1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/hpet.h>
8 #include <linux/init.h>
13 #include <asm/fixmap.h>
14 #include <asm/i8253.h>
17 #define HPET_MASK CLOCKSOURCE_MASK(32)
22 #define FSEC_PER_NSEC 1000000L
24 #define HPET_DEV_USED_BIT 2
25 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID 0x8
27 #define HPET_DEV_FSB_CAP 0x1000
28 #define HPET_DEV_PERI_CAP 0x2000
30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
33 * HPET address is set in acpi/boot.c, when an ACPI entry exists
35 unsigned long hpet_address
;
37 static unsigned long hpet_num_timers
;
39 static void __iomem
*hpet_virt_address
;
42 struct clock_event_device evt
;
50 unsigned long hpet_readl(unsigned long a
)
52 return readl(hpet_virt_address
+ a
);
55 static inline void hpet_writel(unsigned long d
, unsigned long a
)
57 writel(d
, hpet_virt_address
+ a
);
61 #include <asm/pgtable.h>
64 static inline void hpet_set_mapping(void)
66 hpet_virt_address
= ioremap_nocache(hpet_address
, HPET_MMAP_SIZE
);
68 __set_fixmap(VSYSCALL_HPET
, hpet_address
, PAGE_KERNEL_VSYSCALL_NOCACHE
);
72 static inline void hpet_clear_mapping(void)
74 iounmap(hpet_virt_address
);
75 hpet_virt_address
= NULL
;
79 * HPET command line enable / disable
81 static int boot_hpet_disable
;
83 static int hpet_verbose
;
85 static int __init
hpet_setup(char *str
)
88 if (!strncmp("disable", str
, 7))
89 boot_hpet_disable
= 1;
90 if (!strncmp("force", str
, 5))
92 if (!strncmp("verbose", str
, 7))
97 __setup("hpet=", hpet_setup
);
99 static int __init
disable_hpet(char *str
)
101 boot_hpet_disable
= 1;
104 __setup("nohpet", disable_hpet
);
106 static inline int is_hpet_capable(void)
108 return !boot_hpet_disable
&& hpet_address
;
112 * HPET timer interrupt enable / disable
114 static int hpet_legacy_int_enabled
;
117 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
119 int is_hpet_enabled(void)
121 return is_hpet_capable() && hpet_legacy_int_enabled
;
123 EXPORT_SYMBOL_GPL(is_hpet_enabled
);
125 static void _hpet_print_config(const char *function
, int line
)
128 printk(KERN_INFO
"hpet: %s(%d):\n", function
, line
);
129 l
= hpet_readl(HPET_ID
);
130 h
= hpet_readl(HPET_PERIOD
);
131 timers
= ((l
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
132 printk(KERN_INFO
"hpet: ID: 0x%x, PERIOD: 0x%x\n", l
, h
);
133 l
= hpet_readl(HPET_CFG
);
134 h
= hpet_readl(HPET_STATUS
);
135 printk(KERN_INFO
"hpet: CFG: 0x%x, STATUS: 0x%x\n", l
, h
);
136 l
= hpet_readl(HPET_COUNTER
);
137 h
= hpet_readl(HPET_COUNTER
+4);
138 printk(KERN_INFO
"hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l
, h
);
140 for (i
= 0; i
< timers
; i
++) {
141 l
= hpet_readl(HPET_Tn_CFG(i
));
142 h
= hpet_readl(HPET_Tn_CFG(i
)+4);
143 printk(KERN_INFO
"hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
145 l
= hpet_readl(HPET_Tn_CMP(i
));
146 h
= hpet_readl(HPET_Tn_CMP(i
)+4);
147 printk(KERN_INFO
"hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
149 l
= hpet_readl(HPET_Tn_ROUTE(i
));
150 h
= hpet_readl(HPET_Tn_ROUTE(i
)+4);
151 printk(KERN_INFO
"hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
156 #define hpet_print_config() \
159 _hpet_print_config(__FUNCTION__, __LINE__); \
163 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
164 * timer 0 and timer 1 in case of RTC emulation.
168 static void hpet_reserve_msi_timers(struct hpet_data
*hd
);
170 static void hpet_reserve_platform_timers(unsigned long id
)
172 struct hpet __iomem
*hpet
= hpet_virt_address
;
173 struct hpet_timer __iomem
*timer
= &hpet
->hpet_timers
[2];
174 unsigned int nrtimers
, i
;
177 nrtimers
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
179 memset(&hd
, 0, sizeof(hd
));
180 hd
.hd_phys_address
= hpet_address
;
181 hd
.hd_address
= hpet
;
182 hd
.hd_nirqs
= nrtimers
;
183 hpet_reserve_timer(&hd
, 0);
185 #ifdef CONFIG_HPET_EMULATE_RTC
186 hpet_reserve_timer(&hd
, 1);
190 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
191 * is wrong for i8259!) not the output IRQ. Many BIOS writers
192 * don't bother configuring *any* comparator interrupts.
194 hd
.hd_irq
[0] = HPET_LEGACY_8254
;
195 hd
.hd_irq
[1] = HPET_LEGACY_RTC
;
197 for (i
= 2; i
< nrtimers
; timer
++, i
++) {
198 hd
.hd_irq
[i
] = (readl(&timer
->hpet_config
) &
199 Tn_INT_ROUTE_CNF_MASK
) >> Tn_INT_ROUTE_CNF_SHIFT
;
202 hpet_reserve_msi_timers(&hd
);
208 static void hpet_reserve_platform_timers(unsigned long id
) { }
214 static unsigned long hpet_period
;
216 static void hpet_legacy_set_mode(enum clock_event_mode mode
,
217 struct clock_event_device
*evt
);
218 static int hpet_legacy_next_event(unsigned long delta
,
219 struct clock_event_device
*evt
);
222 * The hpet clock event device
224 static struct clock_event_device hpet_clockevent
= {
226 .features
= CLOCK_EVT_FEAT_PERIODIC
| CLOCK_EVT_FEAT_ONESHOT
,
227 .set_mode
= hpet_legacy_set_mode
,
228 .set_next_event
= hpet_legacy_next_event
,
234 static void hpet_stop_counter(void)
236 unsigned long cfg
= hpet_readl(HPET_CFG
);
237 cfg
&= ~HPET_CFG_ENABLE
;
238 hpet_writel(cfg
, HPET_CFG
);
241 static void hpet_reset_counter(void)
243 hpet_writel(0, HPET_COUNTER
);
244 hpet_writel(0, HPET_COUNTER
+ 4);
247 static void hpet_start_counter(void)
249 unsigned long cfg
= hpet_readl(HPET_CFG
);
250 cfg
|= HPET_CFG_ENABLE
;
251 hpet_writel(cfg
, HPET_CFG
);
254 static void hpet_restart_counter(void)
257 hpet_reset_counter();
258 hpet_start_counter();
261 static void hpet_resume_device(void)
266 static void hpet_resume_counter(void)
268 hpet_resume_device();
269 hpet_restart_counter();
272 static void hpet_enable_legacy_int(void)
274 unsigned long cfg
= hpet_readl(HPET_CFG
);
276 cfg
|= HPET_CFG_LEGACY
;
277 hpet_writel(cfg
, HPET_CFG
);
278 hpet_legacy_int_enabled
= 1;
281 static void hpet_legacy_clockevent_register(void)
283 /* Start HPET legacy interrupts */
284 hpet_enable_legacy_int();
287 * The mult factor is defined as (include/linux/clockchips.h)
288 * mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
289 * hpet_period is in units of femtoseconds (per cycle), so
290 * mult/2^shift = cyc/ns = 10^6/hpet_period
291 * mult = (10^6 * 2^shift)/hpet_period
292 * mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
294 hpet_clockevent
.mult
= div_sc((unsigned long) FSEC_PER_NSEC
,
295 hpet_period
, hpet_clockevent
.shift
);
296 /* Calculate the min / max delta */
297 hpet_clockevent
.max_delta_ns
= clockevent_delta2ns(0x7FFFFFFF,
299 /* 5 usec minimum reprogramming delta. */
300 hpet_clockevent
.min_delta_ns
= 5000;
303 * Start hpet with the boot cpu mask and make it
304 * global after the IO_APIC has been initialized.
306 hpet_clockevent
.cpumask
= cpumask_of(smp_processor_id());
307 clockevents_register_device(&hpet_clockevent
);
308 global_clock_event
= &hpet_clockevent
;
309 printk(KERN_DEBUG
"hpet clockevent registered\n");
312 static int hpet_setup_msi_irq(unsigned int irq
);
314 static void hpet_set_mode(enum clock_event_mode mode
,
315 struct clock_event_device
*evt
, int timer
)
317 unsigned long cfg
, cmp
, now
;
321 case CLOCK_EVT_MODE_PERIODIC
:
323 delta
= ((uint64_t)(NSEC_PER_SEC
/HZ
)) * evt
->mult
;
324 delta
>>= evt
->shift
;
325 now
= hpet_readl(HPET_COUNTER
);
326 cmp
= now
+ (unsigned long) delta
;
327 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
328 /* Make sure we use edge triggered interrupts */
329 cfg
&= ~HPET_TN_LEVEL
;
330 cfg
|= HPET_TN_ENABLE
| HPET_TN_PERIODIC
|
331 HPET_TN_SETVAL
| HPET_TN_32BIT
;
332 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
333 hpet_writel(cmp
, HPET_Tn_CMP(timer
));
336 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
337 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
338 * bit is automatically cleared after the first write.
339 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
340 * Publication # 24674)
342 hpet_writel((unsigned long) delta
, HPET_Tn_CMP(timer
));
343 hpet_start_counter();
347 case CLOCK_EVT_MODE_ONESHOT
:
348 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
349 cfg
&= ~HPET_TN_PERIODIC
;
350 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
351 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
354 case CLOCK_EVT_MODE_UNUSED
:
355 case CLOCK_EVT_MODE_SHUTDOWN
:
356 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
357 cfg
&= ~HPET_TN_ENABLE
;
358 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
361 case CLOCK_EVT_MODE_RESUME
:
363 hpet_enable_legacy_int();
365 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
366 hpet_setup_msi_irq(hdev
->irq
);
367 disable_irq(hdev
->irq
);
368 irq_set_affinity(hdev
->irq
, cpumask_of(hdev
->cpu
));
369 enable_irq(hdev
->irq
);
376 static int hpet_next_event(unsigned long delta
,
377 struct clock_event_device
*evt
, int timer
)
381 cnt
= hpet_readl(HPET_COUNTER
);
383 hpet_writel(cnt
, HPET_Tn_CMP(timer
));
386 * We need to read back the CMP register to make sure that
387 * what we wrote hit the chip before we compare it to the
390 WARN_ON_ONCE((u32
)hpet_readl(HPET_Tn_CMP(timer
)) != cnt
);
392 return (s32
)((u32
)hpet_readl(HPET_COUNTER
) - cnt
) >= 0 ? -ETIME
: 0;
395 static void hpet_legacy_set_mode(enum clock_event_mode mode
,
396 struct clock_event_device
*evt
)
398 hpet_set_mode(mode
, evt
, 0);
401 static int hpet_legacy_next_event(unsigned long delta
,
402 struct clock_event_device
*evt
)
404 return hpet_next_event(delta
, evt
, 0);
410 #ifdef CONFIG_PCI_MSI
412 static DEFINE_PER_CPU(struct hpet_dev
*, cpu_hpet_dev
);
413 static struct hpet_dev
*hpet_devs
;
415 void hpet_msi_unmask(unsigned int irq
)
417 struct hpet_dev
*hdev
= get_irq_data(irq
);
421 cfg
= hpet_readl(HPET_Tn_CFG(hdev
->num
));
423 hpet_writel(cfg
, HPET_Tn_CFG(hdev
->num
));
426 void hpet_msi_mask(unsigned int irq
)
429 struct hpet_dev
*hdev
= get_irq_data(irq
);
432 cfg
= hpet_readl(HPET_Tn_CFG(hdev
->num
));
434 hpet_writel(cfg
, HPET_Tn_CFG(hdev
->num
));
437 void hpet_msi_write(unsigned int irq
, struct msi_msg
*msg
)
439 struct hpet_dev
*hdev
= get_irq_data(irq
);
441 hpet_writel(msg
->data
, HPET_Tn_ROUTE(hdev
->num
));
442 hpet_writel(msg
->address_lo
, HPET_Tn_ROUTE(hdev
->num
) + 4);
445 void hpet_msi_read(unsigned int irq
, struct msi_msg
*msg
)
447 struct hpet_dev
*hdev
= get_irq_data(irq
);
449 msg
->data
= hpet_readl(HPET_Tn_ROUTE(hdev
->num
));
450 msg
->address_lo
= hpet_readl(HPET_Tn_ROUTE(hdev
->num
) + 4);
454 static void hpet_msi_set_mode(enum clock_event_mode mode
,
455 struct clock_event_device
*evt
)
457 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
458 hpet_set_mode(mode
, evt
, hdev
->num
);
461 static int hpet_msi_next_event(unsigned long delta
,
462 struct clock_event_device
*evt
)
464 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
465 return hpet_next_event(delta
, evt
, hdev
->num
);
468 static int hpet_setup_msi_irq(unsigned int irq
)
470 if (arch_setup_hpet_msi(irq
)) {
477 static int hpet_assign_irq(struct hpet_dev
*dev
)
485 set_irq_data(irq
, dev
);
487 if (hpet_setup_msi_irq(irq
))
494 static irqreturn_t
hpet_interrupt_handler(int irq
, void *data
)
496 struct hpet_dev
*dev
= (struct hpet_dev
*)data
;
497 struct clock_event_device
*hevt
= &dev
->evt
;
499 if (!hevt
->event_handler
) {
500 printk(KERN_INFO
"Spurious HPET timer interrupt on HPET timer %d\n",
505 hevt
->event_handler(hevt
);
509 static int hpet_setup_irq(struct hpet_dev
*dev
)
512 if (request_irq(dev
->irq
, hpet_interrupt_handler
,
513 IRQF_TIMER
| IRQF_DISABLED
| IRQF_NOBALANCING
,
517 disable_irq(dev
->irq
);
518 irq_set_affinity(dev
->irq
, cpumask_of(dev
->cpu
));
519 enable_irq(dev
->irq
);
521 printk(KERN_DEBUG
"hpet: %s irq %d for MSI\n",
522 dev
->name
, dev
->irq
);
527 /* This should be called in specific @cpu */
528 static void init_one_hpet_msi_clockevent(struct hpet_dev
*hdev
, int cpu
)
530 struct clock_event_device
*evt
= &hdev
->evt
;
533 WARN_ON(cpu
!= smp_processor_id());
534 if (!(hdev
->flags
& HPET_DEV_VALID
))
537 if (hpet_setup_msi_irq(hdev
->irq
))
541 per_cpu(cpu_hpet_dev
, cpu
) = hdev
;
542 evt
->name
= hdev
->name
;
543 hpet_setup_irq(hdev
);
544 evt
->irq
= hdev
->irq
;
547 evt
->features
= CLOCK_EVT_FEAT_ONESHOT
;
548 if (hdev
->flags
& HPET_DEV_PERI_CAP
)
549 evt
->features
|= CLOCK_EVT_FEAT_PERIODIC
;
551 evt
->set_mode
= hpet_msi_set_mode
;
552 evt
->set_next_event
= hpet_msi_next_event
;
556 * The period is a femto seconds value. We need to calculate the
557 * scaled math multiplication factor for nanosecond to hpet tick
560 hpet_freq
= 1000000000000000ULL;
561 do_div(hpet_freq
, hpet_period
);
562 evt
->mult
= div_sc((unsigned long) hpet_freq
,
563 NSEC_PER_SEC
, evt
->shift
);
564 /* Calculate the max delta */
565 evt
->max_delta_ns
= clockevent_delta2ns(0x7FFFFFFF, evt
);
566 /* 5 usec minimum reprogramming delta. */
567 evt
->min_delta_ns
= 5000;
569 evt
->cpumask
= cpumask_of(hdev
->cpu
);
570 clockevents_register_device(evt
);
574 /* Reserve at least one timer for userspace (/dev/hpet) */
575 #define RESERVE_TIMERS 1
577 #define RESERVE_TIMERS 0
580 static void hpet_msi_capability_lookup(unsigned int start_timer
)
583 unsigned int num_timers
;
584 unsigned int num_timers_used
= 0;
587 id
= hpet_readl(HPET_ID
);
589 num_timers
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
);
590 num_timers
++; /* Value read out starts from 0 */
593 hpet_devs
= kzalloc(sizeof(struct hpet_dev
) * num_timers
, GFP_KERNEL
);
597 hpet_num_timers
= num_timers
;
599 for (i
= start_timer
; i
< num_timers
- RESERVE_TIMERS
; i
++) {
600 struct hpet_dev
*hdev
= &hpet_devs
[num_timers_used
];
601 unsigned long cfg
= hpet_readl(HPET_Tn_CFG(i
));
603 /* Only consider HPET timer with MSI support */
604 if (!(cfg
& HPET_TN_FSB_CAP
))
608 if (cfg
& HPET_TN_PERIODIC_CAP
)
609 hdev
->flags
|= HPET_DEV_PERI_CAP
;
612 sprintf(hdev
->name
, "hpet%d", i
);
613 if (hpet_assign_irq(hdev
))
616 hdev
->flags
|= HPET_DEV_FSB_CAP
;
617 hdev
->flags
|= HPET_DEV_VALID
;
619 if (num_timers_used
== num_possible_cpus())
623 printk(KERN_INFO
"HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
624 num_timers
, num_timers_used
);
628 static void hpet_reserve_msi_timers(struct hpet_data
*hd
)
635 for (i
= 0; i
< hpet_num_timers
; i
++) {
636 struct hpet_dev
*hdev
= &hpet_devs
[i
];
638 if (!(hdev
->flags
& HPET_DEV_VALID
))
641 hd
->hd_irq
[hdev
->num
] = hdev
->irq
;
642 hpet_reserve_timer(hd
, hdev
->num
);
647 static struct hpet_dev
*hpet_get_unused_timer(void)
654 for (i
= 0; i
< hpet_num_timers
; i
++) {
655 struct hpet_dev
*hdev
= &hpet_devs
[i
];
657 if (!(hdev
->flags
& HPET_DEV_VALID
))
659 if (test_and_set_bit(HPET_DEV_USED_BIT
,
660 (unsigned long *)&hdev
->flags
))
667 struct hpet_work_struct
{
668 struct delayed_work work
;
669 struct completion complete
;
672 static void hpet_work(struct work_struct
*w
)
674 struct hpet_dev
*hdev
;
675 int cpu
= smp_processor_id();
676 struct hpet_work_struct
*hpet_work
;
678 hpet_work
= container_of(w
, struct hpet_work_struct
, work
.work
);
680 hdev
= hpet_get_unused_timer();
682 init_one_hpet_msi_clockevent(hdev
, cpu
);
684 complete(&hpet_work
->complete
);
687 static int hpet_cpuhp_notify(struct notifier_block
*n
,
688 unsigned long action
, void *hcpu
)
690 unsigned long cpu
= (unsigned long)hcpu
;
691 struct hpet_work_struct work
;
692 struct hpet_dev
*hdev
= per_cpu(cpu_hpet_dev
, cpu
);
694 switch (action
& 0xf) {
696 INIT_DELAYED_WORK_ON_STACK(&work
.work
, hpet_work
);
697 init_completion(&work
.complete
);
698 /* FIXME: add schedule_work_on() */
699 schedule_delayed_work_on(cpu
, &work
.work
, 0);
700 wait_for_completion(&work
.complete
);
701 destroy_timer_on_stack(&work
.work
.timer
);
705 free_irq(hdev
->irq
, hdev
);
706 hdev
->flags
&= ~HPET_DEV_USED
;
707 per_cpu(cpu_hpet_dev
, cpu
) = NULL
;
715 static int hpet_setup_msi_irq(unsigned int irq
)
719 static void hpet_msi_capability_lookup(unsigned int start_timer
)
725 static void hpet_reserve_msi_timers(struct hpet_data
*hd
)
731 static int hpet_cpuhp_notify(struct notifier_block
*n
,
732 unsigned long action
, void *hcpu
)
740 * Clock source related code
742 static cycle_t
read_hpet(struct clocksource
*cs
)
744 return (cycle_t
)hpet_readl(HPET_COUNTER
);
748 static cycle_t __vsyscall_fn
vread_hpet(void)
750 return readl((const void __iomem
*)fix_to_virt(VSYSCALL_HPET
) + 0xf0);
754 static struct clocksource clocksource_hpet
= {
760 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
761 .resume
= hpet_resume_counter
,
767 static int hpet_clocksource_register(void)
772 /* Start the counter */
773 hpet_restart_counter();
775 /* Verify whether hpet counter works */
776 t1
= hpet_readl(HPET_COUNTER
);
780 * We don't know the TSC frequency yet, but waiting for
781 * 200000 TSC cycles is safe:
788 } while ((now
- start
) < 200000UL);
790 if (t1
== hpet_readl(HPET_COUNTER
)) {
792 "HPET counter not counting. HPET disabled\n");
797 * The definition of mult is (include/linux/clocksource.h)
798 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
799 * so we first need to convert hpet_period to ns/cyc units:
800 * mult/2^shift = ns/cyc = hpet_period/10^6
801 * mult = (hpet_period * 2^shift)/10^6
802 * mult = (hpet_period << shift)/FSEC_PER_NSEC
804 clocksource_hpet
.mult
= div_sc(hpet_period
, FSEC_PER_NSEC
, HPET_SHIFT
);
806 clocksource_register(&clocksource_hpet
);
812 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
814 int __init
hpet_enable(void)
819 if (!is_hpet_capable())
825 * Read the period and check for a sane value:
827 hpet_period
= hpet_readl(HPET_PERIOD
);
830 * AMD SB700 based systems with spread spectrum enabled use a
831 * SMM based HPET emulation to provide proper frequency
832 * setting. The SMM code is initialized with the first HPET
833 * register access and takes some time to complete. During
834 * this time the config register reads 0xffffffff. We check
835 * for max. 1000 loops whether the config register reads a non
836 * 0xffffffff value to make sure that HPET is up and running
837 * before we go further. A counting loop is safe, as the HPET
838 * access takes thousands of CPU cycles. On non SB700 based
839 * machines this check is only done once and has no side
842 for (i
= 0; hpet_readl(HPET_CFG
) == 0xFFFFFFFF; i
++) {
845 "HPET config register value = 0xFFFFFFFF. "
851 if (hpet_period
< HPET_MIN_PERIOD
|| hpet_period
> HPET_MAX_PERIOD
)
855 * Read the HPET ID register to retrieve the IRQ routing
856 * information and the number of channels
858 id
= hpet_readl(HPET_ID
);
861 #ifdef CONFIG_HPET_EMULATE_RTC
863 * The legacy routing mode needs at least two channels, tick timer
864 * and the rtc emulation channel.
866 if (!(id
& HPET_ID_NUMBER
))
870 if (hpet_clocksource_register())
873 if (id
& HPET_ID_LEGSUP
) {
874 hpet_legacy_clockevent_register();
875 hpet_msi_capability_lookup(2);
878 hpet_msi_capability_lookup(0);
882 hpet_clear_mapping();
888 * Needs to be late, as the reserve_timer code calls kalloc !
890 * Not a problem on i386 as hpet_enable is called from late_time_init,
891 * but on x86_64 it is necessary !
893 static __init
int hpet_late_init(void)
897 if (boot_hpet_disable
)
901 if (!force_hpet_address
)
904 hpet_address
= force_hpet_address
;
908 if (!hpet_virt_address
)
911 hpet_reserve_platform_timers(hpet_readl(HPET_ID
));
914 for_each_online_cpu(cpu
) {
915 hpet_cpuhp_notify(NULL
, CPU_ONLINE
, (void *)(long)cpu
);
918 /* This notifier should be called after workqueue is ready */
919 hotcpu_notifier(hpet_cpuhp_notify
, -20);
923 fs_initcall(hpet_late_init
);
925 void hpet_disable(void)
927 if (is_hpet_capable()) {
928 unsigned long cfg
= hpet_readl(HPET_CFG
);
930 if (hpet_legacy_int_enabled
) {
931 cfg
&= ~HPET_CFG_LEGACY
;
932 hpet_legacy_int_enabled
= 0;
934 cfg
&= ~HPET_CFG_ENABLE
;
935 hpet_writel(cfg
, HPET_CFG
);
939 #ifdef CONFIG_HPET_EMULATE_RTC
941 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
942 * is enabled, we support RTC interrupt functionality in software.
943 * RTC has 3 kinds of interrupts:
944 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
946 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
947 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
948 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
949 * (1) and (2) above are implemented using polling at a frequency of
950 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
951 * overhead. (DEFAULT_RTC_INT_FREQ)
952 * For (3), we use interrupts at 64Hz or user specified periodic
953 * frequency, whichever is higher.
955 #include <linux/mc146818rtc.h>
956 #include <linux/rtc.h>
959 #define DEFAULT_RTC_INT_FREQ 64
960 #define DEFAULT_RTC_SHIFT 6
961 #define RTC_NUM_INTS 1
963 static unsigned long hpet_rtc_flags
;
964 static int hpet_prev_update_sec
;
965 static struct rtc_time hpet_alarm_time
;
966 static unsigned long hpet_pie_count
;
967 static u32 hpet_t1_cmp
;
968 static unsigned long hpet_default_delta
;
969 static unsigned long hpet_pie_delta
;
970 static unsigned long hpet_pie_limit
;
972 static rtc_irq_handler irq_handler
;
975 * Check that the hpet counter c1 is ahead of the c2
977 static inline int hpet_cnt_ahead(u32 c1
, u32 c2
)
979 return (s32
)(c2
- c1
) < 0;
983 * Registers a IRQ handler.
985 int hpet_register_irq_handler(rtc_irq_handler handler
)
987 if (!is_hpet_enabled())
992 irq_handler
= handler
;
996 EXPORT_SYMBOL_GPL(hpet_register_irq_handler
);
999 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1002 void hpet_unregister_irq_handler(rtc_irq_handler handler
)
1004 if (!is_hpet_enabled())
1010 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler
);
1013 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1014 * is not supported by all HPET implementations for timer 1.
1016 * hpet_rtc_timer_init() is called when the rtc is initialized.
1018 int hpet_rtc_timer_init(void)
1020 unsigned long cfg
, cnt
, delta
, flags
;
1022 if (!is_hpet_enabled())
1025 if (!hpet_default_delta
) {
1028 clc
= (uint64_t) hpet_clockevent
.mult
* NSEC_PER_SEC
;
1029 clc
>>= hpet_clockevent
.shift
+ DEFAULT_RTC_SHIFT
;
1030 hpet_default_delta
= (unsigned long) clc
;
1033 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1034 delta
= hpet_default_delta
;
1036 delta
= hpet_pie_delta
;
1038 local_irq_save(flags
);
1040 cnt
= delta
+ hpet_readl(HPET_COUNTER
);
1041 hpet_writel(cnt
, HPET_T1_CMP
);
1044 cfg
= hpet_readl(HPET_T1_CFG
);
1045 cfg
&= ~HPET_TN_PERIODIC
;
1046 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
1047 hpet_writel(cfg
, HPET_T1_CFG
);
1049 local_irq_restore(flags
);
1053 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init
);
1056 * The functions below are called from rtc driver.
1057 * Return 0 if HPET is not being used.
1058 * Otherwise do the necessary changes and return 1.
1060 int hpet_mask_rtc_irq_bit(unsigned long bit_mask
)
1062 if (!is_hpet_enabled())
1065 hpet_rtc_flags
&= ~bit_mask
;
1068 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit
);
1070 int hpet_set_rtc_irq_bit(unsigned long bit_mask
)
1072 unsigned long oldbits
= hpet_rtc_flags
;
1074 if (!is_hpet_enabled())
1077 hpet_rtc_flags
|= bit_mask
;
1079 if ((bit_mask
& RTC_UIE
) && !(oldbits
& RTC_UIE
))
1080 hpet_prev_update_sec
= -1;
1083 hpet_rtc_timer_init();
1087 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit
);
1089 int hpet_set_alarm_time(unsigned char hrs
, unsigned char min
,
1092 if (!is_hpet_enabled())
1095 hpet_alarm_time
.tm_hour
= hrs
;
1096 hpet_alarm_time
.tm_min
= min
;
1097 hpet_alarm_time
.tm_sec
= sec
;
1101 EXPORT_SYMBOL_GPL(hpet_set_alarm_time
);
1103 int hpet_set_periodic_freq(unsigned long freq
)
1107 if (!is_hpet_enabled())
1110 if (freq
<= DEFAULT_RTC_INT_FREQ
)
1111 hpet_pie_limit
= DEFAULT_RTC_INT_FREQ
/ freq
;
1113 clc
= (uint64_t) hpet_clockevent
.mult
* NSEC_PER_SEC
;
1115 clc
>>= hpet_clockevent
.shift
;
1116 hpet_pie_delta
= (unsigned long) clc
;
1120 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq
);
1122 int hpet_rtc_dropped_irq(void)
1124 return is_hpet_enabled();
1126 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq
);
1128 static void hpet_rtc_timer_reinit(void)
1130 unsigned long cfg
, delta
;
1133 if (unlikely(!hpet_rtc_flags
)) {
1134 cfg
= hpet_readl(HPET_T1_CFG
);
1135 cfg
&= ~HPET_TN_ENABLE
;
1136 hpet_writel(cfg
, HPET_T1_CFG
);
1140 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1141 delta
= hpet_default_delta
;
1143 delta
= hpet_pie_delta
;
1146 * Increment the comparator value until we are ahead of the
1150 hpet_t1_cmp
+= delta
;
1151 hpet_writel(hpet_t1_cmp
, HPET_T1_CMP
);
1153 } while (!hpet_cnt_ahead(hpet_t1_cmp
, hpet_readl(HPET_COUNTER
)));
1156 if (hpet_rtc_flags
& RTC_PIE
)
1157 hpet_pie_count
+= lost_ints
;
1158 if (printk_ratelimit())
1159 printk(KERN_WARNING
"hpet1: lost %d rtc interrupts\n",
1164 irqreturn_t
hpet_rtc_interrupt(int irq
, void *dev_id
)
1166 struct rtc_time curr_time
;
1167 unsigned long rtc_int_flag
= 0;
1169 hpet_rtc_timer_reinit();
1170 memset(&curr_time
, 0, sizeof(struct rtc_time
));
1172 if (hpet_rtc_flags
& (RTC_UIE
| RTC_AIE
))
1173 get_rtc_time(&curr_time
);
1175 if (hpet_rtc_flags
& RTC_UIE
&&
1176 curr_time
.tm_sec
!= hpet_prev_update_sec
) {
1177 if (hpet_prev_update_sec
>= 0)
1178 rtc_int_flag
= RTC_UF
;
1179 hpet_prev_update_sec
= curr_time
.tm_sec
;
1182 if (hpet_rtc_flags
& RTC_PIE
&&
1183 ++hpet_pie_count
>= hpet_pie_limit
) {
1184 rtc_int_flag
|= RTC_PF
;
1188 if (hpet_rtc_flags
& RTC_AIE
&&
1189 (curr_time
.tm_sec
== hpet_alarm_time
.tm_sec
) &&
1190 (curr_time
.tm_min
== hpet_alarm_time
.tm_min
) &&
1191 (curr_time
.tm_hour
== hpet_alarm_time
.tm_hour
))
1192 rtc_int_flag
|= RTC_AF
;
1195 rtc_int_flag
|= (RTC_IRQF
| (RTC_NUM_INTS
<< 8));
1197 irq_handler(rtc_int_flag
, dev_id
);
1201 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt
);