perf_counter: Introduce struct for sample data
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / powerpc / kernel / perf_counter.c
blob5e0bf399c4335165c06d2bc6ffbd62ba801623e6
1 /*
2 * Performance counter support - powerpc architecture code
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_counter.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <asm/reg.h>
17 #include <asm/pmc.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20 #include <asm/ptrace.h>
22 struct cpu_hw_counters {
23 int n_counters;
24 int n_percpu;
25 int disabled;
26 int n_added;
27 int n_limited;
28 u8 pmcs_enabled;
29 struct perf_counter *counter[MAX_HWCOUNTERS];
30 u64 events[MAX_HWCOUNTERS];
31 unsigned int flags[MAX_HWCOUNTERS];
32 u64 mmcr[3];
33 struct perf_counter *limited_counter[MAX_LIMITED_HWCOUNTERS];
34 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
36 DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
38 struct power_pmu *ppmu;
41 * Normally, to ignore kernel events we set the FCS (freeze counters
42 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
43 * hypervisor bit set in the MSR, or if we are running on a processor
44 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
45 * then we need to use the FCHV bit to ignore kernel events.
47 static unsigned int freeze_counters_kernel = MMCR0_FCS;
49 static void perf_counter_interrupt(struct pt_regs *regs);
51 void perf_counter_print_debug(void)
56 * Read one performance monitor counter (PMC).
58 static unsigned long read_pmc(int idx)
60 unsigned long val;
62 switch (idx) {
63 case 1:
64 val = mfspr(SPRN_PMC1);
65 break;
66 case 2:
67 val = mfspr(SPRN_PMC2);
68 break;
69 case 3:
70 val = mfspr(SPRN_PMC3);
71 break;
72 case 4:
73 val = mfspr(SPRN_PMC4);
74 break;
75 case 5:
76 val = mfspr(SPRN_PMC5);
77 break;
78 case 6:
79 val = mfspr(SPRN_PMC6);
80 break;
81 case 7:
82 val = mfspr(SPRN_PMC7);
83 break;
84 case 8:
85 val = mfspr(SPRN_PMC8);
86 break;
87 default:
88 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
89 val = 0;
91 return val;
95 * Write one PMC.
97 static void write_pmc(int idx, unsigned long val)
99 switch (idx) {
100 case 1:
101 mtspr(SPRN_PMC1, val);
102 break;
103 case 2:
104 mtspr(SPRN_PMC2, val);
105 break;
106 case 3:
107 mtspr(SPRN_PMC3, val);
108 break;
109 case 4:
110 mtspr(SPRN_PMC4, val);
111 break;
112 case 5:
113 mtspr(SPRN_PMC5, val);
114 break;
115 case 6:
116 mtspr(SPRN_PMC6, val);
117 break;
118 case 7:
119 mtspr(SPRN_PMC7, val);
120 break;
121 case 8:
122 mtspr(SPRN_PMC8, val);
123 break;
124 default:
125 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
130 * Check if a set of events can all go on the PMU at once.
131 * If they can't, this will look at alternative codes for the events
132 * and see if any combination of alternative codes is feasible.
133 * The feasible set is returned in event[].
135 static int power_check_constraints(u64 event[], unsigned int cflags[],
136 int n_ev)
138 u64 mask, value, nv;
139 u64 alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
140 u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
141 u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
142 u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS];
143 int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS];
144 int i, j;
145 u64 addf = ppmu->add_fields;
146 u64 tadd = ppmu->test_adder;
148 if (n_ev > ppmu->n_counter)
149 return -1;
151 /* First see if the events will go on as-is */
152 for (i = 0; i < n_ev; ++i) {
153 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
154 && !ppmu->limited_pmc_event(event[i])) {
155 ppmu->get_alternatives(event[i], cflags[i],
156 alternatives[i]);
157 event[i] = alternatives[i][0];
159 if (ppmu->get_constraint(event[i], &amasks[i][0],
160 &avalues[i][0]))
161 return -1;
163 value = mask = 0;
164 for (i = 0; i < n_ev; ++i) {
165 nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf);
166 if ((((nv + tadd) ^ value) & mask) != 0 ||
167 (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0)
168 break;
169 value = nv;
170 mask |= amasks[i][0];
172 if (i == n_ev)
173 return 0; /* all OK */
175 /* doesn't work, gather alternatives... */
176 if (!ppmu->get_alternatives)
177 return -1;
178 for (i = 0; i < n_ev; ++i) {
179 choice[i] = 0;
180 n_alt[i] = ppmu->get_alternatives(event[i], cflags[i],
181 alternatives[i]);
182 for (j = 1; j < n_alt[i]; ++j)
183 ppmu->get_constraint(alternatives[i][j],
184 &amasks[i][j], &avalues[i][j]);
187 /* enumerate all possibilities and see if any will work */
188 i = 0;
189 j = -1;
190 value = mask = nv = 0;
191 while (i < n_ev) {
192 if (j >= 0) {
193 /* we're backtracking, restore context */
194 value = svalues[i];
195 mask = smasks[i];
196 j = choice[i];
199 * See if any alternative k for event i,
200 * where k > j, will satisfy the constraints.
202 while (++j < n_alt[i]) {
203 nv = (value | avalues[i][j]) +
204 (value & avalues[i][j] & addf);
205 if ((((nv + tadd) ^ value) & mask) == 0 &&
206 (((nv + tadd) ^ avalues[i][j])
207 & amasks[i][j]) == 0)
208 break;
210 if (j >= n_alt[i]) {
212 * No feasible alternative, backtrack
213 * to event i-1 and continue enumerating its
214 * alternatives from where we got up to.
216 if (--i < 0)
217 return -1;
218 } else {
220 * Found a feasible alternative for event i,
221 * remember where we got up to with this event,
222 * go on to the next event, and start with
223 * the first alternative for it.
225 choice[i] = j;
226 svalues[i] = value;
227 smasks[i] = mask;
228 value = nv;
229 mask |= amasks[i][j];
230 ++i;
231 j = -1;
235 /* OK, we have a feasible combination, tell the caller the solution */
236 for (i = 0; i < n_ev; ++i)
237 event[i] = alternatives[i][choice[i]];
238 return 0;
242 * Check if newly-added counters have consistent settings for
243 * exclude_{user,kernel,hv} with each other and any previously
244 * added counters.
246 static int check_excludes(struct perf_counter **ctrs, unsigned int cflags[],
247 int n_prev, int n_new)
249 int eu = 0, ek = 0, eh = 0;
250 int i, n, first;
251 struct perf_counter *counter;
253 n = n_prev + n_new;
254 if (n <= 1)
255 return 0;
257 first = 1;
258 for (i = 0; i < n; ++i) {
259 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
260 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
261 continue;
263 counter = ctrs[i];
264 if (first) {
265 eu = counter->attr.exclude_user;
266 ek = counter->attr.exclude_kernel;
267 eh = counter->attr.exclude_hv;
268 first = 0;
269 } else if (counter->attr.exclude_user != eu ||
270 counter->attr.exclude_kernel != ek ||
271 counter->attr.exclude_hv != eh) {
272 return -EAGAIN;
276 if (eu || ek || eh)
277 for (i = 0; i < n; ++i)
278 if (cflags[i] & PPMU_LIMITED_PMC_OK)
279 cflags[i] |= PPMU_LIMITED_PMC_REQD;
281 return 0;
284 static void power_pmu_read(struct perf_counter *counter)
286 long val, delta, prev;
288 if (!counter->hw.idx)
289 return;
291 * Performance monitor interrupts come even when interrupts
292 * are soft-disabled, as long as interrupts are hard-enabled.
293 * Therefore we treat them like NMIs.
295 do {
296 prev = atomic64_read(&counter->hw.prev_count);
297 barrier();
298 val = read_pmc(counter->hw.idx);
299 } while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev);
301 /* The counters are only 32 bits wide */
302 delta = (val - prev) & 0xfffffffful;
303 atomic64_add(delta, &counter->count);
304 atomic64_sub(delta, &counter->hw.period_left);
308 * On some machines, PMC5 and PMC6 can't be written, don't respect
309 * the freeze conditions, and don't generate interrupts. This tells
310 * us if `counter' is using such a PMC.
312 static int is_limited_pmc(int pmcnum)
314 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
315 && (pmcnum == 5 || pmcnum == 6);
318 static void freeze_limited_counters(struct cpu_hw_counters *cpuhw,
319 unsigned long pmc5, unsigned long pmc6)
321 struct perf_counter *counter;
322 u64 val, prev, delta;
323 int i;
325 for (i = 0; i < cpuhw->n_limited; ++i) {
326 counter = cpuhw->limited_counter[i];
327 if (!counter->hw.idx)
328 continue;
329 val = (counter->hw.idx == 5) ? pmc5 : pmc6;
330 prev = atomic64_read(&counter->hw.prev_count);
331 counter->hw.idx = 0;
332 delta = (val - prev) & 0xfffffffful;
333 atomic64_add(delta, &counter->count);
337 static void thaw_limited_counters(struct cpu_hw_counters *cpuhw,
338 unsigned long pmc5, unsigned long pmc6)
340 struct perf_counter *counter;
341 u64 val;
342 int i;
344 for (i = 0; i < cpuhw->n_limited; ++i) {
345 counter = cpuhw->limited_counter[i];
346 counter->hw.idx = cpuhw->limited_hwidx[i];
347 val = (counter->hw.idx == 5) ? pmc5 : pmc6;
348 atomic64_set(&counter->hw.prev_count, val);
349 perf_counter_update_userpage(counter);
354 * Since limited counters don't respect the freeze conditions, we
355 * have to read them immediately after freezing or unfreezing the
356 * other counters. We try to keep the values from the limited
357 * counters as consistent as possible by keeping the delay (in
358 * cycles and instructions) between freezing/unfreezing and reading
359 * the limited counters as small and consistent as possible.
360 * Therefore, if any limited counters are in use, we read them
361 * both, and always in the same order, to minimize variability,
362 * and do it inside the same asm that writes MMCR0.
364 static void write_mmcr0(struct cpu_hw_counters *cpuhw, unsigned long mmcr0)
366 unsigned long pmc5, pmc6;
368 if (!cpuhw->n_limited) {
369 mtspr(SPRN_MMCR0, mmcr0);
370 return;
374 * Write MMCR0, then read PMC5 and PMC6 immediately.
375 * To ensure we don't get a performance monitor interrupt
376 * between writing MMCR0 and freezing/thawing the limited
377 * counters, we first write MMCR0 with the counter overflow
378 * interrupt enable bits turned off.
380 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
381 : "=&r" (pmc5), "=&r" (pmc6)
382 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
383 "i" (SPRN_MMCR0),
384 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
386 if (mmcr0 & MMCR0_FC)
387 freeze_limited_counters(cpuhw, pmc5, pmc6);
388 else
389 thaw_limited_counters(cpuhw, pmc5, pmc6);
392 * Write the full MMCR0 including the counter overflow interrupt
393 * enable bits, if necessary.
395 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
396 mtspr(SPRN_MMCR0, mmcr0);
400 * Disable all counters to prevent PMU interrupts and to allow
401 * counters to be added or removed.
403 void hw_perf_disable(void)
405 struct cpu_hw_counters *cpuhw;
406 unsigned long ret;
407 unsigned long flags;
409 local_irq_save(flags);
410 cpuhw = &__get_cpu_var(cpu_hw_counters);
412 ret = cpuhw->disabled;
413 if (!ret) {
414 cpuhw->disabled = 1;
415 cpuhw->n_added = 0;
418 * Check if we ever enabled the PMU on this cpu.
420 if (!cpuhw->pmcs_enabled) {
421 if (ppc_md.enable_pmcs)
422 ppc_md.enable_pmcs();
423 cpuhw->pmcs_enabled = 1;
427 * Disable instruction sampling if it was enabled
429 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
430 mtspr(SPRN_MMCRA,
431 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
432 mb();
436 * Set the 'freeze counters' bit.
437 * The barrier is to make sure the mtspr has been
438 * executed and the PMU has frozen the counters
439 * before we return.
441 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
442 mb();
444 local_irq_restore(flags);
448 * Re-enable all counters if disable == 0.
449 * If we were previously disabled and counters were added, then
450 * put the new config on the PMU.
452 void hw_perf_enable(void)
454 struct perf_counter *counter;
455 struct cpu_hw_counters *cpuhw;
456 unsigned long flags;
457 long i;
458 unsigned long val;
459 s64 left;
460 unsigned int hwc_index[MAX_HWCOUNTERS];
461 int n_lim;
462 int idx;
464 local_irq_save(flags);
465 cpuhw = &__get_cpu_var(cpu_hw_counters);
466 if (!cpuhw->disabled) {
467 local_irq_restore(flags);
468 return;
470 cpuhw->disabled = 0;
473 * If we didn't change anything, or only removed counters,
474 * no need to recalculate MMCR* settings and reset the PMCs.
475 * Just reenable the PMU with the current MMCR* settings
476 * (possibly updated for removal of counters).
478 if (!cpuhw->n_added) {
479 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
480 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
481 if (cpuhw->n_counters == 0)
482 get_lppaca()->pmcregs_in_use = 0;
483 goto out_enable;
487 * Compute MMCR* values for the new set of counters
489 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index,
490 cpuhw->mmcr)) {
491 /* shouldn't ever get here */
492 printk(KERN_ERR "oops compute_mmcr failed\n");
493 goto out;
497 * Add in MMCR0 freeze bits corresponding to the
498 * attr.exclude_* bits for the first counter.
499 * We have already checked that all counters have the
500 * same values for these bits as the first counter.
502 counter = cpuhw->counter[0];
503 if (counter->attr.exclude_user)
504 cpuhw->mmcr[0] |= MMCR0_FCP;
505 if (counter->attr.exclude_kernel)
506 cpuhw->mmcr[0] |= freeze_counters_kernel;
507 if (counter->attr.exclude_hv)
508 cpuhw->mmcr[0] |= MMCR0_FCHV;
511 * Write the new configuration to MMCR* with the freeze
512 * bit set and set the hardware counters to their initial values.
513 * Then unfreeze the counters.
515 get_lppaca()->pmcregs_in_use = 1;
516 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
517 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
518 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
519 | MMCR0_FC);
522 * Read off any pre-existing counters that need to move
523 * to another PMC.
525 for (i = 0; i < cpuhw->n_counters; ++i) {
526 counter = cpuhw->counter[i];
527 if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) {
528 power_pmu_read(counter);
529 write_pmc(counter->hw.idx, 0);
530 counter->hw.idx = 0;
535 * Initialize the PMCs for all the new and moved counters.
537 cpuhw->n_limited = n_lim = 0;
538 for (i = 0; i < cpuhw->n_counters; ++i) {
539 counter = cpuhw->counter[i];
540 if (counter->hw.idx)
541 continue;
542 idx = hwc_index[i] + 1;
543 if (is_limited_pmc(idx)) {
544 cpuhw->limited_counter[n_lim] = counter;
545 cpuhw->limited_hwidx[n_lim] = idx;
546 ++n_lim;
547 continue;
549 val = 0;
550 if (counter->hw.sample_period) {
551 left = atomic64_read(&counter->hw.period_left);
552 if (left < 0x80000000L)
553 val = 0x80000000L - left;
555 atomic64_set(&counter->hw.prev_count, val);
556 counter->hw.idx = idx;
557 write_pmc(idx, val);
558 perf_counter_update_userpage(counter);
560 cpuhw->n_limited = n_lim;
561 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
563 out_enable:
564 mb();
565 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
568 * Enable instruction sampling if necessary
570 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
571 mb();
572 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
575 out:
576 local_irq_restore(flags);
579 static int collect_events(struct perf_counter *group, int max_count,
580 struct perf_counter *ctrs[], u64 *events,
581 unsigned int *flags)
583 int n = 0;
584 struct perf_counter *counter;
586 if (!is_software_counter(group)) {
587 if (n >= max_count)
588 return -1;
589 ctrs[n] = group;
590 flags[n] = group->hw.counter_base;
591 events[n++] = group->hw.config;
593 list_for_each_entry(counter, &group->sibling_list, list_entry) {
594 if (!is_software_counter(counter) &&
595 counter->state != PERF_COUNTER_STATE_OFF) {
596 if (n >= max_count)
597 return -1;
598 ctrs[n] = counter;
599 flags[n] = counter->hw.counter_base;
600 events[n++] = counter->hw.config;
603 return n;
606 static void counter_sched_in(struct perf_counter *counter, int cpu)
608 counter->state = PERF_COUNTER_STATE_ACTIVE;
609 counter->oncpu = cpu;
610 counter->tstamp_running += counter->ctx->time - counter->tstamp_stopped;
611 if (is_software_counter(counter))
612 counter->pmu->enable(counter);
616 * Called to enable a whole group of counters.
617 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
618 * Assumes the caller has disabled interrupts and has
619 * frozen the PMU with hw_perf_save_disable.
621 int hw_perf_group_sched_in(struct perf_counter *group_leader,
622 struct perf_cpu_context *cpuctx,
623 struct perf_counter_context *ctx, int cpu)
625 struct cpu_hw_counters *cpuhw;
626 long i, n, n0;
627 struct perf_counter *sub;
629 cpuhw = &__get_cpu_var(cpu_hw_counters);
630 n0 = cpuhw->n_counters;
631 n = collect_events(group_leader, ppmu->n_counter - n0,
632 &cpuhw->counter[n0], &cpuhw->events[n0],
633 &cpuhw->flags[n0]);
634 if (n < 0)
635 return -EAGAIN;
636 if (check_excludes(cpuhw->counter, cpuhw->flags, n0, n))
637 return -EAGAIN;
638 i = power_check_constraints(cpuhw->events, cpuhw->flags, n + n0);
639 if (i < 0)
640 return -EAGAIN;
641 cpuhw->n_counters = n0 + n;
642 cpuhw->n_added += n;
645 * OK, this group can go on; update counter states etc.,
646 * and enable any software counters
648 for (i = n0; i < n0 + n; ++i)
649 cpuhw->counter[i]->hw.config = cpuhw->events[i];
650 cpuctx->active_oncpu += n;
651 n = 1;
652 counter_sched_in(group_leader, cpu);
653 list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
654 if (sub->state != PERF_COUNTER_STATE_OFF) {
655 counter_sched_in(sub, cpu);
656 ++n;
659 ctx->nr_active += n;
661 return 1;
665 * Add a counter to the PMU.
666 * If all counters are not already frozen, then we disable and
667 * re-enable the PMU in order to get hw_perf_enable to do the
668 * actual work of reconfiguring the PMU.
670 static int power_pmu_enable(struct perf_counter *counter)
672 struct cpu_hw_counters *cpuhw;
673 unsigned long flags;
674 int n0;
675 int ret = -EAGAIN;
677 local_irq_save(flags);
678 perf_disable();
681 * Add the counter to the list (if there is room)
682 * and check whether the total set is still feasible.
684 cpuhw = &__get_cpu_var(cpu_hw_counters);
685 n0 = cpuhw->n_counters;
686 if (n0 >= ppmu->n_counter)
687 goto out;
688 cpuhw->counter[n0] = counter;
689 cpuhw->events[n0] = counter->hw.config;
690 cpuhw->flags[n0] = counter->hw.counter_base;
691 if (check_excludes(cpuhw->counter, cpuhw->flags, n0, 1))
692 goto out;
693 if (power_check_constraints(cpuhw->events, cpuhw->flags, n0 + 1))
694 goto out;
696 counter->hw.config = cpuhw->events[n0];
697 ++cpuhw->n_counters;
698 ++cpuhw->n_added;
700 ret = 0;
701 out:
702 perf_enable();
703 local_irq_restore(flags);
704 return ret;
708 * Remove a counter from the PMU.
710 static void power_pmu_disable(struct perf_counter *counter)
712 struct cpu_hw_counters *cpuhw;
713 long i;
714 unsigned long flags;
716 local_irq_save(flags);
717 perf_disable();
719 power_pmu_read(counter);
721 cpuhw = &__get_cpu_var(cpu_hw_counters);
722 for (i = 0; i < cpuhw->n_counters; ++i) {
723 if (counter == cpuhw->counter[i]) {
724 while (++i < cpuhw->n_counters)
725 cpuhw->counter[i-1] = cpuhw->counter[i];
726 --cpuhw->n_counters;
727 ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr);
728 if (counter->hw.idx) {
729 write_pmc(counter->hw.idx, 0);
730 counter->hw.idx = 0;
732 perf_counter_update_userpage(counter);
733 break;
736 for (i = 0; i < cpuhw->n_limited; ++i)
737 if (counter == cpuhw->limited_counter[i])
738 break;
739 if (i < cpuhw->n_limited) {
740 while (++i < cpuhw->n_limited) {
741 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
742 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
744 --cpuhw->n_limited;
746 if (cpuhw->n_counters == 0) {
747 /* disable exceptions if no counters are running */
748 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
751 perf_enable();
752 local_irq_restore(flags);
756 * Re-enable interrupts on a counter after they were throttled
757 * because they were coming too fast.
759 static void power_pmu_unthrottle(struct perf_counter *counter)
761 s64 val, left;
762 unsigned long flags;
764 if (!counter->hw.idx || !counter->hw.sample_period)
765 return;
766 local_irq_save(flags);
767 perf_disable();
768 power_pmu_read(counter);
769 left = counter->hw.sample_period;
770 val = 0;
771 if (left < 0x80000000L)
772 val = 0x80000000L - left;
773 write_pmc(counter->hw.idx, val);
774 atomic64_set(&counter->hw.prev_count, val);
775 atomic64_set(&counter->hw.period_left, left);
776 perf_counter_update_userpage(counter);
777 perf_enable();
778 local_irq_restore(flags);
781 struct pmu power_pmu = {
782 .enable = power_pmu_enable,
783 .disable = power_pmu_disable,
784 .read = power_pmu_read,
785 .unthrottle = power_pmu_unthrottle,
789 * Return 1 if we might be able to put counter on a limited PMC,
790 * or 0 if not.
791 * A counter can only go on a limited PMC if it counts something
792 * that a limited PMC can count, doesn't require interrupts, and
793 * doesn't exclude any processor mode.
795 static int can_go_on_limited_pmc(struct perf_counter *counter, u64 ev,
796 unsigned int flags)
798 int n;
799 u64 alt[MAX_EVENT_ALTERNATIVES];
801 if (counter->attr.exclude_user
802 || counter->attr.exclude_kernel
803 || counter->attr.exclude_hv
804 || counter->attr.sample_period)
805 return 0;
807 if (ppmu->limited_pmc_event(ev))
808 return 1;
811 * The requested event isn't on a limited PMC already;
812 * see if any alternative code goes on a limited PMC.
814 if (!ppmu->get_alternatives)
815 return 0;
817 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
818 n = ppmu->get_alternatives(ev, flags, alt);
820 return n > 0;
824 * Find an alternative event that goes on a normal PMC, if possible,
825 * and return the event code, or 0 if there is no such alternative.
826 * (Note: event code 0 is "don't count" on all machines.)
828 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
830 u64 alt[MAX_EVENT_ALTERNATIVES];
831 int n;
833 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
834 n = ppmu->get_alternatives(ev, flags, alt);
835 if (!n)
836 return 0;
837 return alt[0];
840 /* Number of perf_counters counting hardware events */
841 static atomic_t num_counters;
842 /* Used to avoid races in calling reserve/release_pmc_hardware */
843 static DEFINE_MUTEX(pmc_reserve_mutex);
846 * Release the PMU if this is the last perf_counter.
848 static void hw_perf_counter_destroy(struct perf_counter *counter)
850 if (!atomic_add_unless(&num_counters, -1, 1)) {
851 mutex_lock(&pmc_reserve_mutex);
852 if (atomic_dec_return(&num_counters) == 0)
853 release_pmc_hardware();
854 mutex_unlock(&pmc_reserve_mutex);
858 const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
860 u64 ev;
861 unsigned long flags;
862 struct perf_counter *ctrs[MAX_HWCOUNTERS];
863 u64 events[MAX_HWCOUNTERS];
864 unsigned int cflags[MAX_HWCOUNTERS];
865 int n;
866 int err;
868 if (!ppmu)
869 return ERR_PTR(-ENXIO);
870 if (counter->attr.type != PERF_TYPE_RAW) {
871 ev = counter->attr.config;
872 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
873 return ERR_PTR(-EOPNOTSUPP);
874 ev = ppmu->generic_events[ev];
875 } else {
876 ev = counter->attr.config;
878 counter->hw.config_base = ev;
879 counter->hw.idx = 0;
882 * If we are not running on a hypervisor, force the
883 * exclude_hv bit to 0 so that we don't care what
884 * the user set it to.
886 if (!firmware_has_feature(FW_FEATURE_LPAR))
887 counter->attr.exclude_hv = 0;
890 * If this is a per-task counter, then we can use
891 * PM_RUN_* events interchangeably with their non RUN_*
892 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
893 * XXX we should check if the task is an idle task.
895 flags = 0;
896 if (counter->ctx->task)
897 flags |= PPMU_ONLY_COUNT_RUN;
900 * If this machine has limited counters, check whether this
901 * event could go on a limited counter.
903 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
904 if (can_go_on_limited_pmc(counter, ev, flags)) {
905 flags |= PPMU_LIMITED_PMC_OK;
906 } else if (ppmu->limited_pmc_event(ev)) {
908 * The requested event is on a limited PMC,
909 * but we can't use a limited PMC; see if any
910 * alternative goes on a normal PMC.
912 ev = normal_pmc_alternative(ev, flags);
913 if (!ev)
914 return ERR_PTR(-EINVAL);
919 * If this is in a group, check if it can go on with all the
920 * other hardware counters in the group. We assume the counter
921 * hasn't been linked into its leader's sibling list at this point.
923 n = 0;
924 if (counter->group_leader != counter) {
925 n = collect_events(counter->group_leader, ppmu->n_counter - 1,
926 ctrs, events, cflags);
927 if (n < 0)
928 return ERR_PTR(-EINVAL);
930 events[n] = ev;
931 ctrs[n] = counter;
932 cflags[n] = flags;
933 if (check_excludes(ctrs, cflags, n, 1))
934 return ERR_PTR(-EINVAL);
935 if (power_check_constraints(events, cflags, n + 1))
936 return ERR_PTR(-EINVAL);
938 counter->hw.config = events[n];
939 counter->hw.counter_base = cflags[n];
940 atomic64_set(&counter->hw.period_left, counter->hw.sample_period);
943 * See if we need to reserve the PMU.
944 * If no counters are currently in use, then we have to take a
945 * mutex to ensure that we don't race with another task doing
946 * reserve_pmc_hardware or release_pmc_hardware.
948 err = 0;
949 if (!atomic_inc_not_zero(&num_counters)) {
950 mutex_lock(&pmc_reserve_mutex);
951 if (atomic_read(&num_counters) == 0 &&
952 reserve_pmc_hardware(perf_counter_interrupt))
953 err = -EBUSY;
954 else
955 atomic_inc(&num_counters);
956 mutex_unlock(&pmc_reserve_mutex);
958 counter->destroy = hw_perf_counter_destroy;
960 if (err)
961 return ERR_PTR(err);
962 return &power_pmu;
966 * A counter has overflowed; update its count and record
967 * things if requested. Note that interrupts are hard-disabled
968 * here so there is no possibility of being interrupted.
970 static void record_and_restart(struct perf_counter *counter, long val,
971 struct pt_regs *regs, int nmi)
973 u64 period = counter->hw.sample_period;
974 s64 prev, delta, left;
975 int record = 0;
976 u64 addr, mmcra, sdsync;
978 /* we don't have to worry about interrupts here */
979 prev = atomic64_read(&counter->hw.prev_count);
980 delta = (val - prev) & 0xfffffffful;
981 atomic64_add(delta, &counter->count);
984 * See if the total period for this counter has expired,
985 * and update for the next period.
987 val = 0;
988 left = atomic64_read(&counter->hw.period_left) - delta;
989 if (period) {
990 if (left <= 0) {
991 left += period;
992 if (left <= 0)
993 left = period;
994 record = 1;
996 if (left < 0x80000000L)
997 val = 0x80000000L - left;
1001 * Finally record data if requested.
1003 if (record) {
1004 struct perf_sample_data data = {
1005 .regs = regs,
1006 .addr = 0,
1009 if (counter->attr.sample_type & PERF_SAMPLE_ADDR) {
1011 * The user wants a data address recorded.
1012 * If we're not doing instruction sampling,
1013 * give them the SDAR (sampled data address).
1014 * If we are doing instruction sampling, then only
1015 * give them the SDAR if it corresponds to the
1016 * instruction pointed to by SIAR; this is indicated
1017 * by the [POWER6_]MMCRA_SDSYNC bit in MMCRA.
1019 mmcra = regs->dsisr;
1020 sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
1021 POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;
1022 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
1023 data.addr = mfspr(SPRN_SDAR);
1025 if (perf_counter_overflow(counter, nmi, &data)) {
1027 * Interrupts are coming too fast - throttle them
1028 * by setting the counter to 0, so it will be
1029 * at least 2^30 cycles until the next interrupt
1030 * (assuming each counter counts at most 2 counts
1031 * per cycle).
1033 val = 0;
1034 left = ~0ULL >> 1;
1038 write_pmc(counter->hw.idx, val);
1039 atomic64_set(&counter->hw.prev_count, val);
1040 atomic64_set(&counter->hw.period_left, left);
1041 perf_counter_update_userpage(counter);
1045 * Called from generic code to get the misc flags (i.e. processor mode)
1046 * for an event.
1048 unsigned long perf_misc_flags(struct pt_regs *regs)
1050 unsigned long mmcra;
1052 if (TRAP(regs) != 0xf00) {
1053 /* not a PMU interrupt */
1054 return user_mode(regs) ? PERF_EVENT_MISC_USER :
1055 PERF_EVENT_MISC_KERNEL;
1058 mmcra = regs->dsisr;
1059 if (ppmu->flags & PPMU_ALT_SIPR) {
1060 if (mmcra & POWER6_MMCRA_SIHV)
1061 return PERF_EVENT_MISC_HYPERVISOR;
1062 return (mmcra & POWER6_MMCRA_SIPR) ? PERF_EVENT_MISC_USER :
1063 PERF_EVENT_MISC_KERNEL;
1065 if (mmcra & MMCRA_SIHV)
1066 return PERF_EVENT_MISC_HYPERVISOR;
1067 return (mmcra & MMCRA_SIPR) ? PERF_EVENT_MISC_USER :
1068 PERF_EVENT_MISC_KERNEL;
1072 * Called from generic code to get the instruction pointer
1073 * for an event.
1075 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1077 unsigned long mmcra;
1078 unsigned long ip;
1079 unsigned long slot;
1081 if (TRAP(regs) != 0xf00)
1082 return regs->nip; /* not a PMU interrupt */
1084 ip = mfspr(SPRN_SIAR);
1085 mmcra = regs->dsisr;
1086 if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
1087 slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
1088 if (slot > 1)
1089 ip += 4 * (slot - 1);
1091 return ip;
1095 * Performance monitor interrupt stuff
1097 static void perf_counter_interrupt(struct pt_regs *regs)
1099 int i;
1100 struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
1101 struct perf_counter *counter;
1102 long val;
1103 int found = 0;
1104 int nmi;
1106 if (cpuhw->n_limited)
1107 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1108 mfspr(SPRN_PMC6));
1111 * Overload regs->dsisr to store MMCRA so we only need to read it once.
1113 regs->dsisr = mfspr(SPRN_MMCRA);
1116 * If interrupts were soft-disabled when this PMU interrupt
1117 * occurred, treat it as an NMI.
1119 nmi = !regs->softe;
1120 if (nmi)
1121 nmi_enter();
1122 else
1123 irq_enter();
1125 for (i = 0; i < cpuhw->n_counters; ++i) {
1126 counter = cpuhw->counter[i];
1127 if (!counter->hw.idx || is_limited_pmc(counter->hw.idx))
1128 continue;
1129 val = read_pmc(counter->hw.idx);
1130 if ((int)val < 0) {
1131 /* counter has overflowed */
1132 found = 1;
1133 record_and_restart(counter, val, regs, nmi);
1138 * In case we didn't find and reset the counter that caused
1139 * the interrupt, scan all counters and reset any that are
1140 * negative, to avoid getting continual interrupts.
1141 * Any that we processed in the previous loop will not be negative.
1143 if (!found) {
1144 for (i = 0; i < ppmu->n_counter; ++i) {
1145 if (is_limited_pmc(i + 1))
1146 continue;
1147 val = read_pmc(i + 1);
1148 if ((int)val < 0)
1149 write_pmc(i + 1, 0);
1154 * Reset MMCR0 to its normal value. This will set PMXE and
1155 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1156 * and thus allow interrupts to occur again.
1157 * XXX might want to use MSR.PM to keep the counters frozen until
1158 * we get back out of this interrupt.
1160 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1162 if (nmi)
1163 nmi_exit();
1164 else
1165 irq_exit();
1168 void hw_perf_counter_setup(int cpu)
1170 struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu);
1172 memset(cpuhw, 0, sizeof(*cpuhw));
1173 cpuhw->mmcr[0] = MMCR0_FC;
1176 extern struct power_pmu power4_pmu;
1177 extern struct power_pmu ppc970_pmu;
1178 extern struct power_pmu power5_pmu;
1179 extern struct power_pmu power5p_pmu;
1180 extern struct power_pmu power6_pmu;
1182 static int init_perf_counters(void)
1184 unsigned long pvr;
1186 /* XXX should get this from cputable */
1187 pvr = mfspr(SPRN_PVR);
1188 switch (PVR_VER(pvr)) {
1189 case PV_POWER4:
1190 case PV_POWER4p:
1191 ppmu = &power4_pmu;
1192 break;
1193 case PV_970:
1194 case PV_970FX:
1195 case PV_970MP:
1196 ppmu = &ppc970_pmu;
1197 break;
1198 case PV_POWER5:
1199 ppmu = &power5_pmu;
1200 break;
1201 case PV_POWER5p:
1202 ppmu = &power5p_pmu;
1203 break;
1204 case 0x3e:
1205 ppmu = &power6_pmu;
1206 break;
1210 * Use FCHV to ignore kernel events if MSR.HV is set.
1212 if (mfmsr() & MSR_HV)
1213 freeze_counters_kernel = MMCR0_FCHV;
1215 return 0;
1218 arch_initcall(init_perf_counters);