4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/module.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/errno.h>
34 #include <linux/smp_lock.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
38 #include <linux/module.h>
40 #include <asm/uaccess.h>
41 #include <asm/unistd.h>
44 * The timezone where the local system is located. Used as a default by some
45 * programs who obtain this value by using gettimeofday.
47 struct timezone sys_tz
;
49 EXPORT_SYMBOL(sys_tz
);
51 #ifdef __ARCH_WANT_SYS_TIME
54 * sys_time() can be implemented in user-level using
55 * sys_gettimeofday(). Is this for backwards compatibility? If so,
56 * why not move it into the appropriate arch directory (for those
57 * architectures that need it).
59 asmlinkage
long sys_time(time_t __user
* tloc
)
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
81 asmlinkage
long sys_stime(time_t __user
*tptr
)
86 if (get_user(tv
.tv_sec
, tptr
))
91 err
= security_settime(&tv
, NULL
);
99 #endif /* __ARCH_WANT_SYS_TIME */
101 asmlinkage
long sys_gettimeofday(struct timeval __user
*tv
, struct timezone __user
*tz
)
103 if (likely(tv
!= NULL
)) {
105 do_gettimeofday(&ktv
);
106 if (copy_to_user(tv
, &ktv
, sizeof(ktv
)))
109 if (unlikely(tz
!= NULL
)) {
110 if (copy_to_user(tz
, &sys_tz
, sizeof(sys_tz
)))
117 * Adjust the time obtained from the CMOS to be UTC time instead of
120 * This is ugly, but preferable to the alternatives. Otherwise we
121 * would either need to write a program to do it in /etc/rc (and risk
122 * confusion if the program gets run more than once; it would also be
123 * hard to make the program warp the clock precisely n hours) or
124 * compile in the timezone information into the kernel. Bad, bad....
128 * The best thing to do is to keep the CMOS clock in universal time (UTC)
129 * as real UNIX machines always do it. This avoids all headaches about
130 * daylight saving times and warping kernel clocks.
132 static inline void warp_clock(void)
134 write_seqlock_irq(&xtime_lock
);
135 wall_to_monotonic
.tv_sec
-= sys_tz
.tz_minuteswest
* 60;
136 xtime
.tv_sec
+= sys_tz
.tz_minuteswest
* 60;
137 time_interpolator_reset();
138 write_sequnlock_irq(&xtime_lock
);
143 * In case for some reason the CMOS clock has not already been running
144 * in UTC, but in some local time: The first time we set the timezone,
145 * we will warp the clock so that it is ticking UTC time instead of
146 * local time. Presumably, if someone is setting the timezone then we
147 * are running in an environment where the programs understand about
148 * timezones. This should be done at boot time in the /etc/rc script,
149 * as soon as possible, so that the clock can be set right. Otherwise,
150 * various programs will get confused when the clock gets warped.
153 int do_sys_settimeofday(struct timespec
*tv
, struct timezone
*tz
)
155 static int firsttime
= 1;
158 if (tv
&& !timespec_valid(tv
))
161 error
= security_settime(tv
, tz
);
166 /* SMP safe, global irq locking makes it work. */
176 /* SMP safe, again the code in arch/foo/time.c should
177 * globally block out interrupts when it runs.
179 return do_settimeofday(tv
);
184 asmlinkage
long sys_settimeofday(struct timeval __user
*tv
,
185 struct timezone __user
*tz
)
187 struct timeval user_tv
;
188 struct timespec new_ts
;
189 struct timezone new_tz
;
192 if (copy_from_user(&user_tv
, tv
, sizeof(*tv
)))
194 new_ts
.tv_sec
= user_tv
.tv_sec
;
195 new_ts
.tv_nsec
= user_tv
.tv_usec
* NSEC_PER_USEC
;
198 if (copy_from_user(&new_tz
, tz
, sizeof(*tz
)))
202 return do_sys_settimeofday(tv
? &new_ts
: NULL
, tz
? &new_tz
: NULL
);
205 asmlinkage
long sys_adjtimex(struct timex __user
*txc_p
)
207 struct timex txc
; /* Local copy of parameter */
210 /* Copy the user data space into the kernel copy
211 * structure. But bear in mind that the structures
214 if(copy_from_user(&txc
, txc_p
, sizeof(struct timex
)))
216 ret
= do_adjtimex(&txc
);
217 return copy_to_user(txc_p
, &txc
, sizeof(struct timex
)) ? -EFAULT
: ret
;
220 inline struct timespec
current_kernel_time(void)
226 seq
= read_seqbegin(&xtime_lock
);
229 } while (read_seqretry(&xtime_lock
, seq
));
234 EXPORT_SYMBOL(current_kernel_time
);
237 * current_fs_time - Return FS time
240 * Return the current time truncated to the time granularity supported by
243 struct timespec
current_fs_time(struct super_block
*sb
)
245 struct timespec now
= current_kernel_time();
246 return timespec_trunc(now
, sb
->s_time_gran
);
248 EXPORT_SYMBOL(current_fs_time
);
251 * timespec_trunc - Truncate timespec to a granularity
253 * @gran: Granularity in ns.
255 * Truncate a timespec to a granularity. gran must be smaller than a second.
256 * Always rounds down.
258 * This function should be only used for timestamps returned by
259 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
260 * it doesn't handle the better resolution of the later.
262 struct timespec
timespec_trunc(struct timespec t
, unsigned gran
)
265 * Division is pretty slow so avoid it for common cases.
266 * Currently current_kernel_time() never returns better than
267 * jiffies resolution. Exploit that.
269 if (gran
<= jiffies_to_usecs(1) * 1000) {
271 } else if (gran
== 1000000000) {
274 t
.tv_nsec
-= t
.tv_nsec
% gran
;
278 EXPORT_SYMBOL(timespec_trunc
);
280 #ifdef CONFIG_TIME_INTERPOLATION
281 void getnstimeofday (struct timespec
*tv
)
283 unsigned long seq
,sec
,nsec
;
286 seq
= read_seqbegin(&xtime_lock
);
288 nsec
= xtime
.tv_nsec
+time_interpolator_get_offset();
289 } while (unlikely(read_seqretry(&xtime_lock
, seq
)));
291 while (unlikely(nsec
>= NSEC_PER_SEC
)) {
292 nsec
-= NSEC_PER_SEC
;
298 EXPORT_SYMBOL_GPL(getnstimeofday
);
300 int do_settimeofday (struct timespec
*tv
)
302 time_t wtm_sec
, sec
= tv
->tv_sec
;
303 long wtm_nsec
, nsec
= tv
->tv_nsec
;
305 if ((unsigned long)tv
->tv_nsec
>= NSEC_PER_SEC
)
308 write_seqlock_irq(&xtime_lock
);
310 wtm_sec
= wall_to_monotonic
.tv_sec
+ (xtime
.tv_sec
- sec
);
311 wtm_nsec
= wall_to_monotonic
.tv_nsec
+ (xtime
.tv_nsec
- nsec
);
313 set_normalized_timespec(&xtime
, sec
, nsec
);
314 set_normalized_timespec(&wall_to_monotonic
, wtm_sec
, wtm_nsec
);
316 time_adjust
= 0; /* stop active adjtime() */
317 time_status
|= STA_UNSYNC
;
318 time_maxerror
= NTP_PHASE_LIMIT
;
319 time_esterror
= NTP_PHASE_LIMIT
;
320 time_interpolator_reset();
322 write_sequnlock_irq(&xtime_lock
);
326 EXPORT_SYMBOL(do_settimeofday
);
328 void do_gettimeofday (struct timeval
*tv
)
330 unsigned long seq
, nsec
, usec
, sec
, offset
;
332 seq
= read_seqbegin(&xtime_lock
);
333 offset
= time_interpolator_get_offset();
335 nsec
= xtime
.tv_nsec
;
336 } while (unlikely(read_seqretry(&xtime_lock
, seq
)));
338 usec
= (nsec
+ offset
) / 1000;
340 while (unlikely(usec
>= USEC_PER_SEC
)) {
341 usec
-= USEC_PER_SEC
;
349 EXPORT_SYMBOL(do_gettimeofday
);
353 #ifndef CONFIG_GENERIC_TIME
355 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
356 * and therefore only yields usec accuracy
358 void getnstimeofday(struct timespec
*tv
)
363 tv
->tv_sec
= x
.tv_sec
;
364 tv
->tv_nsec
= x
.tv_usec
* NSEC_PER_USEC
;
366 EXPORT_SYMBOL_GPL(getnstimeofday
);
370 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
371 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
372 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
374 * [For the Julian calendar (which was used in Russia before 1917,
375 * Britain & colonies before 1752, anywhere else before 1582,
376 * and is still in use by some communities) leave out the
377 * -year/100+year/400 terms, and add 10.]
379 * This algorithm was first published by Gauss (I think).
381 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
382 * machines were long is 32-bit! (However, as time_t is signed, we
383 * will already get problems at other places on 2038-01-19 03:14:08)
386 mktime(const unsigned int year0
, const unsigned int mon0
,
387 const unsigned int day
, const unsigned int hour
,
388 const unsigned int min
, const unsigned int sec
)
390 unsigned int mon
= mon0
, year
= year0
;
392 /* 1..12 -> 11,12,1..10 */
393 if (0 >= (int) (mon
-= 2)) {
394 mon
+= 12; /* Puts Feb last since it has leap day */
398 return ((((unsigned long)
399 (year
/4 - year
/100 + year
/400 + 367*mon
/12 + day
) +
401 )*24 + hour
/* now have hours */
402 )*60 + min
/* now have minutes */
403 )*60 + sec
; /* finally seconds */
406 EXPORT_SYMBOL(mktime
);
409 * set_normalized_timespec - set timespec sec and nsec parts and normalize
411 * @ts: pointer to timespec variable to be set
412 * @sec: seconds to set
413 * @nsec: nanoseconds to set
415 * Set seconds and nanoseconds field of a timespec variable and
416 * normalize to the timespec storage format
418 * Note: The tv_nsec part is always in the range of
419 * 0 <= tv_nsec < NSEC_PER_SEC
420 * For negative values only the tv_sec field is negative !
422 void set_normalized_timespec(struct timespec
*ts
, time_t sec
, long nsec
)
424 while (nsec
>= NSEC_PER_SEC
) {
425 nsec
-= NSEC_PER_SEC
;
429 nsec
+= NSEC_PER_SEC
;
437 * ns_to_timespec - Convert nanoseconds to timespec
438 * @nsec: the nanoseconds value to be converted
440 * Returns the timespec representation of the nsec parameter.
442 struct timespec
ns_to_timespec(const s64 nsec
)
447 return (struct timespec
) {0, 0};
449 ts
.tv_sec
= div_long_long_rem_signed(nsec
, NSEC_PER_SEC
, &ts
.tv_nsec
);
450 if (unlikely(nsec
< 0))
451 set_normalized_timespec(&ts
, ts
.tv_sec
, ts
.tv_nsec
);
457 * ns_to_timeval - Convert nanoseconds to timeval
458 * @nsec: the nanoseconds value to be converted
460 * Returns the timeval representation of the nsec parameter.
462 struct timeval
ns_to_timeval(const s64 nsec
)
464 struct timespec ts
= ns_to_timespec(nsec
);
467 tv
.tv_sec
= ts
.tv_sec
;
468 tv
.tv_usec
= (suseconds_t
) ts
.tv_nsec
/ 1000;
474 * Convert jiffies to milliseconds and back.
476 * Avoid unnecessary multiplications/divisions in the
477 * two most common HZ cases:
479 unsigned int jiffies_to_msecs(const unsigned long j
)
481 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
482 return (MSEC_PER_SEC
/ HZ
) * j
;
483 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
484 return (j
+ (HZ
/ MSEC_PER_SEC
) - 1)/(HZ
/ MSEC_PER_SEC
);
486 return (j
* MSEC_PER_SEC
) / HZ
;
489 EXPORT_SYMBOL(jiffies_to_msecs
);
491 unsigned int jiffies_to_usecs(const unsigned long j
)
493 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
494 return (USEC_PER_SEC
/ HZ
) * j
;
495 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
496 return (j
+ (HZ
/ USEC_PER_SEC
) - 1)/(HZ
/ USEC_PER_SEC
);
498 return (j
* USEC_PER_SEC
) / HZ
;
501 EXPORT_SYMBOL(jiffies_to_usecs
);
504 * When we convert to jiffies then we interpret incoming values
507 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
509 * - 'too large' values [that would result in larger than
510 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
512 * - all other values are converted to jiffies by either multiplying
513 * the input value by a factor or dividing it with a factor
515 * We must also be careful about 32-bit overflows.
517 unsigned long msecs_to_jiffies(const unsigned int m
)
520 * Negative value, means infinite timeout:
523 return MAX_JIFFY_OFFSET
;
525 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
527 * HZ is equal to or smaller than 1000, and 1000 is a nice
528 * round multiple of HZ, divide with the factor between them,
531 return (m
+ (MSEC_PER_SEC
/ HZ
) - 1) / (MSEC_PER_SEC
/ HZ
);
532 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
534 * HZ is larger than 1000, and HZ is a nice round multiple of
535 * 1000 - simply multiply with the factor between them.
537 * But first make sure the multiplication result cannot
540 if (m
> jiffies_to_msecs(MAX_JIFFY_OFFSET
))
541 return MAX_JIFFY_OFFSET
;
543 return m
* (HZ
/ MSEC_PER_SEC
);
546 * Generic case - multiply, round and divide. But first
547 * check that if we are doing a net multiplication, that
548 * we wouldnt overflow:
550 if (HZ
> MSEC_PER_SEC
&& m
> jiffies_to_msecs(MAX_JIFFY_OFFSET
))
551 return MAX_JIFFY_OFFSET
;
553 return (m
* HZ
+ MSEC_PER_SEC
- 1) / MSEC_PER_SEC
;
556 EXPORT_SYMBOL(msecs_to_jiffies
);
558 unsigned long usecs_to_jiffies(const unsigned int u
)
560 if (u
> jiffies_to_usecs(MAX_JIFFY_OFFSET
))
561 return MAX_JIFFY_OFFSET
;
562 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
563 return (u
+ (USEC_PER_SEC
/ HZ
) - 1) / (USEC_PER_SEC
/ HZ
);
564 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
565 return u
* (HZ
/ USEC_PER_SEC
);
567 return (u
* HZ
+ USEC_PER_SEC
- 1) / USEC_PER_SEC
;
570 EXPORT_SYMBOL(usecs_to_jiffies
);
573 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
574 * that a remainder subtract here would not do the right thing as the
575 * resolution values don't fall on second boundries. I.e. the line:
576 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
578 * Rather, we just shift the bits off the right.
580 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
581 * value to a scaled second value.
584 timespec_to_jiffies(const struct timespec
*value
)
586 unsigned long sec
= value
->tv_sec
;
587 long nsec
= value
->tv_nsec
+ TICK_NSEC
- 1;
589 if (sec
>= MAX_SEC_IN_JIFFIES
){
590 sec
= MAX_SEC_IN_JIFFIES
;
593 return (((u64
)sec
* SEC_CONVERSION
) +
594 (((u64
)nsec
* NSEC_CONVERSION
) >>
595 (NSEC_JIFFIE_SC
- SEC_JIFFIE_SC
))) >> SEC_JIFFIE_SC
;
598 EXPORT_SYMBOL(timespec_to_jiffies
);
601 jiffies_to_timespec(const unsigned long jiffies
, struct timespec
*value
)
604 * Convert jiffies to nanoseconds and separate with
607 u64 nsec
= (u64
)jiffies
* TICK_NSEC
;
608 value
->tv_sec
= div_long_long_rem(nsec
, NSEC_PER_SEC
, &value
->tv_nsec
);
610 EXPORT_SYMBOL(jiffies_to_timespec
);
612 /* Same for "timeval"
614 * Well, almost. The problem here is that the real system resolution is
615 * in nanoseconds and the value being converted is in micro seconds.
616 * Also for some machines (those that use HZ = 1024, in-particular),
617 * there is a LARGE error in the tick size in microseconds.
619 * The solution we use is to do the rounding AFTER we convert the
620 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
621 * Instruction wise, this should cost only an additional add with carry
622 * instruction above the way it was done above.
625 timeval_to_jiffies(const struct timeval
*value
)
627 unsigned long sec
= value
->tv_sec
;
628 long usec
= value
->tv_usec
;
630 if (sec
>= MAX_SEC_IN_JIFFIES
){
631 sec
= MAX_SEC_IN_JIFFIES
;
634 return (((u64
)sec
* SEC_CONVERSION
) +
635 (((u64
)usec
* USEC_CONVERSION
+ USEC_ROUND
) >>
636 (USEC_JIFFIE_SC
- SEC_JIFFIE_SC
))) >> SEC_JIFFIE_SC
;
639 void jiffies_to_timeval(const unsigned long jiffies
, struct timeval
*value
)
642 * Convert jiffies to nanoseconds and separate with
645 u64 nsec
= (u64
)jiffies
* TICK_NSEC
;
648 value
->tv_sec
= div_long_long_rem(nsec
, NSEC_PER_SEC
, &tv_usec
);
649 tv_usec
/= NSEC_PER_USEC
;
650 value
->tv_usec
= tv_usec
;
654 * Convert jiffies/jiffies_64 to clock_t and back.
656 clock_t jiffies_to_clock_t(long x
)
658 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
659 return x
/ (HZ
/ USER_HZ
);
661 u64 tmp
= (u64
)x
* TICK_NSEC
;
662 do_div(tmp
, (NSEC_PER_SEC
/ USER_HZ
));
666 EXPORT_SYMBOL(jiffies_to_clock_t
);
668 unsigned long clock_t_to_jiffies(unsigned long x
)
670 #if (HZ % USER_HZ)==0
671 if (x
>= ~0UL / (HZ
/ USER_HZ
))
673 return x
* (HZ
/ USER_HZ
);
677 /* Don't worry about loss of precision here .. */
678 if (x
>= ~0UL / HZ
* USER_HZ
)
681 /* .. but do try to contain it here */
683 do_div(jif
, USER_HZ
);
687 EXPORT_SYMBOL(clock_t_to_jiffies
);
689 u64
jiffies_64_to_clock_t(u64 x
)
691 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
692 do_div(x
, HZ
/ USER_HZ
);
695 * There are better ways that don't overflow early,
696 * but even this doesn't overflow in hundreds of years
700 do_div(x
, (NSEC_PER_SEC
/ USER_HZ
));
705 EXPORT_SYMBOL(jiffies_64_to_clock_t
);
707 u64
nsec_to_clock_t(u64 x
)
709 #if (NSEC_PER_SEC % USER_HZ) == 0
710 do_div(x
, (NSEC_PER_SEC
/ USER_HZ
));
711 #elif (USER_HZ % 512) == 0
713 do_div(x
, (NSEC_PER_SEC
/ 512));
716 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
717 * overflow after 64.99 years.
718 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
721 do_div(x
, (unsigned long)((9ull * NSEC_PER_SEC
+ (USER_HZ
/2)) /
727 #if (BITS_PER_LONG < 64)
728 u64
get_jiffies_64(void)
734 seq
= read_seqbegin(&xtime_lock
);
736 } while (read_seqretry(&xtime_lock
, seq
));
740 EXPORT_SYMBOL(get_jiffies_64
);
743 EXPORT_SYMBOL(jiffies
);