1 /* SCTP kernel implementation
2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
4 * This file is part of the SCTP kernel implementation
6 * This SCTP implementation is free software;
7 * you can redistribute it and/or modify it under the terms of
8 * the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
12 * This SCTP implementation is distributed in the hope that it
13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14 * ************************
15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16 * See the GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with GNU CC; see the file COPYING. If not, write to
20 * the Free Software Foundation, 59 Temple Place - Suite 330,
21 * Boston, MA 02111-1307, USA.
23 * Please send any bug reports or fixes you make to the
25 * lksctp developers <lksctp-developers@lists.sourceforge.net>
27 * Or submit a bug report through the following website:
28 * http://www.sf.net/projects/lksctp
30 * Written or modified by:
31 * Vlad Yasevich <vladislav.yasevich@hp.com>
33 * Any bugs reported given to us we will try to fix... any fixes shared will
34 * be incorporated into the next SCTP release.
37 #include <linux/types.h>
38 #include <linux/crypto.h>
39 #include <linux/scatterlist.h>
40 #include <net/sctp/sctp.h>
41 #include <net/sctp/auth.h>
43 static struct sctp_hmac sctp_hmac_list
[SCTP_AUTH_NUM_HMACS
] = {
45 /* id 0 is reserved. as all 0 */
46 .hmac_id
= SCTP_AUTH_HMAC_ID_RESERVED_0
,
49 .hmac_id
= SCTP_AUTH_HMAC_ID_SHA1
,
50 .hmac_name
="hmac(sha1)",
51 .hmac_len
= SCTP_SHA1_SIG_SIZE
,
54 /* id 2 is reserved as well */
55 .hmac_id
= SCTP_AUTH_HMAC_ID_RESERVED_2
,
57 #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
59 .hmac_id
= SCTP_AUTH_HMAC_ID_SHA256
,
60 .hmac_name
="hmac(sha256)",
61 .hmac_len
= SCTP_SHA256_SIG_SIZE
,
67 void sctp_auth_key_put(struct sctp_auth_bytes
*key
)
72 if (atomic_dec_and_test(&key
->refcnt
)) {
74 SCTP_DBG_OBJCNT_DEC(keys
);
78 /* Create a new key structure of a given length */
79 static struct sctp_auth_bytes
*sctp_auth_create_key(__u32 key_len
, gfp_t gfp
)
81 struct sctp_auth_bytes
*key
;
83 /* Verify that we are not going to overflow INT_MAX */
84 if ((INT_MAX
- key_len
) < sizeof(struct sctp_auth_bytes
))
87 /* Allocate the shared key */
88 key
= kmalloc(sizeof(struct sctp_auth_bytes
) + key_len
, gfp
);
93 atomic_set(&key
->refcnt
, 1);
94 SCTP_DBG_OBJCNT_INC(keys
);
99 /* Create a new shared key container with a give key id */
100 struct sctp_shared_key
*sctp_auth_shkey_create(__u16 key_id
, gfp_t gfp
)
102 struct sctp_shared_key
*new;
104 /* Allocate the shared key container */
105 new = kzalloc(sizeof(struct sctp_shared_key
), gfp
);
109 INIT_LIST_HEAD(&new->key_list
);
110 new->key_id
= key_id
;
115 /* Free the shared key stucture */
116 static void sctp_auth_shkey_free(struct sctp_shared_key
*sh_key
)
118 BUG_ON(!list_empty(&sh_key
->key_list
));
119 sctp_auth_key_put(sh_key
->key
);
124 /* Destory the entire key list. This is done during the
125 * associon and endpoint free process.
127 void sctp_auth_destroy_keys(struct list_head
*keys
)
129 struct sctp_shared_key
*ep_key
;
130 struct sctp_shared_key
*tmp
;
132 if (list_empty(keys
))
135 key_for_each_safe(ep_key
, tmp
, keys
) {
136 list_del_init(&ep_key
->key_list
);
137 sctp_auth_shkey_free(ep_key
);
141 /* Compare two byte vectors as numbers. Return values
143 * 0 - vectors are equal
144 * < 0 - vector 1 is smaller than vector2
145 * > 0 - vector 1 is greater than vector2
148 * This is performed by selecting the numerically smaller key vector...
149 * If the key vectors are equal as numbers but differ in length ...
150 * the shorter vector is considered smaller
152 * Examples (with small values):
153 * 000123456789 > 123456789 (first number is longer)
154 * 000123456789 < 234567891 (second number is larger numerically)
155 * 123456789 > 2345678 (first number is both larger & longer)
157 static int sctp_auth_compare_vectors(struct sctp_auth_bytes
*vector1
,
158 struct sctp_auth_bytes
*vector2
)
164 diff
= vector1
->len
- vector2
->len
;
166 longer
= (diff
> 0) ? vector1
->data
: vector2
->data
;
168 /* Check to see if the longer number is
169 * lead-zero padded. If it is not, it
170 * is automatically larger numerically.
172 for (i
= 0; i
< abs(diff
); i
++ ) {
178 /* lengths are the same, compare numbers */
179 return memcmp(vector1
->data
, vector2
->data
, vector1
->len
);
183 * Create a key vector as described in SCTP-AUTH, Section 6.1
184 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
185 * parameter sent by each endpoint are concatenated as byte vectors.
186 * These parameters include the parameter type, parameter length, and
187 * the parameter value, but padding is omitted; all padding MUST be
188 * removed from this concatenation before proceeding with further
189 * computation of keys. Parameters which were not sent are simply
190 * omitted from the concatenation process. The resulting two vectors
191 * are called the two key vectors.
193 static struct sctp_auth_bytes
*sctp_auth_make_key_vector(
194 sctp_random_param_t
*random
,
195 sctp_chunks_param_t
*chunks
,
196 sctp_hmac_algo_param_t
*hmacs
,
199 struct sctp_auth_bytes
*new;
203 len
= ntohs(random
->param_hdr
.length
) + ntohs(hmacs
->param_hdr
.length
);
205 len
+= ntohs(chunks
->param_hdr
.length
);
207 new = kmalloc(sizeof(struct sctp_auth_bytes
) + len
, gfp
);
213 memcpy(new->data
, random
, ntohs(random
->param_hdr
.length
));
214 offset
+= ntohs(random
->param_hdr
.length
);
217 memcpy(new->data
+ offset
, chunks
,
218 ntohs(chunks
->param_hdr
.length
));
219 offset
+= ntohs(chunks
->param_hdr
.length
);
222 memcpy(new->data
+ offset
, hmacs
, ntohs(hmacs
->param_hdr
.length
));
228 /* Make a key vector based on our local parameters */
229 static struct sctp_auth_bytes
*sctp_auth_make_local_vector(
230 const struct sctp_association
*asoc
,
233 return sctp_auth_make_key_vector(
234 (sctp_random_param_t
*)asoc
->c
.auth_random
,
235 (sctp_chunks_param_t
*)asoc
->c
.auth_chunks
,
236 (sctp_hmac_algo_param_t
*)asoc
->c
.auth_hmacs
,
240 /* Make a key vector based on peer's parameters */
241 static struct sctp_auth_bytes
*sctp_auth_make_peer_vector(
242 const struct sctp_association
*asoc
,
245 return sctp_auth_make_key_vector(asoc
->peer
.peer_random
,
246 asoc
->peer
.peer_chunks
,
247 asoc
->peer
.peer_hmacs
,
252 /* Set the value of the association shared key base on the parameters
253 * given. The algorithm is:
254 * From the endpoint pair shared keys and the key vectors the
255 * association shared keys are computed. This is performed by selecting
256 * the numerically smaller key vector and concatenating it to the
257 * endpoint pair shared key, and then concatenating the numerically
258 * larger key vector to that. The result of the concatenation is the
259 * association shared key.
261 static struct sctp_auth_bytes
*sctp_auth_asoc_set_secret(
262 struct sctp_shared_key
*ep_key
,
263 struct sctp_auth_bytes
*first_vector
,
264 struct sctp_auth_bytes
*last_vector
,
267 struct sctp_auth_bytes
*secret
;
271 auth_len
= first_vector
->len
+ last_vector
->len
;
273 auth_len
+= ep_key
->key
->len
;
275 secret
= sctp_auth_create_key(auth_len
, gfp
);
280 memcpy(secret
->data
, ep_key
->key
->data
, ep_key
->key
->len
);
281 offset
+= ep_key
->key
->len
;
284 memcpy(secret
->data
+ offset
, first_vector
->data
, first_vector
->len
);
285 offset
+= first_vector
->len
;
287 memcpy(secret
->data
+ offset
, last_vector
->data
, last_vector
->len
);
292 /* Create an association shared key. Follow the algorithm
293 * described in SCTP-AUTH, Section 6.1
295 static struct sctp_auth_bytes
*sctp_auth_asoc_create_secret(
296 const struct sctp_association
*asoc
,
297 struct sctp_shared_key
*ep_key
,
300 struct sctp_auth_bytes
*local_key_vector
;
301 struct sctp_auth_bytes
*peer_key_vector
;
302 struct sctp_auth_bytes
*first_vector
,
304 struct sctp_auth_bytes
*secret
= NULL
;
308 /* Now we need to build the key vectors
309 * SCTP-AUTH , Section 6.1
310 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
311 * parameter sent by each endpoint are concatenated as byte vectors.
312 * These parameters include the parameter type, parameter length, and
313 * the parameter value, but padding is omitted; all padding MUST be
314 * removed from this concatenation before proceeding with further
315 * computation of keys. Parameters which were not sent are simply
316 * omitted from the concatenation process. The resulting two vectors
317 * are called the two key vectors.
320 local_key_vector
= sctp_auth_make_local_vector(asoc
, gfp
);
321 peer_key_vector
= sctp_auth_make_peer_vector(asoc
, gfp
);
323 if (!peer_key_vector
|| !local_key_vector
)
326 /* Figure out the order in wich the key_vectors will be
327 * added to the endpoint shared key.
328 * SCTP-AUTH, Section 6.1:
329 * This is performed by selecting the numerically smaller key
330 * vector and concatenating it to the endpoint pair shared
331 * key, and then concatenating the numerically larger key
332 * vector to that. If the key vectors are equal as numbers
333 * but differ in length, then the concatenation order is the
334 * endpoint shared key, followed by the shorter key vector,
335 * followed by the longer key vector. Otherwise, the key
336 * vectors are identical, and may be concatenated to the
337 * endpoint pair key in any order.
339 cmp
= sctp_auth_compare_vectors(local_key_vector
,
342 first_vector
= local_key_vector
;
343 last_vector
= peer_key_vector
;
345 first_vector
= peer_key_vector
;
346 last_vector
= local_key_vector
;
349 secret
= sctp_auth_asoc_set_secret(ep_key
, first_vector
, last_vector
,
352 kfree(local_key_vector
);
353 kfree(peer_key_vector
);
359 * Populate the association overlay list with the list
362 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint
*ep
,
363 struct sctp_association
*asoc
,
366 struct sctp_shared_key
*sh_key
;
367 struct sctp_shared_key
*new;
369 BUG_ON(!list_empty(&asoc
->endpoint_shared_keys
));
371 key_for_each(sh_key
, &ep
->endpoint_shared_keys
) {
372 new = sctp_auth_shkey_create(sh_key
->key_id
, gfp
);
376 new->key
= sh_key
->key
;
377 sctp_auth_key_hold(new->key
);
378 list_add(&new->key_list
, &asoc
->endpoint_shared_keys
);
384 sctp_auth_destroy_keys(&asoc
->endpoint_shared_keys
);
389 /* Public interface to creat the association shared key.
390 * See code above for the algorithm.
392 int sctp_auth_asoc_init_active_key(struct sctp_association
*asoc
, gfp_t gfp
)
394 struct sctp_auth_bytes
*secret
;
395 struct sctp_shared_key
*ep_key
;
397 /* If we don't support AUTH, or peer is not capable
398 * we don't need to do anything.
400 if (!sctp_auth_enable
|| !asoc
->peer
.auth_capable
)
403 /* If the key_id is non-zero and we couldn't find an
404 * endpoint pair shared key, we can't compute the
406 * For key_id 0, endpoint pair shared key is a NULL key.
408 ep_key
= sctp_auth_get_shkey(asoc
, asoc
->active_key_id
);
411 secret
= sctp_auth_asoc_create_secret(asoc
, ep_key
, gfp
);
415 sctp_auth_key_put(asoc
->asoc_shared_key
);
416 asoc
->asoc_shared_key
= secret
;
422 /* Find the endpoint pair shared key based on the key_id */
423 struct sctp_shared_key
*sctp_auth_get_shkey(
424 const struct sctp_association
*asoc
,
427 struct sctp_shared_key
*key
;
429 /* First search associations set of endpoint pair shared keys */
430 key_for_each(key
, &asoc
->endpoint_shared_keys
) {
431 if (key
->key_id
== key_id
)
439 * Initialize all the possible digest transforms that we can use. Right now
440 * now, the supported digests are SHA1 and SHA256. We do this here once
441 * because of the restrictiong that transforms may only be allocated in
442 * user context. This forces us to pre-allocated all possible transforms
443 * at the endpoint init time.
445 int sctp_auth_init_hmacs(struct sctp_endpoint
*ep
, gfp_t gfp
)
447 struct crypto_hash
*tfm
= NULL
;
450 /* if the transforms are already allocted, we are done */
451 if (!sctp_auth_enable
) {
452 ep
->auth_hmacs
= NULL
;
459 /* Allocated the array of pointers to transorms */
460 ep
->auth_hmacs
= kzalloc(
461 sizeof(struct crypto_hash
*) * SCTP_AUTH_NUM_HMACS
,
466 for (id
= 0; id
< SCTP_AUTH_NUM_HMACS
; id
++) {
468 /* See is we support the id. Supported IDs have name and
469 * length fields set, so that we can allocated and use
470 * them. We can safely just check for name, for without the
471 * name, we can't allocate the TFM.
473 if (!sctp_hmac_list
[id
].hmac_name
)
476 /* If this TFM has been allocated, we are all set */
477 if (ep
->auth_hmacs
[id
])
480 /* Allocate the ID */
481 tfm
= crypto_alloc_hash(sctp_hmac_list
[id
].hmac_name
, 0,
486 ep
->auth_hmacs
[id
] = tfm
;
492 /* Clean up any successful allocations */
493 sctp_auth_destroy_hmacs(ep
->auth_hmacs
);
497 /* Destroy the hmac tfm array */
498 void sctp_auth_destroy_hmacs(struct crypto_hash
*auth_hmacs
[])
505 for (i
= 0; i
< SCTP_AUTH_NUM_HMACS
; i
++)
508 crypto_free_hash(auth_hmacs
[i
]);
514 struct sctp_hmac
*sctp_auth_get_hmac(__u16 hmac_id
)
516 return &sctp_hmac_list
[hmac_id
];
519 /* Get an hmac description information that we can use to build
522 struct sctp_hmac
*sctp_auth_asoc_get_hmac(const struct sctp_association
*asoc
)
524 struct sctp_hmac_algo_param
*hmacs
;
529 /* If we have a default entry, use it */
530 if (asoc
->default_hmac_id
)
531 return &sctp_hmac_list
[asoc
->default_hmac_id
];
533 /* Since we do not have a default entry, find the first entry
534 * we support and return that. Do not cache that id.
536 hmacs
= asoc
->peer
.peer_hmacs
;
540 n_elt
= (ntohs(hmacs
->param_hdr
.length
) - sizeof(sctp_paramhdr_t
)) >> 1;
541 for (i
= 0; i
< n_elt
; i
++) {
542 id
= ntohs(hmacs
->hmac_ids
[i
]);
544 /* Check the id is in the supported range */
545 if (id
> SCTP_AUTH_HMAC_ID_MAX
) {
550 /* See is we support the id. Supported IDs have name and
551 * length fields set, so that we can allocated and use
552 * them. We can safely just check for name, for without the
553 * name, we can't allocate the TFM.
555 if (!sctp_hmac_list
[id
].hmac_name
) {
566 return &sctp_hmac_list
[id
];
569 static int __sctp_auth_find_hmacid(__be16
*hmacs
, int n_elts
, __be16 hmac_id
)
574 for (i
= 0; i
< n_elts
; i
++) {
575 if (hmac_id
== hmacs
[i
]) {
584 /* See if the HMAC_ID is one that we claim as supported */
585 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association
*asoc
,
588 struct sctp_hmac_algo_param
*hmacs
;
594 hmacs
= (struct sctp_hmac_algo_param
*)asoc
->c
.auth_hmacs
;
595 n_elt
= (ntohs(hmacs
->param_hdr
.length
) - sizeof(sctp_paramhdr_t
)) >> 1;
597 return __sctp_auth_find_hmacid(hmacs
->hmac_ids
, n_elt
, hmac_id
);
601 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
603 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
604 * algorithm it supports.
606 void sctp_auth_asoc_set_default_hmac(struct sctp_association
*asoc
,
607 struct sctp_hmac_algo_param
*hmacs
)
609 struct sctp_endpoint
*ep
;
614 /* if the default id is already set, use it */
615 if (asoc
->default_hmac_id
)
618 n_params
= (ntohs(hmacs
->param_hdr
.length
)
619 - sizeof(sctp_paramhdr_t
)) >> 1;
621 for (i
= 0; i
< n_params
; i
++) {
622 id
= ntohs(hmacs
->hmac_ids
[i
]);
624 /* Check the id is in the supported range */
625 if (id
> SCTP_AUTH_HMAC_ID_MAX
)
628 /* If this TFM has been allocated, use this id */
629 if (ep
->auth_hmacs
[id
]) {
630 asoc
->default_hmac_id
= id
;
637 /* Check to see if the given chunk is supposed to be authenticated */
638 static int __sctp_auth_cid(sctp_cid_t chunk
, struct sctp_chunks_param
*param
)
644 if (!param
|| param
->param_hdr
.length
== 0)
647 len
= ntohs(param
->param_hdr
.length
) - sizeof(sctp_paramhdr_t
);
649 /* SCTP-AUTH, Section 3.2
650 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
651 * chunks MUST NOT be listed in the CHUNKS parameter. However, if
652 * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
653 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
655 for (i
= 0; !found
&& i
< len
; i
++) {
656 switch (param
->chunks
[i
]) {
658 case SCTP_CID_INIT_ACK
:
659 case SCTP_CID_SHUTDOWN_COMPLETE
:
664 if (param
->chunks
[i
] == chunk
)
673 /* Check if peer requested that this chunk is authenticated */
674 int sctp_auth_send_cid(sctp_cid_t chunk
, const struct sctp_association
*asoc
)
676 if (!sctp_auth_enable
|| !asoc
|| !asoc
->peer
.auth_capable
)
679 return __sctp_auth_cid(chunk
, asoc
->peer
.peer_chunks
);
682 /* Check if we requested that peer authenticate this chunk. */
683 int sctp_auth_recv_cid(sctp_cid_t chunk
, const struct sctp_association
*asoc
)
685 if (!sctp_auth_enable
|| !asoc
)
688 return __sctp_auth_cid(chunk
,
689 (struct sctp_chunks_param
*)asoc
->c
.auth_chunks
);
692 /* SCTP-AUTH: Section 6.2:
693 * The sender MUST calculate the MAC as described in RFC2104 [2] using
694 * the hash function H as described by the MAC Identifier and the shared
695 * association key K based on the endpoint pair shared key described by
696 * the shared key identifier. The 'data' used for the computation of
697 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
698 * zero (as shown in Figure 6) followed by all chunks that are placed
699 * after the AUTH chunk in the SCTP packet.
701 void sctp_auth_calculate_hmac(const struct sctp_association
*asoc
,
703 struct sctp_auth_chunk
*auth
,
706 struct scatterlist sg
;
707 struct hash_desc desc
;
708 struct sctp_auth_bytes
*asoc_key
;
709 __u16 key_id
, hmac_id
;
714 /* Extract the info we need:
718 key_id
= ntohs(auth
->auth_hdr
.shkey_id
);
719 hmac_id
= ntohs(auth
->auth_hdr
.hmac_id
);
721 if (key_id
== asoc
->active_key_id
)
722 asoc_key
= asoc
->asoc_shared_key
;
724 struct sctp_shared_key
*ep_key
;
726 ep_key
= sctp_auth_get_shkey(asoc
, key_id
);
730 asoc_key
= sctp_auth_asoc_create_secret(asoc
, ep_key
, gfp
);
737 /* set up scatter list */
738 end
= skb_tail_pointer(skb
);
739 sg_init_one(&sg
, auth
, end
- (unsigned char *)auth
);
741 desc
.tfm
= asoc
->ep
->auth_hmacs
[hmac_id
];
744 digest
= auth
->auth_hdr
.hmac
;
745 if (crypto_hash_setkey(desc
.tfm
, &asoc_key
->data
[0], asoc_key
->len
))
748 crypto_hash_digest(&desc
, &sg
, sg
.length
, digest
);
752 sctp_auth_key_put(asoc_key
);
757 /* Add a chunk to the endpoint authenticated chunk list */
758 int sctp_auth_ep_add_chunkid(struct sctp_endpoint
*ep
, __u8 chunk_id
)
760 struct sctp_chunks_param
*p
= ep
->auth_chunk_list
;
764 /* If this chunk is already specified, we are done */
765 if (__sctp_auth_cid(chunk_id
, p
))
768 /* Check if we can add this chunk to the array */
769 param_len
= ntohs(p
->param_hdr
.length
);
770 nchunks
= param_len
- sizeof(sctp_paramhdr_t
);
771 if (nchunks
== SCTP_NUM_CHUNK_TYPES
)
774 p
->chunks
[nchunks
] = chunk_id
;
775 p
->param_hdr
.length
= htons(param_len
+ 1);
779 /* Add hmac identifires to the endpoint list of supported hmac ids */
780 int sctp_auth_ep_set_hmacs(struct sctp_endpoint
*ep
,
781 struct sctp_hmacalgo
*hmacs
)
787 /* Scan the list looking for unsupported id. Also make sure that
790 for (i
= 0; i
< hmacs
->shmac_num_idents
; i
++) {
791 id
= hmacs
->shmac_idents
[i
];
793 if (id
> SCTP_AUTH_HMAC_ID_MAX
)
796 if (SCTP_AUTH_HMAC_ID_SHA1
== id
)
799 if (!sctp_hmac_list
[id
].hmac_name
)
806 memcpy(ep
->auth_hmacs_list
->hmac_ids
, &hmacs
->shmac_idents
[0],
807 hmacs
->shmac_num_idents
* sizeof(__u16
));
808 ep
->auth_hmacs_list
->param_hdr
.length
= htons(sizeof(sctp_paramhdr_t
) +
809 hmacs
->shmac_num_idents
* sizeof(__u16
));
813 /* Set a new shared key on either endpoint or association. If the
814 * the key with a same ID already exists, replace the key (remove the
815 * old key and add a new one).
817 int sctp_auth_set_key(struct sctp_endpoint
*ep
,
818 struct sctp_association
*asoc
,
819 struct sctp_authkey
*auth_key
)
821 struct sctp_shared_key
*cur_key
= NULL
;
822 struct sctp_auth_bytes
*key
;
823 struct list_head
*sh_keys
;
826 /* Try to find the given key id to see if
827 * we are doing a replace, or adding a new key
830 sh_keys
= &asoc
->endpoint_shared_keys
;
832 sh_keys
= &ep
->endpoint_shared_keys
;
834 key_for_each(cur_key
, sh_keys
) {
835 if (cur_key
->key_id
== auth_key
->sca_keynumber
) {
841 /* If we are not replacing a key id, we need to allocate
845 cur_key
= sctp_auth_shkey_create(auth_key
->sca_keynumber
,
851 /* Create a new key data based on the info passed in */
852 key
= sctp_auth_create_key(auth_key
->sca_keylength
, GFP_KERNEL
);
856 memcpy(key
->data
, &auth_key
->sca_key
[0], auth_key
->sca_keylength
);
858 /* If we are replacing, remove the old keys data from the
859 * key id. If we are adding new key id, add it to the
863 sctp_auth_key_put(cur_key
->key
);
865 list_add(&cur_key
->key_list
, sh_keys
);
868 sctp_auth_key_hold(key
);
873 sctp_auth_shkey_free(cur_key
);
878 int sctp_auth_set_active_key(struct sctp_endpoint
*ep
,
879 struct sctp_association
*asoc
,
882 struct sctp_shared_key
*key
;
883 struct list_head
*sh_keys
;
886 /* The key identifier MUST correst to an existing key */
888 sh_keys
= &asoc
->endpoint_shared_keys
;
890 sh_keys
= &ep
->endpoint_shared_keys
;
892 key_for_each(key
, sh_keys
) {
893 if (key
->key_id
== key_id
) {
903 asoc
->active_key_id
= key_id
;
904 sctp_auth_asoc_init_active_key(asoc
, GFP_KERNEL
);
906 ep
->active_key_id
= key_id
;
911 int sctp_auth_del_key_id(struct sctp_endpoint
*ep
,
912 struct sctp_association
*asoc
,
915 struct sctp_shared_key
*key
;
916 struct list_head
*sh_keys
;
919 /* The key identifier MUST NOT be the current active key
920 * The key identifier MUST correst to an existing key
923 if (asoc
->active_key_id
== key_id
)
926 sh_keys
= &asoc
->endpoint_shared_keys
;
928 if (ep
->active_key_id
== key_id
)
931 sh_keys
= &ep
->endpoint_shared_keys
;
934 key_for_each(key
, sh_keys
) {
935 if (key
->key_id
== key_id
) {
944 /* Delete the shared key */
945 list_del_init(&key
->key_list
);
946 sctp_auth_shkey_free(key
);