md: make it easier to wait for bad blocks to be acknowledged.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / raid10.c
blobfe6692e622152fd288f6c17844612e0f6966e177
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include <linux/ratelimit.h>
26 #include "md.h"
27 #include "raid10.h"
28 #include "raid0.h"
29 #include "bitmap.h"
32 * RAID10 provides a combination of RAID0 and RAID1 functionality.
33 * The layout of data is defined by
34 * chunk_size
35 * raid_disks
36 * near_copies (stored in low byte of layout)
37 * far_copies (stored in second byte of layout)
38 * far_offset (stored in bit 16 of layout )
40 * The data to be stored is divided into chunks using chunksize.
41 * Each device is divided into far_copies sections.
42 * In each section, chunks are laid out in a style similar to raid0, but
43 * near_copies copies of each chunk is stored (each on a different drive).
44 * The starting device for each section is offset near_copies from the starting
45 * device of the previous section.
46 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
47 * drive.
48 * near_copies and far_copies must be at least one, and their product is at most
49 * raid_disks.
51 * If far_offset is true, then the far_copies are handled a bit differently.
52 * The copies are still in different stripes, but instead of be very far apart
53 * on disk, there are adjacent stripes.
57 * Number of guaranteed r10bios in case of extreme VM load:
59 #define NR_RAID10_BIOS 256
61 static void allow_barrier(conf_t *conf);
62 static void lower_barrier(conf_t *conf);
64 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
66 conf_t *conf = data;
67 int size = offsetof(struct r10bio_s, devs[conf->copies]);
69 /* allocate a r10bio with room for raid_disks entries in the bios array */
70 return kzalloc(size, gfp_flags);
73 static void r10bio_pool_free(void *r10_bio, void *data)
75 kfree(r10_bio);
78 /* Maximum size of each resync request */
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
81 /* amount of memory to reserve for resync requests */
82 #define RESYNC_WINDOW (1024*1024)
83 /* maximum number of concurrent requests, memory permitting */
84 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
87 * When performing a resync, we need to read and compare, so
88 * we need as many pages are there are copies.
89 * When performing a recovery, we need 2 bios, one for read,
90 * one for write (we recover only one drive per r10buf)
93 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
95 conf_t *conf = data;
96 struct page *page;
97 r10bio_t *r10_bio;
98 struct bio *bio;
99 int i, j;
100 int nalloc;
102 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
103 if (!r10_bio)
104 return NULL;
106 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
107 nalloc = conf->copies; /* resync */
108 else
109 nalloc = 2; /* recovery */
112 * Allocate bios.
114 for (j = nalloc ; j-- ; ) {
115 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
116 if (!bio)
117 goto out_free_bio;
118 r10_bio->devs[j].bio = bio;
121 * Allocate RESYNC_PAGES data pages and attach them
122 * where needed.
124 for (j = 0 ; j < nalloc; j++) {
125 bio = r10_bio->devs[j].bio;
126 for (i = 0; i < RESYNC_PAGES; i++) {
127 if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
128 &conf->mddev->recovery)) {
129 /* we can share bv_page's during recovery */
130 struct bio *rbio = r10_bio->devs[0].bio;
131 page = rbio->bi_io_vec[i].bv_page;
132 get_page(page);
133 } else
134 page = alloc_page(gfp_flags);
135 if (unlikely(!page))
136 goto out_free_pages;
138 bio->bi_io_vec[i].bv_page = page;
142 return r10_bio;
144 out_free_pages:
145 for ( ; i > 0 ; i--)
146 safe_put_page(bio->bi_io_vec[i-1].bv_page);
147 while (j--)
148 for (i = 0; i < RESYNC_PAGES ; i++)
149 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
150 j = -1;
151 out_free_bio:
152 while ( ++j < nalloc )
153 bio_put(r10_bio->devs[j].bio);
154 r10bio_pool_free(r10_bio, conf);
155 return NULL;
158 static void r10buf_pool_free(void *__r10_bio, void *data)
160 int i;
161 conf_t *conf = data;
162 r10bio_t *r10bio = __r10_bio;
163 int j;
165 for (j=0; j < conf->copies; j++) {
166 struct bio *bio = r10bio->devs[j].bio;
167 if (bio) {
168 for (i = 0; i < RESYNC_PAGES; i++) {
169 safe_put_page(bio->bi_io_vec[i].bv_page);
170 bio->bi_io_vec[i].bv_page = NULL;
172 bio_put(bio);
175 r10bio_pool_free(r10bio, conf);
178 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
180 int i;
182 for (i = 0; i < conf->copies; i++) {
183 struct bio **bio = & r10_bio->devs[i].bio;
184 if (*bio && *bio != IO_BLOCKED)
185 bio_put(*bio);
186 *bio = NULL;
190 static void free_r10bio(r10bio_t *r10_bio)
192 conf_t *conf = r10_bio->mddev->private;
195 * Wake up any possible resync thread that waits for the device
196 * to go idle.
198 allow_barrier(conf);
200 put_all_bios(conf, r10_bio);
201 mempool_free(r10_bio, conf->r10bio_pool);
204 static void put_buf(r10bio_t *r10_bio)
206 conf_t *conf = r10_bio->mddev->private;
208 mempool_free(r10_bio, conf->r10buf_pool);
210 lower_barrier(conf);
213 static void reschedule_retry(r10bio_t *r10_bio)
215 unsigned long flags;
216 mddev_t *mddev = r10_bio->mddev;
217 conf_t *conf = mddev->private;
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r10_bio->retry_list, &conf->retry_list);
221 conf->nr_queued ++;
222 spin_unlock_irqrestore(&conf->device_lock, flags);
224 /* wake up frozen array... */
225 wake_up(&conf->wait_barrier);
227 md_wakeup_thread(mddev->thread);
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
233 * cache layer.
235 static void raid_end_bio_io(r10bio_t *r10_bio)
237 struct bio *bio = r10_bio->master_bio;
239 bio_endio(bio,
240 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
241 free_r10bio(r10_bio);
245 * Update disk head position estimator based on IRQ completion info.
247 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
249 conf_t *conf = r10_bio->mddev->private;
251 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
252 r10_bio->devs[slot].addr + (r10_bio->sectors);
256 * Find the disk number which triggered given bio
258 static int find_bio_disk(conf_t *conf, r10bio_t *r10_bio, struct bio *bio)
260 int slot;
262 for (slot = 0; slot < conf->copies; slot++)
263 if (r10_bio->devs[slot].bio == bio)
264 break;
266 BUG_ON(slot == conf->copies);
267 update_head_pos(slot, r10_bio);
269 return r10_bio->devs[slot].devnum;
272 static void raid10_end_read_request(struct bio *bio, int error)
274 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
275 r10bio_t *r10_bio = bio->bi_private;
276 int slot, dev;
277 conf_t *conf = r10_bio->mddev->private;
280 slot = r10_bio->read_slot;
281 dev = r10_bio->devs[slot].devnum;
283 * this branch is our 'one mirror IO has finished' event handler:
285 update_head_pos(slot, r10_bio);
287 if (uptodate) {
289 * Set R10BIO_Uptodate in our master bio, so that
290 * we will return a good error code to the higher
291 * levels even if IO on some other mirrored buffer fails.
293 * The 'master' represents the composite IO operation to
294 * user-side. So if something waits for IO, then it will
295 * wait for the 'master' bio.
297 set_bit(R10BIO_Uptodate, &r10_bio->state);
298 raid_end_bio_io(r10_bio);
299 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
300 } else {
302 * oops, read error - keep the refcount on the rdev
304 char b[BDEVNAME_SIZE];
305 printk_ratelimited(KERN_ERR
306 "md/raid10:%s: %s: rescheduling sector %llu\n",
307 mdname(conf->mddev),
308 bdevname(conf->mirrors[dev].rdev->bdev, b),
309 (unsigned long long)r10_bio->sector);
310 reschedule_retry(r10_bio);
314 static void raid10_end_write_request(struct bio *bio, int error)
316 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
317 r10bio_t *r10_bio = bio->bi_private;
318 int dev;
319 conf_t *conf = r10_bio->mddev->private;
321 dev = find_bio_disk(conf, r10_bio, bio);
324 * this branch is our 'one mirror IO has finished' event handler:
326 if (!uptodate) {
327 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
328 /* an I/O failed, we can't clear the bitmap */
329 set_bit(R10BIO_Degraded, &r10_bio->state);
330 } else
332 * Set R10BIO_Uptodate in our master bio, so that
333 * we will return a good error code for to the higher
334 * levels even if IO on some other mirrored buffer fails.
336 * The 'master' represents the composite IO operation to
337 * user-side. So if something waits for IO, then it will
338 * wait for the 'master' bio.
340 set_bit(R10BIO_Uptodate, &r10_bio->state);
344 * Let's see if all mirrored write operations have finished
345 * already.
347 if (atomic_dec_and_test(&r10_bio->remaining)) {
348 /* clear the bitmap if all writes complete successfully */
349 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
350 r10_bio->sectors,
351 !test_bit(R10BIO_Degraded, &r10_bio->state),
353 md_write_end(r10_bio->mddev);
354 raid_end_bio_io(r10_bio);
357 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
362 * RAID10 layout manager
363 * As well as the chunksize and raid_disks count, there are two
364 * parameters: near_copies and far_copies.
365 * near_copies * far_copies must be <= raid_disks.
366 * Normally one of these will be 1.
367 * If both are 1, we get raid0.
368 * If near_copies == raid_disks, we get raid1.
370 * Chunks are laid out in raid0 style with near_copies copies of the
371 * first chunk, followed by near_copies copies of the next chunk and
372 * so on.
373 * If far_copies > 1, then after 1/far_copies of the array has been assigned
374 * as described above, we start again with a device offset of near_copies.
375 * So we effectively have another copy of the whole array further down all
376 * the drives, but with blocks on different drives.
377 * With this layout, and block is never stored twice on the one device.
379 * raid10_find_phys finds the sector offset of a given virtual sector
380 * on each device that it is on.
382 * raid10_find_virt does the reverse mapping, from a device and a
383 * sector offset to a virtual address
386 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
388 int n,f;
389 sector_t sector;
390 sector_t chunk;
391 sector_t stripe;
392 int dev;
394 int slot = 0;
396 /* now calculate first sector/dev */
397 chunk = r10bio->sector >> conf->chunk_shift;
398 sector = r10bio->sector & conf->chunk_mask;
400 chunk *= conf->near_copies;
401 stripe = chunk;
402 dev = sector_div(stripe, conf->raid_disks);
403 if (conf->far_offset)
404 stripe *= conf->far_copies;
406 sector += stripe << conf->chunk_shift;
408 /* and calculate all the others */
409 for (n=0; n < conf->near_copies; n++) {
410 int d = dev;
411 sector_t s = sector;
412 r10bio->devs[slot].addr = sector;
413 r10bio->devs[slot].devnum = d;
414 slot++;
416 for (f = 1; f < conf->far_copies; f++) {
417 d += conf->near_copies;
418 if (d >= conf->raid_disks)
419 d -= conf->raid_disks;
420 s += conf->stride;
421 r10bio->devs[slot].devnum = d;
422 r10bio->devs[slot].addr = s;
423 slot++;
425 dev++;
426 if (dev >= conf->raid_disks) {
427 dev = 0;
428 sector += (conf->chunk_mask + 1);
431 BUG_ON(slot != conf->copies);
434 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
436 sector_t offset, chunk, vchunk;
438 offset = sector & conf->chunk_mask;
439 if (conf->far_offset) {
440 int fc;
441 chunk = sector >> conf->chunk_shift;
442 fc = sector_div(chunk, conf->far_copies);
443 dev -= fc * conf->near_copies;
444 if (dev < 0)
445 dev += conf->raid_disks;
446 } else {
447 while (sector >= conf->stride) {
448 sector -= conf->stride;
449 if (dev < conf->near_copies)
450 dev += conf->raid_disks - conf->near_copies;
451 else
452 dev -= conf->near_copies;
454 chunk = sector >> conf->chunk_shift;
456 vchunk = chunk * conf->raid_disks + dev;
457 sector_div(vchunk, conf->near_copies);
458 return (vchunk << conf->chunk_shift) + offset;
462 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
463 * @q: request queue
464 * @bvm: properties of new bio
465 * @biovec: the request that could be merged to it.
467 * Return amount of bytes we can accept at this offset
468 * If near_copies == raid_disk, there are no striping issues,
469 * but in that case, the function isn't called at all.
471 static int raid10_mergeable_bvec(struct request_queue *q,
472 struct bvec_merge_data *bvm,
473 struct bio_vec *biovec)
475 mddev_t *mddev = q->queuedata;
476 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
477 int max;
478 unsigned int chunk_sectors = mddev->chunk_sectors;
479 unsigned int bio_sectors = bvm->bi_size >> 9;
481 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
482 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
483 if (max <= biovec->bv_len && bio_sectors == 0)
484 return biovec->bv_len;
485 else
486 return max;
490 * This routine returns the disk from which the requested read should
491 * be done. There is a per-array 'next expected sequential IO' sector
492 * number - if this matches on the next IO then we use the last disk.
493 * There is also a per-disk 'last know head position' sector that is
494 * maintained from IRQ contexts, both the normal and the resync IO
495 * completion handlers update this position correctly. If there is no
496 * perfect sequential match then we pick the disk whose head is closest.
498 * If there are 2 mirrors in the same 2 devices, performance degrades
499 * because position is mirror, not device based.
501 * The rdev for the device selected will have nr_pending incremented.
505 * FIXME: possibly should rethink readbalancing and do it differently
506 * depending on near_copies / far_copies geometry.
508 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
510 const sector_t this_sector = r10_bio->sector;
511 int disk, slot;
512 const int sectors = r10_bio->sectors;
513 sector_t new_distance, best_dist;
514 mdk_rdev_t *rdev;
515 int do_balance;
516 int best_slot;
518 raid10_find_phys(conf, r10_bio);
519 rcu_read_lock();
520 retry:
521 best_slot = -1;
522 best_dist = MaxSector;
523 do_balance = 1;
525 * Check if we can balance. We can balance on the whole
526 * device if no resync is going on (recovery is ok), or below
527 * the resync window. We take the first readable disk when
528 * above the resync window.
530 if (conf->mddev->recovery_cp < MaxSector
531 && (this_sector + sectors >= conf->next_resync))
532 do_balance = 0;
534 for (slot = 0; slot < conf->copies ; slot++) {
535 if (r10_bio->devs[slot].bio == IO_BLOCKED)
536 continue;
537 disk = r10_bio->devs[slot].devnum;
538 rdev = rcu_dereference(conf->mirrors[disk].rdev);
539 if (rdev == NULL)
540 continue;
541 if (!test_bit(In_sync, &rdev->flags))
542 continue;
544 if (!do_balance)
545 break;
547 /* This optimisation is debatable, and completely destroys
548 * sequential read speed for 'far copies' arrays. So only
549 * keep it for 'near' arrays, and review those later.
551 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
552 break;
554 /* for far > 1 always use the lowest address */
555 if (conf->far_copies > 1)
556 new_distance = r10_bio->devs[slot].addr;
557 else
558 new_distance = abs(r10_bio->devs[slot].addr -
559 conf->mirrors[disk].head_position);
560 if (new_distance < best_dist) {
561 best_dist = new_distance;
562 best_slot = slot;
565 if (slot == conf->copies)
566 slot = best_slot;
568 if (slot >= 0) {
569 disk = r10_bio->devs[slot].devnum;
570 rdev = rcu_dereference(conf->mirrors[disk].rdev);
571 if (!rdev)
572 goto retry;
573 atomic_inc(&rdev->nr_pending);
574 if (test_bit(Faulty, &rdev->flags)) {
575 /* Cannot risk returning a device that failed
576 * before we inc'ed nr_pending
578 rdev_dec_pending(rdev, conf->mddev);
579 goto retry;
581 r10_bio->read_slot = slot;
582 } else
583 disk = -1;
584 rcu_read_unlock();
586 return disk;
589 static int raid10_congested(void *data, int bits)
591 mddev_t *mddev = data;
592 conf_t *conf = mddev->private;
593 int i, ret = 0;
595 if (mddev_congested(mddev, bits))
596 return 1;
597 rcu_read_lock();
598 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
599 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
600 if (rdev && !test_bit(Faulty, &rdev->flags)) {
601 struct request_queue *q = bdev_get_queue(rdev->bdev);
603 ret |= bdi_congested(&q->backing_dev_info, bits);
606 rcu_read_unlock();
607 return ret;
610 static void flush_pending_writes(conf_t *conf)
612 /* Any writes that have been queued but are awaiting
613 * bitmap updates get flushed here.
615 spin_lock_irq(&conf->device_lock);
617 if (conf->pending_bio_list.head) {
618 struct bio *bio;
619 bio = bio_list_get(&conf->pending_bio_list);
620 spin_unlock_irq(&conf->device_lock);
621 /* flush any pending bitmap writes to disk
622 * before proceeding w/ I/O */
623 bitmap_unplug(conf->mddev->bitmap);
625 while (bio) { /* submit pending writes */
626 struct bio *next = bio->bi_next;
627 bio->bi_next = NULL;
628 generic_make_request(bio);
629 bio = next;
631 } else
632 spin_unlock_irq(&conf->device_lock);
635 /* Barriers....
636 * Sometimes we need to suspend IO while we do something else,
637 * either some resync/recovery, or reconfigure the array.
638 * To do this we raise a 'barrier'.
639 * The 'barrier' is a counter that can be raised multiple times
640 * to count how many activities are happening which preclude
641 * normal IO.
642 * We can only raise the barrier if there is no pending IO.
643 * i.e. if nr_pending == 0.
644 * We choose only to raise the barrier if no-one is waiting for the
645 * barrier to go down. This means that as soon as an IO request
646 * is ready, no other operations which require a barrier will start
647 * until the IO request has had a chance.
649 * So: regular IO calls 'wait_barrier'. When that returns there
650 * is no backgroup IO happening, It must arrange to call
651 * allow_barrier when it has finished its IO.
652 * backgroup IO calls must call raise_barrier. Once that returns
653 * there is no normal IO happeing. It must arrange to call
654 * lower_barrier when the particular background IO completes.
657 static void raise_barrier(conf_t *conf, int force)
659 BUG_ON(force && !conf->barrier);
660 spin_lock_irq(&conf->resync_lock);
662 /* Wait until no block IO is waiting (unless 'force') */
663 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
664 conf->resync_lock, );
666 /* block any new IO from starting */
667 conf->barrier++;
669 /* Now wait for all pending IO to complete */
670 wait_event_lock_irq(conf->wait_barrier,
671 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
672 conf->resync_lock, );
674 spin_unlock_irq(&conf->resync_lock);
677 static void lower_barrier(conf_t *conf)
679 unsigned long flags;
680 spin_lock_irqsave(&conf->resync_lock, flags);
681 conf->barrier--;
682 spin_unlock_irqrestore(&conf->resync_lock, flags);
683 wake_up(&conf->wait_barrier);
686 static void wait_barrier(conf_t *conf)
688 spin_lock_irq(&conf->resync_lock);
689 if (conf->barrier) {
690 conf->nr_waiting++;
691 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
692 conf->resync_lock,
694 conf->nr_waiting--;
696 conf->nr_pending++;
697 spin_unlock_irq(&conf->resync_lock);
700 static void allow_barrier(conf_t *conf)
702 unsigned long flags;
703 spin_lock_irqsave(&conf->resync_lock, flags);
704 conf->nr_pending--;
705 spin_unlock_irqrestore(&conf->resync_lock, flags);
706 wake_up(&conf->wait_barrier);
709 static void freeze_array(conf_t *conf)
711 /* stop syncio and normal IO and wait for everything to
712 * go quiet.
713 * We increment barrier and nr_waiting, and then
714 * wait until nr_pending match nr_queued+1
715 * This is called in the context of one normal IO request
716 * that has failed. Thus any sync request that might be pending
717 * will be blocked by nr_pending, and we need to wait for
718 * pending IO requests to complete or be queued for re-try.
719 * Thus the number queued (nr_queued) plus this request (1)
720 * must match the number of pending IOs (nr_pending) before
721 * we continue.
723 spin_lock_irq(&conf->resync_lock);
724 conf->barrier++;
725 conf->nr_waiting++;
726 wait_event_lock_irq(conf->wait_barrier,
727 conf->nr_pending == conf->nr_queued+1,
728 conf->resync_lock,
729 flush_pending_writes(conf));
731 spin_unlock_irq(&conf->resync_lock);
734 static void unfreeze_array(conf_t *conf)
736 /* reverse the effect of the freeze */
737 spin_lock_irq(&conf->resync_lock);
738 conf->barrier--;
739 conf->nr_waiting--;
740 wake_up(&conf->wait_barrier);
741 spin_unlock_irq(&conf->resync_lock);
744 static int make_request(mddev_t *mddev, struct bio * bio)
746 conf_t *conf = mddev->private;
747 mirror_info_t *mirror;
748 r10bio_t *r10_bio;
749 struct bio *read_bio;
750 int i;
751 int chunk_sects = conf->chunk_mask + 1;
752 const int rw = bio_data_dir(bio);
753 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
754 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
755 unsigned long flags;
756 mdk_rdev_t *blocked_rdev;
757 int plugged;
759 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
760 md_flush_request(mddev, bio);
761 return 0;
764 /* If this request crosses a chunk boundary, we need to
765 * split it. This will only happen for 1 PAGE (or less) requests.
767 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
768 > chunk_sects &&
769 conf->near_copies < conf->raid_disks)) {
770 struct bio_pair *bp;
771 /* Sanity check -- queue functions should prevent this happening */
772 if (bio->bi_vcnt != 1 ||
773 bio->bi_idx != 0)
774 goto bad_map;
775 /* This is a one page bio that upper layers
776 * refuse to split for us, so we need to split it.
778 bp = bio_split(bio,
779 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
781 /* Each of these 'make_request' calls will call 'wait_barrier'.
782 * If the first succeeds but the second blocks due to the resync
783 * thread raising the barrier, we will deadlock because the
784 * IO to the underlying device will be queued in generic_make_request
785 * and will never complete, so will never reduce nr_pending.
786 * So increment nr_waiting here so no new raise_barriers will
787 * succeed, and so the second wait_barrier cannot block.
789 spin_lock_irq(&conf->resync_lock);
790 conf->nr_waiting++;
791 spin_unlock_irq(&conf->resync_lock);
793 if (make_request(mddev, &bp->bio1))
794 generic_make_request(&bp->bio1);
795 if (make_request(mddev, &bp->bio2))
796 generic_make_request(&bp->bio2);
798 spin_lock_irq(&conf->resync_lock);
799 conf->nr_waiting--;
800 wake_up(&conf->wait_barrier);
801 spin_unlock_irq(&conf->resync_lock);
803 bio_pair_release(bp);
804 return 0;
805 bad_map:
806 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
807 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
808 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
810 bio_io_error(bio);
811 return 0;
814 md_write_start(mddev, bio);
817 * Register the new request and wait if the reconstruction
818 * thread has put up a bar for new requests.
819 * Continue immediately if no resync is active currently.
821 wait_barrier(conf);
823 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
825 r10_bio->master_bio = bio;
826 r10_bio->sectors = bio->bi_size >> 9;
828 r10_bio->mddev = mddev;
829 r10_bio->sector = bio->bi_sector;
830 r10_bio->state = 0;
832 if (rw == READ) {
834 * read balancing logic:
836 int disk = read_balance(conf, r10_bio);
837 int slot = r10_bio->read_slot;
838 if (disk < 0) {
839 raid_end_bio_io(r10_bio);
840 return 0;
842 mirror = conf->mirrors + disk;
844 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
846 r10_bio->devs[slot].bio = read_bio;
848 read_bio->bi_sector = r10_bio->devs[slot].addr +
849 mirror->rdev->data_offset;
850 read_bio->bi_bdev = mirror->rdev->bdev;
851 read_bio->bi_end_io = raid10_end_read_request;
852 read_bio->bi_rw = READ | do_sync;
853 read_bio->bi_private = r10_bio;
855 generic_make_request(read_bio);
856 return 0;
860 * WRITE:
862 /* first select target devices under rcu_lock and
863 * inc refcount on their rdev. Record them by setting
864 * bios[x] to bio
866 plugged = mddev_check_plugged(mddev);
868 raid10_find_phys(conf, r10_bio);
869 retry_write:
870 blocked_rdev = NULL;
871 rcu_read_lock();
872 for (i = 0; i < conf->copies; i++) {
873 int d = r10_bio->devs[i].devnum;
874 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
875 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
876 atomic_inc(&rdev->nr_pending);
877 blocked_rdev = rdev;
878 break;
880 if (rdev && !test_bit(Faulty, &rdev->flags)) {
881 atomic_inc(&rdev->nr_pending);
882 r10_bio->devs[i].bio = bio;
883 } else {
884 r10_bio->devs[i].bio = NULL;
885 set_bit(R10BIO_Degraded, &r10_bio->state);
888 rcu_read_unlock();
890 if (unlikely(blocked_rdev)) {
891 /* Have to wait for this device to get unblocked, then retry */
892 int j;
893 int d;
895 for (j = 0; j < i; j++)
896 if (r10_bio->devs[j].bio) {
897 d = r10_bio->devs[j].devnum;
898 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
900 allow_barrier(conf);
901 md_wait_for_blocked_rdev(blocked_rdev, mddev);
902 wait_barrier(conf);
903 goto retry_write;
906 atomic_set(&r10_bio->remaining, 1);
907 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
909 for (i = 0; i < conf->copies; i++) {
910 struct bio *mbio;
911 int d = r10_bio->devs[i].devnum;
912 if (!r10_bio->devs[i].bio)
913 continue;
915 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
916 r10_bio->devs[i].bio = mbio;
918 mbio->bi_sector = r10_bio->devs[i].addr+
919 conf->mirrors[d].rdev->data_offset;
920 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
921 mbio->bi_end_io = raid10_end_write_request;
922 mbio->bi_rw = WRITE | do_sync | do_fua;
923 mbio->bi_private = r10_bio;
925 atomic_inc(&r10_bio->remaining);
926 spin_lock_irqsave(&conf->device_lock, flags);
927 bio_list_add(&conf->pending_bio_list, mbio);
928 spin_unlock_irqrestore(&conf->device_lock, flags);
931 if (atomic_dec_and_test(&r10_bio->remaining)) {
932 /* This matches the end of raid10_end_write_request() */
933 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
934 r10_bio->sectors,
935 !test_bit(R10BIO_Degraded, &r10_bio->state),
937 md_write_end(mddev);
938 raid_end_bio_io(r10_bio);
941 /* In case raid10d snuck in to freeze_array */
942 wake_up(&conf->wait_barrier);
944 if (do_sync || !mddev->bitmap || !plugged)
945 md_wakeup_thread(mddev->thread);
946 return 0;
949 static void status(struct seq_file *seq, mddev_t *mddev)
951 conf_t *conf = mddev->private;
952 int i;
954 if (conf->near_copies < conf->raid_disks)
955 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
956 if (conf->near_copies > 1)
957 seq_printf(seq, " %d near-copies", conf->near_copies);
958 if (conf->far_copies > 1) {
959 if (conf->far_offset)
960 seq_printf(seq, " %d offset-copies", conf->far_copies);
961 else
962 seq_printf(seq, " %d far-copies", conf->far_copies);
964 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
965 conf->raid_disks - mddev->degraded);
966 for (i = 0; i < conf->raid_disks; i++)
967 seq_printf(seq, "%s",
968 conf->mirrors[i].rdev &&
969 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
970 seq_printf(seq, "]");
973 /* check if there are enough drives for
974 * every block to appear on atleast one.
975 * Don't consider the device numbered 'ignore'
976 * as we might be about to remove it.
978 static int enough(conf_t *conf, int ignore)
980 int first = 0;
982 do {
983 int n = conf->copies;
984 int cnt = 0;
985 while (n--) {
986 if (conf->mirrors[first].rdev &&
987 first != ignore)
988 cnt++;
989 first = (first+1) % conf->raid_disks;
991 if (cnt == 0)
992 return 0;
993 } while (first != 0);
994 return 1;
997 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
999 char b[BDEVNAME_SIZE];
1000 conf_t *conf = mddev->private;
1003 * If it is not operational, then we have already marked it as dead
1004 * else if it is the last working disks, ignore the error, let the
1005 * next level up know.
1006 * else mark the drive as failed
1008 if (test_bit(In_sync, &rdev->flags)
1009 && !enough(conf, rdev->raid_disk))
1011 * Don't fail the drive, just return an IO error.
1013 return;
1014 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1015 unsigned long flags;
1016 spin_lock_irqsave(&conf->device_lock, flags);
1017 mddev->degraded++;
1018 spin_unlock_irqrestore(&conf->device_lock, flags);
1020 * if recovery is running, make sure it aborts.
1022 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1024 set_bit(Blocked, &rdev->flags);
1025 set_bit(Faulty, &rdev->flags);
1026 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1027 printk(KERN_ALERT
1028 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1029 "md/raid10:%s: Operation continuing on %d devices.\n",
1030 mdname(mddev), bdevname(rdev->bdev, b),
1031 mdname(mddev), conf->raid_disks - mddev->degraded);
1034 static void print_conf(conf_t *conf)
1036 int i;
1037 mirror_info_t *tmp;
1039 printk(KERN_DEBUG "RAID10 conf printout:\n");
1040 if (!conf) {
1041 printk(KERN_DEBUG "(!conf)\n");
1042 return;
1044 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1045 conf->raid_disks);
1047 for (i = 0; i < conf->raid_disks; i++) {
1048 char b[BDEVNAME_SIZE];
1049 tmp = conf->mirrors + i;
1050 if (tmp->rdev)
1051 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1052 i, !test_bit(In_sync, &tmp->rdev->flags),
1053 !test_bit(Faulty, &tmp->rdev->flags),
1054 bdevname(tmp->rdev->bdev,b));
1058 static void close_sync(conf_t *conf)
1060 wait_barrier(conf);
1061 allow_barrier(conf);
1063 mempool_destroy(conf->r10buf_pool);
1064 conf->r10buf_pool = NULL;
1067 static int raid10_spare_active(mddev_t *mddev)
1069 int i;
1070 conf_t *conf = mddev->private;
1071 mirror_info_t *tmp;
1072 int count = 0;
1073 unsigned long flags;
1076 * Find all non-in_sync disks within the RAID10 configuration
1077 * and mark them in_sync
1079 for (i = 0; i < conf->raid_disks; i++) {
1080 tmp = conf->mirrors + i;
1081 if (tmp->rdev
1082 && !test_bit(Faulty, &tmp->rdev->flags)
1083 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1084 count++;
1085 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1088 spin_lock_irqsave(&conf->device_lock, flags);
1089 mddev->degraded -= count;
1090 spin_unlock_irqrestore(&conf->device_lock, flags);
1092 print_conf(conf);
1093 return count;
1097 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1099 conf_t *conf = mddev->private;
1100 int err = -EEXIST;
1101 int mirror;
1102 int first = 0;
1103 int last = conf->raid_disks - 1;
1105 if (rdev->badblocks.count)
1106 return -EINVAL;
1108 if (mddev->recovery_cp < MaxSector)
1109 /* only hot-add to in-sync arrays, as recovery is
1110 * very different from resync
1112 return -EBUSY;
1113 if (!enough(conf, -1))
1114 return -EINVAL;
1116 if (rdev->raid_disk >= 0)
1117 first = last = rdev->raid_disk;
1119 if (rdev->saved_raid_disk >= first &&
1120 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1121 mirror = rdev->saved_raid_disk;
1122 else
1123 mirror = first;
1124 for ( ; mirror <= last ; mirror++) {
1125 mirror_info_t *p = &conf->mirrors[mirror];
1126 if (p->recovery_disabled == mddev->recovery_disabled)
1127 continue;
1128 if (!p->rdev)
1129 continue;
1131 disk_stack_limits(mddev->gendisk, rdev->bdev,
1132 rdev->data_offset << 9);
1133 /* as we don't honour merge_bvec_fn, we must
1134 * never risk violating it, so limit
1135 * ->max_segments to one lying with a single
1136 * page, as a one page request is never in
1137 * violation.
1139 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1140 blk_queue_max_segments(mddev->queue, 1);
1141 blk_queue_segment_boundary(mddev->queue,
1142 PAGE_CACHE_SIZE - 1);
1145 p->head_position = 0;
1146 rdev->raid_disk = mirror;
1147 err = 0;
1148 if (rdev->saved_raid_disk != mirror)
1149 conf->fullsync = 1;
1150 rcu_assign_pointer(p->rdev, rdev);
1151 break;
1154 md_integrity_add_rdev(rdev, mddev);
1155 print_conf(conf);
1156 return err;
1159 static int raid10_remove_disk(mddev_t *mddev, int number)
1161 conf_t *conf = mddev->private;
1162 int err = 0;
1163 mdk_rdev_t *rdev;
1164 mirror_info_t *p = conf->mirrors+ number;
1166 print_conf(conf);
1167 rdev = p->rdev;
1168 if (rdev) {
1169 if (test_bit(In_sync, &rdev->flags) ||
1170 atomic_read(&rdev->nr_pending)) {
1171 err = -EBUSY;
1172 goto abort;
1174 /* Only remove faulty devices in recovery
1175 * is not possible.
1177 if (!test_bit(Faulty, &rdev->flags) &&
1178 mddev->recovery_disabled != p->recovery_disabled &&
1179 enough(conf, -1)) {
1180 err = -EBUSY;
1181 goto abort;
1183 p->rdev = NULL;
1184 synchronize_rcu();
1185 if (atomic_read(&rdev->nr_pending)) {
1186 /* lost the race, try later */
1187 err = -EBUSY;
1188 p->rdev = rdev;
1189 goto abort;
1191 err = md_integrity_register(mddev);
1193 abort:
1195 print_conf(conf);
1196 return err;
1200 static void end_sync_read(struct bio *bio, int error)
1202 r10bio_t *r10_bio = bio->bi_private;
1203 conf_t *conf = r10_bio->mddev->private;
1204 int d;
1206 d = find_bio_disk(conf, r10_bio, bio);
1208 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1209 set_bit(R10BIO_Uptodate, &r10_bio->state);
1210 else {
1211 atomic_add(r10_bio->sectors,
1212 &conf->mirrors[d].rdev->corrected_errors);
1213 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1214 md_error(r10_bio->mddev,
1215 conf->mirrors[d].rdev);
1218 /* for reconstruct, we always reschedule after a read.
1219 * for resync, only after all reads
1221 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1222 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1223 atomic_dec_and_test(&r10_bio->remaining)) {
1224 /* we have read all the blocks,
1225 * do the comparison in process context in raid10d
1227 reschedule_retry(r10_bio);
1231 static void end_sync_write(struct bio *bio, int error)
1233 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1234 r10bio_t *r10_bio = bio->bi_private;
1235 mddev_t *mddev = r10_bio->mddev;
1236 conf_t *conf = mddev->private;
1237 int d;
1239 d = find_bio_disk(conf, r10_bio, bio);
1241 if (!uptodate)
1242 md_error(mddev, conf->mirrors[d].rdev);
1244 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1245 while (atomic_dec_and_test(&r10_bio->remaining)) {
1246 if (r10_bio->master_bio == NULL) {
1247 /* the primary of several recovery bios */
1248 sector_t s = r10_bio->sectors;
1249 put_buf(r10_bio);
1250 md_done_sync(mddev, s, 1);
1251 break;
1252 } else {
1253 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1254 put_buf(r10_bio);
1255 r10_bio = r10_bio2;
1261 * Note: sync and recover and handled very differently for raid10
1262 * This code is for resync.
1263 * For resync, we read through virtual addresses and read all blocks.
1264 * If there is any error, we schedule a write. The lowest numbered
1265 * drive is authoritative.
1266 * However requests come for physical address, so we need to map.
1267 * For every physical address there are raid_disks/copies virtual addresses,
1268 * which is always are least one, but is not necessarly an integer.
1269 * This means that a physical address can span multiple chunks, so we may
1270 * have to submit multiple io requests for a single sync request.
1273 * We check if all blocks are in-sync and only write to blocks that
1274 * aren't in sync
1276 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1278 conf_t *conf = mddev->private;
1279 int i, first;
1280 struct bio *tbio, *fbio;
1282 atomic_set(&r10_bio->remaining, 1);
1284 /* find the first device with a block */
1285 for (i=0; i<conf->copies; i++)
1286 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1287 break;
1289 if (i == conf->copies)
1290 goto done;
1292 first = i;
1293 fbio = r10_bio->devs[i].bio;
1295 /* now find blocks with errors */
1296 for (i=0 ; i < conf->copies ; i++) {
1297 int j, d;
1298 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1300 tbio = r10_bio->devs[i].bio;
1302 if (tbio->bi_end_io != end_sync_read)
1303 continue;
1304 if (i == first)
1305 continue;
1306 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1307 /* We know that the bi_io_vec layout is the same for
1308 * both 'first' and 'i', so we just compare them.
1309 * All vec entries are PAGE_SIZE;
1311 for (j = 0; j < vcnt; j++)
1312 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1313 page_address(tbio->bi_io_vec[j].bv_page),
1314 PAGE_SIZE))
1315 break;
1316 if (j == vcnt)
1317 continue;
1318 mddev->resync_mismatches += r10_bio->sectors;
1320 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1321 /* Don't fix anything. */
1322 continue;
1323 /* Ok, we need to write this bio
1324 * First we need to fixup bv_offset, bv_len and
1325 * bi_vecs, as the read request might have corrupted these
1327 tbio->bi_vcnt = vcnt;
1328 tbio->bi_size = r10_bio->sectors << 9;
1329 tbio->bi_idx = 0;
1330 tbio->bi_phys_segments = 0;
1331 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1332 tbio->bi_flags |= 1 << BIO_UPTODATE;
1333 tbio->bi_next = NULL;
1334 tbio->bi_rw = WRITE;
1335 tbio->bi_private = r10_bio;
1336 tbio->bi_sector = r10_bio->devs[i].addr;
1338 for (j=0; j < vcnt ; j++) {
1339 tbio->bi_io_vec[j].bv_offset = 0;
1340 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1342 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1343 page_address(fbio->bi_io_vec[j].bv_page),
1344 PAGE_SIZE);
1346 tbio->bi_end_io = end_sync_write;
1348 d = r10_bio->devs[i].devnum;
1349 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1350 atomic_inc(&r10_bio->remaining);
1351 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1353 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1354 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1355 generic_make_request(tbio);
1358 done:
1359 if (atomic_dec_and_test(&r10_bio->remaining)) {
1360 md_done_sync(mddev, r10_bio->sectors, 1);
1361 put_buf(r10_bio);
1366 * Now for the recovery code.
1367 * Recovery happens across physical sectors.
1368 * We recover all non-is_sync drives by finding the virtual address of
1369 * each, and then choose a working drive that also has that virt address.
1370 * There is a separate r10_bio for each non-in_sync drive.
1371 * Only the first two slots are in use. The first for reading,
1372 * The second for writing.
1376 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1378 conf_t *conf = mddev->private;
1379 int d;
1380 struct bio *wbio;
1383 * share the pages with the first bio
1384 * and submit the write request
1386 wbio = r10_bio->devs[1].bio;
1387 d = r10_bio->devs[1].devnum;
1389 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1390 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1391 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1392 generic_make_request(wbio);
1393 else {
1394 printk(KERN_NOTICE
1395 "md/raid10:%s: recovery aborted due to read error\n",
1396 mdname(mddev));
1397 conf->mirrors[d].recovery_disabled = mddev->recovery_disabled;
1398 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1399 bio_endio(wbio, 0);
1405 * Used by fix_read_error() to decay the per rdev read_errors.
1406 * We halve the read error count for every hour that has elapsed
1407 * since the last recorded read error.
1410 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1412 struct timespec cur_time_mon;
1413 unsigned long hours_since_last;
1414 unsigned int read_errors = atomic_read(&rdev->read_errors);
1416 ktime_get_ts(&cur_time_mon);
1418 if (rdev->last_read_error.tv_sec == 0 &&
1419 rdev->last_read_error.tv_nsec == 0) {
1420 /* first time we've seen a read error */
1421 rdev->last_read_error = cur_time_mon;
1422 return;
1425 hours_since_last = (cur_time_mon.tv_sec -
1426 rdev->last_read_error.tv_sec) / 3600;
1428 rdev->last_read_error = cur_time_mon;
1431 * if hours_since_last is > the number of bits in read_errors
1432 * just set read errors to 0. We do this to avoid
1433 * overflowing the shift of read_errors by hours_since_last.
1435 if (hours_since_last >= 8 * sizeof(read_errors))
1436 atomic_set(&rdev->read_errors, 0);
1437 else
1438 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1442 * This is a kernel thread which:
1444 * 1. Retries failed read operations on working mirrors.
1445 * 2. Updates the raid superblock when problems encounter.
1446 * 3. Performs writes following reads for array synchronising.
1449 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1451 int sect = 0; /* Offset from r10_bio->sector */
1452 int sectors = r10_bio->sectors;
1453 mdk_rdev_t*rdev;
1454 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1455 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1457 /* still own a reference to this rdev, so it cannot
1458 * have been cleared recently.
1460 rdev = conf->mirrors[d].rdev;
1462 if (test_bit(Faulty, &rdev->flags))
1463 /* drive has already been failed, just ignore any
1464 more fix_read_error() attempts */
1465 return;
1467 check_decay_read_errors(mddev, rdev);
1468 atomic_inc(&rdev->read_errors);
1469 if (atomic_read(&rdev->read_errors) > max_read_errors) {
1470 char b[BDEVNAME_SIZE];
1471 bdevname(rdev->bdev, b);
1473 printk(KERN_NOTICE
1474 "md/raid10:%s: %s: Raid device exceeded "
1475 "read_error threshold [cur %d:max %d]\n",
1476 mdname(mddev), b,
1477 atomic_read(&rdev->read_errors), max_read_errors);
1478 printk(KERN_NOTICE
1479 "md/raid10:%s: %s: Failing raid device\n",
1480 mdname(mddev), b);
1481 md_error(mddev, conf->mirrors[d].rdev);
1482 return;
1485 while(sectors) {
1486 int s = sectors;
1487 int sl = r10_bio->read_slot;
1488 int success = 0;
1489 int start;
1491 if (s > (PAGE_SIZE>>9))
1492 s = PAGE_SIZE >> 9;
1494 rcu_read_lock();
1495 do {
1496 d = r10_bio->devs[sl].devnum;
1497 rdev = rcu_dereference(conf->mirrors[d].rdev);
1498 if (rdev &&
1499 test_bit(In_sync, &rdev->flags)) {
1500 atomic_inc(&rdev->nr_pending);
1501 rcu_read_unlock();
1502 success = sync_page_io(rdev,
1503 r10_bio->devs[sl].addr +
1504 sect,
1505 s<<9,
1506 conf->tmppage, READ, false);
1507 rdev_dec_pending(rdev, mddev);
1508 rcu_read_lock();
1509 if (success)
1510 break;
1512 sl++;
1513 if (sl == conf->copies)
1514 sl = 0;
1515 } while (!success && sl != r10_bio->read_slot);
1516 rcu_read_unlock();
1518 if (!success) {
1519 /* Cannot read from anywhere -- bye bye array */
1520 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1521 md_error(mddev, conf->mirrors[dn].rdev);
1522 break;
1525 start = sl;
1526 /* write it back and re-read */
1527 rcu_read_lock();
1528 while (sl != r10_bio->read_slot) {
1529 char b[BDEVNAME_SIZE];
1531 if (sl==0)
1532 sl = conf->copies;
1533 sl--;
1534 d = r10_bio->devs[sl].devnum;
1535 rdev = rcu_dereference(conf->mirrors[d].rdev);
1536 if (rdev &&
1537 test_bit(In_sync, &rdev->flags)) {
1538 atomic_inc(&rdev->nr_pending);
1539 rcu_read_unlock();
1540 if (sync_page_io(rdev,
1541 r10_bio->devs[sl].addr +
1542 sect,
1543 s<<9, conf->tmppage, WRITE, false)
1544 == 0) {
1545 /* Well, this device is dead */
1546 printk(KERN_NOTICE
1547 "md/raid10:%s: read correction "
1548 "write failed"
1549 " (%d sectors at %llu on %s)\n",
1550 mdname(mddev), s,
1551 (unsigned long long)(
1552 sect + rdev->data_offset),
1553 bdevname(rdev->bdev, b));
1554 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1555 "drive\n",
1556 mdname(mddev),
1557 bdevname(rdev->bdev, b));
1558 md_error(mddev, rdev);
1560 rdev_dec_pending(rdev, mddev);
1561 rcu_read_lock();
1564 sl = start;
1565 while (sl != r10_bio->read_slot) {
1567 if (sl==0)
1568 sl = conf->copies;
1569 sl--;
1570 d = r10_bio->devs[sl].devnum;
1571 rdev = rcu_dereference(conf->mirrors[d].rdev);
1572 if (rdev &&
1573 test_bit(In_sync, &rdev->flags)) {
1574 char b[BDEVNAME_SIZE];
1575 atomic_inc(&rdev->nr_pending);
1576 rcu_read_unlock();
1577 if (sync_page_io(rdev,
1578 r10_bio->devs[sl].addr +
1579 sect,
1580 s<<9, conf->tmppage,
1581 READ, false) == 0) {
1582 /* Well, this device is dead */
1583 printk(KERN_NOTICE
1584 "md/raid10:%s: unable to read back "
1585 "corrected sectors"
1586 " (%d sectors at %llu on %s)\n",
1587 mdname(mddev), s,
1588 (unsigned long long)(
1589 sect + rdev->data_offset),
1590 bdevname(rdev->bdev, b));
1591 printk(KERN_NOTICE "md/raid10:%s: %s: failing drive\n",
1592 mdname(mddev),
1593 bdevname(rdev->bdev, b));
1595 md_error(mddev, rdev);
1596 } else {
1597 printk(KERN_INFO
1598 "md/raid10:%s: read error corrected"
1599 " (%d sectors at %llu on %s)\n",
1600 mdname(mddev), s,
1601 (unsigned long long)(
1602 sect + rdev->data_offset),
1603 bdevname(rdev->bdev, b));
1604 atomic_add(s, &rdev->corrected_errors);
1607 rdev_dec_pending(rdev, mddev);
1608 rcu_read_lock();
1611 rcu_read_unlock();
1613 sectors -= s;
1614 sect += s;
1618 static void raid10d(mddev_t *mddev)
1620 r10bio_t *r10_bio;
1621 struct bio *bio;
1622 unsigned long flags;
1623 conf_t *conf = mddev->private;
1624 struct list_head *head = &conf->retry_list;
1625 mdk_rdev_t *rdev;
1626 struct blk_plug plug;
1628 md_check_recovery(mddev);
1630 blk_start_plug(&plug);
1631 for (;;) {
1632 char b[BDEVNAME_SIZE];
1634 flush_pending_writes(conf);
1636 spin_lock_irqsave(&conf->device_lock, flags);
1637 if (list_empty(head)) {
1638 spin_unlock_irqrestore(&conf->device_lock, flags);
1639 break;
1641 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1642 list_del(head->prev);
1643 conf->nr_queued--;
1644 spin_unlock_irqrestore(&conf->device_lock, flags);
1646 mddev = r10_bio->mddev;
1647 conf = mddev->private;
1648 if (test_bit(R10BIO_IsSync, &r10_bio->state))
1649 sync_request_write(mddev, r10_bio);
1650 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1651 recovery_request_write(mddev, r10_bio);
1652 else {
1653 int slot = r10_bio->read_slot;
1654 int mirror = r10_bio->devs[slot].devnum;
1655 /* we got a read error. Maybe the drive is bad. Maybe just
1656 * the block and we can fix it.
1657 * We freeze all other IO, and try reading the block from
1658 * other devices. When we find one, we re-write
1659 * and check it that fixes the read error.
1660 * This is all done synchronously while the array is
1661 * frozen.
1663 if (mddev->ro == 0) {
1664 freeze_array(conf);
1665 fix_read_error(conf, mddev, r10_bio);
1666 unfreeze_array(conf);
1668 rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
1670 bio = r10_bio->devs[slot].bio;
1671 r10_bio->devs[slot].bio =
1672 mddev->ro ? IO_BLOCKED : NULL;
1673 mirror = read_balance(conf, r10_bio);
1674 if (mirror == -1) {
1675 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
1676 " read error for block %llu\n",
1677 mdname(mddev),
1678 bdevname(bio->bi_bdev,b),
1679 (unsigned long long)r10_bio->sector);
1680 raid_end_bio_io(r10_bio);
1681 bio_put(bio);
1682 } else {
1683 const unsigned long do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
1684 bio_put(bio);
1685 slot = r10_bio->read_slot;
1686 rdev = conf->mirrors[mirror].rdev;
1687 printk_ratelimited(
1688 KERN_ERR
1689 "md/raid10:%s: %s: redirecting"
1690 "sector %llu to another mirror\n",
1691 mdname(mddev),
1692 bdevname(rdev->bdev, b),
1693 (unsigned long long)r10_bio->sector);
1694 bio = bio_clone_mddev(r10_bio->master_bio,
1695 GFP_NOIO, mddev);
1696 r10_bio->devs[slot].bio = bio;
1697 bio->bi_sector = r10_bio->devs[slot].addr
1698 + rdev->data_offset;
1699 bio->bi_bdev = rdev->bdev;
1700 bio->bi_rw = READ | do_sync;
1701 bio->bi_private = r10_bio;
1702 bio->bi_end_io = raid10_end_read_request;
1703 generic_make_request(bio);
1706 cond_resched();
1707 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
1708 md_check_recovery(mddev);
1710 blk_finish_plug(&plug);
1714 static int init_resync(conf_t *conf)
1716 int buffs;
1718 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1719 BUG_ON(conf->r10buf_pool);
1720 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1721 if (!conf->r10buf_pool)
1722 return -ENOMEM;
1723 conf->next_resync = 0;
1724 return 0;
1728 * perform a "sync" on one "block"
1730 * We need to make sure that no normal I/O request - particularly write
1731 * requests - conflict with active sync requests.
1733 * This is achieved by tracking pending requests and a 'barrier' concept
1734 * that can be installed to exclude normal IO requests.
1736 * Resync and recovery are handled very differently.
1737 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1739 * For resync, we iterate over virtual addresses, read all copies,
1740 * and update if there are differences. If only one copy is live,
1741 * skip it.
1742 * For recovery, we iterate over physical addresses, read a good
1743 * value for each non-in_sync drive, and over-write.
1745 * So, for recovery we may have several outstanding complex requests for a
1746 * given address, one for each out-of-sync device. We model this by allocating
1747 * a number of r10_bio structures, one for each out-of-sync device.
1748 * As we setup these structures, we collect all bio's together into a list
1749 * which we then process collectively to add pages, and then process again
1750 * to pass to generic_make_request.
1752 * The r10_bio structures are linked using a borrowed master_bio pointer.
1753 * This link is counted in ->remaining. When the r10_bio that points to NULL
1754 * has its remaining count decremented to 0, the whole complex operation
1755 * is complete.
1759 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr,
1760 int *skipped, int go_faster)
1762 conf_t *conf = mddev->private;
1763 r10bio_t *r10_bio;
1764 struct bio *biolist = NULL, *bio;
1765 sector_t max_sector, nr_sectors;
1766 int i;
1767 int max_sync;
1768 sector_t sync_blocks;
1770 sector_t sectors_skipped = 0;
1771 int chunks_skipped = 0;
1773 if (!conf->r10buf_pool)
1774 if (init_resync(conf))
1775 return 0;
1777 skipped:
1778 max_sector = mddev->dev_sectors;
1779 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1780 max_sector = mddev->resync_max_sectors;
1781 if (sector_nr >= max_sector) {
1782 /* If we aborted, we need to abort the
1783 * sync on the 'current' bitmap chucks (there can
1784 * be several when recovering multiple devices).
1785 * as we may have started syncing it but not finished.
1786 * We can find the current address in
1787 * mddev->curr_resync, but for recovery,
1788 * we need to convert that to several
1789 * virtual addresses.
1791 if (mddev->curr_resync < max_sector) { /* aborted */
1792 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1793 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1794 &sync_blocks, 1);
1795 else for (i=0; i<conf->raid_disks; i++) {
1796 sector_t sect =
1797 raid10_find_virt(conf, mddev->curr_resync, i);
1798 bitmap_end_sync(mddev->bitmap, sect,
1799 &sync_blocks, 1);
1801 } else /* completed sync */
1802 conf->fullsync = 0;
1804 bitmap_close_sync(mddev->bitmap);
1805 close_sync(conf);
1806 *skipped = 1;
1807 return sectors_skipped;
1809 if (chunks_skipped >= conf->raid_disks) {
1810 /* if there has been nothing to do on any drive,
1811 * then there is nothing to do at all..
1813 *skipped = 1;
1814 return (max_sector - sector_nr) + sectors_skipped;
1817 if (max_sector > mddev->resync_max)
1818 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1820 /* make sure whole request will fit in a chunk - if chunks
1821 * are meaningful
1823 if (conf->near_copies < conf->raid_disks &&
1824 max_sector > (sector_nr | conf->chunk_mask))
1825 max_sector = (sector_nr | conf->chunk_mask) + 1;
1827 * If there is non-resync activity waiting for us then
1828 * put in a delay to throttle resync.
1830 if (!go_faster && conf->nr_waiting)
1831 msleep_interruptible(1000);
1833 /* Again, very different code for resync and recovery.
1834 * Both must result in an r10bio with a list of bios that
1835 * have bi_end_io, bi_sector, bi_bdev set,
1836 * and bi_private set to the r10bio.
1837 * For recovery, we may actually create several r10bios
1838 * with 2 bios in each, that correspond to the bios in the main one.
1839 * In this case, the subordinate r10bios link back through a
1840 * borrowed master_bio pointer, and the counter in the master
1841 * includes a ref from each subordinate.
1843 /* First, we decide what to do and set ->bi_end_io
1844 * To end_sync_read if we want to read, and
1845 * end_sync_write if we will want to write.
1848 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1849 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1850 /* recovery... the complicated one */
1851 int j, k;
1852 r10_bio = NULL;
1854 for (i=0 ; i<conf->raid_disks; i++) {
1855 int still_degraded;
1856 r10bio_t *rb2;
1857 sector_t sect;
1858 int must_sync;
1860 if (conf->mirrors[i].rdev == NULL ||
1861 test_bit(In_sync, &conf->mirrors[i].rdev->flags))
1862 continue;
1864 still_degraded = 0;
1865 /* want to reconstruct this device */
1866 rb2 = r10_bio;
1867 sect = raid10_find_virt(conf, sector_nr, i);
1868 /* Unless we are doing a full sync, we only need
1869 * to recover the block if it is set in the bitmap
1871 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1872 &sync_blocks, 1);
1873 if (sync_blocks < max_sync)
1874 max_sync = sync_blocks;
1875 if (!must_sync &&
1876 !conf->fullsync) {
1877 /* yep, skip the sync_blocks here, but don't assume
1878 * that there will never be anything to do here
1880 chunks_skipped = -1;
1881 continue;
1884 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1885 raise_barrier(conf, rb2 != NULL);
1886 atomic_set(&r10_bio->remaining, 0);
1888 r10_bio->master_bio = (struct bio*)rb2;
1889 if (rb2)
1890 atomic_inc(&rb2->remaining);
1891 r10_bio->mddev = mddev;
1892 set_bit(R10BIO_IsRecover, &r10_bio->state);
1893 r10_bio->sector = sect;
1895 raid10_find_phys(conf, r10_bio);
1897 /* Need to check if the array will still be
1898 * degraded
1900 for (j=0; j<conf->raid_disks; j++)
1901 if (conf->mirrors[j].rdev == NULL ||
1902 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
1903 still_degraded = 1;
1904 break;
1907 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1908 &sync_blocks, still_degraded);
1910 for (j=0; j<conf->copies;j++) {
1911 int d = r10_bio->devs[j].devnum;
1912 if (!conf->mirrors[d].rdev ||
1913 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
1914 continue;
1915 /* This is where we read from */
1916 bio = r10_bio->devs[0].bio;
1917 bio->bi_next = biolist;
1918 biolist = bio;
1919 bio->bi_private = r10_bio;
1920 bio->bi_end_io = end_sync_read;
1921 bio->bi_rw = READ;
1922 bio->bi_sector = r10_bio->devs[j].addr +
1923 conf->mirrors[d].rdev->data_offset;
1924 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1925 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1926 atomic_inc(&r10_bio->remaining);
1927 /* and we write to 'i' */
1929 for (k=0; k<conf->copies; k++)
1930 if (r10_bio->devs[k].devnum == i)
1931 break;
1932 BUG_ON(k == conf->copies);
1933 bio = r10_bio->devs[1].bio;
1934 bio->bi_next = biolist;
1935 biolist = bio;
1936 bio->bi_private = r10_bio;
1937 bio->bi_end_io = end_sync_write;
1938 bio->bi_rw = WRITE;
1939 bio->bi_sector = r10_bio->devs[k].addr +
1940 conf->mirrors[i].rdev->data_offset;
1941 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1943 r10_bio->devs[0].devnum = d;
1944 r10_bio->devs[1].devnum = i;
1946 break;
1948 if (j == conf->copies) {
1949 /* Cannot recover, so abort the recovery */
1950 put_buf(r10_bio);
1951 if (rb2)
1952 atomic_dec(&rb2->remaining);
1953 r10_bio = rb2;
1954 if (!test_and_set_bit(MD_RECOVERY_INTR,
1955 &mddev->recovery))
1956 printk(KERN_INFO "md/raid10:%s: insufficient "
1957 "working devices for recovery.\n",
1958 mdname(mddev));
1959 break;
1962 if (biolist == NULL) {
1963 while (r10_bio) {
1964 r10bio_t *rb2 = r10_bio;
1965 r10_bio = (r10bio_t*) rb2->master_bio;
1966 rb2->master_bio = NULL;
1967 put_buf(rb2);
1969 goto giveup;
1971 } else {
1972 /* resync. Schedule a read for every block at this virt offset */
1973 int count = 0;
1975 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1977 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1978 &sync_blocks, mddev->degraded) &&
1979 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
1980 &mddev->recovery)) {
1981 /* We can skip this block */
1982 *skipped = 1;
1983 return sync_blocks + sectors_skipped;
1985 if (sync_blocks < max_sync)
1986 max_sync = sync_blocks;
1987 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1989 r10_bio->mddev = mddev;
1990 atomic_set(&r10_bio->remaining, 0);
1991 raise_barrier(conf, 0);
1992 conf->next_resync = sector_nr;
1994 r10_bio->master_bio = NULL;
1995 r10_bio->sector = sector_nr;
1996 set_bit(R10BIO_IsSync, &r10_bio->state);
1997 raid10_find_phys(conf, r10_bio);
1998 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2000 for (i=0; i<conf->copies; i++) {
2001 int d = r10_bio->devs[i].devnum;
2002 bio = r10_bio->devs[i].bio;
2003 bio->bi_end_io = NULL;
2004 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2005 if (conf->mirrors[d].rdev == NULL ||
2006 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2007 continue;
2008 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2009 atomic_inc(&r10_bio->remaining);
2010 bio->bi_next = biolist;
2011 biolist = bio;
2012 bio->bi_private = r10_bio;
2013 bio->bi_end_io = end_sync_read;
2014 bio->bi_rw = READ;
2015 bio->bi_sector = r10_bio->devs[i].addr +
2016 conf->mirrors[d].rdev->data_offset;
2017 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2018 count++;
2021 if (count < 2) {
2022 for (i=0; i<conf->copies; i++) {
2023 int d = r10_bio->devs[i].devnum;
2024 if (r10_bio->devs[i].bio->bi_end_io)
2025 rdev_dec_pending(conf->mirrors[d].rdev,
2026 mddev);
2028 put_buf(r10_bio);
2029 biolist = NULL;
2030 goto giveup;
2034 for (bio = biolist; bio ; bio=bio->bi_next) {
2036 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2037 if (bio->bi_end_io)
2038 bio->bi_flags |= 1 << BIO_UPTODATE;
2039 bio->bi_vcnt = 0;
2040 bio->bi_idx = 0;
2041 bio->bi_phys_segments = 0;
2042 bio->bi_size = 0;
2045 nr_sectors = 0;
2046 if (sector_nr + max_sync < max_sector)
2047 max_sector = sector_nr + max_sync;
2048 do {
2049 struct page *page;
2050 int len = PAGE_SIZE;
2051 if (sector_nr + (len>>9) > max_sector)
2052 len = (max_sector - sector_nr) << 9;
2053 if (len == 0)
2054 break;
2055 for (bio= biolist ; bio ; bio=bio->bi_next) {
2056 struct bio *bio2;
2057 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2058 if (bio_add_page(bio, page, len, 0))
2059 continue;
2061 /* stop here */
2062 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2063 for (bio2 = biolist;
2064 bio2 && bio2 != bio;
2065 bio2 = bio2->bi_next) {
2066 /* remove last page from this bio */
2067 bio2->bi_vcnt--;
2068 bio2->bi_size -= len;
2069 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2071 goto bio_full;
2073 nr_sectors += len>>9;
2074 sector_nr += len>>9;
2075 } while (biolist->bi_vcnt < RESYNC_PAGES);
2076 bio_full:
2077 r10_bio->sectors = nr_sectors;
2079 while (biolist) {
2080 bio = biolist;
2081 biolist = biolist->bi_next;
2083 bio->bi_next = NULL;
2084 r10_bio = bio->bi_private;
2085 r10_bio->sectors = nr_sectors;
2087 if (bio->bi_end_io == end_sync_read) {
2088 md_sync_acct(bio->bi_bdev, nr_sectors);
2089 generic_make_request(bio);
2093 if (sectors_skipped)
2094 /* pretend they weren't skipped, it makes
2095 * no important difference in this case
2097 md_done_sync(mddev, sectors_skipped, 1);
2099 return sectors_skipped + nr_sectors;
2100 giveup:
2101 /* There is nowhere to write, so all non-sync
2102 * drives must be failed, so try the next chunk...
2104 if (sector_nr + max_sync < max_sector)
2105 max_sector = sector_nr + max_sync;
2107 sectors_skipped += (max_sector - sector_nr);
2108 chunks_skipped ++;
2109 sector_nr = max_sector;
2110 goto skipped;
2113 static sector_t
2114 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2116 sector_t size;
2117 conf_t *conf = mddev->private;
2119 if (!raid_disks)
2120 raid_disks = conf->raid_disks;
2121 if (!sectors)
2122 sectors = conf->dev_sectors;
2124 size = sectors >> conf->chunk_shift;
2125 sector_div(size, conf->far_copies);
2126 size = size * raid_disks;
2127 sector_div(size, conf->near_copies);
2129 return size << conf->chunk_shift;
2133 static conf_t *setup_conf(mddev_t *mddev)
2135 conf_t *conf = NULL;
2136 int nc, fc, fo;
2137 sector_t stride, size;
2138 int err = -EINVAL;
2140 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2141 !is_power_of_2(mddev->new_chunk_sectors)) {
2142 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2143 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2144 mdname(mddev), PAGE_SIZE);
2145 goto out;
2148 nc = mddev->new_layout & 255;
2149 fc = (mddev->new_layout >> 8) & 255;
2150 fo = mddev->new_layout & (1<<16);
2152 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2153 (mddev->new_layout >> 17)) {
2154 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2155 mdname(mddev), mddev->new_layout);
2156 goto out;
2159 err = -ENOMEM;
2160 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2161 if (!conf)
2162 goto out;
2164 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2165 GFP_KERNEL);
2166 if (!conf->mirrors)
2167 goto out;
2169 conf->tmppage = alloc_page(GFP_KERNEL);
2170 if (!conf->tmppage)
2171 goto out;
2174 conf->raid_disks = mddev->raid_disks;
2175 conf->near_copies = nc;
2176 conf->far_copies = fc;
2177 conf->copies = nc*fc;
2178 conf->far_offset = fo;
2179 conf->chunk_mask = mddev->new_chunk_sectors - 1;
2180 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2182 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2183 r10bio_pool_free, conf);
2184 if (!conf->r10bio_pool)
2185 goto out;
2187 size = mddev->dev_sectors >> conf->chunk_shift;
2188 sector_div(size, fc);
2189 size = size * conf->raid_disks;
2190 sector_div(size, nc);
2191 /* 'size' is now the number of chunks in the array */
2192 /* calculate "used chunks per device" in 'stride' */
2193 stride = size * conf->copies;
2195 /* We need to round up when dividing by raid_disks to
2196 * get the stride size.
2198 stride += conf->raid_disks - 1;
2199 sector_div(stride, conf->raid_disks);
2201 conf->dev_sectors = stride << conf->chunk_shift;
2203 if (fo)
2204 stride = 1;
2205 else
2206 sector_div(stride, fc);
2207 conf->stride = stride << conf->chunk_shift;
2210 spin_lock_init(&conf->device_lock);
2211 INIT_LIST_HEAD(&conf->retry_list);
2213 spin_lock_init(&conf->resync_lock);
2214 init_waitqueue_head(&conf->wait_barrier);
2216 conf->thread = md_register_thread(raid10d, mddev, NULL);
2217 if (!conf->thread)
2218 goto out;
2220 conf->mddev = mddev;
2221 return conf;
2223 out:
2224 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2225 mdname(mddev));
2226 if (conf) {
2227 if (conf->r10bio_pool)
2228 mempool_destroy(conf->r10bio_pool);
2229 kfree(conf->mirrors);
2230 safe_put_page(conf->tmppage);
2231 kfree(conf);
2233 return ERR_PTR(err);
2236 static int run(mddev_t *mddev)
2238 conf_t *conf;
2239 int i, disk_idx, chunk_size;
2240 mirror_info_t *disk;
2241 mdk_rdev_t *rdev;
2242 sector_t size;
2245 * copy the already verified devices into our private RAID10
2246 * bookkeeping area. [whatever we allocate in run(),
2247 * should be freed in stop()]
2250 if (mddev->private == NULL) {
2251 conf = setup_conf(mddev);
2252 if (IS_ERR(conf))
2253 return PTR_ERR(conf);
2254 mddev->private = conf;
2256 conf = mddev->private;
2257 if (!conf)
2258 goto out;
2260 mddev->thread = conf->thread;
2261 conf->thread = NULL;
2263 chunk_size = mddev->chunk_sectors << 9;
2264 blk_queue_io_min(mddev->queue, chunk_size);
2265 if (conf->raid_disks % conf->near_copies)
2266 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2267 else
2268 blk_queue_io_opt(mddev->queue, chunk_size *
2269 (conf->raid_disks / conf->near_copies));
2271 list_for_each_entry(rdev, &mddev->disks, same_set) {
2273 if (rdev->badblocks.count) {
2274 printk(KERN_ERR "md/raid10: cannot handle bad blocks yet\n");
2275 goto out_free_conf;
2277 disk_idx = rdev->raid_disk;
2278 if (disk_idx >= conf->raid_disks
2279 || disk_idx < 0)
2280 continue;
2281 disk = conf->mirrors + disk_idx;
2283 disk->rdev = rdev;
2284 disk_stack_limits(mddev->gendisk, rdev->bdev,
2285 rdev->data_offset << 9);
2286 /* as we don't honour merge_bvec_fn, we must never risk
2287 * violating it, so limit max_segments to 1 lying
2288 * within a single page.
2290 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2291 blk_queue_max_segments(mddev->queue, 1);
2292 blk_queue_segment_boundary(mddev->queue,
2293 PAGE_CACHE_SIZE - 1);
2296 disk->head_position = 0;
2298 /* need to check that every block has at least one working mirror */
2299 if (!enough(conf, -1)) {
2300 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2301 mdname(mddev));
2302 goto out_free_conf;
2305 mddev->degraded = 0;
2306 for (i = 0; i < conf->raid_disks; i++) {
2308 disk = conf->mirrors + i;
2310 if (!disk->rdev ||
2311 !test_bit(In_sync, &disk->rdev->flags)) {
2312 disk->head_position = 0;
2313 mddev->degraded++;
2314 if (disk->rdev)
2315 conf->fullsync = 1;
2319 if (mddev->recovery_cp != MaxSector)
2320 printk(KERN_NOTICE "md/raid10:%s: not clean"
2321 " -- starting background reconstruction\n",
2322 mdname(mddev));
2323 printk(KERN_INFO
2324 "md/raid10:%s: active with %d out of %d devices\n",
2325 mdname(mddev), conf->raid_disks - mddev->degraded,
2326 conf->raid_disks);
2328 * Ok, everything is just fine now
2330 mddev->dev_sectors = conf->dev_sectors;
2331 size = raid10_size(mddev, 0, 0);
2332 md_set_array_sectors(mddev, size);
2333 mddev->resync_max_sectors = size;
2335 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2336 mddev->queue->backing_dev_info.congested_data = mddev;
2338 /* Calculate max read-ahead size.
2339 * We need to readahead at least twice a whole stripe....
2340 * maybe...
2343 int stripe = conf->raid_disks *
2344 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
2345 stripe /= conf->near_copies;
2346 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2347 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2350 if (conf->near_copies < conf->raid_disks)
2351 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2353 if (md_integrity_register(mddev))
2354 goto out_free_conf;
2356 return 0;
2358 out_free_conf:
2359 md_unregister_thread(mddev->thread);
2360 if (conf->r10bio_pool)
2361 mempool_destroy(conf->r10bio_pool);
2362 safe_put_page(conf->tmppage);
2363 kfree(conf->mirrors);
2364 kfree(conf);
2365 mddev->private = NULL;
2366 out:
2367 return -EIO;
2370 static int stop(mddev_t *mddev)
2372 conf_t *conf = mddev->private;
2374 raise_barrier(conf, 0);
2375 lower_barrier(conf);
2377 md_unregister_thread(mddev->thread);
2378 mddev->thread = NULL;
2379 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2380 if (conf->r10bio_pool)
2381 mempool_destroy(conf->r10bio_pool);
2382 kfree(conf->mirrors);
2383 kfree(conf);
2384 mddev->private = NULL;
2385 return 0;
2388 static void raid10_quiesce(mddev_t *mddev, int state)
2390 conf_t *conf = mddev->private;
2392 switch(state) {
2393 case 1:
2394 raise_barrier(conf, 0);
2395 break;
2396 case 0:
2397 lower_barrier(conf);
2398 break;
2402 static void *raid10_takeover_raid0(mddev_t *mddev)
2404 mdk_rdev_t *rdev;
2405 conf_t *conf;
2407 if (mddev->degraded > 0) {
2408 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
2409 mdname(mddev));
2410 return ERR_PTR(-EINVAL);
2413 /* Set new parameters */
2414 mddev->new_level = 10;
2415 /* new layout: far_copies = 1, near_copies = 2 */
2416 mddev->new_layout = (1<<8) + 2;
2417 mddev->new_chunk_sectors = mddev->chunk_sectors;
2418 mddev->delta_disks = mddev->raid_disks;
2419 mddev->raid_disks *= 2;
2420 /* make sure it will be not marked as dirty */
2421 mddev->recovery_cp = MaxSector;
2423 conf = setup_conf(mddev);
2424 if (!IS_ERR(conf)) {
2425 list_for_each_entry(rdev, &mddev->disks, same_set)
2426 if (rdev->raid_disk >= 0)
2427 rdev->new_raid_disk = rdev->raid_disk * 2;
2428 conf->barrier = 1;
2431 return conf;
2434 static void *raid10_takeover(mddev_t *mddev)
2436 struct raid0_private_data *raid0_priv;
2438 /* raid10 can take over:
2439 * raid0 - providing it has only two drives
2441 if (mddev->level == 0) {
2442 /* for raid0 takeover only one zone is supported */
2443 raid0_priv = mddev->private;
2444 if (raid0_priv->nr_strip_zones > 1) {
2445 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
2446 " with more than one zone.\n",
2447 mdname(mddev));
2448 return ERR_PTR(-EINVAL);
2450 return raid10_takeover_raid0(mddev);
2452 return ERR_PTR(-EINVAL);
2455 static struct mdk_personality raid10_personality =
2457 .name = "raid10",
2458 .level = 10,
2459 .owner = THIS_MODULE,
2460 .make_request = make_request,
2461 .run = run,
2462 .stop = stop,
2463 .status = status,
2464 .error_handler = error,
2465 .hot_add_disk = raid10_add_disk,
2466 .hot_remove_disk= raid10_remove_disk,
2467 .spare_active = raid10_spare_active,
2468 .sync_request = sync_request,
2469 .quiesce = raid10_quiesce,
2470 .size = raid10_size,
2471 .takeover = raid10_takeover,
2474 static int __init raid_init(void)
2476 return register_md_personality(&raid10_personality);
2479 static void raid_exit(void)
2481 unregister_md_personality(&raid10_personality);
2484 module_init(raid_init);
2485 module_exit(raid_exit);
2486 MODULE_LICENSE("GPL");
2487 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2488 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2489 MODULE_ALIAS("md-raid10");
2490 MODULE_ALIAS("md-level-10");