point to the new allocated
711 * data blocks numbers
713 for (i=1; i < num; i++)
714 *(branch[n].p + i) = cpu_to_le32(++current_block);
716 BUFFER_TRACE(bh, "marking uptodate");
717 set_buffer_uptodate(bh);
718 unlock_buffer(bh);
720 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
721 err = ext4_journal_dirty_metadata(handle, bh);
722 if (err)
723 goto failed;
725 *blks = num;
726 return err;
727 failed:
728 /* Allocation failed, free what we already allocated */
729 for (i = 1; i <= n ; i++) {
730 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
731 ext4_journal_forget(handle, branch[i].bh);
733 for (i = 0; i < indirect_blks; i++)
734 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
736 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
738 return err;
742 * ext4_splice_branch - splice the allocated branch onto inode.
743 * @inode: owner
744 * @block: (logical) number of block we are adding
745 * @chain: chain of indirect blocks (with a missing link - see
746 * ext4_alloc_branch)
747 * @where: location of missing link
748 * @num: number of indirect blocks we are adding
749 * @blks: number of direct blocks we are adding
751 * This function fills the missing link and does all housekeeping needed in
752 * inode (->i_blocks, etc.). In case of success we end up with the full
753 * chain to new block and return 0.
755 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
756 ext4_lblk_t block, Indirect *where, int num, int blks)
758 int i;
759 int err = 0;
760 struct ext4_block_alloc_info *block_i;
761 ext4_fsblk_t current_block;
763 block_i = EXT4_I(inode)->i_block_alloc_info;
765 * If we're splicing into a [td]indirect block (as opposed to the
766 * inode) then we need to get write access to the [td]indirect block
767 * before the splice.
769 if (where->bh) {
770 BUFFER_TRACE(where->bh, "get_write_access");
771 err = ext4_journal_get_write_access(handle, where->bh);
772 if (err)
773 goto err_out;
775 /* That's it */
777 *where->p = where->key;
780 * Update the host buffer_head or inode to point to more just allocated
781 * direct blocks blocks
783 if (num == 0 && blks > 1) {
784 current_block = le32_to_cpu(where->key) + 1;
785 for (i = 1; i < blks; i++)
786 *(where->p + i) = cpu_to_le32(current_block++);
790 * update the most recently allocated logical & physical block
791 * in i_block_alloc_info, to assist find the proper goal block for next
792 * allocation
794 if (block_i) {
795 block_i->last_alloc_logical_block = block + blks - 1;
796 block_i->last_alloc_physical_block =
797 le32_to_cpu(where[num].key) + blks - 1;
800 /* We are done with atomic stuff, now do the rest of housekeeping */
802 inode->i_ctime = ext4_current_time(inode);
803 ext4_mark_inode_dirty(handle, inode);
805 /* had we spliced it onto indirect block? */
806 if (where->bh) {
808 * If we spliced it onto an indirect block, we haven't
809 * altered the inode. Note however that if it is being spliced
810 * onto an indirect block at the very end of the file (the
811 * file is growing) then we *will* alter the inode to reflect
812 * the new i_size. But that is not done here - it is done in
813 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
815 jbd_debug(5, "splicing indirect only\n");
816 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
817 err = ext4_journal_dirty_metadata(handle, where->bh);
818 if (err)
819 goto err_out;
820 } else {
822 * OK, we spliced it into the inode itself on a direct block.
823 * Inode was dirtied above.
825 jbd_debug(5, "splicing direct\n");
827 return err;
829 err_out:
830 for (i = 1; i <= num; i++) {
831 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
832 ext4_journal_forget(handle, where[i].bh);
833 ext4_free_blocks(handle, inode,
834 le32_to_cpu(where[i-1].key), 1, 0);
836 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
838 return err;
842 * Allocation strategy is simple: if we have to allocate something, we will
843 * have to go the whole way to leaf. So let's do it before attaching anything
844 * to tree, set linkage between the newborn blocks, write them if sync is
845 * required, recheck the path, free and repeat if check fails, otherwise
846 * set the last missing link (that will protect us from any truncate-generated
847 * removals - all blocks on the path are immune now) and possibly force the
848 * write on the parent block.
849 * That has a nice additional property: no special recovery from the failed
850 * allocations is needed - we simply release blocks and do not touch anything
851 * reachable from inode.
853 * `handle' can be NULL if create == 0.
855 * return > 0, # of blocks mapped or allocated.
856 * return = 0, if plain lookup failed.
857 * return < 0, error case.
860 * Need to be called with
861 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
862 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
864 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
865 ext4_lblk_t iblock, unsigned long maxblocks,
866 struct buffer_head *bh_result,
867 int create, int extend_disksize)
869 int err = -EIO;
870 ext4_lblk_t offsets[4];
871 Indirect chain[4];
872 Indirect *partial;
873 ext4_fsblk_t goal;
874 int indirect_blks;
875 int blocks_to_boundary = 0;
876 int depth;
877 struct ext4_inode_info *ei = EXT4_I(inode);
878 int count = 0;
879 ext4_fsblk_t first_block = 0;
880 loff_t disksize;
883 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
884 J_ASSERT(handle != NULL || create == 0);
885 depth = ext4_block_to_path(inode, iblock, offsets,
886 &blocks_to_boundary);
888 if (depth == 0)
889 goto out;
891 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
893 /* Simplest case - block found, no allocation needed */
894 if (!partial) {
895 first_block = le32_to_cpu(chain[depth - 1].key);
896 clear_buffer_new(bh_result);
897 count++;
898 /*map more blocks*/
899 while (count < maxblocks && count <= blocks_to_boundary) {
900 ext4_fsblk_t blk;
902 blk = le32_to_cpu(*(chain[depth-1].p + count));
904 if (blk == first_block + count)
905 count++;
906 else
907 break;
909 goto got_it;
912 /* Next simple case - plain lookup or failed read of indirect block */
913 if (!create || err == -EIO)
914 goto cleanup;
917 * Okay, we need to do block allocation. Lazily initialize the block
918 * allocation info here if necessary
920 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
921 ext4_init_block_alloc_info(inode);
923 goal = ext4_find_goal(inode, iblock, partial);
925 /* the number of blocks need to allocate for [d,t]indirect blocks */
926 indirect_blks = (chain + depth) - partial - 1;
929 * Next look up the indirect map to count the totoal number of
930 * direct blocks to allocate for this branch.
932 count = ext4_blks_to_allocate(partial, indirect_blks,
933 maxblocks, blocks_to_boundary);
935 * Block out ext4_truncate while we alter the tree
937 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
938 &count, goal,
939 offsets + (partial - chain), partial);
942 * The ext4_splice_branch call will free and forget any buffers
943 * on the new chain if there is a failure, but that risks using
944 * up transaction credits, especially for bitmaps where the
945 * credits cannot be returned. Can we handle this somehow? We
946 * may need to return -EAGAIN upwards in the worst case. --sct
948 if (!err)
949 err = ext4_splice_branch(handle, inode, iblock,
950 partial, indirect_blks, count);
952 * i_disksize growing is protected by i_data_sem. Don't forget to
953 * protect it if you're about to implement concurrent
954 * ext4_get_block() -bzzz
956 if (!err && extend_disksize) {
957 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
958 if (disksize > i_size_read(inode))
959 disksize = i_size_read(inode);
960 if (disksize > ei->i_disksize)
961 ei->i_disksize = disksize;
963 if (err)
964 goto cleanup;
966 set_buffer_new(bh_result);
967 got_it:
968 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
969 if (count > blocks_to_boundary)
970 set_buffer_boundary(bh_result);
971 err = count;
972 /* Clean up and exit */
973 partial = chain + depth - 1; /* the whole chain */
974 cleanup:
975 while (partial > chain) {
976 BUFFER_TRACE(partial->bh, "call brelse");
977 brelse(partial->bh);
978 partial--;
980 BUFFER_TRACE(bh_result, "returned");
981 out:
982 return err;
986 * Calculate the number of metadata blocks need to reserve
987 * to allocate @blocks for non extent file based file
989 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
991 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
992 int ind_blks, dind_blks, tind_blks;
994 /* number of new indirect blocks needed */
995 ind_blks = (blocks + icap - 1) / icap;
997 dind_blks = (ind_blks + icap - 1) / icap;
999 tind_blks = 1;
1001 return ind_blks + dind_blks + tind_blks;
1005 * Calculate the number of metadata blocks need to reserve
1006 * to allocate given number of blocks
1008 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1010 if (!blocks)
1011 return 0;
1013 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1014 return ext4_ext_calc_metadata_amount(inode, blocks);
1016 return ext4_indirect_calc_metadata_amount(inode, blocks);
1019 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1021 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1022 int total, mdb, mdb_free;
1024 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1025 /* recalculate the number of metablocks still need to be reserved */
1026 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1027 mdb = ext4_calc_metadata_amount(inode, total);
1029 /* figure out how many metablocks to release */
1030 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1031 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1033 if (mdb_free) {
1034 /* Account for allocated meta_blocks */
1035 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1037 /* update fs dirty blocks counter */
1038 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1039 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1040 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1043 /* update per-inode reservations */
1044 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1045 EXT4_I(inode)->i_reserved_data_blocks -= used;
1047 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1051 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1052 * and returns if the blocks are already mapped.
1054 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1055 * and store the allocated blocks in the result buffer head and mark it
1056 * mapped.
1058 * If file type is extents based, it will call ext4_ext_get_blocks(),
1059 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1060 * based files
1062 * On success, it returns the number of blocks being mapped or allocate.
1063 * if create==0 and the blocks are pre-allocated and uninitialized block,
1064 * the result buffer head is unmapped. If the create ==1, it will make sure
1065 * the buffer head is mapped.
1067 * It returns 0 if plain look up failed (blocks have not been allocated), in
1068 * that casem, buffer head is unmapped
1070 * It returns the error in case of allocation failure.
1072 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1073 unsigned long max_blocks, struct buffer_head *bh,
1074 int create, int extend_disksize, int flag)
1076 int retval;
1078 clear_buffer_mapped(bh);
1081 * Try to see if we can get the block without requesting
1082 * for new file system block.
1084 down_read((&EXT4_I(inode)->i_data_sem));
1085 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1086 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1087 bh, 0, 0);
1088 } else {
1089 retval = ext4_get_blocks_handle(handle,
1090 inode, block, max_blocks, bh, 0, 0);
1092 up_read((&EXT4_I(inode)->i_data_sem));
1094 /* If it is only a block(s) look up */
1095 if (!create)
1096 return retval;
1099 * Returns if the blocks have already allocated
1101 * Note that if blocks have been preallocated
1102 * ext4_ext_get_block() returns th create = 0
1103 * with buffer head unmapped.
1105 if (retval > 0 && buffer_mapped(bh))
1106 return retval;
1109 * New blocks allocate and/or writing to uninitialized extent
1110 * will possibly result in updating i_data, so we take
1111 * the write lock of i_data_sem, and call get_blocks()
1112 * with create == 1 flag.
1114 down_write((&EXT4_I(inode)->i_data_sem));
1117 * if the caller is from delayed allocation writeout path
1118 * we have already reserved fs blocks for allocation
1119 * let the underlying get_block() function know to
1120 * avoid double accounting
1122 if (flag)
1123 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1125 * We need to check for EXT4 here because migrate
1126 * could have changed the inode type in between
1128 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1129 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1130 bh, create, extend_disksize);
1131 } else {
1132 retval = ext4_get_blocks_handle(handle, inode, block,
1133 max_blocks, bh, create, extend_disksize);
1135 if (retval > 0 && buffer_new(bh)) {
1137 * We allocated new blocks which will result in
1138 * i_data's format changing. Force the migrate
1139 * to fail by clearing migrate flags
1141 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1142 ~EXT4_EXT_MIGRATE;
1146 if (flag) {
1147 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1149 * Update reserved blocks/metadata blocks
1150 * after successful block allocation
1151 * which were deferred till now
1153 if ((retval > 0) && buffer_delay(bh))
1154 ext4_da_update_reserve_space(inode, retval);
1157 up_write((&EXT4_I(inode)->i_data_sem));
1158 return retval;
1161 /* Maximum number of blocks we map for direct IO at once. */
1162 #define DIO_MAX_BLOCKS 4096
1164 static int ext4_get_block(struct inode *inode, sector_t iblock,
1165 struct buffer_head *bh_result, int create)
1167 handle_t *handle = ext4_journal_current_handle();
1168 int ret = 0, started = 0;
1169 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1170 int dio_credits;
1172 if (create && !handle) {
1173 /* Direct IO write... */
1174 if (max_blocks > DIO_MAX_BLOCKS)
1175 max_blocks = DIO_MAX_BLOCKS;
1176 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1177 handle = ext4_journal_start(inode, dio_credits);
1178 if (IS_ERR(handle)) {
1179 ret = PTR_ERR(handle);
1180 goto out;
1182 started = 1;
1185 ret = ext4_get_blocks_wrap(handle, inode, iblock,
1186 max_blocks, bh_result, create, 0, 0);
1187 if (ret > 0) {
1188 bh_result->b_size = (ret << inode->i_blkbits);
1189 ret = 0;
1191 if (started)
1192 ext4_journal_stop(handle);
1193 out:
1194 return ret;
1198 * `handle' can be NULL if create is zero
1200 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1201 ext4_lblk_t block, int create, int *errp)
1203 struct buffer_head dummy;
1204 int fatal = 0, err;
1206 J_ASSERT(handle != NULL || create == 0);
1208 dummy.b_state = 0;
1209 dummy.b_blocknr = -1000;
1210 buffer_trace_init(&dummy.b_history);
1211 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1212 &dummy, create, 1, 0);
1214 * ext4_get_blocks_handle() returns number of blocks
1215 * mapped. 0 in case of a HOLE.
1217 if (err > 0) {
1218 if (err > 1)
1219 WARN_ON(1);
1220 err = 0;
1222 *errp = err;
1223 if (!err && buffer_mapped(&dummy)) {
1224 struct buffer_head *bh;
1225 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1226 if (!bh) {
1227 *errp = -EIO;
1228 goto err;
1230 if (buffer_new(&dummy)) {
1231 J_ASSERT(create != 0);
1232 J_ASSERT(handle != NULL);
1235 * Now that we do not always journal data, we should
1236 * keep in mind whether this should always journal the
1237 * new buffer as metadata. For now, regular file
1238 * writes use ext4_get_block instead, so it's not a
1239 * problem.
1241 lock_buffer(bh);
1242 BUFFER_TRACE(bh, "call get_create_access");
1243 fatal = ext4_journal_get_create_access(handle, bh);
1244 if (!fatal && !buffer_uptodate(bh)) {
1245 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1246 set_buffer_uptodate(bh);
1248 unlock_buffer(bh);
1249 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1250 err = ext4_journal_dirty_metadata(handle, bh);
1251 if (!fatal)
1252 fatal = err;
1253 } else {
1254 BUFFER_TRACE(bh, "not a new buffer");
1256 if (fatal) {
1257 *errp = fatal;
1258 brelse(bh);
1259 bh = NULL;
1261 return bh;
1263 err:
1264 return NULL;
1267 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1268 ext4_lblk_t block, int create, int *err)
1270 struct buffer_head *bh;
1272 bh = ext4_getblk(handle, inode, block, create, err);
1273 if (!bh)
1274 return bh;
1275 if (buffer_uptodate(bh))
1276 return bh;
1277 ll_rw_block(READ_META, 1, &bh);
1278 wait_on_buffer(bh);
1279 if (buffer_uptodate(bh))
1280 return bh;
1281 put_bh(bh);
1282 *err = -EIO;
1283 return NULL;
1286 static int walk_page_buffers(handle_t *handle,
1287 struct buffer_head *head,
1288 unsigned from,
1289 unsigned to,
1290 int *partial,
1291 int (*fn)(handle_t *handle,
1292 struct buffer_head *bh))
1294 struct buffer_head *bh;
1295 unsigned block_start, block_end;
1296 unsigned blocksize = head->b_size;
1297 int err, ret = 0;
1298 struct buffer_head *next;
1300 for (bh = head, block_start = 0;
1301 ret == 0 && (bh != head || !block_start);
1302 block_start = block_end, bh = next)
1304 next = bh->b_this_page;
1305 block_end = block_start + blocksize;
1306 if (block_end <= from || block_start >= to) {
1307 if (partial && !buffer_uptodate(bh))
1308 *partial = 1;
1309 continue;
1311 err = (*fn)(handle, bh);
1312 if (!ret)
1313 ret = err;
1315 return ret;
1319 * To preserve ordering, it is essential that the hole instantiation and
1320 * the data write be encapsulated in a single transaction. We cannot
1321 * close off a transaction and start a new one between the ext4_get_block()
1322 * and the commit_write(). So doing the jbd2_journal_start at the start of
1323 * prepare_write() is the right place.
1325 * Also, this function can nest inside ext4_writepage() ->
1326 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1327 * has generated enough buffer credits to do the whole page. So we won't
1328 * block on the journal in that case, which is good, because the caller may
1329 * be PF_MEMALLOC.
1331 * By accident, ext4 can be reentered when a transaction is open via
1332 * quota file writes. If we were to commit the transaction while thus
1333 * reentered, there can be a deadlock - we would be holding a quota
1334 * lock, and the commit would never complete if another thread had a
1335 * transaction open and was blocking on the quota lock - a ranking
1336 * violation.
1338 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1339 * will _not_ run commit under these circumstances because handle->h_ref
1340 * is elevated. We'll still have enough credits for the tiny quotafile
1341 * write.
1343 static int do_journal_get_write_access(handle_t *handle,
1344 struct buffer_head *bh)
1346 if (!buffer_mapped(bh) || buffer_freed(bh))
1347 return 0;
1348 return ext4_journal_get_write_access(handle, bh);
1351 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1352 loff_t pos, unsigned len, unsigned flags,
1353 struct page **pagep, void **fsdata)
1355 struct inode *inode = mapping->host;
1356 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1357 handle_t *handle;
1358 int retries = 0;
1359 struct page *page;
1360 pgoff_t index;
1361 unsigned from, to;
1363 index = pos >> PAGE_CACHE_SHIFT;
1364 from = pos & (PAGE_CACHE_SIZE - 1);
1365 to = from + len;
1367 retry:
1368 handle = ext4_journal_start(inode, needed_blocks);
1369 if (IS_ERR(handle)) {
1370 ret = PTR_ERR(handle);
1371 goto out;
1374 page = __grab_cache_page(mapping, index);
1375 if (!page) {
1376 ext4_journal_stop(handle);
1377 ret = -ENOMEM;
1378 goto out;
1380 *pagep = page;
1382 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1383 ext4_get_block);
1385 if (!ret && ext4_should_journal_data(inode)) {
1386 ret = walk_page_buffers(handle, page_buffers(page),
1387 from, to, NULL, do_journal_get_write_access);
1390 if (ret) {
1391 unlock_page(page);
1392 ext4_journal_stop(handle);
1393 page_cache_release(page);
1396 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1397 goto retry;
1398 out:
1399 return ret;
1402 /* For write_end() in data=journal mode */
1403 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1405 if (!buffer_mapped(bh) || buffer_freed(bh))
1406 return 0;
1407 set_buffer_uptodate(bh);
1408 return ext4_journal_dirty_metadata(handle, bh);
1412 * We need to pick up the new inode size which generic_commit_write gave us
1413 * `file' can be NULL - eg, when called from page_symlink().
1415 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1416 * buffers are managed internally.
1418 static int ext4_ordered_write_end(struct file *file,
1419 struct address_space *mapping,
1420 loff_t pos, unsigned len, unsigned copied,
1421 struct page *page, void *fsdata)
1423 handle_t *handle = ext4_journal_current_handle();
1424 struct inode *inode = mapping->host;
1425 int ret = 0, ret2;
1427 ret = ext4_jbd2_file_inode(handle, inode);
1429 if (ret == 0) {
1431 * generic_write_end() will run mark_inode_dirty() if i_size
1432 * changes. So let's piggyback the i_disksize mark_inode_dirty
1433 * into that.
1435 loff_t new_i_size;
1437 new_i_size = pos + copied;
1438 if (new_i_size > EXT4_I(inode)->i_disksize)
1439 EXT4_I(inode)->i_disksize = new_i_size;
1440 ret2 = generic_write_end(file, mapping, pos, len, copied,
1441 page, fsdata);
1442 copied = ret2;
1443 if (ret2 < 0)
1444 ret = ret2;
1446 ret2 = ext4_journal_stop(handle);
1447 if (!ret)
1448 ret = ret2;
1450 return ret ? ret : copied;
1453 static int ext4_writeback_write_end(struct file *file,
1454 struct address_space *mapping,
1455 loff_t pos, unsigned len, unsigned copied,
1456 struct page *page, void *fsdata)
1458 handle_t *handle = ext4_journal_current_handle();
1459 struct inode *inode = mapping->host;
1460 int ret = 0, ret2;
1461 loff_t new_i_size;
1463 new_i_size = pos + copied;
1464 if (new_i_size > EXT4_I(inode)->i_disksize)
1465 EXT4_I(inode)->i_disksize = new_i_size;
1467 ret2 = generic_write_end(file, mapping, pos, len, copied,
1468 page, fsdata);
1469 copied = ret2;
1470 if (ret2 < 0)
1471 ret = ret2;
1473 ret2 = ext4_journal_stop(handle);
1474 if (!ret)
1475 ret = ret2;
1477 return ret ? ret : copied;
1480 static int ext4_journalled_write_end(struct file *file,
1481 struct address_space *mapping,
1482 loff_t pos, unsigned len, unsigned copied,
1483 struct page *page, void *fsdata)
1485 handle_t *handle = ext4_journal_current_handle();
1486 struct inode *inode = mapping->host;
1487 int ret = 0, ret2;
1488 int partial = 0;
1489 unsigned from, to;
1491 from = pos & (PAGE_CACHE_SIZE - 1);
1492 to = from + len;
1494 if (copied < len) {
1495 if (!PageUptodate(page))
1496 copied = 0;
1497 page_zero_new_buffers(page, from+copied, to);
1500 ret = walk_page_buffers(handle, page_buffers(page), from,
1501 to, &partial, write_end_fn);
1502 if (!partial)
1503 SetPageUptodate(page);
1504 if (pos+copied > inode->i_size)
1505 i_size_write(inode, pos+copied);
1506 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1507 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1508 EXT4_I(inode)->i_disksize = inode->i_size;
1509 ret2 = ext4_mark_inode_dirty(handle, inode);
1510 if (!ret)
1511 ret = ret2;
1514 unlock_page(page);
1515 ret2 = ext4_journal_stop(handle);
1516 if (!ret)
1517 ret = ret2;
1518 page_cache_release(page);
1520 return ret ? ret : copied;
1523 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1525 int retries = 0;
1526 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1527 unsigned long md_needed, mdblocks, total = 0;
1530 * recalculate the amount of metadata blocks to reserve
1531 * in order to allocate nrblocks
1532 * worse case is one extent per block
1534 repeat:
1535 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1536 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1537 mdblocks = ext4_calc_metadata_amount(inode, total);
1538 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1540 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1541 total = md_needed + nrblocks;
1543 if (ext4_claim_free_blocks(sbi, total)) {
1544 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1545 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1546 yield();
1547 goto repeat;
1549 return -ENOSPC;
1551 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1552 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1554 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1555 return 0; /* success */
1558 static void ext4_da_release_space(struct inode *inode, int to_free)
1560 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1561 int total, mdb, mdb_free, release;
1563 if (!to_free)
1564 return; /* Nothing to release, exit */
1566 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1568 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1570 * if there is no reserved blocks, but we try to free some
1571 * then the counter is messed up somewhere.
1572 * but since this function is called from invalidate
1573 * page, it's harmless to return without any action
1575 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1576 "blocks for inode %lu, but there is no reserved "
1577 "data blocks\n", to_free, inode->i_ino);
1578 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1579 return;
1582 /* recalculate the number of metablocks still need to be reserved */
1583 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1584 mdb = ext4_calc_metadata_amount(inode, total);
1586 /* figure out how many metablocks to release */
1587 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1588 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1590 release = to_free + mdb_free;
1592 /* update fs dirty blocks counter for truncate case */
1593 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1595 /* update per-inode reservations */
1596 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1597 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1599 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1600 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1601 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1604 static void ext4_da_page_release_reservation(struct page *page,
1605 unsigned long offset)
1607 int to_release = 0;
1608 struct buffer_head *head, *bh;
1609 unsigned int curr_off = 0;
1611 head = page_buffers(page);
1612 bh = head;
1613 do {
1614 unsigned int next_off = curr_off + bh->b_size;
1616 if ((offset <= curr_off) && (buffer_delay(bh))) {
1617 to_release++;
1618 clear_buffer_delay(bh);
1620 curr_off = next_off;
1621 } while ((bh = bh->b_this_page) != head);
1622 ext4_da_release_space(page->mapping->host, to_release);
1626 * Delayed allocation stuff
1629 struct mpage_da_data {
1630 struct inode *inode;
1631 struct buffer_head lbh; /* extent of blocks */
1632 unsigned long first_page, next_page; /* extent of pages */
1633 get_block_t *get_block;
1634 struct writeback_control *wbc;
1635 int io_done;
1636 long pages_written;
1637 int retval;
1641 * mpage_da_submit_io - walks through extent of pages and try to write
1642 * them with writepage() call back
1644 * @mpd->inode: inode
1645 * @mpd->first_page: first page of the extent
1646 * @mpd->next_page: page after the last page of the extent
1647 * @mpd->get_block: the filesystem's block mapper function
1649 * By the time mpage_da_submit_io() is called we expect all blocks
1650 * to be allocated. this may be wrong if allocation failed.
1652 * As pages are already locked by write_cache_pages(), we can't use it
1654 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1656 struct address_space *mapping = mpd->inode->i_mapping;
1657 int ret = 0, err, nr_pages, i;
1658 unsigned long index, end;
1659 struct pagevec pvec;
1661 BUG_ON(mpd->next_page <= mpd->first_page);
1662 pagevec_init(&pvec, 0);
1663 index = mpd->first_page;
1664 end = mpd->next_page - 1;
1666 while (index <= end) {
1667 /* XXX: optimize tail */
1668 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1669 if (nr_pages == 0)
1670 break;
1671 for (i = 0; i < nr_pages; i++) {
1672 struct page *page = pvec.pages[i];
1674 index = page->index;
1675 if (index > end)
1676 break;
1677 index++;
1679 err = mapping->a_ops->writepage(page, mpd->wbc);
1680 if (!err)
1681 mpd->pages_written++;
1683 * In error case, we have to continue because
1684 * remaining pages are still locked
1685 * XXX: unlock and re-dirty them?
1687 if (ret == 0)
1688 ret = err;
1690 pagevec_release(&pvec);
1692 return ret;
1696 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1698 * @mpd->inode - inode to walk through
1699 * @exbh->b_blocknr - first block on a disk
1700 * @exbh->b_size - amount of space in bytes
1701 * @logical - first logical block to start assignment with
1703 * the function goes through all passed space and put actual disk
1704 * block numbers into buffer heads, dropping BH_Delay
1706 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1707 struct buffer_head *exbh)
1709 struct inode *inode = mpd->inode;
1710 struct address_space *mapping = inode->i_mapping;
1711 int blocks = exbh->b_size >> inode->i_blkbits;
1712 sector_t pblock = exbh->b_blocknr, cur_logical;
1713 struct buffer_head *head, *bh;
1714 pgoff_t index, end;
1715 struct pagevec pvec;
1716 int nr_pages, i;
1718 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1719 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1720 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1722 pagevec_init(&pvec, 0);
1724 while (index <= end) {
1725 /* XXX: optimize tail */
1726 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1727 if (nr_pages == 0)
1728 break;
1729 for (i = 0; i < nr_pages; i++) {
1730 struct page *page = pvec.pages[i];
1732 index = page->index;
1733 if (index > end)
1734 break;
1735 index++;
1737 BUG_ON(!PageLocked(page));
1738 BUG_ON(PageWriteback(page));
1739 BUG_ON(!page_has_buffers(page));
1741 bh = page_buffers(page);
1742 head = bh;
1744 /* skip blocks out of the range */
1745 do {
1746 if (cur_logical >= logical)
1747 break;
1748 cur_logical++;
1749 } while ((bh = bh->b_this_page) != head);
1751 do {
1752 if (cur_logical >= logical + blocks)
1753 break;
1754 if (buffer_delay(bh)) {
1755 bh->b_blocknr = pblock;
1756 clear_buffer_delay(bh);
1757 bh->b_bdev = inode->i_sb->s_bdev;
1758 } else if (buffer_unwritten(bh)) {
1759 bh->b_blocknr = pblock;
1760 clear_buffer_unwritten(bh);
1761 set_buffer_mapped(bh);
1762 set_buffer_new(bh);
1763 bh->b_bdev = inode->i_sb->s_bdev;
1764 } else if (buffer_mapped(bh))
1765 BUG_ON(bh->b_blocknr != pblock);
1767 cur_logical++;
1768 pblock++;
1769 } while ((bh = bh->b_this_page) != head);
1771 pagevec_release(&pvec);
1777 * __unmap_underlying_blocks - just a helper function to unmap
1778 * set of blocks described by @bh
1780 static inline void __unmap_underlying_blocks(struct inode *inode,
1781 struct buffer_head *bh)
1783 struct block_device *bdev = inode->i_sb->s_bdev;
1784 int blocks, i;
1786 blocks = bh->b_size >> inode->i_blkbits;
1787 for (i = 0; i < blocks; i++)
1788 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1791 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1792 sector_t logical, long blk_cnt)
1794 int nr_pages, i;
1795 pgoff_t index, end;
1796 struct pagevec pvec;
1797 struct inode *inode = mpd->inode;
1798 struct address_space *mapping = inode->i_mapping;
1800 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1801 end = (logical + blk_cnt - 1) >>
1802 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1803 while (index <= end) {
1804 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1805 if (nr_pages == 0)
1806 break;
1807 for (i = 0; i < nr_pages; i++) {
1808 struct page *page = pvec.pages[i];
1809 index = page->index;
1810 if (index > end)
1811 break;
1812 index++;
1814 BUG_ON(!PageLocked(page));
1815 BUG_ON(PageWriteback(page));
1816 block_invalidatepage(page, 0);
1817 ClearPageUptodate(page);
1818 unlock_page(page);
1821 return;
1824 static void ext4_print_free_blocks(struct inode *inode)
1826 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1827 printk(KERN_EMERG "Total free blocks count %lld\n",
1828 ext4_count_free_blocks(inode->i_sb));
1829 printk(KERN_EMERG "Free/Dirty block details\n");
1830 printk(KERN_EMERG "free_blocks=%lld\n",
1831 percpu_counter_sum(&sbi->s_freeblocks_counter));
1832 printk(KERN_EMERG "dirty_blocks=%lld\n",
1833 percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1834 printk(KERN_EMERG "Block reservation details\n");
1835 printk(KERN_EMERG "i_reserved_data_blocks=%lu\n",
1836 EXT4_I(inode)->i_reserved_data_blocks);
1837 printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n",
1838 EXT4_I(inode)->i_reserved_meta_blocks);
1839 return;
1843 * mpage_da_map_blocks - go through given space
1845 * @mpd->lbh - bh describing space
1846 * @mpd->get_block - the filesystem's block mapper function
1848 * The function skips space we know is already mapped to disk blocks.
1851 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
1853 int err = 0;
1854 struct buffer_head new;
1855 struct buffer_head *lbh = &mpd->lbh;
1856 sector_t next;
1859 * We consider only non-mapped and non-allocated blocks
1861 if (buffer_mapped(lbh) && !buffer_delay(lbh))
1862 return 0;
1863 new.b_state = lbh->b_state;
1864 new.b_blocknr = 0;
1865 new.b_size = lbh->b_size;
1866 next = lbh->b_blocknr;
1868 * If we didn't accumulate anything
1869 * to write simply return
1871 if (!new.b_size)
1872 return 0;
1873 err = mpd->get_block(mpd->inode, next, &new, 1);
1874 if (err) {
1876 /* If get block returns with error
1877 * we simply return. Later writepage
1878 * will redirty the page and writepages
1879 * will find the dirty page again
1881 if (err == -EAGAIN)
1882 return 0;
1884 if (err == -ENOSPC &&
1885 ext4_count_free_blocks(mpd->inode->i_sb)) {
1886 mpd->retval = err;
1887 return 0;
1891 * get block failure will cause us
1892 * to loop in writepages. Because
1893 * a_ops->writepage won't be able to
1894 * make progress. The page will be redirtied
1895 * by writepage and writepages will again
1896 * try to write the same.
1898 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1899 "at logical offset %llu with max blocks "
1900 "%zd with error %d\n",
1901 __func__, mpd->inode->i_ino,
1902 (unsigned long long)next,
1903 lbh->b_size >> mpd->inode->i_blkbits, err);
1904 printk(KERN_EMERG "This should not happen.!! "
1905 "Data will be lost\n");
1906 if (err == -ENOSPC) {
1907 ext4_print_free_blocks(mpd->inode);
1909 /* invlaidate all the pages */
1910 ext4_da_block_invalidatepages(mpd, next,
1911 lbh->b_size >> mpd->inode->i_blkbits);
1912 return err;
1914 BUG_ON(new.b_size == 0);
1916 if (buffer_new(&new))
1917 __unmap_underlying_blocks(mpd->inode, &new);
1920 * If blocks are delayed marked, we need to
1921 * put actual blocknr and drop delayed bit
1923 if (buffer_delay(lbh) || buffer_unwritten(lbh))
1924 mpage_put_bnr_to_bhs(mpd, next, &new);
1926 return 0;
1929 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1930 (1 << BH_Delay) | (1 << BH_Unwritten))
1933 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1935 * @mpd->lbh - extent of blocks
1936 * @logical - logical number of the block in the file
1937 * @bh - bh of the block (used to access block's state)
1939 * the function is used to collect contig. blocks in same state
1941 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1942 sector_t logical, struct buffer_head *bh)
1944 sector_t next;
1945 size_t b_size = bh->b_size;
1946 struct buffer_head *lbh = &mpd->lbh;
1947 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1949 /* check if thereserved journal credits might overflow */
1950 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1951 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1953 * With non-extent format we are limited by the journal
1954 * credit available. Total credit needed to insert
1955 * nrblocks contiguous blocks is dependent on the
1956 * nrblocks. So limit nrblocks.
1958 goto flush_it;
1959 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1960 EXT4_MAX_TRANS_DATA) {
1962 * Adding the new buffer_head would make it cross the
1963 * allowed limit for which we have journal credit
1964 * reserved. So limit the new bh->b_size
1966 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1967 mpd->inode->i_blkbits;
1968 /* we will do mpage_da_submit_io in the next loop */
1972 * First block in the extent
1974 if (lbh->b_size == 0) {
1975 lbh->b_blocknr = logical;
1976 lbh->b_size = b_size;
1977 lbh->b_state = bh->b_state & BH_FLAGS;
1978 return;
1981 next = lbh->b_blocknr + nrblocks;
1983 * Can we merge the block to our big extent?
1985 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1986 lbh->b_size += b_size;
1987 return;
1990 flush_it:
1992 * We couldn't merge the block to our extent, so we
1993 * need to flush current extent and start new one
1995 if (mpage_da_map_blocks(mpd) == 0)
1996 mpage_da_submit_io(mpd);
1997 mpd->io_done = 1;
1998 return;
2002 * __mpage_da_writepage - finds extent of pages and blocks
2004 * @page: page to consider
2005 * @wbc: not used, we just follow rules
2006 * @data: context
2008 * The function finds extents of pages and scan them for all blocks.
2010 static int __mpage_da_writepage(struct page *page,
2011 struct writeback_control *wbc, void *data)
2013 struct mpage_da_data *mpd = data;
2014 struct inode *inode = mpd->inode;
2015 struct buffer_head *bh, *head, fake;
2016 sector_t logical;
2018 if (mpd->io_done) {
2020 * Rest of the page in the page_vec
2021 * redirty then and skip then. We will
2022 * try to to write them again after
2023 * starting a new transaction
2025 redirty_page_for_writepage(wbc, page);
2026 unlock_page(page);
2027 return MPAGE_DA_EXTENT_TAIL;
2030 * Can we merge this page to current extent?
2032 if (mpd->next_page != page->index) {
2034 * Nope, we can't. So, we map non-allocated blocks
2035 * and start IO on them using writepage()
2037 if (mpd->next_page != mpd->first_page) {
2038 if (mpage_da_map_blocks(mpd) == 0)
2039 mpage_da_submit_io(mpd);
2041 * skip rest of the page in the page_vec
2043 mpd->io_done = 1;
2044 redirty_page_for_writepage(wbc, page);
2045 unlock_page(page);
2046 return MPAGE_DA_EXTENT_TAIL;
2050 * Start next extent of pages ...
2052 mpd->first_page = page->index;
2055 * ... and blocks
2057 mpd->lbh.b_size = 0;
2058 mpd->lbh.b_state = 0;
2059 mpd->lbh.b_blocknr = 0;
2062 mpd->next_page = page->index + 1;
2063 logical = (sector_t) page->index <<
2064 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2066 if (!page_has_buffers(page)) {
2068 * There is no attached buffer heads yet (mmap?)
2069 * we treat the page asfull of dirty blocks
2071 bh = &fake;
2072 bh->b_size = PAGE_CACHE_SIZE;
2073 bh->b_state = 0;
2074 set_buffer_dirty(bh);
2075 set_buffer_uptodate(bh);
2076 mpage_add_bh_to_extent(mpd, logical, bh);
2077 if (mpd->io_done)
2078 return MPAGE_DA_EXTENT_TAIL;
2079 } else {
2081 * Page with regular buffer heads, just add all dirty ones
2083 head = page_buffers(page);
2084 bh = head;
2085 do {
2086 BUG_ON(buffer_locked(bh));
2087 if (buffer_dirty(bh) &&
2088 (!buffer_mapped(bh) || buffer_delay(bh))) {
2089 mpage_add_bh_to_extent(mpd, logical, bh);
2090 if (mpd->io_done)
2091 return MPAGE_DA_EXTENT_TAIL;
2093 logical++;
2094 } while ((bh = bh->b_this_page) != head);
2097 return 0;
2101 * mpage_da_writepages - walk the list of dirty pages of the given
2102 * address space, allocates non-allocated blocks, maps newly-allocated
2103 * blocks to existing bhs and issue IO them
2105 * @mapping: address space structure to write
2106 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2107 * @get_block: the filesystem's block mapper function.
2109 * This is a library function, which implements the writepages()
2110 * address_space_operation.
2112 static int mpage_da_writepages(struct address_space *mapping,
2113 struct writeback_control *wbc,
2114 struct mpage_da_data *mpd)
2116 long to_write;
2117 int ret;
2119 if (!mpd->get_block)
2120 return generic_writepages(mapping, wbc);
2122 mpd->lbh.b_size = 0;
2123 mpd->lbh.b_state = 0;
2124 mpd->lbh.b_blocknr = 0;
2125 mpd->first_page = 0;
2126 mpd->next_page = 0;
2127 mpd->io_done = 0;
2128 mpd->pages_written = 0;
2129 mpd->retval = 0;
2131 to_write = wbc->nr_to_write;
2133 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2136 * Handle last extent of pages
2138 if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2139 if (mpage_da_map_blocks(mpd) == 0)
2140 mpage_da_submit_io(mpd);
2143 wbc->nr_to_write = to_write - mpd->pages_written;
2144 return ret;
2148 * this is a special callback for ->write_begin() only
2149 * it's intention is to return mapped block or reserve space
2151 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2152 struct buffer_head *bh_result, int create)
2154 int ret = 0;
2156 BUG_ON(create == 0);
2157 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2160 * first, we need to know whether the block is allocated already
2161 * preallocated blocks are unmapped but should treated
2162 * the same as allocated blocks.
2164 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2165 if ((ret == 0) && !buffer_delay(bh_result)) {
2166 /* the block isn't (pre)allocated yet, let's reserve space */
2168 * XXX: __block_prepare_write() unmaps passed block,
2169 * is it OK?
2171 ret = ext4_da_reserve_space(inode, 1);
2172 if (ret)
2173 /* not enough space to reserve */
2174 return ret;
2176 map_bh(bh_result, inode->i_sb, 0);
2177 set_buffer_new(bh_result);
2178 set_buffer_delay(bh_result);
2179 } else if (ret > 0) {
2180 bh_result->b_size = (ret << inode->i_blkbits);
2181 ret = 0;
2184 return ret;
2186 #define EXT4_DELALLOC_RSVED 1
2187 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2188 struct buffer_head *bh_result, int create)
2190 int ret;
2191 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2192 loff_t disksize = EXT4_I(inode)->i_disksize;
2193 handle_t *handle = NULL;
2195 handle = ext4_journal_current_handle();
2196 BUG_ON(!handle);
2197 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2198 bh_result, create, 0, EXT4_DELALLOC_RSVED);
2199 if (ret > 0) {
2201 bh_result->b_size = (ret << inode->i_blkbits);
2203 if (ext4_should_order_data(inode)) {
2204 int retval;
2205 retval = ext4_jbd2_file_inode(handle, inode);
2206 if (retval)
2208 * Failed to add inode for ordered
2209 * mode. Don't update file size
2211 return retval;
2215 * Update on-disk size along with block allocation
2216 * we don't use 'extend_disksize' as size may change
2217 * within already allocated block -bzzz
2219 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2220 if (disksize > i_size_read(inode))
2221 disksize = i_size_read(inode);
2222 if (disksize > EXT4_I(inode)->i_disksize) {
2224 * XXX: replace with spinlock if seen contended -bzzz
2226 down_write(&EXT4_I(inode)->i_data_sem);
2227 if (disksize > EXT4_I(inode)->i_disksize)
2228 EXT4_I(inode)->i_disksize = disksize;
2229 up_write(&EXT4_I(inode)->i_data_sem);
2231 if (EXT4_I(inode)->i_disksize == disksize) {
2232 ret = ext4_mark_inode_dirty(handle, inode);
2233 return ret;
2236 ret = 0;
2238 return ret;
2241 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2244 * unmapped buffer is possible for holes.
2245 * delay buffer is possible with delayed allocation
2247 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2250 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2251 struct buffer_head *bh_result, int create)
2253 int ret = 0;
2254 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2257 * we don't want to do block allocation in writepage
2258 * so call get_block_wrap with create = 0
2260 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2261 bh_result, 0, 0, 0);
2262 if (ret > 0) {
2263 bh_result->b_size = (ret << inode->i_blkbits);
2264 ret = 0;
2266 return ret;
2270 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2271 * get called via journal_submit_inode_data_buffers (no journal handle)
2272 * get called via shrink_page_list via pdflush (no journal handle)
2273 * or grab_page_cache when doing write_begin (have journal handle)
2275 static int ext4_da_writepage(struct page *page,
2276 struct writeback_control *wbc)
2278 int ret = 0;
2279 loff_t size;
2280 unsigned long len;
2281 struct buffer_head *page_bufs;
2282 struct inode *inode = page->mapping->host;
2284 size = i_size_read(inode);
2285 if (page->index == size >> PAGE_CACHE_SHIFT)
2286 len = size & ~PAGE_CACHE_MASK;
2287 else
2288 len = PAGE_CACHE_SIZE;
2290 if (page_has_buffers(page)) {
2291 page_bufs = page_buffers(page);
2292 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2293 ext4_bh_unmapped_or_delay)) {
2295 * We don't want to do block allocation
2296 * So redirty the page and return
2297 * We may reach here when we do a journal commit
2298 * via journal_submit_inode_data_buffers.
2299 * If we don't have mapping block we just ignore
2300 * them. We can also reach here via shrink_page_list
2302 redirty_page_for_writepage(wbc, page);
2303 unlock_page(page);
2304 return 0;
2306 } else {
2308 * The test for page_has_buffers() is subtle:
2309 * We know the page is dirty but it lost buffers. That means
2310 * that at some moment in time after write_begin()/write_end()
2311 * has been called all buffers have been clean and thus they
2312 * must have been written at least once. So they are all
2313 * mapped and we can happily proceed with mapping them
2314 * and writing the page.
2316 * Try to initialize the buffer_heads and check whether
2317 * all are mapped and non delay. We don't want to
2318 * do block allocation here.
2320 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2321 ext4_normal_get_block_write);
2322 if (!ret) {
2323 page_bufs = page_buffers(page);
2324 /* check whether all are mapped and non delay */
2325 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2326 ext4_bh_unmapped_or_delay)) {
2327 redirty_page_for_writepage(wbc, page);
2328 unlock_page(page);
2329 return 0;
2331 } else {
2333 * We can't do block allocation here
2334 * so just redity the page and unlock
2335 * and return
2337 redirty_page_for_writepage(wbc, page);
2338 unlock_page(page);
2339 return 0;
2343 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2344 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2345 else
2346 ret = block_write_full_page(page,
2347 ext4_normal_get_block_write,
2348 wbc);
2350 return ret;
2354 * This is called via ext4_da_writepages() to
2355 * calulate the total number of credits to reserve to fit
2356 * a single extent allocation into a single transaction,
2357 * ext4_da_writpeages() will loop calling this before
2358 * the block allocation.
2361 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2363 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2366 * With non-extent format the journal credit needed to
2367 * insert nrblocks contiguous block is dependent on
2368 * number of contiguous block. So we will limit
2369 * number of contiguous block to a sane value
2371 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2372 (max_blocks > EXT4_MAX_TRANS_DATA))
2373 max_blocks = EXT4_MAX_TRANS_DATA;
2375 return ext4_chunk_trans_blocks(inode, max_blocks);
2378 static int ext4_da_writepages(struct address_space *mapping,
2379 struct writeback_control *wbc)
2381 handle_t *handle = NULL;
2382 loff_t range_start = 0;
2383 struct mpage_da_data mpd;
2384 struct inode *inode = mapping->host;
2385 int needed_blocks, ret = 0, nr_to_writebump = 0;
2386 long to_write, pages_skipped = 0;
2387 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2390 * No pages to write? This is mainly a kludge to avoid starting
2391 * a transaction for special inodes like journal inode on last iput()
2392 * because that could violate lock ordering on umount
2394 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2395 return 0;
2397 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2398 * This make sure small files blocks are allocated in
2399 * single attempt. This ensure that small files
2400 * get less fragmented.
2402 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2403 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2404 wbc->nr_to_write = sbi->s_mb_stream_request;
2407 if (!wbc->range_cyclic)
2409 * If range_cyclic is not set force range_cont
2410 * and save the old writeback_index
2412 wbc->range_cont = 1;
2414 range_start = wbc->range_start;
2415 pages_skipped = wbc->pages_skipped;
2417 mpd.wbc = wbc;
2418 mpd.inode = mapping->host;
2420 restart_loop:
2421 to_write = wbc->nr_to_write;
2422 while (!ret && to_write > 0) {
2425 * we insert one extent at a time. So we need
2426 * credit needed for single extent allocation.
2427 * journalled mode is currently not supported
2428 * by delalloc
2430 BUG_ON(ext4_should_journal_data(inode));
2431 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2433 /* start a new transaction*/
2434 handle = ext4_journal_start(inode, needed_blocks);
2435 if (IS_ERR(handle)) {
2436 ret = PTR_ERR(handle);
2437 printk(KERN_EMERG "%s: jbd2_start: "
2438 "%ld pages, ino %lu; err %d\n", __func__,
2439 wbc->nr_to_write, inode->i_ino, ret);
2440 dump_stack();
2441 goto out_writepages;
2443 to_write -= wbc->nr_to_write;
2445 mpd.get_block = ext4_da_get_block_write;
2446 ret = mpage_da_writepages(mapping, wbc, &mpd);
2448 ext4_journal_stop(handle);
2450 if (mpd.retval == -ENOSPC)
2451 jbd2_journal_force_commit_nested(sbi->s_journal);
2453 /* reset the retry count */
2454 if (ret == MPAGE_DA_EXTENT_TAIL) {
2456 * got one extent now try with
2457 * rest of the pages
2459 to_write += wbc->nr_to_write;
2460 ret = 0;
2461 } else if (wbc->nr_to_write) {
2463 * There is no more writeout needed
2464 * or we requested for a noblocking writeout
2465 * and we found the device congested
2467 to_write += wbc->nr_to_write;
2468 break;
2470 wbc->nr_to_write = to_write;
2473 if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) {
2474 /* We skipped pages in this loop */
2475 wbc->range_start = range_start;
2476 wbc->nr_to_write = to_write +
2477 wbc->pages_skipped - pages_skipped;
2478 wbc->pages_skipped = pages_skipped;
2479 goto restart_loop;
2482 out_writepages:
2483 wbc->nr_to_write = to_write - nr_to_writebump;
2484 wbc->range_start = range_start;
2485 return ret;
2488 #define FALL_BACK_TO_NONDELALLOC 1
2489 static int ext4_nonda_switch(struct super_block *sb)
2491 s64 free_blocks, dirty_blocks;
2492 struct ext4_sb_info *sbi = EXT4_SB(sb);
2495 * switch to non delalloc mode if we are running low
2496 * on free block. The free block accounting via percpu
2497 * counters can get slightly wrong with FBC_BATCH getting
2498 * accumulated on each CPU without updating global counters
2499 * Delalloc need an accurate free block accounting. So switch
2500 * to non delalloc when we are near to error range.
2502 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2503 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2504 if (2 * free_blocks < 3 * dirty_blocks ||
2505 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2507 * free block count is less that 150% of dirty blocks
2508 * or free blocks is less that watermark
2510 return 1;
2512 return 0;
2515 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2516 loff_t pos, unsigned len, unsigned flags,
2517 struct page **pagep, void **fsdata)
2519 int ret, retries = 0;
2520 struct page *page;
2521 pgoff_t index;
2522 unsigned from, to;
2523 struct inode *inode = mapping->host;
2524 handle_t *handle;
2526 index = pos >> PAGE_CACHE_SHIFT;
2527 from = pos & (PAGE_CACHE_SIZE - 1);
2528 to = from + len;
2530 if (ext4_nonda_switch(inode->i_sb)) {
2531 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2532 return ext4_write_begin(file, mapping, pos,
2533 len, flags, pagep, fsdata);
2535 *fsdata = (void *)0;
2536 retry:
2538 * With delayed allocation, we don't log the i_disksize update
2539 * if there is delayed block allocation. But we still need
2540 * to journalling the i_disksize update if writes to the end
2541 * of file which has an already mapped buffer.
2543 handle = ext4_journal_start(inode, 1);
2544 if (IS_ERR(handle)) {
2545 ret = PTR_ERR(handle);
2546 goto out;
2549 page = __grab_cache_page(mapping, index);
2550 if (!page) {
2551 ext4_journal_stop(handle);
2552 ret = -ENOMEM;
2553 goto out;
2555 *pagep = page;
2557 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2558 ext4_da_get_block_prep);
2559 if (ret < 0) {
2560 unlock_page(page);
2561 ext4_journal_stop(handle);
2562 page_cache_release(page);
2565 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2566 goto retry;
2567 out:
2568 return ret;
2572 * Check if we should update i_disksize
2573 * when write to the end of file but not require block allocation
2575 static int ext4_da_should_update_i_disksize(struct page *page,
2576 unsigned long offset)
2578 struct buffer_head *bh;
2579 struct inode *inode = page->mapping->host;
2580 unsigned int idx;
2581 int i;
2583 bh = page_buffers(page);
2584 idx = offset >> inode->i_blkbits;
2586 for (i = 0; i < idx; i++)
2587 bh = bh->b_this_page;
2589 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2590 return 0;
2591 return 1;
2594 static int ext4_da_write_end(struct file *file,
2595 struct address_space *mapping,
2596 loff_t pos, unsigned len, unsigned copied,
2597 struct page *page, void *fsdata)
2599 struct inode *inode = mapping->host;
2600 int ret = 0, ret2;
2601 handle_t *handle = ext4_journal_current_handle();
2602 loff_t new_i_size;
2603 unsigned long start, end;
2604 int write_mode = (int)(unsigned long)fsdata;
2606 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2607 if (ext4_should_order_data(inode)) {
2608 return ext4_ordered_write_end(file, mapping, pos,
2609 len, copied, page, fsdata);
2610 } else if (ext4_should_writeback_data(inode)) {
2611 return ext4_writeback_write_end(file, mapping, pos,
2612 len, copied, page, fsdata);
2613 } else {
2614 BUG();
2618 start = pos & (PAGE_CACHE_SIZE - 1);
2619 end = start + copied - 1;
2622 * generic_write_end() will run mark_inode_dirty() if i_size
2623 * changes. So let's piggyback the i_disksize mark_inode_dirty
2624 * into that.
2627 new_i_size = pos + copied;
2628 if (new_i_size > EXT4_I(inode)->i_disksize) {
2629 if (ext4_da_should_update_i_disksize(page, end)) {
2630 down_write(&EXT4_I(inode)->i_data_sem);
2631 if (new_i_size > EXT4_I(inode)->i_disksize) {
2633 * Updating i_disksize when extending file
2634 * without needing block allocation
2636 if (ext4_should_order_data(inode))
2637 ret = ext4_jbd2_file_inode(handle,
2638 inode);
2640 EXT4_I(inode)->i_disksize = new_i_size;
2642 up_write(&EXT4_I(inode)->i_data_sem);
2645 ret2 = generic_write_end(file, mapping, pos, len, copied,
2646 page, fsdata);
2647 copied = ret2;
2648 if (ret2 < 0)
2649 ret = ret2;
2650 ret2 = ext4_journal_stop(handle);
2651 if (!ret)
2652 ret = ret2;
2654 return ret ? ret : copied;
2657 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2660 * Drop reserved blocks
2662 BUG_ON(!PageLocked(page));
2663 if (!page_has_buffers(page))
2664 goto out;
2666 ext4_da_page_release_reservation(page, offset);
2668 out:
2669 ext4_invalidatepage(page, offset);
2671 return;
2676 * bmap() is special. It gets used by applications such as lilo and by
2677 * the swapper to find the on-disk block of a specific piece of data.
2679 * Naturally, this is dangerous if the block concerned is still in the
2680 * journal. If somebody makes a swapfile on an ext4 data-journaling
2681 * filesystem and enables swap, then they may get a nasty shock when the
2682 * data getting swapped to that swapfile suddenly gets overwritten by
2683 * the original zero's written out previously to the journal and
2684 * awaiting writeback in the kernel's buffer cache.
2686 * So, if we see any bmap calls here on a modified, data-journaled file,
2687 * take extra steps to flush any blocks which might be in the cache.
2689 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2691 struct inode *inode = mapping->host;
2692 journal_t *journal;
2693 int err;
2695 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2696 test_opt(inode->i_sb, DELALLOC)) {
2698 * With delalloc we want to sync the file
2699 * so that we can make sure we allocate
2700 * blocks for file
2702 filemap_write_and_wait(mapping);
2705 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2707 * This is a REALLY heavyweight approach, but the use of
2708 * bmap on dirty files is expected to be extremely rare:
2709 * only if we run lilo or swapon on a freshly made file
2710 * do we expect this to happen.
2712 * (bmap requires CAP_SYS_RAWIO so this does not
2713 * represent an unprivileged user DOS attack --- we'd be
2714 * in trouble if mortal users could trigger this path at
2715 * will.)
2717 * NB. EXT4_STATE_JDATA is not set on files other than
2718 * regular files. If somebody wants to bmap a directory
2719 * or symlink and gets confused because the buffer
2720 * hasn't yet been flushed to disk, they deserve
2721 * everything they get.
2724 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2725 journal = EXT4_JOURNAL(inode);
2726 jbd2_journal_lock_updates(journal);
2727 err = jbd2_journal_flush(journal);
2728 jbd2_journal_unlock_updates(journal);
2730 if (err)
2731 return 0;
2734 return generic_block_bmap(mapping, block, ext4_get_block);
2737 static int bget_one(handle_t *handle, struct buffer_head *bh)
2739 get_bh(bh);
2740 return 0;
2743 static int bput_one(handle_t *handle, struct buffer_head *bh)
2745 put_bh(bh);
2746 return 0;
2750 * Note that we don't need to start a transaction unless we're journaling data
2751 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2752 * need to file the inode to the transaction's list in ordered mode because if
2753 * we are writing back data added by write(), the inode is already there and if
2754 * we are writing back data modified via mmap(), noone guarantees in which
2755 * transaction the data will hit the disk. In case we are journaling data, we
2756 * cannot start transaction directly because transaction start ranks above page
2757 * lock so we have to do some magic.
2759 * In all journaling modes block_write_full_page() will start the I/O.
2761 * Problem:
2763 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2764 * ext4_writepage()
2766 * Similar for:
2768 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2770 * Same applies to ext4_get_block(). We will deadlock on various things like
2771 * lock_journal and i_data_sem
2773 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2774 * allocations fail.
2776 * 16May01: If we're reentered then journal_current_handle() will be
2777 * non-zero. We simply *return*.
2779 * 1 July 2001: @@@ FIXME:
2780 * In journalled data mode, a data buffer may be metadata against the
2781 * current transaction. But the same file is part of a shared mapping
2782 * and someone does a writepage() on it.
2784 * We will move the buffer onto the async_data list, but *after* it has
2785 * been dirtied. So there's a small window where we have dirty data on
2786 * BJ_Metadata.
2788 * Note that this only applies to the last partial page in the file. The
2789 * bit which block_write_full_page() uses prepare/commit for. (That's
2790 * broken code anyway: it's wrong for msync()).
2792 * It's a rare case: affects the final partial page, for journalled data
2793 * where the file is subject to bith write() and writepage() in the same
2794 * transction. To fix it we'll need a custom block_write_full_page().
2795 * We'll probably need that anyway for journalling writepage() output.
2797 * We don't honour synchronous mounts for writepage(). That would be
2798 * disastrous. Any write() or metadata operation will sync the fs for
2799 * us.
2802 static int __ext4_normal_writepage(struct page *page,
2803 struct writeback_control *wbc)
2805 struct inode *inode = page->mapping->host;
2807 if (test_opt(inode->i_sb, NOBH))
2808 return nobh_writepage(page,
2809 ext4_normal_get_block_write, wbc);
2810 else
2811 return block_write_full_page(page,
2812 ext4_normal_get_block_write,
2813 wbc);
2816 static int ext4_normal_writepage(struct page *page,
2817 struct writeback_control *wbc)
2819 struct inode *inode = page->mapping->host;
2820 loff_t size = i_size_read(inode);
2821 loff_t len;
2823 J_ASSERT(PageLocked(page));
2824 if (page->index == size >> PAGE_CACHE_SHIFT)
2825 len = size & ~PAGE_CACHE_MASK;
2826 else
2827 len = PAGE_CACHE_SIZE;
2829 if (page_has_buffers(page)) {
2830 /* if page has buffers it should all be mapped
2831 * and allocated. If there are not buffers attached
2832 * to the page we know the page is dirty but it lost
2833 * buffers. That means that at some moment in time
2834 * after write_begin() / write_end() has been called
2835 * all buffers have been clean and thus they must have been
2836 * written at least once. So they are all mapped and we can
2837 * happily proceed with mapping them and writing the page.
2839 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2840 ext4_bh_unmapped_or_delay));
2843 if (!ext4_journal_current_handle())
2844 return __ext4_normal_writepage(page, wbc);
2846 redirty_page_for_writepage(wbc, page);
2847 unlock_page(page);
2848 return 0;
2851 static int __ext4_journalled_writepage(struct page *page,
2852 struct writeback_control *wbc)
2854 struct address_space *mapping = page->mapping;
2855 struct inode *inode = mapping->host;
2856 struct buffer_head *page_bufs;
2857 handle_t *handle = NULL;
2858 int ret = 0;
2859 int err;
2861 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2862 ext4_normal_get_block_write);
2863 if (ret != 0)
2864 goto out_unlock;
2866 page_bufs = page_buffers(page);
2867 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2868 bget_one);
2869 /* As soon as we unlock the page, it can go away, but we have
2870 * references to buffers so we are safe */
2871 unlock_page(page);
2873 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2874 if (IS_ERR(handle)) {
2875 ret = PTR_ERR(handle);
2876 goto out;
2879 ret = walk_page_buffers(handle, page_bufs, 0,
2880 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2882 err = walk_page_buffers(handle, page_bufs, 0,
2883 PAGE_CACHE_SIZE, NULL, write_end_fn);
2884 if (ret == 0)
2885 ret = err;
2886 err = ext4_journal_stop(handle);
2887 if (!ret)
2888 ret = err;
2890 walk_page_buffers(handle, page_bufs, 0,
2891 PAGE_CACHE_SIZE, NULL, bput_one);
2892 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2893 goto out;
2895 out_unlock:
2896 unlock_page(page);
2897 out:
2898 return ret;
2901 static int ext4_journalled_writepage(struct page *page,
2902 struct writeback_control *wbc)
2904 struct inode *inode = page->mapping->host;
2905 loff_t size = i_size_read(inode);
2906 loff_t len;
2908 J_ASSERT(PageLocked(page));
2909 if (page->index == size >> PAGE_CACHE_SHIFT)
2910 len = size & ~PAGE_CACHE_MASK;
2911 else
2912 len = PAGE_CACHE_SIZE;
2914 if (page_has_buffers(page)) {
2915 /* if page has buffers it should all be mapped
2916 * and allocated. If there are not buffers attached
2917 * to the page we know the page is dirty but it lost
2918 * buffers. That means that at some moment in time
2919 * after write_begin() / write_end() has been called
2920 * all buffers have been clean and thus they must have been
2921 * written at least once. So they are all mapped and we can
2922 * happily proceed with mapping them and writing the page.
2924 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2925 ext4_bh_unmapped_or_delay));
2928 if (ext4_journal_current_handle())
2929 goto no_write;
2931 if (PageChecked(page)) {
2933 * It's mmapped pagecache. Add buffers and journal it. There
2934 * doesn't seem much point in redirtying the page here.
2936 ClearPageChecked(page);
2937 return __ext4_journalled_writepage(page, wbc);
2938 } else {
2940 * It may be a page full of checkpoint-mode buffers. We don't
2941 * really know unless we go poke around in the buffer_heads.
2942 * But block_write_full_page will do the right thing.
2944 return block_write_full_page(page,
2945 ext4_normal_get_block_write,
2946 wbc);
2948 no_write:
2949 redirty_page_for_writepage(wbc, page);
2950 unlock_page(page);
2951 return 0;
2954 static int ext4_readpage(struct file *file, struct page *page)
2956 return mpage_readpage(page, ext4_get_block);
2959 static int
2960 ext4_readpages(struct file *file, struct address_space *mapping,
2961 struct list_head *pages, unsigned nr_pages)
2963 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2966 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2968 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2971 * If it's a full truncate we just forget about the pending dirtying
2973 if (offset == 0)
2974 ClearPageChecked(page);
2976 jbd2_journal_invalidatepage(journal, page, offset);
2979 static int ext4_releasepage(struct page *page, gfp_t wait)
2981 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2983 WARN_ON(PageChecked(page));
2984 if (!page_has_buffers(page))
2985 return 0;
2986 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2990 * If the O_DIRECT write will extend the file then add this inode to the
2991 * orphan list. So recovery will truncate it back to the original size
2992 * if the machine crashes during the write.
2994 * If the O_DIRECT write is intantiating holes inside i_size and the machine
2995 * crashes then stale disk data _may_ be exposed inside the file. But current
2996 * VFS code falls back into buffered path in that case so we are safe.
2998 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2999 const struct iovec *iov, loff_t offset,
3000 unsigned long nr_segs)
3002 struct file *file = iocb->ki_filp;
3003 struct inode *inode = file->f_mapping->host;
3004 struct ext4_inode_info *ei = EXT4_I(inode);
3005 handle_t *handle;
3006 ssize_t ret;
3007 int orphan = 0;
3008 size_t count = iov_length(iov, nr_segs);
3010 if (rw == WRITE) {
3011 loff_t final_size = offset + count;
3013 if (final_size > inode->i_size) {
3014 /* Credits for sb + inode write */
3015 handle = ext4_journal_start(inode, 2);
3016 if (IS_ERR(handle)) {
3017 ret = PTR_ERR(handle);
3018 goto out;
3020 ret = ext4_orphan_add(handle, inode);
3021 if (ret) {
3022 ext4_journal_stop(handle);
3023 goto out;
3025 orphan = 1;
3026 ei->i_disksize = inode->i_size;
3027 ext4_journal_stop(handle);
3031 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3032 offset, nr_segs,
3033 ext4_get_block, NULL);
3035 if (orphan) {
3036 int err;
3038 /* Credits for sb + inode write */
3039 handle = ext4_journal_start(inode, 2);
3040 if (IS_ERR(handle)) {
3041 /* This is really bad luck. We've written the data
3042 * but cannot extend i_size. Bail out and pretend
3043 * the write failed... */
3044 ret = PTR_ERR(handle);
3045 goto out;
3047 if (inode->i_nlink)
3048 ext4_orphan_del(handle, inode);
3049 if (ret > 0) {
3050 loff_t end = offset + ret;
3051 if (end > inode->i_size) {
3052 ei->i_disksize = end;
3053 i_size_write(inode, end);
3055 * We're going to return a positive `ret'
3056 * here due to non-zero-length I/O, so there's
3057 * no way of reporting error returns from
3058 * ext4_mark_inode_dirty() to userspace. So
3059 * ignore it.
3061 ext4_mark_inode_dirty(handle, inode);
3064 err = ext4_journal_stop(handle);
3065 if (ret == 0)
3066 ret = err;
3068 out:
3069 return ret;
3073 * Pages can be marked dirty completely asynchronously from ext4's journalling
3074 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3075 * much here because ->set_page_dirty is called under VFS locks. The page is
3076 * not necessarily locked.
3078 * We cannot just dirty the page and leave attached buffers clean, because the
3079 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3080 * or jbddirty because all the journalling code will explode.
3082 * So what we do is to mark the page "pending dirty" and next time writepage
3083 * is called, propagate that into the buffers appropriately.
3085 static int ext4_journalled_set_page_dirty(struct page *page)
3087 SetPageChecked(page);
3088 return __set_page_dirty_nobuffers(page);
3091 static const struct address_space_operations ext4_ordered_aops = {
3092 .readpage = ext4_readpage,
3093 .readpages = ext4_readpages,
3094 .writepage = ext4_normal_writepage,
3095 .sync_page = block_sync_page,
3096 .write_begin = ext4_write_begin,
3097 .write_end = ext4_ordered_write_end,
3098 .bmap = ext4_bmap,
3099 .invalidatepage = ext4_invalidatepage,
3100 .releasepage = ext4_releasepage,
3101 .direct_IO = ext4_direct_IO,
3102 .migratepage = buffer_migrate_page,
3103 .is_partially_uptodate = block_is_partially_uptodate,
3106 static const struct address_space_operations ext4_writeback_aops = {
3107 .readpage = ext4_readpage,
3108 .readpages = ext4_readpages,
3109 .writepage = ext4_normal_writepage,
3110 .sync_page = block_sync_page,
3111 .write_begin = ext4_write_begin,
3112 .write_end = ext4_writeback_write_end,
3113 .bmap = ext4_bmap,
3114 .invalidatepage = ext4_invalidatepage,
3115 .releasepage = ext4_releasepage,
3116 .direct_IO = ext4_direct_IO,
3117 .migratepage = buffer_migrate_page,
3118 .is_partially_uptodate = block_is_partially_uptodate,
3121 static const struct address_space_operations ext4_journalled_aops = {
3122 .readpage = ext4_readpage,
3123 .readpages = ext4_readpages,
3124 .writepage = ext4_journalled_writepage,
3125 .sync_page = block_sync_page,
3126 .write_begin = ext4_write_begin,
3127 .write_end = ext4_journalled_write_end,
3128 .set_page_dirty = ext4_journalled_set_page_dirty,
3129 .bmap = ext4_bmap,
3130 .invalidatepage = ext4_invalidatepage,
3131 .releasepage = ext4_releasepage,
3132 .is_partially_uptodate = block_is_partially_uptodate,
3135 static const struct address_space_operations ext4_da_aops = {
3136 .readpage = ext4_readpage,
3137 .readpages = ext4_readpages,
3138 .writepage = ext4_da_writepage,
3139 .writepages = ext4_da_writepages,
3140 .sync_page = block_sync_page,
3141 .write_begin = ext4_da_write_begin,
3142 .write_end = ext4_da_write_end,
3143 .bmap = ext4_bmap,
3144 .invalidatepage = ext4_da_invalidatepage,
3145 .releasepage = ext4_releasepage,
3146 .direct_IO = ext4_direct_IO,
3147 .migratepage = buffer_migrate_page,
3148 .is_partially_uptodate = block_is_partially_uptodate,
3151 void ext4_set_aops(struct inode *inode)
3153 if (ext4_should_order_data(inode) &&
3154 test_opt(inode->i_sb, DELALLOC))
3155 inode->i_mapping->a_ops = &ext4_da_aops;
3156 else if (ext4_should_order_data(inode))
3157 inode->i_mapping->a_ops = &ext4_ordered_aops;
3158 else if (ext4_should_writeback_data(inode) &&
3159 test_opt(inode->i_sb, DELALLOC))
3160 inode->i_mapping->a_ops = &ext4_da_aops;
3161 else if (ext4_should_writeback_data(inode))
3162 inode->i_mapping->a_ops = &ext4_writeback_aops;
3163 else
3164 inode->i_mapping->a_ops = &ext4_journalled_aops;
3168 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3169 * up to the end of the block which corresponds to `from'.
3170 * This required during truncate. We need to physically zero the tail end
3171 * of that block so it doesn't yield old data if the file is later grown.
3173 int ext4_block_truncate_page(handle_t *handle,
3174 struct address_space *mapping, loff_t from)
3176 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3177 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3178 unsigned blocksize, length, pos;
3179 ext4_lblk_t iblock;
3180 struct inode *inode = mapping->host;
3181 struct buffer_head *bh;
3182 struct page *page;
3183 int err = 0;
3185 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3186 if (!page)
3187 return -EINVAL;
3189 blocksize = inode->i_sb->s_blocksize;
3190 length = blocksize - (offset & (blocksize - 1));
3191 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3194 * For "nobh" option, we can only work if we don't need to
3195 * read-in the page - otherwise we create buffers to do the IO.
3197 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3198 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3199 zero_user(page, offset, length);
3200 set_page_dirty(page);
3201 goto unlock;
3204 if (!page_has_buffers(page))
3205 create_empty_buffers(page, blocksize, 0);
3207 /* Find the buffer that contains "offset" */
3208 bh = page_buffers(page);
3209 pos = blocksize;
3210 while (offset >= pos) {
3211 bh = bh->b_this_page;
3212 iblock++;
3213 pos += blocksize;
3216 err = 0;
3217 if (buffer_freed(bh)) {
3218 BUFFER_TRACE(bh, "freed: skip");
3219 goto unlock;
3222 if (!buffer_mapped(bh)) {
3223 BUFFER_TRACE(bh, "unmapped");
3224 ext4_get_block(inode, iblock, bh, 0);
3225 /* unmapped? It's a hole - nothing to do */
3226 if (!buffer_mapped(bh)) {
3227 BUFFER_TRACE(bh, "still unmapped");
3228 goto unlock;
3232 /* Ok, it's mapped. Make sure it's up-to-date */
3233 if (PageUptodate(page))
3234 set_buffer_uptodate(bh);
3236 if (!buffer_uptodate(bh)) {
3237 err = -EIO;
3238 ll_rw_block(READ, 1, &bh);
3239 wait_on_buffer(bh);
3240 /* Uhhuh. Read error. Complain and punt. */
3241 if (!buffer_uptodate(bh))
3242 goto unlock;
3245 if (ext4_should_journal_data(inode)) {
3246 BUFFER_TRACE(bh, "get write access");
3247 err = ext4_journal_get_write_access(handle, bh);
3248 if (err)
3249 goto unlock;
3252 zero_user(page, offset, length);
3254 BUFFER_TRACE(bh, "zeroed end of block");
3256 err = 0;
3257 if (ext4_should_journal_data(inode)) {
3258 err = ext4_journal_dirty_metadata(handle, bh);
3259 } else {
3260 if (ext4_should_order_data(inode))
3261 err = ext4_jbd2_file_inode(handle, inode);
3262 mark_buffer_dirty(bh);
3265 unlock:
3266 unlock_page(page);
3267 page_cache_release(page);
3268 return err;
3272 * Probably it should be a library function... search for first non-zero word
3273 * or memcmp with zero_page, whatever is better for particular architecture.
3274 * Linus?
3276 static inline int all_zeroes(__le32 *p, __le32 *q)
3278 while (p < q)
3279 if (*p++)
3280 return 0;
3281 return 1;
3285 * ext4_find_shared - find the indirect blocks for partial truncation.
3286 * @inode: inode in question
3287 * @depth: depth of the affected branch
3288 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3289 * @chain: place to store the pointers to partial indirect blocks
3290 * @top: place to the (detached) top of branch
3292 * This is a helper function used by ext4_truncate().
3294 * When we do truncate() we may have to clean the ends of several
3295 * indirect blocks but leave the blocks themselves alive. Block is
3296 * partially truncated if some data below the new i_size is refered
3297 * from it (and it is on the path to the first completely truncated
3298 * data block, indeed). We have to free the top of that path along
3299 * with everything to the right of the path. Since no allocation
3300 * past the truncation point is possible until ext4_truncate()
3301 * finishes, we may safely do the latter, but top of branch may
3302 * require special attention - pageout below the truncation point
3303 * might try to populate it.
3305 * We atomically detach the top of branch from the tree, store the
3306 * block number of its root in *@top, pointers to buffer_heads of
3307 * partially truncated blocks - in @chain[].bh and pointers to
3308 * their last elements that should not be removed - in
3309 * @chain[].p. Return value is the pointer to last filled element
3310 * of @chain.
3312 * The work left to caller to do the actual freeing of subtrees:
3313 * a) free the subtree starting from *@top
3314 * b) free the subtrees whose roots are stored in
3315 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3316 * c) free the subtrees growing from the inode past the @chain[0].
3317 * (no partially truncated stuff there). */
3319 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3320 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3322 Indirect *partial, *p;
3323 int k, err;
3325 *top = 0;
3326 /* Make k index the deepest non-null offest + 1 */
3327 for (k = depth; k > 1 && !offsets[k-1]; k--)
3329 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3330 /* Writer: pointers */
3331 if (!partial)
3332 partial = chain + k-1;
3334 * If the branch acquired continuation since we've looked at it -
3335 * fine, it should all survive and (new) top doesn't belong to us.
3337 if (!partial->key && *partial->p)
3338 /* Writer: end */
3339 goto no_top;
3340 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3343 * OK, we've found the last block that must survive. The rest of our
3344 * branch should be detached before unlocking. However, if that rest
3345 * of branch is all ours and does not grow immediately from the inode
3346 * it's easier to cheat and just decrement partial->p.
3348 if (p == chain + k - 1 && p > chain) {
3349 p->p--;
3350 } else {
3351 *top = *p->p;
3352 /* Nope, don't do this in ext4. Must leave the tree intact */
3353 #if 0
3354 *p->p = 0;
3355 #endif
3357 /* Writer: end */
3359 while (partial > p) {
3360 brelse(partial->bh);
3361 partial--;
3363 no_top:
3364 return partial;
3368 * Zero a number of block pointers in either an inode or an indirect block.
3369 * If we restart the transaction we must again get write access to the
3370 * indirect block for further modification.
3372 * We release `count' blocks on disk, but (last - first) may be greater
3373 * than `count' because there can be holes in there.
3375 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3376 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3377 unsigned long count, __le32 *first, __le32 *last)
3379 __le32 *p;
3380 if (try_to_extend_transaction(handle, inode)) {
3381 if (bh) {
3382 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3383 ext4_journal_dirty_metadata(handle, bh);
3385 ext4_mark_inode_dirty(handle, inode);
3386 ext4_journal_test_restart(handle, inode);
3387 if (bh) {
3388 BUFFER_TRACE(bh, "retaking write access");
3389 ext4_journal_get_write_access(handle, bh);
3394 * Any buffers which are on the journal will be in memory. We find
3395 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3396 * on them. We've already detached each block from the file, so
3397 * bforget() in jbd2_journal_forget() should be safe.
3399 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3401 for (p = first; p < last; p++) {
3402 u32 nr = le32_to_cpu(*p);
3403 if (nr) {
3404 struct buffer_head *tbh;
3406 *p = 0;
3407 tbh = sb_find_get_block(inode->i_sb, nr);
3408 ext4_forget(handle, 0, inode, tbh, nr);
3412 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3416 * ext4_free_data - free a list of data blocks
3417 * @handle: handle for this transaction
3418 * @inode: inode we are dealing with
3419 * @this_bh: indirect buffer_head which contains *@first and *@last
3420 * @first: array of block numbers
3421 * @last: points immediately past the end of array
3423 * We are freeing all blocks refered from that array (numbers are stored as
3424 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3426 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3427 * blocks are contiguous then releasing them at one time will only affect one
3428 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3429 * actually use a lot of journal space.
3431 * @this_bh will be %NULL if @first and @last point into the inode's direct
3432 * block pointers.
3434 static void ext4_free_data(handle_t *handle, struct inode *inode,
3435 struct buffer_head *this_bh,
3436 __le32 *first, __le32 *last)
3438 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3439 unsigned long count = 0; /* Number of blocks in the run */
3440 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3441 corresponding to
3442 block_to_free */
3443 ext4_fsblk_t nr; /* Current block # */
3444 __le32 *p; /* Pointer into inode/ind
3445 for current block */
3446 int err;
3448 if (this_bh) { /* For indirect block */
3449 BUFFER_TRACE(this_bh, "get_write_access");
3450 err = ext4_journal_get_write_access(handle, this_bh);
3451 /* Important: if we can't update the indirect pointers
3452 * to the blocks, we can't free them. */
3453 if (err)
3454 return;
3457 for (p = first; p < last; p++) {
3458 nr = le32_to_cpu(*p);
3459 if (nr) {
3460 /* accumulate blocks to free if they're contiguous */
3461 if (count == 0) {
3462 block_to_free = nr;
3463 block_to_free_p = p;
3464 count = 1;
3465 } else if (nr == block_to_free + count) {
3466 count++;
3467 } else {
3468 ext4_clear_blocks(handle, inode, this_bh,
3469 block_to_free,
3470 count, block_to_free_p, p);
3471 block_to_free = nr;
3472 block_to_free_p = p;
3473 count = 1;
3478 if (count > 0)
3479 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3480 count, block_to_free_p, p);
3482 if (this_bh) {
3483 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3486 * The buffer head should have an attached journal head at this
3487 * point. However, if the data is corrupted and an indirect
3488 * block pointed to itself, it would have been detached when
3489 * the block was cleared. Check for this instead of OOPSing.
3491 if (bh2jh(this_bh))
3492 ext4_journal_dirty_metadata(handle, this_bh);
3493 else
3494 ext4_error(inode->i_sb, __func__,
3495 "circular indirect block detected, "
3496 "inode=%lu, block=%llu",
3497 inode->i_ino,
3498 (unsigned long long) this_bh->b_blocknr);
3503 * ext4_free_branches - free an array of branches
3504 * @handle: JBD handle for this transaction
3505 * @inode: inode we are dealing with
3506 * @parent_bh: the buffer_head which contains *@first and *@last
3507 * @first: array of block numbers
3508 * @last: pointer immediately past the end of array
3509 * @depth: depth of the branches to free
3511 * We are freeing all blocks refered from these branches (numbers are
3512 * stored as little-endian 32-bit) and updating @inode->i_blocks
3513 * appropriately.
3515 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3516 struct buffer_head *parent_bh,
3517 __le32 *first, __le32 *last, int depth)
3519 ext4_fsblk_t nr;
3520 __le32 *p;
3522 if (is_handle_aborted(handle))
3523 return;
3525 if (depth--) {
3526 struct buffer_head *bh;
3527 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3528 p = last;
3529 while (--p >= first) {
3530 nr = le32_to_cpu(*p);
3531 if (!nr)
3532 continue; /* A hole */
3534 /* Go read the buffer for the next level down */
3535 bh = sb_bread(inode->i_sb, nr);
3538 * A read failure? Report error and clear slot
3539 * (should be rare).
3541 if (!bh) {
3542 ext4_error(inode->i_sb, "ext4_free_branches",
3543 "Read failure, inode=%lu, block=%llu",
3544 inode->i_ino, nr);
3545 continue;
3548 /* This zaps the entire block. Bottom up. */
3549 BUFFER_TRACE(bh, "free child branches");
3550 ext4_free_branches(handle, inode, bh,
3551 (__le32 *) bh->b_data,
3552 (__le32 *) bh->b_data + addr_per_block,
3553 depth);
3556 * We've probably journalled the indirect block several
3557 * times during the truncate. But it's no longer
3558 * needed and we now drop it from the transaction via
3559 * jbd2_journal_revoke().
3561 * That's easy if it's exclusively part of this
3562 * transaction. But if it's part of the committing
3563 * transaction then jbd2_journal_forget() will simply
3564 * brelse() it. That means that if the underlying
3565 * block is reallocated in ext4_get_block(),
3566 * unmap_underlying_metadata() will find this block
3567 * and will try to get rid of it. damn, damn.
3569 * If this block has already been committed to the
3570 * journal, a revoke record will be written. And
3571 * revoke records must be emitted *before* clearing
3572 * this block's bit in the bitmaps.
3574 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3577 * Everything below this this pointer has been
3578 * released. Now let this top-of-subtree go.
3580 * We want the freeing of this indirect block to be
3581 * atomic in the journal with the updating of the
3582 * bitmap block which owns it. So make some room in
3583 * the journal.
3585 * We zero the parent pointer *after* freeing its
3586 * pointee in the bitmaps, so if extend_transaction()
3587 * for some reason fails to put the bitmap changes and
3588 * the release into the same transaction, recovery
3589 * will merely complain about releasing a free block,
3590 * rather than leaking blocks.
3592 if (is_handle_aborted(handle))
3593 return;
3594 if (try_to_extend_transaction(handle, inode)) {
3595 ext4_mark_inode_dirty(handle, inode);
3596 ext4_journal_test_restart(handle, inode);
3599 ext4_free_blocks(handle, inode, nr, 1, 1);
3601 if (parent_bh) {
3603 * The block which we have just freed is
3604 * pointed to by an indirect block: journal it
3606 BUFFER_TRACE(parent_bh, "get_write_access");
3607 if (!ext4_journal_get_write_access(handle,
3608 parent_bh)){
3609 *p = 0;
3610 BUFFER_TRACE(parent_bh,
3611 "call ext4_journal_dirty_metadata");
3612 ext4_journal_dirty_metadata(handle,
3613 parent_bh);
3617 } else {
3618 /* We have reached the bottom of the tree. */
3619 BUFFER_TRACE(parent_bh, "free data blocks");
3620 ext4_free_data(handle, inode, parent_bh, first, last);
3624 int ext4_can_truncate(struct inode *inode)
3626 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3627 return 0;
3628 if (S_ISREG(inode->i_mode))
3629 return 1;
3630 if (S_ISDIR(inode->i_mode))
3631 return 1;
3632 if (S_ISLNK(inode->i_mode))
3633 return !ext4_inode_is_fast_symlink(inode);
3634 return 0;
3638 * ext4_truncate()
3640 * We block out ext4_get_block() block instantiations across the entire
3641 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3642 * simultaneously on behalf of the same inode.
3644 * As we work through the truncate and commmit bits of it to the journal there
3645 * is one core, guiding principle: the file's tree must always be consistent on
3646 * disk. We must be able to restart the truncate after a crash.
3648 * The file's tree may be transiently inconsistent in memory (although it
3649 * probably isn't), but whenever we close off and commit a journal transaction,
3650 * the contents of (the filesystem + the journal) must be consistent and
3651 * restartable. It's pretty simple, really: bottom up, right to left (although
3652 * left-to-right works OK too).
3654 * Note that at recovery time, journal replay occurs *before* the restart of
3655 * truncate against the orphan inode list.
3657 * The committed inode has the new, desired i_size (which is the same as
3658 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3659 * that this inode's truncate did not complete and it will again call
3660 * ext4_truncate() to have another go. So there will be instantiated blocks
3661 * to the right of the truncation point in a crashed ext4 filesystem. But
3662 * that's fine - as long as they are linked from the inode, the post-crash
3663 * ext4_truncate() run will find them and release them.
3665 void ext4_truncate(struct inode *inode)
3667 handle_t *handle;
3668 struct ext4_inode_info *ei = EXT4_I(inode);
3669 __le32 *i_data = ei->i_data;
3670 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3671 struct address_space *mapping = inode->i_mapping;
3672 ext4_lblk_t offsets[4];
3673 Indirect chain[4];
3674 Indirect *partial;
3675 __le32 nr = 0;
3676 int n;
3677 ext4_lblk_t last_block;
3678 unsigned blocksize = inode->i_sb->s_blocksize;
3680 if (!ext4_can_truncate(inode))
3681 return;
3683 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3684 ext4_ext_truncate(inode);
3685 return;
3688 handle = start_transaction(inode);
3689 if (IS_ERR(handle))
3690 return; /* AKPM: return what? */
3692 last_block = (inode->i_size + blocksize-1)
3693 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3695 if (inode->i_size & (blocksize - 1))
3696 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3697 goto out_stop;
3699 n = ext4_block_to_path(inode, last_block, offsets, NULL);
3700 if (n == 0)
3701 goto out_stop; /* error */
3704 * OK. This truncate is going to happen. We add the inode to the
3705 * orphan list, so that if this truncate spans multiple transactions,
3706 * and we crash, we will resume the truncate when the filesystem
3707 * recovers. It also marks the inode dirty, to catch the new size.
3709 * Implication: the file must always be in a sane, consistent
3710 * truncatable state while each transaction commits.
3712 if (ext4_orphan_add(handle, inode))
3713 goto out_stop;
3716 * From here we block out all ext4_get_block() callers who want to
3717 * modify the block allocation tree.
3719 down_write(&ei->i_data_sem);
3721 ext4_discard_reservation(inode);
3724 * The orphan list entry will now protect us from any crash which
3725 * occurs before the truncate completes, so it is now safe to propagate
3726 * the new, shorter inode size (held for now in i_size) into the
3727 * on-disk inode. We do this via i_disksize, which is the value which
3728 * ext4 *really* writes onto the disk inode.
3730 ei->i_disksize = inode->i_size;
3732 if (n == 1) { /* direct blocks */
3733 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3734 i_data + EXT4_NDIR_BLOCKS);
3735 goto do_indirects;
3738 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3739 /* Kill the top of shared branch (not detached) */
3740 if (nr) {
3741 if (partial == chain) {
3742 /* Shared branch grows from the inode */
3743 ext4_free_branches(handle, inode, NULL,
3744 &nr, &nr+1, (chain+n-1) - partial);
3745 *partial->p = 0;
3747 * We mark the inode dirty prior to restart,
3748 * and prior to stop. No need for it here.
3750 } else {
3751 /* Shared branch grows from an indirect block */
3752 BUFFER_TRACE(partial->bh, "get_write_access");
3753 ext4_free_branches(handle, inode, partial->bh,
3754 partial->p,
3755 partial->p+1, (chain+n-1) - partial);
3758 /* Clear the ends of indirect blocks on the shared branch */
3759 while (partial > chain) {
3760 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3761 (__le32*)partial->bh->b_data+addr_per_block,
3762 (chain+n-1) - partial);
3763 BUFFER_TRACE(partial->bh, "call brelse");
3764 brelse (partial->bh);
3765 partial--;
3767 do_indirects:
3768 /* Kill the remaining (whole) subtrees */
3769 switch (offsets[0]) {
3770 default:
3771 nr = i_data[EXT4_IND_BLOCK];
3772 if (nr) {
3773 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3774 i_data[EXT4_IND_BLOCK] = 0;
3776 case EXT4_IND_BLOCK:
3777 nr = i_data[EXT4_DIND_BLOCK];
3778 if (nr) {
3779 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3780 i_data[EXT4_DIND_BLOCK] = 0;
3782 case EXT4_DIND_BLOCK:
3783 nr = i_data[EXT4_TIND_BLOCK];
3784 if (nr) {
3785 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3786 i_data[EXT4_TIND_BLOCK] = 0;
3788 case EXT4_TIND_BLOCK:
3792 up_write(&ei->i_data_sem);
3793 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3794 ext4_mark_inode_dirty(handle, inode);
3797 * In a multi-transaction truncate, we only make the final transaction
3798 * synchronous
3800 if (IS_SYNC(inode))
3801 handle->h_sync = 1;
3802 out_stop:
3804 * If this was a simple ftruncate(), and the file will remain alive
3805 * then we need to clear up the orphan record which we created above.
3806 * However, if this was a real unlink then we were called by
3807 * ext4_delete_inode(), and we allow that function to clean up the
3808 * orphan info for us.
3810 if (inode->i_nlink)
3811 ext4_orphan_del(handle, inode);
3813 ext4_journal_stop(handle);
3816 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3817 unsigned long ino, struct ext4_iloc *iloc)
3819 ext4_group_t block_group;
3820 unsigned long offset;
3821 ext4_fsblk_t block;
3822 struct ext4_group_desc *gdp;
3824 if (!ext4_valid_inum(sb, ino)) {
3826 * This error is already checked for in namei.c unless we are
3827 * looking at an NFS filehandle, in which case no error
3828 * report is needed
3830 return 0;
3833 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3834 gdp = ext4_get_group_desc(sb, block_group, NULL);
3835 if (!gdp)
3836 return 0;
3839 * Figure out the offset within the block group inode table
3841 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3842 EXT4_INODE_SIZE(sb);
3843 block = ext4_inode_table(sb, gdp) +
3844 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
3846 iloc->block_group = block_group;
3847 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3848 return block;
3852 * ext4_get_inode_loc returns with an extra refcount against the inode's
3853 * underlying buffer_head on success. If 'in_mem' is true, we have all
3854 * data in memory that is needed to recreate the on-disk version of this
3855 * inode.
3857 static int __ext4_get_inode_loc(struct inode *inode,
3858 struct ext4_iloc *iloc, int in_mem)
3860 ext4_fsblk_t block;
3861 struct buffer_head *bh;
3863 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3864 if (!block)
3865 return -EIO;
3867 bh = sb_getblk(inode->i_sb, block);
3868 if (!bh) {
3869 ext4_error (inode->i_sb, "ext4_get_inode_loc",
3870 "unable to read inode block - "
3871 "inode=%lu, block=%llu",
3872 inode->i_ino, block);
3873 return -EIO;
3875 if (!buffer_uptodate(bh)) {
3876 lock_buffer(bh);
3879 * If the buffer has the write error flag, we have failed
3880 * to write out another inode in the same block. In this
3881 * case, we don't have to read the block because we may
3882 * read the old inode data successfully.
3884 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3885 set_buffer_uptodate(bh);
3887 if (buffer_uptodate(bh)) {
3888 /* someone brought it uptodate while we waited */
3889 unlock_buffer(bh);
3890 goto has_buffer;
3894 * If we have all information of the inode in memory and this
3895 * is the only valid inode in the block, we need not read the
3896 * block.
3898 if (in_mem) {
3899 struct buffer_head *bitmap_bh;
3900 struct ext4_group_desc *desc;
3901 int inodes_per_buffer;
3902 int inode_offset, i;
3903 ext4_group_t block_group;
3904 int start;
3906 block_group = (inode->i_ino - 1) /
3907 EXT4_INODES_PER_GROUP(inode->i_sb);
3908 inodes_per_buffer = bh->b_size /
3909 EXT4_INODE_SIZE(inode->i_sb);
3910 inode_offset = ((inode->i_ino - 1) %
3911 EXT4_INODES_PER_GROUP(inode->i_sb));
3912 start = inode_offset & ~(inodes_per_buffer - 1);
3914 /* Is the inode bitmap in cache? */
3915 desc = ext4_get_group_desc(inode->i_sb,
3916 block_group, NULL);
3917 if (!desc)
3918 goto make_io;
3920 bitmap_bh = sb_getblk(inode->i_sb,
3921 ext4_inode_bitmap(inode->i_sb, desc));
3922 if (!bitmap_bh)
3923 goto make_io;
3926 * If the inode bitmap isn't in cache then the
3927 * optimisation may end up performing two reads instead
3928 * of one, so skip it.
3930 if (!buffer_uptodate(bitmap_bh)) {
3931 brelse(bitmap_bh);
3932 goto make_io;
3934 for (i = start; i < start + inodes_per_buffer; i++) {
3935 if (i == inode_offset)
3936 continue;
3937 if (ext4_test_bit(i, bitmap_bh->b_data))
3938 break;
3940 brelse(bitmap_bh);
3941 if (i == start + inodes_per_buffer) {
3942 /* all other inodes are free, so skip I/O */
3943 memset(bh->b_data, 0, bh->b_size);
3944 set_buffer_uptodate(bh);
3945 unlock_buffer(bh);
3946 goto has_buffer;
3950 make_io:
3952 * There are other valid inodes in the buffer, this inode
3953 * has in-inode xattrs, or we don't have this inode in memory.
3954 * Read the block from disk.
3956 get_bh(bh);
3957 bh->b_end_io = end_buffer_read_sync;
3958 submit_bh(READ_META, bh);
3959 wait_on_buffer(bh);
3960 if (!buffer_uptodate(bh)) {
3961 ext4_error(inode->i_sb, "ext4_get_inode_loc",
3962 "unable to read inode block - "
3963 "inode=%lu, block=%llu",
3964 inode->i_ino, block);
3965 brelse(bh);
3966 return -EIO;
3969 has_buffer:
3970 iloc->bh = bh;
3971 return 0;
3974 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3976 /* We have all inode data except xattrs in memory here. */
3977 return __ext4_get_inode_loc(inode, iloc,
3978 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3981 void ext4_set_inode_flags(struct inode *inode)
3983 unsigned int flags = EXT4_I(inode)->i_flags;
3985 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3986 if (flags & EXT4_SYNC_FL)
3987 inode->i_flags |= S_SYNC;
3988 if (flags & EXT4_APPEND_FL)
3989 inode->i_flags |= S_APPEND;
3990 if (flags & EXT4_IMMUTABLE_FL)
3991 inode->i_flags |= S_IMMUTABLE;
3992 if (flags & EXT4_NOATIME_FL)
3993 inode->i_flags |= S_NOATIME;
3994 if (flags & EXT4_DIRSYNC_FL)
3995 inode->i_flags |= S_DIRSYNC;
3998 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3999 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4001 unsigned int flags = ei->vfs_inode.i_flags;
4003 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4004 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4005 if (flags & S_SYNC)
4006 ei->i_flags |= EXT4_SYNC_FL;
4007 if (flags & S_APPEND)
4008 ei->i_flags |= EXT4_APPEND_FL;
4009 if (flags & S_IMMUTABLE)
4010 ei->i_flags |= EXT4_IMMUTABLE_FL;
4011 if (flags & S_NOATIME)
4012 ei->i_flags |= EXT4_NOATIME_FL;
4013 if (flags & S_DIRSYNC)
4014 ei->i_flags |= EXT4_DIRSYNC_FL;
4016 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4017 struct ext4_inode_info *ei)
4019 blkcnt_t i_blocks ;
4020 struct inode *inode = &(ei->vfs_inode);
4021 struct super_block *sb = inode->i_sb;
4023 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4024 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4025 /* we are using combined 48 bit field */
4026 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4027 le32_to_cpu(raw_inode->i_blocks_lo);
4028 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4029 /* i_blocks represent file system block size */
4030 return i_blocks << (inode->i_blkbits - 9);
4031 } else {
4032 return i_blocks;
4034 } else {
4035 return le32_to_cpu(raw_inode->i_blocks_lo);
4039 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4041 struct ext4_iloc iloc;
4042 struct ext4_inode *raw_inode;
4043 struct ext4_inode_info *ei;
4044 struct buffer_head *bh;
4045 struct inode *inode;
4046 long ret;
4047 int block;
4049 inode = iget_locked(sb, ino);
4050 if (!inode)
4051 return ERR_PTR(-ENOMEM);
4052 if (!(inode->i_state & I_NEW))
4053 return inode;
4055 ei = EXT4_I(inode);
4056 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
4057 ei->i_acl = EXT4_ACL_NOT_CACHED;
4058 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4059 #endif
4060 ei->i_block_alloc_info = NULL;
4062 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4063 if (ret < 0)
4064 goto bad_inode;
4065 bh = iloc.bh;
4066 raw_inode = ext4_raw_inode(&iloc);
4067 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4068 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4069 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4070 if (!(test_opt(inode->i_sb, NO_UID32))) {
4071 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4072 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4074 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4076 ei->i_state = 0;
4077 ei->i_dir_start_lookup = 0;
4078 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4079 /* We now have enough fields to check if the inode was active or not.
4080 * This is needed because nfsd might try to access dead inodes
4081 * the test is that same one that e2fsck uses
4082 * NeilBrown 1999oct15
4084 if (inode->i_nlink == 0) {
4085 if (inode->i_mode == 0 ||
4086 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4087 /* this inode is deleted */
4088 brelse(bh);
4089 ret = -ESTALE;
4090 goto bad_inode;
4092 /* The only unlinked inodes we let through here have
4093 * valid i_mode and are being read by the orphan
4094 * recovery code: that's fine, we're about to complete
4095 * the process of deleting those. */
4097 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4098 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4099 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4100 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4101 cpu_to_le32(EXT4_OS_HURD)) {
4102 ei->i_file_acl |=
4103 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4105 inode->i_size = ext4_isize(raw_inode);
4106 ei->i_disksize = inode->i_size;
4107 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4108 ei->i_block_group = iloc.block_group;
4110 * NOTE! The in-memory inode i_data array is in little-endian order
4111 * even on big-endian machines: we do NOT byteswap the block numbers!
4113 for (block = 0; block < EXT4_N_BLOCKS; block++)
4114 ei->i_data[block] = raw_inode->i_block[block];
4115 INIT_LIST_HEAD(&ei->i_orphan);
4117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4118 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4119 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4120 EXT4_INODE_SIZE(inode->i_sb)) {
4121 brelse(bh);
4122 ret = -EIO;
4123 goto bad_inode;
4125 if (ei->i_extra_isize == 0) {
4126 /* The extra space is currently unused. Use it. */
4127 ei->i_extra_isize = sizeof(struct ext4_inode) -
4128 EXT4_GOOD_OLD_INODE_SIZE;
4129 } else {
4130 __le32 *magic = (void *)raw_inode +
4131 EXT4_GOOD_OLD_INODE_SIZE +
4132 ei->i_extra_isize;
4133 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4134 ei->i_state |= EXT4_STATE_XATTR;
4136 } else
4137 ei->i_extra_isize = 0;
4139 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4140 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4141 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4142 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4144 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4145 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4146 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4147 inode->i_version |=
4148 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4151 if (S_ISREG(inode->i_mode)) {
4152 inode->i_op = &ext4_file_inode_operations;
4153 inode->i_fop = &ext4_file_operations;
4154 ext4_set_aops(inode);
4155 } else if (S_ISDIR(inode->i_mode)) {
4156 inode->i_op = &ext4_dir_inode_operations;
4157 inode->i_fop = &ext4_dir_operations;
4158 } else if (S_ISLNK(inode->i_mode)) {
4159 if (ext4_inode_is_fast_symlink(inode))
4160 inode->i_op = &ext4_fast_symlink_inode_operations;
4161 else {
4162 inode->i_op = &ext4_symlink_inode_operations;
4163 ext4_set_aops(inode);
4165 } else {
4166 inode->i_op = &ext4_special_inode_operations;
4167 if (raw_inode->i_block[0])
4168 init_special_inode(inode, inode->i_mode,
4169 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4170 else
4171 init_special_inode(inode, inode->i_mode,
4172 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4174 brelse(iloc.bh);
4175 ext4_set_inode_flags(inode);
4176 unlock_new_inode(inode);
4177 return inode;
4179 bad_inode:
4180 iget_failed(inode);
4181 return ERR_PTR(ret);
4184 static int ext4_inode_blocks_set(handle_t *handle,
4185 struct ext4_inode *raw_inode,
4186 struct ext4_inode_info *ei)
4188 struct inode *inode = &(ei->vfs_inode);
4189 u64 i_blocks = inode->i_blocks;
4190 struct super_block *sb = inode->i_sb;
4191 int err = 0;
4193 if (i_blocks <= ~0U) {
4195 * i_blocks can be represnted in a 32 bit variable
4196 * as multiple of 512 bytes
4198 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4199 raw_inode->i_blocks_high = 0;
4200 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4201 } else if (i_blocks <= 0xffffffffffffULL) {
4203 * i_blocks can be represented in a 48 bit variable
4204 * as multiple of 512 bytes
4206 err = ext4_update_rocompat_feature(handle, sb,
4207 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4208 if (err)
4209 goto err_out;
4210 /* i_block is stored in the split 48 bit fields */
4211 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4212 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4213 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4214 } else {
4216 * i_blocks should be represented in a 48 bit variable
4217 * as multiple of file system block size
4219 err = ext4_update_rocompat_feature(handle, sb,
4220 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4221 if (err)
4222 goto err_out;
4223 ei->i_flags |= EXT4_HUGE_FILE_FL;
4224 /* i_block is stored in file system block size */
4225 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4226 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4227 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4229 err_out:
4230 return err;
4234 * Post the struct inode info into an on-disk inode location in the
4235 * buffer-cache. This gobbles the caller's reference to the
4236 * buffer_head in the inode location struct.
4238 * The caller must have write access to iloc->bh.
4240 static int ext4_do_update_inode(handle_t *handle,
4241 struct inode *inode,
4242 struct ext4_iloc *iloc)
4244 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4245 struct ext4_inode_info *ei = EXT4_I(inode);
4246 struct buffer_head *bh = iloc->bh;
4247 int err = 0, rc, block;
4249 /* For fields not not tracking in the in-memory inode,
4250 * initialise them to zero for new inodes. */
4251 if (ei->i_state & EXT4_STATE_NEW)
4252 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4254 ext4_get_inode_flags(ei);
4255 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4256 if (!(test_opt(inode->i_sb, NO_UID32))) {
4257 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4258 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4260 * Fix up interoperability with old kernels. Otherwise, old inodes get
4261 * re-used with the upper 16 bits of the uid/gid intact
4263 if (!ei->i_dtime) {
4264 raw_inode->i_uid_high =
4265 cpu_to_le16(high_16_bits(inode->i_uid));
4266 raw_inode->i_gid_high =
4267 cpu_to_le16(high_16_bits(inode->i_gid));
4268 } else {
4269 raw_inode->i_uid_high = 0;
4270 raw_inode->i_gid_high = 0;
4272 } else {
4273 raw_inode->i_uid_low =
4274 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4275 raw_inode->i_gid_low =
4276 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4277 raw_inode->i_uid_high = 0;
4278 raw_inode->i_gid_high = 0;
4280 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4282 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4283 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4284 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4285 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4287 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4288 goto out_brelse;
4289 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4290 /* clear the migrate flag in the raw_inode */
4291 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4292 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4293 cpu_to_le32(EXT4_OS_HURD))
4294 raw_inode->i_file_acl_high =
4295 cpu_to_le16(ei->i_file_acl >> 32);
4296 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4297 ext4_isize_set(raw_inode, ei->i_disksize);
4298 if (ei->i_disksize > 0x7fffffffULL) {
4299 struct super_block *sb = inode->i_sb;
4300 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4301 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4302 EXT4_SB(sb)->s_es->s_rev_level ==
4303 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4304 /* If this is the first large file
4305 * created, add a flag to the superblock.
4307 err = ext4_journal_get_write_access(handle,
4308 EXT4_SB(sb)->s_sbh);
4309 if (err)
4310 goto out_brelse;
4311 ext4_update_dynamic_rev(sb);
4312 EXT4_SET_RO_COMPAT_FEATURE(sb,
4313 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4314 sb->s_dirt = 1;
4315 handle->h_sync = 1;
4316 err = ext4_journal_dirty_metadata(handle,
4317 EXT4_SB(sb)->s_sbh);
4320 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4321 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4322 if (old_valid_dev(inode->i_rdev)) {
4323 raw_inode->i_block[0] =
4324 cpu_to_le32(old_encode_dev(inode->i_rdev));
4325 raw_inode->i_block[1] = 0;
4326 } else {
4327 raw_inode->i_block[0] = 0;
4328 raw_inode->i_block[1] =
4329 cpu_to_le32(new_encode_dev(inode->i_rdev));
4330 raw_inode->i_block[2] = 0;
4332 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4333 raw_inode->i_block[block] = ei->i_data[block];
4335 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4336 if (ei->i_extra_isize) {
4337 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4338 raw_inode->i_version_hi =
4339 cpu_to_le32(inode->i_version >> 32);
4340 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4344 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4345 rc = ext4_journal_dirty_metadata(handle, bh);
4346 if (!err)
4347 err = rc;
4348 ei->i_state &= ~EXT4_STATE_NEW;
4350 out_brelse:
4351 brelse(bh);
4352 ext4_std_error(inode->i_sb, err);
4353 return err;
4357 * ext4_write_inode()
4359 * We are called from a few places:
4361 * - Within generic_file_write() for O_SYNC files.
4362 * Here, there will be no transaction running. We wait for any running
4363 * trasnaction to commit.
4365 * - Within sys_sync(), kupdate and such.
4366 * We wait on commit, if tol to.
4368 * - Within prune_icache() (PF_MEMALLOC == true)
4369 * Here we simply return. We can't afford to block kswapd on the
4370 * journal commit.
4372 * In all cases it is actually safe for us to return without doing anything,
4373 * because the inode has been copied into a raw inode buffer in
4374 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4375 * knfsd.
4377 * Note that we are absolutely dependent upon all inode dirtiers doing the
4378 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4379 * which we are interested.
4381 * It would be a bug for them to not do this. The code:
4383 * mark_inode_dirty(inode)
4384 * stuff();
4385 * inode->i_size = expr;
4387 * is in error because a kswapd-driven write_inode() could occur while
4388 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4389 * will no longer be on the superblock's dirty inode list.
4391 int ext4_write_inode(struct inode *inode, int wait)
4393 if (current->flags & PF_MEMALLOC)
4394 return 0;
4396 if (ext4_journal_current_handle()) {
4397 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4398 dump_stack();
4399 return -EIO;
4402 if (!wait)
4403 return 0;
4405 return ext4_force_commit(inode->i_sb);
4409 * ext4_setattr()
4411 * Called from notify_change.
4413 * We want to trap VFS attempts to truncate the file as soon as
4414 * possible. In particular, we want to make sure that when the VFS
4415 * shrinks i_size, we put the inode on the orphan list and modify
4416 * i_disksize immediately, so that during the subsequent flushing of
4417 * dirty pages and freeing of disk blocks, we can guarantee that any
4418 * commit will leave the blocks being flushed in an unused state on
4419 * disk. (On recovery, the inode will get truncated and the blocks will
4420 * be freed, so we have a strong guarantee that no future commit will
4421 * leave these blocks visible to the user.)
4423 * Another thing we have to assure is that if we are in ordered mode
4424 * and inode is still attached to the committing transaction, we must
4425 * we start writeout of all the dirty pages which are being truncated.
4426 * This way we are sure that all the data written in the previous
4427 * transaction are already on disk (truncate waits for pages under
4428 * writeback).
4430 * Called with inode->i_mutex down.
4432 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4434 struct inode *inode = dentry->d_inode;
4435 int error, rc = 0;
4436 const unsigned int ia_valid = attr->ia_valid;
4438 error = inode_change_ok(inode, attr);
4439 if (error)
4440 return error;
4442 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4443 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4444 handle_t *handle;
4446 /* (user+group)*(old+new) structure, inode write (sb,
4447 * inode block, ? - but truncate inode update has it) */
4448 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4449 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4450 if (IS_ERR(handle)) {
4451 error = PTR_ERR(handle);
4452 goto err_out;
4454 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4455 if (error) {
4456 ext4_journal_stop(handle);
4457 return error;
4459 /* Update corresponding info in inode so that everything is in
4460 * one transaction */
4461 if (attr->ia_valid & ATTR_UID)
4462 inode->i_uid = attr->ia_uid;
4463 if (attr->ia_valid & ATTR_GID)
4464 inode->i_gid = attr->ia_gid;
4465 error = ext4_mark_inode_dirty(handle, inode);
4466 ext4_journal_stop(handle);
4469 if (attr->ia_valid & ATTR_SIZE) {
4470 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4471 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4473 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4474 error = -EFBIG;
4475 goto err_out;
4480 if (S_ISREG(inode->i_mode) &&
4481 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4482 handle_t *handle;
4484 handle = ext4_journal_start(inode, 3);
4485 if (IS_ERR(handle)) {
4486 error = PTR_ERR(handle);
4487 goto err_out;
4490 error = ext4_orphan_add(handle, inode);
4491 EXT4_I(inode)->i_disksize = attr->ia_size;
4492 rc = ext4_mark_inode_dirty(handle, inode);
4493 if (!error)
4494 error = rc;
4495 ext4_journal_stop(handle);
4497 if (ext4_should_order_data(inode)) {
4498 error = ext4_begin_ordered_truncate(inode,
4499 attr->ia_size);
4500 if (error) {
4501 /* Do as much error cleanup as possible */
4502 handle = ext4_journal_start(inode, 3);
4503 if (IS_ERR(handle)) {
4504 ext4_orphan_del(NULL, inode);
4505 goto err_out;
4507 ext4_orphan_del(handle, inode);
4508 ext4_journal_stop(handle);
4509 goto err_out;
4514 rc = inode_setattr(inode, attr);
4516 /* If inode_setattr's call to ext4_truncate failed to get a
4517 * transaction handle at all, we need to clean up the in-core
4518 * orphan list manually. */
4519 if (inode->i_nlink)
4520 ext4_orphan_del(NULL, inode);
4522 if (!rc && (ia_valid & ATTR_MODE))
4523 rc = ext4_acl_chmod(inode);
4525 err_out:
4526 ext4_std_error(inode->i_sb, error);
4527 if (!error)
4528 error = rc;
4529 return error;
4532 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4533 struct kstat *stat)
4535 struct inode *inode;
4536 unsigned long delalloc_blocks;
4538 inode = dentry->d_inode;
4539 generic_fillattr(inode, stat);
4542 * We can't update i_blocks if the block allocation is delayed
4543 * otherwise in the case of system crash before the real block
4544 * allocation is done, we will have i_blocks inconsistent with
4545 * on-disk file blocks.
4546 * We always keep i_blocks updated together with real
4547 * allocation. But to not confuse with user, stat
4548 * will return the blocks that include the delayed allocation
4549 * blocks for this file.
4551 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4552 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4553 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4555 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4556 return 0;
4559 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4560 int chunk)
4562 int indirects;
4564 /* if nrblocks are contiguous */
4565 if (chunk) {
4567 * With N contiguous data blocks, it need at most
4568 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4569 * 2 dindirect blocks
4570 * 1 tindirect block
4572 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4573 return indirects + 3;
4576 * if nrblocks are not contiguous, worse case, each block touch
4577 * a indirect block, and each indirect block touch a double indirect
4578 * block, plus a triple indirect block
4580 indirects = nrblocks * 2 + 1;
4581 return indirects;
4584 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4586 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4587 return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4588 return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4591 * Account for index blocks, block groups bitmaps and block group
4592 * descriptor blocks if modify datablocks and index blocks
4593 * worse case, the indexs blocks spread over different block groups
4595 * If datablocks are discontiguous, they are possible to spread over
4596 * different block groups too. If they are contiugous, with flexbg,
4597 * they could still across block group boundary.
4599 * Also account for superblock, inode, quota and xattr blocks
4601 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4603 int groups, gdpblocks;
4604 int idxblocks;
4605 int ret = 0;
4608 * How many index blocks need to touch to modify nrblocks?
4609 * The "Chunk" flag indicating whether the nrblocks is
4610 * physically contiguous on disk
4612 * For Direct IO and fallocate, they calls get_block to allocate
4613 * one single extent at a time, so they could set the "Chunk" flag
4615 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4617 ret = idxblocks;
4620 * Now let's see how many group bitmaps and group descriptors need
4621 * to account
4623 groups = idxblocks;
4624 if (chunk)
4625 groups += 1;
4626 else
4627 groups += nrblocks;
4629 gdpblocks = groups;
4630 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4631 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4632 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4633 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4635 /* bitmaps and block group descriptor blocks */
4636 ret += groups + gdpblocks;
4638 /* Blocks for super block, inode, quota and xattr blocks */
4639 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4641 return ret;
4645 * Calulate the total number of credits to reserve to fit
4646 * the modification of a single pages into a single transaction,
4647 * which may include multiple chunks of block allocations.
4649 * This could be called via ext4_write_begin()
4651 * We need to consider the worse case, when
4652 * one new block per extent.
4654 int ext4_writepage_trans_blocks(struct inode *inode)
4656 int bpp = ext4_journal_blocks_per_page(inode);
4657 int ret;
4659 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4661 /* Account for data blocks for journalled mode */
4662 if (ext4_should_journal_data(inode))
4663 ret += bpp;
4664 return ret;
4668 * Calculate the journal credits for a chunk of data modification.
4670 * This is called from DIO, fallocate or whoever calling
4671 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4673 * journal buffers for data blocks are not included here, as DIO
4674 * and fallocate do no need to journal data buffers.
4676 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4678 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4682 * The caller must have previously called ext4_reserve_inode_write().
4683 * Give this, we know that the caller already has write access to iloc->bh.
4685 int ext4_mark_iloc_dirty(handle_t *handle,
4686 struct inode *inode, struct ext4_iloc *iloc)
4688 int err = 0;
4690 if (test_opt(inode->i_sb, I_VERSION))
4691 inode_inc_iversion(inode);
4693 /* the do_update_inode consumes one bh->b_count */
4694 get_bh(iloc->bh);
4696 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4697 err = ext4_do_update_inode(handle, inode, iloc);
4698 put_bh(iloc->bh);
4699 return err;
4703 * On success, We end up with an outstanding reference count against
4704 * iloc->bh. This _must_ be cleaned up later.
4708 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4709 struct ext4_iloc *iloc)
4711 int err = 0;
4712 if (handle) {
4713 err = ext4_get_inode_loc(inode, iloc);
4714 if (!err) {
4715 BUFFER_TRACE(iloc->bh, "get_write_access");
4716 err = ext4_journal_get_write_access(handle, iloc->bh);
4717 if (err) {
4718 brelse(iloc->bh);
4719 iloc->bh = NULL;
4723 ext4_std_error(inode->i_sb, err);
4724 return err;
4728 * Expand an inode by new_extra_isize bytes.
4729 * Returns 0 on success or negative error number on failure.
4731 static int ext4_expand_extra_isize(struct inode *inode,
4732 unsigned int new_extra_isize,
4733 struct ext4_iloc iloc,
4734 handle_t *handle)
4736 struct ext4_inode *raw_inode;
4737 struct ext4_xattr_ibody_header *header;
4738 struct ext4_xattr_entry *entry;
4740 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4741 return 0;
4743 raw_inode = ext4_raw_inode(&iloc);
4745 header = IHDR(inode, raw_inode);
4746 entry = IFIRST(header);
4748 /* No extended attributes present */
4749 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4750 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4751 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4752 new_extra_isize);
4753 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4754 return 0;
4757 /* try to expand with EAs present */
4758 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4759 raw_inode, handle);
4763 * What we do here is to mark the in-core inode as clean with respect to inode
4764 * dirtiness (it may still be data-dirty).
4765 * This means that the in-core inode may be reaped by prune_icache
4766 * without having to perform any I/O. This is a very good thing,
4767 * because *any* task may call prune_icache - even ones which
4768 * have a transaction open against a different journal.
4770 * Is this cheating? Not really. Sure, we haven't written the
4771 * inode out, but prune_icache isn't a user-visible syncing function.
4772 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4773 * we start and wait on commits.
4775 * Is this efficient/effective? Well, we're being nice to the system
4776 * by cleaning up our inodes proactively so they can be reaped
4777 * without I/O. But we are potentially leaving up to five seconds'
4778 * worth of inodes floating about which prune_icache wants us to
4779 * write out. One way to fix that would be to get prune_icache()
4780 * to do a write_super() to free up some memory. It has the desired
4781 * effect.
4783 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4785 struct ext4_iloc iloc;
4786 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4787 static unsigned int mnt_count;
4788 int err, ret;
4790 might_sleep();
4791 err = ext4_reserve_inode_write(handle, inode, &iloc);
4792 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4793 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4795 * We need extra buffer credits since we may write into EA block
4796 * with this same handle. If journal_extend fails, then it will
4797 * only result in a minor loss of functionality for that inode.
4798 * If this is felt to be critical, then e2fsck should be run to
4799 * force a large enough s_min_extra_isize.
4801 if ((jbd2_journal_extend(handle,
4802 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4803 ret = ext4_expand_extra_isize(inode,
4804 sbi->s_want_extra_isize,
4805 iloc, handle);
4806 if (ret) {
4807 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4808 if (mnt_count !=
4809 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4810 ext4_warning(inode->i_sb, __func__,
4811 "Unable to expand inode %lu. Delete"
4812 " some EAs or run e2fsck.",
4813 inode->i_ino);
4814 mnt_count =
4815 le16_to_cpu(sbi->s_es->s_mnt_count);
4820 if (!err)
4821 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4822 return err;
4826 * ext4_dirty_inode() is called from __mark_inode_dirty()
4828 * We're really interested in the case where a file is being extended.
4829 * i_size has been changed by generic_commit_write() and we thus need
4830 * to include the updated inode in the current transaction.
4832 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4833 * are allocated to the file.
4835 * If the inode is marked synchronous, we don't honour that here - doing
4836 * so would cause a commit on atime updates, which we don't bother doing.
4837 * We handle synchronous inodes at the highest possible level.
4839 void ext4_dirty_inode(struct inode *inode)
4841 handle_t *current_handle = ext4_journal_current_handle();
4842 handle_t *handle;
4844 handle = ext4_journal_start(inode, 2);
4845 if (IS_ERR(handle))
4846 goto out;
4847 if (current_handle &&
4848 current_handle->h_transaction != handle->h_transaction) {
4849 /* This task has a transaction open against a different fs */
4850 printk(KERN_EMERG "%s: transactions do not match!\n",
4851 __func__);
4852 } else {
4853 jbd_debug(5, "marking dirty. outer handle=%p\n",
4854 current_handle);
4855 ext4_mark_inode_dirty(handle, inode);
4857 ext4_journal_stop(handle);
4858 out:
4859 return;
4862 #if 0
4864 * Bind an inode's backing buffer_head into this transaction, to prevent
4865 * it from being flushed to disk early. Unlike
4866 * ext4_reserve_inode_write, this leaves behind no bh reference and
4867 * returns no iloc structure, so the caller needs to repeat the iloc
4868 * lookup to mark the inode dirty later.
4870 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4872 struct ext4_iloc iloc;
4874 int err = 0;
4875 if (handle) {
4876 err = ext4_get_inode_loc(inode, &iloc);
4877 if (!err) {
4878 BUFFER_TRACE(iloc.bh, "get_write_access");
4879 err = jbd2_journal_get_write_access(handle, iloc.bh);
4880 if (!err)
4881 err = ext4_journal_dirty_metadata(handle,
4882 iloc.bh);
4883 brelse(iloc.bh);
4886 ext4_std_error(inode->i_sb, err);
4887 return err;
4889 #endif
4891 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4893 journal_t *journal;
4894 handle_t *handle;
4895 int err;
4898 * We have to be very careful here: changing a data block's
4899 * journaling status dynamically is dangerous. If we write a
4900 * data block to the journal, change the status and then delete
4901 * that block, we risk forgetting to revoke the old log record
4902 * from the journal and so a subsequent replay can corrupt data.
4903 * So, first we make sure that the journal is empty and that
4904 * nobody is changing anything.
4907 journal = EXT4_JOURNAL(inode);
4908 if (is_journal_aborted(journal))
4909 return -EROFS;
4911 jbd2_journal_lock_updates(journal);
4912 jbd2_journal_flush(journal);
4915 * OK, there are no updates running now, and all cached data is
4916 * synced to disk. We are now in a completely consistent state
4917 * which doesn't have anything in the journal, and we know that
4918 * no filesystem updates are running, so it is safe to modify
4919 * the inode's in-core data-journaling state flag now.
4922 if (val)
4923 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4924 else
4925 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4926 ext4_set_aops(inode);
4928 jbd2_journal_unlock_updates(journal);
4930 /* Finally we can mark the inode as dirty. */
4932 handle = ext4_journal_start(inode, 1);
4933 if (IS_ERR(handle))
4934 return PTR_ERR(handle);
4936 err = ext4_mark_inode_dirty(handle, inode);
4937 handle->h_sync = 1;
4938 ext4_journal_stop(handle);
4939 ext4_std_error(inode->i_sb, err);
4941 return err;
4944 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4946 return !buffer_mapped(bh);
4949 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4951 loff_t size;
4952 unsigned long len;
4953 int ret = -EINVAL;
4954 void *fsdata;
4955 struct file *file = vma->vm_file;
4956 struct inode *inode = file->f_path.dentry->d_inode;
4957 struct address_space *mapping = inode->i_mapping;
4960 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4961 * get i_mutex because we are already holding mmap_sem.
4963 down_read(&inode->i_alloc_sem);
4964 size = i_size_read(inode);
4965 if (page->mapping != mapping || size <= page_offset(page)
4966 || !PageUptodate(page)) {
4967 /* page got truncated from under us? */
4968 goto out_unlock;
4970 ret = 0;
4971 if (PageMappedToDisk(page))
4972 goto out_unlock;
4974 if (page->index == size >> PAGE_CACHE_SHIFT)
4975 len = size & ~PAGE_CACHE_MASK;
4976 else
4977 len = PAGE_CACHE_SIZE;
4979 if (page_has_buffers(page)) {
4980 /* return if we have all the buffers mapped */
4981 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4982 ext4_bh_unmapped))
4983 goto out_unlock;
4986 * OK, we need to fill the hole... Do write_begin write_end
4987 * to do block allocation/reservation.We are not holding
4988 * inode.i__mutex here. That allow * parallel write_begin,
4989 * write_end call. lock_page prevent this from happening
4990 * on the same page though
4992 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4993 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
4994 if (ret < 0)
4995 goto out_unlock;
4996 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4997 len, len, page, fsdata);
4998 if (ret < 0)
4999 goto out_unlock;
5000 ret = 0;
5001 out_unlock:
5002 up_read(&inode->i_alloc_sem);
5003 return ret;