2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <asm/div64.h>
28 #include "extent_map.h"
30 #include "transaction.h"
31 #include "print-tree.h"
33 #include "async-thread.h"
43 struct btrfs_bio_stripe stripes
[];
46 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
47 struct btrfs_root
*root
,
48 struct btrfs_device
*device
);
49 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
);
51 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
52 (sizeof(struct btrfs_bio_stripe) * (n)))
54 static DEFINE_MUTEX(uuid_mutex
);
55 static LIST_HEAD(fs_uuids
);
57 void btrfs_lock_volumes(void)
59 mutex_lock(&uuid_mutex
);
62 void btrfs_unlock_volumes(void)
64 mutex_unlock(&uuid_mutex
);
67 static void lock_chunks(struct btrfs_root
*root
)
69 mutex_lock(&root
->fs_info
->chunk_mutex
);
72 static void unlock_chunks(struct btrfs_root
*root
)
74 mutex_unlock(&root
->fs_info
->chunk_mutex
);
77 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
79 struct btrfs_device
*device
;
80 WARN_ON(fs_devices
->opened
);
81 while (!list_empty(&fs_devices
->devices
)) {
82 device
= list_entry(fs_devices
->devices
.next
,
83 struct btrfs_device
, dev_list
);
84 list_del(&device
->dev_list
);
91 int btrfs_cleanup_fs_uuids(void)
93 struct btrfs_fs_devices
*fs_devices
;
95 while (!list_empty(&fs_uuids
)) {
96 fs_devices
= list_entry(fs_uuids
.next
,
97 struct btrfs_fs_devices
, list
);
98 list_del(&fs_devices
->list
);
99 free_fs_devices(fs_devices
);
104 static noinline
struct btrfs_device
*__find_device(struct list_head
*head
,
107 struct btrfs_device
*dev
;
109 list_for_each_entry(dev
, head
, dev_list
) {
110 if (dev
->devid
== devid
&&
111 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
118 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
120 struct btrfs_fs_devices
*fs_devices
;
122 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
123 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
129 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
130 struct bio
*head
, struct bio
*tail
)
133 struct bio
*old_head
;
135 old_head
= pending_bios
->head
;
136 pending_bios
->head
= head
;
137 if (pending_bios
->tail
)
138 tail
->bi_next
= old_head
;
140 pending_bios
->tail
= tail
;
144 * we try to collect pending bios for a device so we don't get a large
145 * number of procs sending bios down to the same device. This greatly
146 * improves the schedulers ability to collect and merge the bios.
148 * But, it also turns into a long list of bios to process and that is sure
149 * to eventually make the worker thread block. The solution here is to
150 * make some progress and then put this work struct back at the end of
151 * the list if the block device is congested. This way, multiple devices
152 * can make progress from a single worker thread.
154 static noinline
int run_scheduled_bios(struct btrfs_device
*device
)
157 struct backing_dev_info
*bdi
;
158 struct btrfs_fs_info
*fs_info
;
159 struct btrfs_pending_bios
*pending_bios
;
163 unsigned long num_run
;
164 unsigned long num_sync_run
;
165 unsigned long batch_run
= 0;
167 unsigned long last_waited
= 0;
170 bdi
= blk_get_backing_dev_info(device
->bdev
);
171 fs_info
= device
->dev_root
->fs_info
;
172 limit
= btrfs_async_submit_limit(fs_info
);
173 limit
= limit
* 2 / 3;
175 /* we want to make sure that every time we switch from the sync
176 * list to the normal list, we unplug
181 spin_lock(&device
->io_lock
);
186 /* take all the bios off the list at once and process them
187 * later on (without the lock held). But, remember the
188 * tail and other pointers so the bios can be properly reinserted
189 * into the list if we hit congestion
191 if (!force_reg
&& device
->pending_sync_bios
.head
) {
192 pending_bios
= &device
->pending_sync_bios
;
195 pending_bios
= &device
->pending_bios
;
199 pending
= pending_bios
->head
;
200 tail
= pending_bios
->tail
;
201 WARN_ON(pending
&& !tail
);
204 * if pending was null this time around, no bios need processing
205 * at all and we can stop. Otherwise it'll loop back up again
206 * and do an additional check so no bios are missed.
208 * device->running_pending is used to synchronize with the
211 if (device
->pending_sync_bios
.head
== NULL
&&
212 device
->pending_bios
.head
== NULL
) {
214 device
->running_pending
= 0;
217 device
->running_pending
= 1;
220 pending_bios
->head
= NULL
;
221 pending_bios
->tail
= NULL
;
223 spin_unlock(&device
->io_lock
);
226 * if we're doing the regular priority list, make sure we unplug
227 * for any high prio bios we've sent down
229 if (pending_bios
== &device
->pending_bios
&& num_sync_run
> 0) {
231 blk_run_backing_dev(bdi
, NULL
);
237 /* we want to work on both lists, but do more bios on the
238 * sync list than the regular list
241 pending_bios
!= &device
->pending_sync_bios
&&
242 device
->pending_sync_bios
.head
) ||
243 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
244 device
->pending_bios
.head
)) {
245 spin_lock(&device
->io_lock
);
246 requeue_list(pending_bios
, pending
, tail
);
251 pending
= pending
->bi_next
;
253 atomic_dec(&fs_info
->nr_async_bios
);
255 if (atomic_read(&fs_info
->nr_async_bios
) < limit
&&
256 waitqueue_active(&fs_info
->async_submit_wait
))
257 wake_up(&fs_info
->async_submit_wait
);
259 BUG_ON(atomic_read(&cur
->bi_cnt
) == 0);
261 if (cur
->bi_rw
& REQ_SYNC
)
264 submit_bio(cur
->bi_rw
, cur
);
267 if (need_resched()) {
269 blk_run_backing_dev(bdi
, NULL
);
276 * we made progress, there is more work to do and the bdi
277 * is now congested. Back off and let other work structs
280 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
281 fs_info
->fs_devices
->open_devices
> 1) {
282 struct io_context
*ioc
;
284 ioc
= current
->io_context
;
287 * the main goal here is that we don't want to
288 * block if we're going to be able to submit
289 * more requests without blocking.
291 * This code does two great things, it pokes into
292 * the elevator code from a filesystem _and_
293 * it makes assumptions about how batching works.
295 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
296 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
298 ioc
->last_waited
== last_waited
)) {
300 * we want to go through our batch of
301 * requests and stop. So, we copy out
302 * the ioc->last_waited time and test
303 * against it before looping
305 last_waited
= ioc
->last_waited
;
306 if (need_resched()) {
308 blk_run_backing_dev(bdi
, NULL
);
315 spin_lock(&device
->io_lock
);
316 requeue_list(pending_bios
, pending
, tail
);
317 device
->running_pending
= 1;
319 spin_unlock(&device
->io_lock
);
320 btrfs_requeue_work(&device
->work
);
327 blk_run_backing_dev(bdi
, NULL
);
330 * IO has already been through a long path to get here. Checksumming,
331 * async helper threads, perhaps compression. We've done a pretty
332 * good job of collecting a batch of IO and should just unplug
333 * the device right away.
335 * This will help anyone who is waiting on the IO, they might have
336 * already unplugged, but managed to do so before the bio they
337 * cared about found its way down here.
339 blk_run_backing_dev(bdi
, NULL
);
345 spin_lock(&device
->io_lock
);
346 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
348 spin_unlock(&device
->io_lock
);
354 static void pending_bios_fn(struct btrfs_work
*work
)
356 struct btrfs_device
*device
;
358 device
= container_of(work
, struct btrfs_device
, work
);
359 run_scheduled_bios(device
);
362 static noinline
int device_list_add(const char *path
,
363 struct btrfs_super_block
*disk_super
,
364 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
366 struct btrfs_device
*device
;
367 struct btrfs_fs_devices
*fs_devices
;
368 u64 found_transid
= btrfs_super_generation(disk_super
);
371 fs_devices
= find_fsid(disk_super
->fsid
);
373 fs_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
376 INIT_LIST_HEAD(&fs_devices
->devices
);
377 INIT_LIST_HEAD(&fs_devices
->alloc_list
);
378 list_add(&fs_devices
->list
, &fs_uuids
);
379 memcpy(fs_devices
->fsid
, disk_super
->fsid
, BTRFS_FSID_SIZE
);
380 fs_devices
->latest_devid
= devid
;
381 fs_devices
->latest_trans
= found_transid
;
382 mutex_init(&fs_devices
->device_list_mutex
);
385 device
= __find_device(&fs_devices
->devices
, devid
,
386 disk_super
->dev_item
.uuid
);
389 if (fs_devices
->opened
)
392 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
394 /* we can safely leave the fs_devices entry around */
397 device
->devid
= devid
;
398 device
->work
.func
= pending_bios_fn
;
399 memcpy(device
->uuid
, disk_super
->dev_item
.uuid
,
401 spin_lock_init(&device
->io_lock
);
402 device
->name
= kstrdup(path
, GFP_NOFS
);
407 INIT_LIST_HEAD(&device
->dev_alloc_list
);
409 mutex_lock(&fs_devices
->device_list_mutex
);
410 list_add(&device
->dev_list
, &fs_devices
->devices
);
411 mutex_unlock(&fs_devices
->device_list_mutex
);
413 device
->fs_devices
= fs_devices
;
414 fs_devices
->num_devices
++;
415 } else if (strcmp(device
->name
, path
)) {
416 name
= kstrdup(path
, GFP_NOFS
);
423 if (found_transid
> fs_devices
->latest_trans
) {
424 fs_devices
->latest_devid
= devid
;
425 fs_devices
->latest_trans
= found_transid
;
427 *fs_devices_ret
= fs_devices
;
431 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
433 struct btrfs_fs_devices
*fs_devices
;
434 struct btrfs_device
*device
;
435 struct btrfs_device
*orig_dev
;
437 fs_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
439 return ERR_PTR(-ENOMEM
);
441 INIT_LIST_HEAD(&fs_devices
->devices
);
442 INIT_LIST_HEAD(&fs_devices
->alloc_list
);
443 INIT_LIST_HEAD(&fs_devices
->list
);
444 mutex_init(&fs_devices
->device_list_mutex
);
445 fs_devices
->latest_devid
= orig
->latest_devid
;
446 fs_devices
->latest_trans
= orig
->latest_trans
;
447 memcpy(fs_devices
->fsid
, orig
->fsid
, sizeof(fs_devices
->fsid
));
449 mutex_lock(&orig
->device_list_mutex
);
450 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
451 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
455 device
->name
= kstrdup(orig_dev
->name
, GFP_NOFS
);
461 device
->devid
= orig_dev
->devid
;
462 device
->work
.func
= pending_bios_fn
;
463 memcpy(device
->uuid
, orig_dev
->uuid
, sizeof(device
->uuid
));
464 spin_lock_init(&device
->io_lock
);
465 INIT_LIST_HEAD(&device
->dev_list
);
466 INIT_LIST_HEAD(&device
->dev_alloc_list
);
468 list_add(&device
->dev_list
, &fs_devices
->devices
);
469 device
->fs_devices
= fs_devices
;
470 fs_devices
->num_devices
++;
472 mutex_unlock(&orig
->device_list_mutex
);
475 mutex_unlock(&orig
->device_list_mutex
);
476 free_fs_devices(fs_devices
);
477 return ERR_PTR(-ENOMEM
);
480 int btrfs_close_extra_devices(struct btrfs_fs_devices
*fs_devices
)
482 struct btrfs_device
*device
, *next
;
484 mutex_lock(&uuid_mutex
);
486 mutex_lock(&fs_devices
->device_list_mutex
);
487 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
488 if (device
->in_fs_metadata
)
492 close_bdev_exclusive(device
->bdev
, device
->mode
);
494 fs_devices
->open_devices
--;
496 if (device
->writeable
) {
497 list_del_init(&device
->dev_alloc_list
);
498 device
->writeable
= 0;
499 fs_devices
->rw_devices
--;
501 list_del_init(&device
->dev_list
);
502 fs_devices
->num_devices
--;
506 mutex_unlock(&fs_devices
->device_list_mutex
);
508 if (fs_devices
->seed
) {
509 fs_devices
= fs_devices
->seed
;
513 mutex_unlock(&uuid_mutex
);
517 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
519 struct btrfs_device
*device
;
521 if (--fs_devices
->opened
> 0)
524 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
526 close_bdev_exclusive(device
->bdev
, device
->mode
);
527 fs_devices
->open_devices
--;
529 if (device
->writeable
) {
530 list_del_init(&device
->dev_alloc_list
);
531 fs_devices
->rw_devices
--;
535 device
->writeable
= 0;
536 device
->in_fs_metadata
= 0;
538 WARN_ON(fs_devices
->open_devices
);
539 WARN_ON(fs_devices
->rw_devices
);
540 fs_devices
->opened
= 0;
541 fs_devices
->seeding
= 0;
546 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
548 struct btrfs_fs_devices
*seed_devices
= NULL
;
551 mutex_lock(&uuid_mutex
);
552 ret
= __btrfs_close_devices(fs_devices
);
553 if (!fs_devices
->opened
) {
554 seed_devices
= fs_devices
->seed
;
555 fs_devices
->seed
= NULL
;
557 mutex_unlock(&uuid_mutex
);
559 while (seed_devices
) {
560 fs_devices
= seed_devices
;
561 seed_devices
= fs_devices
->seed
;
562 __btrfs_close_devices(fs_devices
);
563 free_fs_devices(fs_devices
);
568 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
569 fmode_t flags
, void *holder
)
571 struct block_device
*bdev
;
572 struct list_head
*head
= &fs_devices
->devices
;
573 struct btrfs_device
*device
;
574 struct block_device
*latest_bdev
= NULL
;
575 struct buffer_head
*bh
;
576 struct btrfs_super_block
*disk_super
;
577 u64 latest_devid
= 0;
578 u64 latest_transid
= 0;
583 list_for_each_entry(device
, head
, dev_list
) {
589 bdev
= open_bdev_exclusive(device
->name
, flags
, holder
);
591 printk(KERN_INFO
"open %s failed\n", device
->name
);
594 set_blocksize(bdev
, 4096);
596 bh
= btrfs_read_dev_super(bdev
);
600 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
601 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
602 if (devid
!= device
->devid
)
605 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
609 device
->generation
= btrfs_super_generation(disk_super
);
610 if (!latest_transid
|| device
->generation
> latest_transid
) {
611 latest_devid
= devid
;
612 latest_transid
= device
->generation
;
616 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
617 device
->writeable
= 0;
619 device
->writeable
= !bdev_read_only(bdev
);
624 device
->in_fs_metadata
= 0;
625 device
->mode
= flags
;
627 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
628 fs_devices
->rotating
= 1;
630 fs_devices
->open_devices
++;
631 if (device
->writeable
) {
632 fs_devices
->rw_devices
++;
633 list_add(&device
->dev_alloc_list
,
634 &fs_devices
->alloc_list
);
641 close_bdev_exclusive(bdev
, FMODE_READ
);
645 if (fs_devices
->open_devices
== 0) {
649 fs_devices
->seeding
= seeding
;
650 fs_devices
->opened
= 1;
651 fs_devices
->latest_bdev
= latest_bdev
;
652 fs_devices
->latest_devid
= latest_devid
;
653 fs_devices
->latest_trans
= latest_transid
;
654 fs_devices
->total_rw_bytes
= 0;
659 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
660 fmode_t flags
, void *holder
)
664 mutex_lock(&uuid_mutex
);
665 if (fs_devices
->opened
) {
666 fs_devices
->opened
++;
669 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
671 mutex_unlock(&uuid_mutex
);
675 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
676 struct btrfs_fs_devices
**fs_devices_ret
)
678 struct btrfs_super_block
*disk_super
;
679 struct block_device
*bdev
;
680 struct buffer_head
*bh
;
685 mutex_lock(&uuid_mutex
);
687 bdev
= open_bdev_exclusive(path
, flags
, holder
);
694 ret
= set_blocksize(bdev
, 4096);
697 bh
= btrfs_read_dev_super(bdev
);
702 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
703 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
704 transid
= btrfs_super_generation(disk_super
);
705 if (disk_super
->label
[0])
706 printk(KERN_INFO
"device label %s ", disk_super
->label
);
708 /* FIXME, make a readl uuid parser */
709 printk(KERN_INFO
"device fsid %llx-%llx ",
710 *(unsigned long long *)disk_super
->fsid
,
711 *(unsigned long long *)(disk_super
->fsid
+ 8));
713 printk(KERN_CONT
"devid %llu transid %llu %s\n",
714 (unsigned long long)devid
, (unsigned long long)transid
, path
);
715 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
719 close_bdev_exclusive(bdev
, flags
);
721 mutex_unlock(&uuid_mutex
);
726 * this uses a pretty simple search, the expectation is that it is
727 * called very infrequently and that a given device has a small number
730 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
731 struct btrfs_device
*device
, u64 num_bytes
,
732 u64
*start
, u64
*max_avail
)
734 struct btrfs_key key
;
735 struct btrfs_root
*root
= device
->dev_root
;
736 struct btrfs_dev_extent
*dev_extent
= NULL
;
737 struct btrfs_path
*path
;
740 u64 search_start
= 0;
741 u64 search_end
= device
->total_bytes
;
745 struct extent_buffer
*l
;
747 path
= btrfs_alloc_path();
753 /* FIXME use last free of some kind */
755 /* we don't want to overwrite the superblock on the drive,
756 * so we make sure to start at an offset of at least 1MB
758 search_start
= max((u64
)1024 * 1024, search_start
);
760 if (root
->fs_info
->alloc_start
+ num_bytes
<= device
->total_bytes
)
761 search_start
= max(root
->fs_info
->alloc_start
, search_start
);
763 key
.objectid
= device
->devid
;
764 key
.offset
= search_start
;
765 key
.type
= BTRFS_DEV_EXTENT_KEY
;
766 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 0);
770 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
777 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
780 slot
= path
->slots
[0];
781 if (slot
>= btrfs_header_nritems(l
)) {
782 ret
= btrfs_next_leaf(root
, path
);
789 if (search_start
>= search_end
) {
793 *start
= search_start
;
797 *start
= last_byte
> search_start
?
798 last_byte
: search_start
;
799 if (search_end
<= *start
) {
805 btrfs_item_key_to_cpu(l
, &key
, slot
);
807 if (key
.objectid
< device
->devid
)
810 if (key
.objectid
> device
->devid
)
813 if (key
.offset
>= search_start
&& key
.offset
> last_byte
&&
815 if (last_byte
< search_start
)
816 last_byte
= search_start
;
817 hole_size
= key
.offset
- last_byte
;
819 if (hole_size
> *max_avail
)
820 *max_avail
= hole_size
;
822 if (key
.offset
> last_byte
&&
823 hole_size
>= num_bytes
) {
828 if (btrfs_key_type(&key
) != BTRFS_DEV_EXTENT_KEY
)
832 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
833 last_byte
= key
.offset
+ btrfs_dev_extent_length(l
, dev_extent
);
839 /* we have to make sure we didn't find an extent that has already
840 * been allocated by the map tree or the original allocation
842 BUG_ON(*start
< search_start
);
844 if (*start
+ num_bytes
> search_end
) {
848 /* check for pending inserts here */
852 btrfs_free_path(path
);
856 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
857 struct btrfs_device
*device
,
861 struct btrfs_path
*path
;
862 struct btrfs_root
*root
= device
->dev_root
;
863 struct btrfs_key key
;
864 struct btrfs_key found_key
;
865 struct extent_buffer
*leaf
= NULL
;
866 struct btrfs_dev_extent
*extent
= NULL
;
868 path
= btrfs_alloc_path();
872 key
.objectid
= device
->devid
;
874 key
.type
= BTRFS_DEV_EXTENT_KEY
;
876 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
878 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
879 BTRFS_DEV_EXTENT_KEY
);
881 leaf
= path
->nodes
[0];
882 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
883 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
884 struct btrfs_dev_extent
);
885 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
886 btrfs_dev_extent_length(leaf
, extent
) < start
);
888 } else if (ret
== 0) {
889 leaf
= path
->nodes
[0];
890 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
891 struct btrfs_dev_extent
);
895 if (device
->bytes_used
> 0)
896 device
->bytes_used
-= btrfs_dev_extent_length(leaf
, extent
);
897 ret
= btrfs_del_item(trans
, root
, path
);
900 btrfs_free_path(path
);
904 int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
905 struct btrfs_device
*device
,
906 u64 chunk_tree
, u64 chunk_objectid
,
907 u64 chunk_offset
, u64 start
, u64 num_bytes
)
910 struct btrfs_path
*path
;
911 struct btrfs_root
*root
= device
->dev_root
;
912 struct btrfs_dev_extent
*extent
;
913 struct extent_buffer
*leaf
;
914 struct btrfs_key key
;
916 WARN_ON(!device
->in_fs_metadata
);
917 path
= btrfs_alloc_path();
921 key
.objectid
= device
->devid
;
923 key
.type
= BTRFS_DEV_EXTENT_KEY
;
924 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
928 leaf
= path
->nodes
[0];
929 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
930 struct btrfs_dev_extent
);
931 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, chunk_tree
);
932 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
, chunk_objectid
);
933 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
935 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
936 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent
),
939 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
940 btrfs_mark_buffer_dirty(leaf
);
941 btrfs_free_path(path
);
945 static noinline
int find_next_chunk(struct btrfs_root
*root
,
946 u64 objectid
, u64
*offset
)
948 struct btrfs_path
*path
;
950 struct btrfs_key key
;
951 struct btrfs_chunk
*chunk
;
952 struct btrfs_key found_key
;
954 path
= btrfs_alloc_path();
957 key
.objectid
= objectid
;
958 key
.offset
= (u64
)-1;
959 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
961 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
967 ret
= btrfs_previous_item(root
, path
, 0, BTRFS_CHUNK_ITEM_KEY
);
971 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
973 if (found_key
.objectid
!= objectid
)
976 chunk
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
978 *offset
= found_key
.offset
+
979 btrfs_chunk_length(path
->nodes
[0], chunk
);
984 btrfs_free_path(path
);
988 static noinline
int find_next_devid(struct btrfs_root
*root
, u64
*objectid
)
991 struct btrfs_key key
;
992 struct btrfs_key found_key
;
993 struct btrfs_path
*path
;
995 root
= root
->fs_info
->chunk_root
;
997 path
= btrfs_alloc_path();
1001 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1002 key
.type
= BTRFS_DEV_ITEM_KEY
;
1003 key
.offset
= (u64
)-1;
1005 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1011 ret
= btrfs_previous_item(root
, path
, BTRFS_DEV_ITEMS_OBJECTID
,
1012 BTRFS_DEV_ITEM_KEY
);
1016 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1018 *objectid
= found_key
.offset
+ 1;
1022 btrfs_free_path(path
);
1027 * the device information is stored in the chunk root
1028 * the btrfs_device struct should be fully filled in
1030 int btrfs_add_device(struct btrfs_trans_handle
*trans
,
1031 struct btrfs_root
*root
,
1032 struct btrfs_device
*device
)
1035 struct btrfs_path
*path
;
1036 struct btrfs_dev_item
*dev_item
;
1037 struct extent_buffer
*leaf
;
1038 struct btrfs_key key
;
1041 root
= root
->fs_info
->chunk_root
;
1043 path
= btrfs_alloc_path();
1047 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1048 key
.type
= BTRFS_DEV_ITEM_KEY
;
1049 key
.offset
= device
->devid
;
1051 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1056 leaf
= path
->nodes
[0];
1057 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1059 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1060 btrfs_set_device_generation(leaf
, dev_item
, 0);
1061 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1062 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1063 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1064 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1065 btrfs_set_device_total_bytes(leaf
, dev_item
, device
->total_bytes
);
1066 btrfs_set_device_bytes_used(leaf
, dev_item
, device
->bytes_used
);
1067 btrfs_set_device_group(leaf
, dev_item
, 0);
1068 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1069 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1070 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1072 ptr
= (unsigned long)btrfs_device_uuid(dev_item
);
1073 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1074 ptr
= (unsigned long)btrfs_device_fsid(dev_item
);
1075 write_extent_buffer(leaf
, root
->fs_info
->fsid
, ptr
, BTRFS_UUID_SIZE
);
1076 btrfs_mark_buffer_dirty(leaf
);
1080 btrfs_free_path(path
);
1084 static int btrfs_rm_dev_item(struct btrfs_root
*root
,
1085 struct btrfs_device
*device
)
1088 struct btrfs_path
*path
;
1089 struct btrfs_key key
;
1090 struct btrfs_trans_handle
*trans
;
1092 root
= root
->fs_info
->chunk_root
;
1094 path
= btrfs_alloc_path();
1098 trans
= btrfs_start_transaction(root
, 0);
1099 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1100 key
.type
= BTRFS_DEV_ITEM_KEY
;
1101 key
.offset
= device
->devid
;
1104 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1113 ret
= btrfs_del_item(trans
, root
, path
);
1117 btrfs_free_path(path
);
1118 unlock_chunks(root
);
1119 btrfs_commit_transaction(trans
, root
);
1123 int btrfs_rm_device(struct btrfs_root
*root
, char *device_path
)
1125 struct btrfs_device
*device
;
1126 struct btrfs_device
*next_device
;
1127 struct block_device
*bdev
;
1128 struct buffer_head
*bh
= NULL
;
1129 struct btrfs_super_block
*disk_super
;
1136 mutex_lock(&uuid_mutex
);
1137 mutex_lock(&root
->fs_info
->volume_mutex
);
1139 all_avail
= root
->fs_info
->avail_data_alloc_bits
|
1140 root
->fs_info
->avail_system_alloc_bits
|
1141 root
->fs_info
->avail_metadata_alloc_bits
;
1143 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID10
) &&
1144 root
->fs_info
->fs_devices
->num_devices
<= 4) {
1145 printk(KERN_ERR
"btrfs: unable to go below four devices "
1151 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID1
) &&
1152 root
->fs_info
->fs_devices
->num_devices
<= 2) {
1153 printk(KERN_ERR
"btrfs: unable to go below two "
1154 "devices on raid1\n");
1159 if (strcmp(device_path
, "missing") == 0) {
1160 struct list_head
*devices
;
1161 struct btrfs_device
*tmp
;
1164 devices
= &root
->fs_info
->fs_devices
->devices
;
1165 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1166 list_for_each_entry(tmp
, devices
, dev_list
) {
1167 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
1172 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1177 printk(KERN_ERR
"btrfs: no missing devices found to "
1182 bdev
= open_bdev_exclusive(device_path
, FMODE_READ
,
1183 root
->fs_info
->bdev_holder
);
1185 ret
= PTR_ERR(bdev
);
1189 set_blocksize(bdev
, 4096);
1190 bh
= btrfs_read_dev_super(bdev
);
1195 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1196 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1197 dev_uuid
= disk_super
->dev_item
.uuid
;
1198 device
= btrfs_find_device(root
, devid
, dev_uuid
,
1206 if (device
->writeable
&& root
->fs_info
->fs_devices
->rw_devices
== 1) {
1207 printk(KERN_ERR
"btrfs: unable to remove the only writeable "
1213 if (device
->writeable
) {
1214 list_del_init(&device
->dev_alloc_list
);
1215 root
->fs_info
->fs_devices
->rw_devices
--;
1218 ret
= btrfs_shrink_device(device
, 0);
1222 ret
= btrfs_rm_dev_item(root
->fs_info
->chunk_root
, device
);
1226 device
->in_fs_metadata
= 0;
1229 * the device list mutex makes sure that we don't change
1230 * the device list while someone else is writing out all
1231 * the device supers.
1233 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1234 list_del_init(&device
->dev_list
);
1235 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1237 device
->fs_devices
->num_devices
--;
1239 next_device
= list_entry(root
->fs_info
->fs_devices
->devices
.next
,
1240 struct btrfs_device
, dev_list
);
1241 if (device
->bdev
== root
->fs_info
->sb
->s_bdev
)
1242 root
->fs_info
->sb
->s_bdev
= next_device
->bdev
;
1243 if (device
->bdev
== root
->fs_info
->fs_devices
->latest_bdev
)
1244 root
->fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1247 close_bdev_exclusive(device
->bdev
, device
->mode
);
1248 device
->bdev
= NULL
;
1249 device
->fs_devices
->open_devices
--;
1252 num_devices
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
1253 btrfs_set_super_num_devices(&root
->fs_info
->super_copy
, num_devices
);
1255 if (device
->fs_devices
->open_devices
== 0) {
1256 struct btrfs_fs_devices
*fs_devices
;
1257 fs_devices
= root
->fs_info
->fs_devices
;
1258 while (fs_devices
) {
1259 if (fs_devices
->seed
== device
->fs_devices
)
1261 fs_devices
= fs_devices
->seed
;
1263 fs_devices
->seed
= device
->fs_devices
->seed
;
1264 device
->fs_devices
->seed
= NULL
;
1265 __btrfs_close_devices(device
->fs_devices
);
1266 free_fs_devices(device
->fs_devices
);
1270 * at this point, the device is zero sized. We want to
1271 * remove it from the devices list and zero out the old super
1273 if (device
->writeable
) {
1274 /* make sure this device isn't detected as part of
1277 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
1278 set_buffer_dirty(bh
);
1279 sync_dirty_buffer(bh
);
1282 kfree(device
->name
);
1290 close_bdev_exclusive(bdev
, FMODE_READ
);
1292 mutex_unlock(&root
->fs_info
->volume_mutex
);
1293 mutex_unlock(&uuid_mutex
);
1298 * does all the dirty work required for changing file system's UUID.
1300 static int btrfs_prepare_sprout(struct btrfs_trans_handle
*trans
,
1301 struct btrfs_root
*root
)
1303 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
1304 struct btrfs_fs_devices
*old_devices
;
1305 struct btrfs_fs_devices
*seed_devices
;
1306 struct btrfs_super_block
*disk_super
= &root
->fs_info
->super_copy
;
1307 struct btrfs_device
*device
;
1310 BUG_ON(!mutex_is_locked(&uuid_mutex
));
1311 if (!fs_devices
->seeding
)
1314 seed_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
1318 old_devices
= clone_fs_devices(fs_devices
);
1319 if (IS_ERR(old_devices
)) {
1320 kfree(seed_devices
);
1321 return PTR_ERR(old_devices
);
1324 list_add(&old_devices
->list
, &fs_uuids
);
1326 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
1327 seed_devices
->opened
= 1;
1328 INIT_LIST_HEAD(&seed_devices
->devices
);
1329 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
1330 mutex_init(&seed_devices
->device_list_mutex
);
1331 list_splice_init(&fs_devices
->devices
, &seed_devices
->devices
);
1332 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
1333 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
) {
1334 device
->fs_devices
= seed_devices
;
1337 fs_devices
->seeding
= 0;
1338 fs_devices
->num_devices
= 0;
1339 fs_devices
->open_devices
= 0;
1340 fs_devices
->seed
= seed_devices
;
1342 generate_random_uuid(fs_devices
->fsid
);
1343 memcpy(root
->fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1344 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1345 super_flags
= btrfs_super_flags(disk_super
) &
1346 ~BTRFS_SUPER_FLAG_SEEDING
;
1347 btrfs_set_super_flags(disk_super
, super_flags
);
1353 * strore the expected generation for seed devices in device items.
1355 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
1356 struct btrfs_root
*root
)
1358 struct btrfs_path
*path
;
1359 struct extent_buffer
*leaf
;
1360 struct btrfs_dev_item
*dev_item
;
1361 struct btrfs_device
*device
;
1362 struct btrfs_key key
;
1363 u8 fs_uuid
[BTRFS_UUID_SIZE
];
1364 u8 dev_uuid
[BTRFS_UUID_SIZE
];
1368 path
= btrfs_alloc_path();
1372 root
= root
->fs_info
->chunk_root
;
1373 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1375 key
.type
= BTRFS_DEV_ITEM_KEY
;
1378 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1382 leaf
= path
->nodes
[0];
1384 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1385 ret
= btrfs_next_leaf(root
, path
);
1390 leaf
= path
->nodes
[0];
1391 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1392 btrfs_release_path(root
, path
);
1396 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1397 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
1398 key
.type
!= BTRFS_DEV_ITEM_KEY
)
1401 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
1402 struct btrfs_dev_item
);
1403 devid
= btrfs_device_id(leaf
, dev_item
);
1404 read_extent_buffer(leaf
, dev_uuid
,
1405 (unsigned long)btrfs_device_uuid(dev_item
),
1407 read_extent_buffer(leaf
, fs_uuid
,
1408 (unsigned long)btrfs_device_fsid(dev_item
),
1410 device
= btrfs_find_device(root
, devid
, dev_uuid
, fs_uuid
);
1413 if (device
->fs_devices
->seeding
) {
1414 btrfs_set_device_generation(leaf
, dev_item
,
1415 device
->generation
);
1416 btrfs_mark_buffer_dirty(leaf
);
1424 btrfs_free_path(path
);
1428 int btrfs_init_new_device(struct btrfs_root
*root
, char *device_path
)
1430 struct btrfs_trans_handle
*trans
;
1431 struct btrfs_device
*device
;
1432 struct block_device
*bdev
;
1433 struct list_head
*devices
;
1434 struct super_block
*sb
= root
->fs_info
->sb
;
1436 int seeding_dev
= 0;
1439 if ((sb
->s_flags
& MS_RDONLY
) && !root
->fs_info
->fs_devices
->seeding
)
1442 bdev
= open_bdev_exclusive(device_path
, 0, root
->fs_info
->bdev_holder
);
1444 return PTR_ERR(bdev
);
1446 if (root
->fs_info
->fs_devices
->seeding
) {
1448 down_write(&sb
->s_umount
);
1449 mutex_lock(&uuid_mutex
);
1452 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
1453 mutex_lock(&root
->fs_info
->volume_mutex
);
1455 devices
= &root
->fs_info
->fs_devices
->devices
;
1457 * we have the volume lock, so we don't need the extra
1458 * device list mutex while reading the list here.
1460 list_for_each_entry(device
, devices
, dev_list
) {
1461 if (device
->bdev
== bdev
) {
1467 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
1469 /* we can safely leave the fs_devices entry around */
1474 device
->name
= kstrdup(device_path
, GFP_NOFS
);
1475 if (!device
->name
) {
1481 ret
= find_next_devid(root
, &device
->devid
);
1487 trans
= btrfs_start_transaction(root
, 0);
1490 device
->writeable
= 1;
1491 device
->work
.func
= pending_bios_fn
;
1492 generate_random_uuid(device
->uuid
);
1493 spin_lock_init(&device
->io_lock
);
1494 device
->generation
= trans
->transid
;
1495 device
->io_width
= root
->sectorsize
;
1496 device
->io_align
= root
->sectorsize
;
1497 device
->sector_size
= root
->sectorsize
;
1498 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
1499 device
->disk_total_bytes
= device
->total_bytes
;
1500 device
->dev_root
= root
->fs_info
->dev_root
;
1501 device
->bdev
= bdev
;
1502 device
->in_fs_metadata
= 1;
1504 set_blocksize(device
->bdev
, 4096);
1507 sb
->s_flags
&= ~MS_RDONLY
;
1508 ret
= btrfs_prepare_sprout(trans
, root
);
1512 device
->fs_devices
= root
->fs_info
->fs_devices
;
1515 * we don't want write_supers to jump in here with our device
1518 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1519 list_add(&device
->dev_list
, &root
->fs_info
->fs_devices
->devices
);
1520 list_add(&device
->dev_alloc_list
,
1521 &root
->fs_info
->fs_devices
->alloc_list
);
1522 root
->fs_info
->fs_devices
->num_devices
++;
1523 root
->fs_info
->fs_devices
->open_devices
++;
1524 root
->fs_info
->fs_devices
->rw_devices
++;
1525 root
->fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
1527 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
1528 root
->fs_info
->fs_devices
->rotating
= 1;
1530 total_bytes
= btrfs_super_total_bytes(&root
->fs_info
->super_copy
);
1531 btrfs_set_super_total_bytes(&root
->fs_info
->super_copy
,
1532 total_bytes
+ device
->total_bytes
);
1534 total_bytes
= btrfs_super_num_devices(&root
->fs_info
->super_copy
);
1535 btrfs_set_super_num_devices(&root
->fs_info
->super_copy
,
1537 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1540 ret
= init_first_rw_device(trans
, root
, device
);
1542 ret
= btrfs_finish_sprout(trans
, root
);
1545 ret
= btrfs_add_device(trans
, root
, device
);
1549 * we've got more storage, clear any full flags on the space
1552 btrfs_clear_space_info_full(root
->fs_info
);
1554 unlock_chunks(root
);
1555 btrfs_commit_transaction(trans
, root
);
1558 mutex_unlock(&uuid_mutex
);
1559 up_write(&sb
->s_umount
);
1561 ret
= btrfs_relocate_sys_chunks(root
);
1565 mutex_unlock(&root
->fs_info
->volume_mutex
);
1568 close_bdev_exclusive(bdev
, 0);
1570 mutex_unlock(&uuid_mutex
);
1571 up_write(&sb
->s_umount
);
1576 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
1577 struct btrfs_device
*device
)
1580 struct btrfs_path
*path
;
1581 struct btrfs_root
*root
;
1582 struct btrfs_dev_item
*dev_item
;
1583 struct extent_buffer
*leaf
;
1584 struct btrfs_key key
;
1586 root
= device
->dev_root
->fs_info
->chunk_root
;
1588 path
= btrfs_alloc_path();
1592 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1593 key
.type
= BTRFS_DEV_ITEM_KEY
;
1594 key
.offset
= device
->devid
;
1596 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1605 leaf
= path
->nodes
[0];
1606 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1608 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1609 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1610 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1611 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1612 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1613 btrfs_set_device_total_bytes(leaf
, dev_item
, device
->disk_total_bytes
);
1614 btrfs_set_device_bytes_used(leaf
, dev_item
, device
->bytes_used
);
1615 btrfs_mark_buffer_dirty(leaf
);
1618 btrfs_free_path(path
);
1622 static int __btrfs_grow_device(struct btrfs_trans_handle
*trans
,
1623 struct btrfs_device
*device
, u64 new_size
)
1625 struct btrfs_super_block
*super_copy
=
1626 &device
->dev_root
->fs_info
->super_copy
;
1627 u64 old_total
= btrfs_super_total_bytes(super_copy
);
1628 u64 diff
= new_size
- device
->total_bytes
;
1630 if (!device
->writeable
)
1632 if (new_size
<= device
->total_bytes
)
1635 btrfs_set_super_total_bytes(super_copy
, old_total
+ diff
);
1636 device
->fs_devices
->total_rw_bytes
+= diff
;
1638 device
->total_bytes
= new_size
;
1639 device
->disk_total_bytes
= new_size
;
1640 btrfs_clear_space_info_full(device
->dev_root
->fs_info
);
1642 return btrfs_update_device(trans
, device
);
1645 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
1646 struct btrfs_device
*device
, u64 new_size
)
1649 lock_chunks(device
->dev_root
);
1650 ret
= __btrfs_grow_device(trans
, device
, new_size
);
1651 unlock_chunks(device
->dev_root
);
1655 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
1656 struct btrfs_root
*root
,
1657 u64 chunk_tree
, u64 chunk_objectid
,
1661 struct btrfs_path
*path
;
1662 struct btrfs_key key
;
1664 root
= root
->fs_info
->chunk_root
;
1665 path
= btrfs_alloc_path();
1669 key
.objectid
= chunk_objectid
;
1670 key
.offset
= chunk_offset
;
1671 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
1673 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1676 ret
= btrfs_del_item(trans
, root
, path
);
1679 btrfs_free_path(path
);
1683 static int btrfs_del_sys_chunk(struct btrfs_root
*root
, u64 chunk_objectid
, u64
1686 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
1687 struct btrfs_disk_key
*disk_key
;
1688 struct btrfs_chunk
*chunk
;
1695 struct btrfs_key key
;
1697 array_size
= btrfs_super_sys_array_size(super_copy
);
1699 ptr
= super_copy
->sys_chunk_array
;
1702 while (cur
< array_size
) {
1703 disk_key
= (struct btrfs_disk_key
*)ptr
;
1704 btrfs_disk_key_to_cpu(&key
, disk_key
);
1706 len
= sizeof(*disk_key
);
1708 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
1709 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
1710 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
1711 len
+= btrfs_chunk_item_size(num_stripes
);
1716 if (key
.objectid
== chunk_objectid
&&
1717 key
.offset
== chunk_offset
) {
1718 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
1720 btrfs_set_super_sys_array_size(super_copy
, array_size
);
1729 static int btrfs_relocate_chunk(struct btrfs_root
*root
,
1730 u64 chunk_tree
, u64 chunk_objectid
,
1733 struct extent_map_tree
*em_tree
;
1734 struct btrfs_root
*extent_root
;
1735 struct btrfs_trans_handle
*trans
;
1736 struct extent_map
*em
;
1737 struct map_lookup
*map
;
1741 root
= root
->fs_info
->chunk_root
;
1742 extent_root
= root
->fs_info
->extent_root
;
1743 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
1745 ret
= btrfs_can_relocate(extent_root
, chunk_offset
);
1749 /* step one, relocate all the extents inside this chunk */
1750 ret
= btrfs_relocate_block_group(extent_root
, chunk_offset
);
1754 trans
= btrfs_start_transaction(root
, 0);
1760 * step two, delete the device extents and the
1761 * chunk tree entries
1763 read_lock(&em_tree
->lock
);
1764 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
1765 read_unlock(&em_tree
->lock
);
1767 BUG_ON(em
->start
> chunk_offset
||
1768 em
->start
+ em
->len
< chunk_offset
);
1769 map
= (struct map_lookup
*)em
->bdev
;
1771 for (i
= 0; i
< map
->num_stripes
; i
++) {
1772 ret
= btrfs_free_dev_extent(trans
, map
->stripes
[i
].dev
,
1773 map
->stripes
[i
].physical
);
1776 if (map
->stripes
[i
].dev
) {
1777 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
1781 ret
= btrfs_free_chunk(trans
, root
, chunk_tree
, chunk_objectid
,
1786 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
1787 ret
= btrfs_del_sys_chunk(root
, chunk_objectid
, chunk_offset
);
1791 ret
= btrfs_remove_block_group(trans
, extent_root
, chunk_offset
);
1794 write_lock(&em_tree
->lock
);
1795 remove_extent_mapping(em_tree
, em
);
1796 write_unlock(&em_tree
->lock
);
1801 /* once for the tree */
1802 free_extent_map(em
);
1804 free_extent_map(em
);
1806 unlock_chunks(root
);
1807 btrfs_end_transaction(trans
, root
);
1811 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
)
1813 struct btrfs_root
*chunk_root
= root
->fs_info
->chunk_root
;
1814 struct btrfs_path
*path
;
1815 struct extent_buffer
*leaf
;
1816 struct btrfs_chunk
*chunk
;
1817 struct btrfs_key key
;
1818 struct btrfs_key found_key
;
1819 u64 chunk_tree
= chunk_root
->root_key
.objectid
;
1821 bool retried
= false;
1825 path
= btrfs_alloc_path();
1830 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
1831 key
.offset
= (u64
)-1;
1832 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
1835 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
1840 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
1847 leaf
= path
->nodes
[0];
1848 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1850 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
1851 struct btrfs_chunk
);
1852 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
1853 btrfs_release_path(chunk_root
, path
);
1855 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
1856 ret
= btrfs_relocate_chunk(chunk_root
, chunk_tree
,
1865 if (found_key
.offset
== 0)
1867 key
.offset
= found_key
.offset
- 1;
1870 if (failed
&& !retried
) {
1874 } else if (failed
&& retried
) {
1879 btrfs_free_path(path
);
1883 static u64
div_factor(u64 num
, int factor
)
1892 int btrfs_balance(struct btrfs_root
*dev_root
)
1895 struct list_head
*devices
= &dev_root
->fs_info
->fs_devices
->devices
;
1896 struct btrfs_device
*device
;
1899 struct btrfs_path
*path
;
1900 struct btrfs_key key
;
1901 struct btrfs_chunk
*chunk
;
1902 struct btrfs_root
*chunk_root
= dev_root
->fs_info
->chunk_root
;
1903 struct btrfs_trans_handle
*trans
;
1904 struct btrfs_key found_key
;
1906 if (dev_root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
1909 mutex_lock(&dev_root
->fs_info
->volume_mutex
);
1910 dev_root
= dev_root
->fs_info
->dev_root
;
1912 /* step one make some room on all the devices */
1913 list_for_each_entry(device
, devices
, dev_list
) {
1914 old_size
= device
->total_bytes
;
1915 size_to_free
= div_factor(old_size
, 1);
1916 size_to_free
= min(size_to_free
, (u64
)1 * 1024 * 1024);
1917 if (!device
->writeable
||
1918 device
->total_bytes
- device
->bytes_used
> size_to_free
)
1921 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
1926 trans
= btrfs_start_transaction(dev_root
, 0);
1929 ret
= btrfs_grow_device(trans
, device
, old_size
);
1932 btrfs_end_transaction(trans
, dev_root
);
1935 /* step two, relocate all the chunks */
1936 path
= btrfs_alloc_path();
1939 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
1940 key
.offset
= (u64
)-1;
1941 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
1944 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
1949 * this shouldn't happen, it means the last relocate
1955 ret
= btrfs_previous_item(chunk_root
, path
, 0,
1956 BTRFS_CHUNK_ITEM_KEY
);
1960 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1962 if (found_key
.objectid
!= key
.objectid
)
1965 chunk
= btrfs_item_ptr(path
->nodes
[0],
1967 struct btrfs_chunk
);
1968 /* chunk zero is special */
1969 if (found_key
.offset
== 0)
1972 btrfs_release_path(chunk_root
, path
);
1973 ret
= btrfs_relocate_chunk(chunk_root
,
1974 chunk_root
->root_key
.objectid
,
1977 BUG_ON(ret
&& ret
!= -ENOSPC
);
1978 key
.offset
= found_key
.offset
- 1;
1982 btrfs_free_path(path
);
1983 mutex_unlock(&dev_root
->fs_info
->volume_mutex
);
1988 * shrinking a device means finding all of the device extents past
1989 * the new size, and then following the back refs to the chunks.
1990 * The chunk relocation code actually frees the device extent
1992 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
1994 struct btrfs_trans_handle
*trans
;
1995 struct btrfs_root
*root
= device
->dev_root
;
1996 struct btrfs_dev_extent
*dev_extent
= NULL
;
1997 struct btrfs_path
*path
;
2005 bool retried
= false;
2006 struct extent_buffer
*l
;
2007 struct btrfs_key key
;
2008 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
2009 u64 old_total
= btrfs_super_total_bytes(super_copy
);
2010 u64 old_size
= device
->total_bytes
;
2011 u64 diff
= device
->total_bytes
- new_size
;
2013 if (new_size
>= device
->total_bytes
)
2016 path
= btrfs_alloc_path();
2024 device
->total_bytes
= new_size
;
2025 if (device
->writeable
)
2026 device
->fs_devices
->total_rw_bytes
-= diff
;
2027 unlock_chunks(root
);
2030 key
.objectid
= device
->devid
;
2031 key
.offset
= (u64
)-1;
2032 key
.type
= BTRFS_DEV_EXTENT_KEY
;
2035 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2039 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
2044 btrfs_release_path(root
, path
);
2049 slot
= path
->slots
[0];
2050 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
2052 if (key
.objectid
!= device
->devid
) {
2053 btrfs_release_path(root
, path
);
2057 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
2058 length
= btrfs_dev_extent_length(l
, dev_extent
);
2060 if (key
.offset
+ length
<= new_size
) {
2061 btrfs_release_path(root
, path
);
2065 chunk_tree
= btrfs_dev_extent_chunk_tree(l
, dev_extent
);
2066 chunk_objectid
= btrfs_dev_extent_chunk_objectid(l
, dev_extent
);
2067 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
2068 btrfs_release_path(root
, path
);
2070 ret
= btrfs_relocate_chunk(root
, chunk_tree
, chunk_objectid
,
2072 if (ret
&& ret
!= -ENOSPC
)
2079 if (failed
&& !retried
) {
2083 } else if (failed
&& retried
) {
2087 device
->total_bytes
= old_size
;
2088 if (device
->writeable
)
2089 device
->fs_devices
->total_rw_bytes
+= diff
;
2090 unlock_chunks(root
);
2094 /* Shrinking succeeded, else we would be at "done". */
2095 trans
= btrfs_start_transaction(root
, 0);
2098 device
->disk_total_bytes
= new_size
;
2099 /* Now btrfs_update_device() will change the on-disk size. */
2100 ret
= btrfs_update_device(trans
, device
);
2102 unlock_chunks(root
);
2103 btrfs_end_transaction(trans
, root
);
2106 WARN_ON(diff
> old_total
);
2107 btrfs_set_super_total_bytes(super_copy
, old_total
- diff
);
2108 unlock_chunks(root
);
2109 btrfs_end_transaction(trans
, root
);
2111 btrfs_free_path(path
);
2115 static int btrfs_add_system_chunk(struct btrfs_trans_handle
*trans
,
2116 struct btrfs_root
*root
,
2117 struct btrfs_key
*key
,
2118 struct btrfs_chunk
*chunk
, int item_size
)
2120 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
2121 struct btrfs_disk_key disk_key
;
2125 array_size
= btrfs_super_sys_array_size(super_copy
);
2126 if (array_size
+ item_size
> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
)
2129 ptr
= super_copy
->sys_chunk_array
+ array_size
;
2130 btrfs_cpu_key_to_disk(&disk_key
, key
);
2131 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
2132 ptr
+= sizeof(disk_key
);
2133 memcpy(ptr
, chunk
, item_size
);
2134 item_size
+= sizeof(disk_key
);
2135 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
2139 static noinline u64
chunk_bytes_by_type(u64 type
, u64 calc_size
,
2140 int num_stripes
, int sub_stripes
)
2142 if (type
& (BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_DUP
))
2144 else if (type
& BTRFS_BLOCK_GROUP_RAID10
)
2145 return calc_size
* (num_stripes
/ sub_stripes
);
2147 return calc_size
* num_stripes
;
2150 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
2151 struct btrfs_root
*extent_root
,
2152 struct map_lookup
**map_ret
,
2153 u64
*num_bytes
, u64
*stripe_size
,
2154 u64 start
, u64 type
)
2156 struct btrfs_fs_info
*info
= extent_root
->fs_info
;
2157 struct btrfs_device
*device
= NULL
;
2158 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
2159 struct list_head
*cur
;
2160 struct map_lookup
*map
= NULL
;
2161 struct extent_map_tree
*em_tree
;
2162 struct extent_map
*em
;
2163 struct list_head private_devs
;
2164 int min_stripe_size
= 1 * 1024 * 1024;
2165 u64 calc_size
= 1024 * 1024 * 1024;
2166 u64 max_chunk_size
= calc_size
;
2171 int num_stripes
= 1;
2172 int min_stripes
= 1;
2173 int sub_stripes
= 0;
2177 int stripe_len
= 64 * 1024;
2179 if ((type
& BTRFS_BLOCK_GROUP_RAID1
) &&
2180 (type
& BTRFS_BLOCK_GROUP_DUP
)) {
2182 type
&= ~BTRFS_BLOCK_GROUP_DUP
;
2184 if (list_empty(&fs_devices
->alloc_list
))
2187 if (type
& (BTRFS_BLOCK_GROUP_RAID0
)) {
2188 num_stripes
= fs_devices
->rw_devices
;
2191 if (type
& (BTRFS_BLOCK_GROUP_DUP
)) {
2195 if (type
& (BTRFS_BLOCK_GROUP_RAID1
)) {
2196 if (fs_devices
->rw_devices
< 2)
2201 if (type
& (BTRFS_BLOCK_GROUP_RAID10
)) {
2202 num_stripes
= fs_devices
->rw_devices
;
2203 if (num_stripes
< 4)
2205 num_stripes
&= ~(u32
)1;
2210 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
2211 max_chunk_size
= 10 * calc_size
;
2212 min_stripe_size
= 64 * 1024 * 1024;
2213 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
2214 max_chunk_size
= 256 * 1024 * 1024;
2215 min_stripe_size
= 32 * 1024 * 1024;
2216 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2217 calc_size
= 8 * 1024 * 1024;
2218 max_chunk_size
= calc_size
* 2;
2219 min_stripe_size
= 1 * 1024 * 1024;
2222 /* we don't want a chunk larger than 10% of writeable space */
2223 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
2228 if (!map
|| map
->num_stripes
!= num_stripes
) {
2230 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
2233 map
->num_stripes
= num_stripes
;
2236 if (calc_size
* num_stripes
> max_chunk_size
) {
2237 calc_size
= max_chunk_size
;
2238 do_div(calc_size
, num_stripes
);
2239 do_div(calc_size
, stripe_len
);
2240 calc_size
*= stripe_len
;
2243 /* we don't want tiny stripes */
2245 calc_size
= max_t(u64
, min_stripe_size
, calc_size
);
2248 * we're about to do_div by the stripe_len so lets make sure
2249 * we end up with something bigger than a stripe
2251 calc_size
= max_t(u64
, calc_size
, stripe_len
* 4);
2253 do_div(calc_size
, stripe_len
);
2254 calc_size
*= stripe_len
;
2256 cur
= fs_devices
->alloc_list
.next
;
2259 if (type
& BTRFS_BLOCK_GROUP_DUP
)
2260 min_free
= calc_size
* 2;
2262 min_free
= calc_size
;
2265 * we add 1MB because we never use the first 1MB of the device, unless
2266 * we've looped, then we are likely allocating the maximum amount of
2267 * space left already
2270 min_free
+= 1024 * 1024;
2272 INIT_LIST_HEAD(&private_devs
);
2273 while (index
< num_stripes
) {
2274 device
= list_entry(cur
, struct btrfs_device
, dev_alloc_list
);
2275 BUG_ON(!device
->writeable
);
2276 if (device
->total_bytes
> device
->bytes_used
)
2277 avail
= device
->total_bytes
- device
->bytes_used
;
2282 if (device
->in_fs_metadata
&& avail
>= min_free
) {
2283 ret
= find_free_dev_extent(trans
, device
,
2284 min_free
, &dev_offset
,
2287 list_move_tail(&device
->dev_alloc_list
,
2289 map
->stripes
[index
].dev
= device
;
2290 map
->stripes
[index
].physical
= dev_offset
;
2292 if (type
& BTRFS_BLOCK_GROUP_DUP
) {
2293 map
->stripes
[index
].dev
= device
;
2294 map
->stripes
[index
].physical
=
2295 dev_offset
+ calc_size
;
2299 } else if (device
->in_fs_metadata
&& avail
> max_avail
)
2301 if (cur
== &fs_devices
->alloc_list
)
2304 list_splice(&private_devs
, &fs_devices
->alloc_list
);
2305 if (index
< num_stripes
) {
2306 if (index
>= min_stripes
) {
2307 num_stripes
= index
;
2308 if (type
& (BTRFS_BLOCK_GROUP_RAID10
)) {
2309 num_stripes
/= sub_stripes
;
2310 num_stripes
*= sub_stripes
;
2315 if (!looped
&& max_avail
> 0) {
2317 calc_size
= max_avail
;
2323 map
->sector_size
= extent_root
->sectorsize
;
2324 map
->stripe_len
= stripe_len
;
2325 map
->io_align
= stripe_len
;
2326 map
->io_width
= stripe_len
;
2328 map
->num_stripes
= num_stripes
;
2329 map
->sub_stripes
= sub_stripes
;
2332 *stripe_size
= calc_size
;
2333 *num_bytes
= chunk_bytes_by_type(type
, calc_size
,
2334 num_stripes
, sub_stripes
);
2336 em
= alloc_extent_map(GFP_NOFS
);
2341 em
->bdev
= (struct block_device
*)map
;
2343 em
->len
= *num_bytes
;
2344 em
->block_start
= 0;
2345 em
->block_len
= em
->len
;
2347 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
2348 write_lock(&em_tree
->lock
);
2349 ret
= add_extent_mapping(em_tree
, em
);
2350 write_unlock(&em_tree
->lock
);
2352 free_extent_map(em
);
2354 ret
= btrfs_make_block_group(trans
, extent_root
, 0, type
,
2355 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
2360 while (index
< map
->num_stripes
) {
2361 device
= map
->stripes
[index
].dev
;
2362 dev_offset
= map
->stripes
[index
].physical
;
2364 ret
= btrfs_alloc_dev_extent(trans
, device
,
2365 info
->chunk_root
->root_key
.objectid
,
2366 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
2367 start
, dev_offset
, calc_size
);
2375 static int __finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
2376 struct btrfs_root
*extent_root
,
2377 struct map_lookup
*map
, u64 chunk_offset
,
2378 u64 chunk_size
, u64 stripe_size
)
2381 struct btrfs_key key
;
2382 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
2383 struct btrfs_device
*device
;
2384 struct btrfs_chunk
*chunk
;
2385 struct btrfs_stripe
*stripe
;
2386 size_t item_size
= btrfs_chunk_item_size(map
->num_stripes
);
2390 chunk
= kzalloc(item_size
, GFP_NOFS
);
2395 while (index
< map
->num_stripes
) {
2396 device
= map
->stripes
[index
].dev
;
2397 device
->bytes_used
+= stripe_size
;
2398 ret
= btrfs_update_device(trans
, device
);
2404 stripe
= &chunk
->stripe
;
2405 while (index
< map
->num_stripes
) {
2406 device
= map
->stripes
[index
].dev
;
2407 dev_offset
= map
->stripes
[index
].physical
;
2409 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
2410 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
2411 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
2416 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
2417 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
2418 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
2419 btrfs_set_stack_chunk_type(chunk
, map
->type
);
2420 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
2421 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
2422 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
2423 btrfs_set_stack_chunk_sector_size(chunk
, extent_root
->sectorsize
);
2424 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
2426 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2427 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2428 key
.offset
= chunk_offset
;
2430 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
2433 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2434 ret
= btrfs_add_system_chunk(trans
, chunk_root
, &key
, chunk
,
2443 * Chunk allocation falls into two parts. The first part does works
2444 * that make the new allocated chunk useable, but not do any operation
2445 * that modifies the chunk tree. The second part does the works that
2446 * require modifying the chunk tree. This division is important for the
2447 * bootstrap process of adding storage to a seed btrfs.
2449 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
2450 struct btrfs_root
*extent_root
, u64 type
)
2455 struct map_lookup
*map
;
2456 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
2459 ret
= find_next_chunk(chunk_root
, BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
2464 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &map
, &chunk_size
,
2465 &stripe_size
, chunk_offset
, type
);
2469 ret
= __finish_chunk_alloc(trans
, extent_root
, map
, chunk_offset
,
2470 chunk_size
, stripe_size
);
2475 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
2476 struct btrfs_root
*root
,
2477 struct btrfs_device
*device
)
2480 u64 sys_chunk_offset
;
2484 u64 sys_stripe_size
;
2486 struct map_lookup
*map
;
2487 struct map_lookup
*sys_map
;
2488 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2489 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
2492 ret
= find_next_chunk(fs_info
->chunk_root
,
2493 BTRFS_FIRST_CHUNK_TREE_OBJECTID
, &chunk_offset
);
2496 alloc_profile
= BTRFS_BLOCK_GROUP_METADATA
|
2497 (fs_info
->metadata_alloc_profile
&
2498 fs_info
->avail_metadata_alloc_bits
);
2499 alloc_profile
= btrfs_reduce_alloc_profile(root
, alloc_profile
);
2501 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &map
, &chunk_size
,
2502 &stripe_size
, chunk_offset
, alloc_profile
);
2505 sys_chunk_offset
= chunk_offset
+ chunk_size
;
2507 alloc_profile
= BTRFS_BLOCK_GROUP_SYSTEM
|
2508 (fs_info
->system_alloc_profile
&
2509 fs_info
->avail_system_alloc_bits
);
2510 alloc_profile
= btrfs_reduce_alloc_profile(root
, alloc_profile
);
2512 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &sys_map
,
2513 &sys_chunk_size
, &sys_stripe_size
,
2514 sys_chunk_offset
, alloc_profile
);
2517 ret
= btrfs_add_device(trans
, fs_info
->chunk_root
, device
);
2521 * Modifying chunk tree needs allocating new blocks from both
2522 * system block group and metadata block group. So we only can
2523 * do operations require modifying the chunk tree after both
2524 * block groups were created.
2526 ret
= __finish_chunk_alloc(trans
, extent_root
, map
, chunk_offset
,
2527 chunk_size
, stripe_size
);
2530 ret
= __finish_chunk_alloc(trans
, extent_root
, sys_map
,
2531 sys_chunk_offset
, sys_chunk_size
,
2537 int btrfs_chunk_readonly(struct btrfs_root
*root
, u64 chunk_offset
)
2539 struct extent_map
*em
;
2540 struct map_lookup
*map
;
2541 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
2545 read_lock(&map_tree
->map_tree
.lock
);
2546 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
2547 read_unlock(&map_tree
->map_tree
.lock
);
2551 if (btrfs_test_opt(root
, DEGRADED
)) {
2552 free_extent_map(em
);
2556 map
= (struct map_lookup
*)em
->bdev
;
2557 for (i
= 0; i
< map
->num_stripes
; i
++) {
2558 if (!map
->stripes
[i
].dev
->writeable
) {
2563 free_extent_map(em
);
2567 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
2569 extent_map_tree_init(&tree
->map_tree
, GFP_NOFS
);
2572 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
2574 struct extent_map
*em
;
2577 write_lock(&tree
->map_tree
.lock
);
2578 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
2580 remove_extent_mapping(&tree
->map_tree
, em
);
2581 write_unlock(&tree
->map_tree
.lock
);
2586 free_extent_map(em
);
2587 /* once for the tree */
2588 free_extent_map(em
);
2592 int btrfs_num_copies(struct btrfs_mapping_tree
*map_tree
, u64 logical
, u64 len
)
2594 struct extent_map
*em
;
2595 struct map_lookup
*map
;
2596 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
2599 read_lock(&em_tree
->lock
);
2600 em
= lookup_extent_mapping(em_tree
, logical
, len
);
2601 read_unlock(&em_tree
->lock
);
2604 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
2605 map
= (struct map_lookup
*)em
->bdev
;
2606 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
2607 ret
= map
->num_stripes
;
2608 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
2609 ret
= map
->sub_stripes
;
2612 free_extent_map(em
);
2616 static int find_live_mirror(struct map_lookup
*map
, int first
, int num
,
2620 if (map
->stripes
[optimal
].dev
->bdev
)
2622 for (i
= first
; i
< first
+ num
; i
++) {
2623 if (map
->stripes
[i
].dev
->bdev
)
2626 /* we couldn't find one that doesn't fail. Just return something
2627 * and the io error handling code will clean up eventually
2632 static int __btrfs_map_block(struct btrfs_mapping_tree
*map_tree
, int rw
,
2633 u64 logical
, u64
*length
,
2634 struct btrfs_multi_bio
**multi_ret
,
2635 int mirror_num
, struct page
*unplug_page
)
2637 struct extent_map
*em
;
2638 struct map_lookup
*map
;
2639 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
2643 int stripes_allocated
= 8;
2644 int stripes_required
= 1;
2649 struct btrfs_multi_bio
*multi
= NULL
;
2651 if (multi_ret
&& !(rw
& REQ_WRITE
))
2652 stripes_allocated
= 1;
2655 multi
= kzalloc(btrfs_multi_bio_size(stripes_allocated
),
2660 atomic_set(&multi
->error
, 0);
2663 read_lock(&em_tree
->lock
);
2664 em
= lookup_extent_mapping(em_tree
, logical
, *length
);
2665 read_unlock(&em_tree
->lock
);
2667 if (!em
&& unplug_page
) {
2673 printk(KERN_CRIT
"unable to find logical %llu len %llu\n",
2674 (unsigned long long)logical
,
2675 (unsigned long long)*length
);
2679 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
2680 map
= (struct map_lookup
*)em
->bdev
;
2681 offset
= logical
- em
->start
;
2683 if (mirror_num
> map
->num_stripes
)
2686 /* if our multi bio struct is too small, back off and try again */
2687 if (rw
& REQ_WRITE
) {
2688 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
2689 BTRFS_BLOCK_GROUP_DUP
)) {
2690 stripes_required
= map
->num_stripes
;
2692 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
2693 stripes_required
= map
->sub_stripes
;
2697 if (multi_ret
&& (rw
& REQ_WRITE
) &&
2698 stripes_allocated
< stripes_required
) {
2699 stripes_allocated
= map
->num_stripes
;
2700 free_extent_map(em
);
2706 * stripe_nr counts the total number of stripes we have to stride
2707 * to get to this block
2709 do_div(stripe_nr
, map
->stripe_len
);
2711 stripe_offset
= stripe_nr
* map
->stripe_len
;
2712 BUG_ON(offset
< stripe_offset
);
2714 /* stripe_offset is the offset of this block in its stripe*/
2715 stripe_offset
= offset
- stripe_offset
;
2717 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
|
2718 BTRFS_BLOCK_GROUP_RAID10
|
2719 BTRFS_BLOCK_GROUP_DUP
)) {
2720 /* we limit the length of each bio to what fits in a stripe */
2721 *length
= min_t(u64
, em
->len
- offset
,
2722 map
->stripe_len
- stripe_offset
);
2724 *length
= em
->len
- offset
;
2727 if (!multi_ret
&& !unplug_page
)
2732 if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
2733 if (unplug_page
|| (rw
& REQ_WRITE
))
2734 num_stripes
= map
->num_stripes
;
2735 else if (mirror_num
)
2736 stripe_index
= mirror_num
- 1;
2738 stripe_index
= find_live_mirror(map
, 0,
2740 current
->pid
% map
->num_stripes
);
2743 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
2745 num_stripes
= map
->num_stripes
;
2746 else if (mirror_num
)
2747 stripe_index
= mirror_num
- 1;
2749 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
2750 int factor
= map
->num_stripes
/ map
->sub_stripes
;
2752 stripe_index
= do_div(stripe_nr
, factor
);
2753 stripe_index
*= map
->sub_stripes
;
2755 if (unplug_page
|| (rw
& REQ_WRITE
))
2756 num_stripes
= map
->sub_stripes
;
2757 else if (mirror_num
)
2758 stripe_index
+= mirror_num
- 1;
2760 stripe_index
= find_live_mirror(map
, stripe_index
,
2761 map
->sub_stripes
, stripe_index
+
2762 current
->pid
% map
->sub_stripes
);
2766 * after this do_div call, stripe_nr is the number of stripes
2767 * on this device we have to walk to find the data, and
2768 * stripe_index is the number of our device in the stripe array
2770 stripe_index
= do_div(stripe_nr
, map
->num_stripes
);
2772 BUG_ON(stripe_index
>= map
->num_stripes
);
2774 for (i
= 0; i
< num_stripes
; i
++) {
2776 struct btrfs_device
*device
;
2777 struct backing_dev_info
*bdi
;
2779 device
= map
->stripes
[stripe_index
].dev
;
2781 bdi
= blk_get_backing_dev_info(device
->bdev
);
2782 if (bdi
->unplug_io_fn
)
2783 bdi
->unplug_io_fn(bdi
, unplug_page
);
2786 multi
->stripes
[i
].physical
=
2787 map
->stripes
[stripe_index
].physical
+
2788 stripe_offset
+ stripe_nr
* map
->stripe_len
;
2789 multi
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
2795 multi
->num_stripes
= num_stripes
;
2796 multi
->max_errors
= max_errors
;
2799 free_extent_map(em
);
2803 int btrfs_map_block(struct btrfs_mapping_tree
*map_tree
, int rw
,
2804 u64 logical
, u64
*length
,
2805 struct btrfs_multi_bio
**multi_ret
, int mirror_num
)
2807 return __btrfs_map_block(map_tree
, rw
, logical
, length
, multi_ret
,
2811 int btrfs_rmap_block(struct btrfs_mapping_tree
*map_tree
,
2812 u64 chunk_start
, u64 physical
, u64 devid
,
2813 u64
**logical
, int *naddrs
, int *stripe_len
)
2815 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
2816 struct extent_map
*em
;
2817 struct map_lookup
*map
;
2824 read_lock(&em_tree
->lock
);
2825 em
= lookup_extent_mapping(em_tree
, chunk_start
, 1);
2826 read_unlock(&em_tree
->lock
);
2828 BUG_ON(!em
|| em
->start
!= chunk_start
);
2829 map
= (struct map_lookup
*)em
->bdev
;
2832 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
2833 do_div(length
, map
->num_stripes
/ map
->sub_stripes
);
2834 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
2835 do_div(length
, map
->num_stripes
);
2837 buf
= kzalloc(sizeof(u64
) * map
->num_stripes
, GFP_NOFS
);
2840 for (i
= 0; i
< map
->num_stripes
; i
++) {
2841 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
2843 if (map
->stripes
[i
].physical
> physical
||
2844 map
->stripes
[i
].physical
+ length
<= physical
)
2847 stripe_nr
= physical
- map
->stripes
[i
].physical
;
2848 do_div(stripe_nr
, map
->stripe_len
);
2850 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
2851 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
2852 do_div(stripe_nr
, map
->sub_stripes
);
2853 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
2854 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
2856 bytenr
= chunk_start
+ stripe_nr
* map
->stripe_len
;
2857 WARN_ON(nr
>= map
->num_stripes
);
2858 for (j
= 0; j
< nr
; j
++) {
2859 if (buf
[j
] == bytenr
)
2863 WARN_ON(nr
>= map
->num_stripes
);
2870 *stripe_len
= map
->stripe_len
;
2872 free_extent_map(em
);
2876 int btrfs_unplug_page(struct btrfs_mapping_tree
*map_tree
,
2877 u64 logical
, struct page
*page
)
2879 u64 length
= PAGE_CACHE_SIZE
;
2880 return __btrfs_map_block(map_tree
, READ
, logical
, &length
,
2884 static void end_bio_multi_stripe(struct bio
*bio
, int err
)
2886 struct btrfs_multi_bio
*multi
= bio
->bi_private
;
2887 int is_orig_bio
= 0;
2890 atomic_inc(&multi
->error
);
2892 if (bio
== multi
->orig_bio
)
2895 if (atomic_dec_and_test(&multi
->stripes_pending
)) {
2898 bio
= multi
->orig_bio
;
2900 bio
->bi_private
= multi
->private;
2901 bio
->bi_end_io
= multi
->end_io
;
2902 /* only send an error to the higher layers if it is
2903 * beyond the tolerance of the multi-bio
2905 if (atomic_read(&multi
->error
) > multi
->max_errors
) {
2909 * this bio is actually up to date, we didn't
2910 * go over the max number of errors
2912 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2917 bio_endio(bio
, err
);
2918 } else if (!is_orig_bio
) {
2923 struct async_sched
{
2926 struct btrfs_fs_info
*info
;
2927 struct btrfs_work work
;
2931 * see run_scheduled_bios for a description of why bios are collected for
2934 * This will add one bio to the pending list for a device and make sure
2935 * the work struct is scheduled.
2937 static noinline
int schedule_bio(struct btrfs_root
*root
,
2938 struct btrfs_device
*device
,
2939 int rw
, struct bio
*bio
)
2941 int should_queue
= 1;
2942 struct btrfs_pending_bios
*pending_bios
;
2944 /* don't bother with additional async steps for reads, right now */
2945 if (!(rw
& REQ_WRITE
)) {
2947 submit_bio(rw
, bio
);
2953 * nr_async_bios allows us to reliably return congestion to the
2954 * higher layers. Otherwise, the async bio makes it appear we have
2955 * made progress against dirty pages when we've really just put it
2956 * on a queue for later
2958 atomic_inc(&root
->fs_info
->nr_async_bios
);
2959 WARN_ON(bio
->bi_next
);
2960 bio
->bi_next
= NULL
;
2963 spin_lock(&device
->io_lock
);
2964 if (bio
->bi_rw
& REQ_SYNC
)
2965 pending_bios
= &device
->pending_sync_bios
;
2967 pending_bios
= &device
->pending_bios
;
2969 if (pending_bios
->tail
)
2970 pending_bios
->tail
->bi_next
= bio
;
2972 pending_bios
->tail
= bio
;
2973 if (!pending_bios
->head
)
2974 pending_bios
->head
= bio
;
2975 if (device
->running_pending
)
2978 spin_unlock(&device
->io_lock
);
2981 btrfs_queue_worker(&root
->fs_info
->submit_workers
,
2986 int btrfs_map_bio(struct btrfs_root
*root
, int rw
, struct bio
*bio
,
2987 int mirror_num
, int async_submit
)
2989 struct btrfs_mapping_tree
*map_tree
;
2990 struct btrfs_device
*dev
;
2991 struct bio
*first_bio
= bio
;
2992 u64 logical
= (u64
)bio
->bi_sector
<< 9;
2995 struct btrfs_multi_bio
*multi
= NULL
;
3000 length
= bio
->bi_size
;
3001 map_tree
= &root
->fs_info
->mapping_tree
;
3002 map_length
= length
;
3004 ret
= btrfs_map_block(map_tree
, rw
, logical
, &map_length
, &multi
,
3008 total_devs
= multi
->num_stripes
;
3009 if (map_length
< length
) {
3010 printk(KERN_CRIT
"mapping failed logical %llu bio len %llu "
3011 "len %llu\n", (unsigned long long)logical
,
3012 (unsigned long long)length
,
3013 (unsigned long long)map_length
);
3016 multi
->end_io
= first_bio
->bi_end_io
;
3017 multi
->private = first_bio
->bi_private
;
3018 multi
->orig_bio
= first_bio
;
3019 atomic_set(&multi
->stripes_pending
, multi
->num_stripes
);
3021 while (dev_nr
< total_devs
) {
3022 if (total_devs
> 1) {
3023 if (dev_nr
< total_devs
- 1) {
3024 bio
= bio_clone(first_bio
, GFP_NOFS
);
3029 bio
->bi_private
= multi
;
3030 bio
->bi_end_io
= end_bio_multi_stripe
;
3032 bio
->bi_sector
= multi
->stripes
[dev_nr
].physical
>> 9;
3033 dev
= multi
->stripes
[dev_nr
].dev
;
3034 BUG_ON(rw
== WRITE
&& !dev
->writeable
);
3035 if (dev
&& dev
->bdev
) {
3036 bio
->bi_bdev
= dev
->bdev
;
3038 schedule_bio(root
, dev
, rw
, bio
);
3040 submit_bio(rw
, bio
);
3042 bio
->bi_bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
3043 bio
->bi_sector
= logical
>> 9;
3044 bio_endio(bio
, -EIO
);
3048 if (total_devs
== 1)
3053 struct btrfs_device
*btrfs_find_device(struct btrfs_root
*root
, u64 devid
,
3056 struct btrfs_device
*device
;
3057 struct btrfs_fs_devices
*cur_devices
;
3059 cur_devices
= root
->fs_info
->fs_devices
;
3060 while (cur_devices
) {
3062 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
3063 device
= __find_device(&cur_devices
->devices
,
3068 cur_devices
= cur_devices
->seed
;
3073 static struct btrfs_device
*add_missing_dev(struct btrfs_root
*root
,
3074 u64 devid
, u8
*dev_uuid
)
3076 struct btrfs_device
*device
;
3077 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
3079 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
3082 list_add(&device
->dev_list
,
3083 &fs_devices
->devices
);
3084 device
->dev_root
= root
->fs_info
->dev_root
;
3085 device
->devid
= devid
;
3086 device
->work
.func
= pending_bios_fn
;
3087 device
->fs_devices
= fs_devices
;
3088 fs_devices
->num_devices
++;
3089 spin_lock_init(&device
->io_lock
);
3090 INIT_LIST_HEAD(&device
->dev_alloc_list
);
3091 memcpy(device
->uuid
, dev_uuid
, BTRFS_UUID_SIZE
);
3095 static int read_one_chunk(struct btrfs_root
*root
, struct btrfs_key
*key
,
3096 struct extent_buffer
*leaf
,
3097 struct btrfs_chunk
*chunk
)
3099 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
3100 struct map_lookup
*map
;
3101 struct extent_map
*em
;
3105 u8 uuid
[BTRFS_UUID_SIZE
];
3110 logical
= key
->offset
;
3111 length
= btrfs_chunk_length(leaf
, chunk
);
3113 read_lock(&map_tree
->map_tree
.lock
);
3114 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
3115 read_unlock(&map_tree
->map_tree
.lock
);
3117 /* already mapped? */
3118 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
3119 free_extent_map(em
);
3122 free_extent_map(em
);
3125 em
= alloc_extent_map(GFP_NOFS
);
3128 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3129 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
3131 free_extent_map(em
);
3135 em
->bdev
= (struct block_device
*)map
;
3136 em
->start
= logical
;
3138 em
->block_start
= 0;
3139 em
->block_len
= em
->len
;
3141 map
->num_stripes
= num_stripes
;
3142 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
3143 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
3144 map
->sector_size
= btrfs_chunk_sector_size(leaf
, chunk
);
3145 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
3146 map
->type
= btrfs_chunk_type(leaf
, chunk
);
3147 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
3148 for (i
= 0; i
< num_stripes
; i
++) {
3149 map
->stripes
[i
].physical
=
3150 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
3151 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
3152 read_extent_buffer(leaf
, uuid
, (unsigned long)
3153 btrfs_stripe_dev_uuid_nr(chunk
, i
),
3155 map
->stripes
[i
].dev
= btrfs_find_device(root
, devid
, uuid
,
3157 if (!map
->stripes
[i
].dev
&& !btrfs_test_opt(root
, DEGRADED
)) {
3159 free_extent_map(em
);
3162 if (!map
->stripes
[i
].dev
) {
3163 map
->stripes
[i
].dev
=
3164 add_missing_dev(root
, devid
, uuid
);
3165 if (!map
->stripes
[i
].dev
) {
3167 free_extent_map(em
);
3171 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
3174 write_lock(&map_tree
->map_tree
.lock
);
3175 ret
= add_extent_mapping(&map_tree
->map_tree
, em
);
3176 write_unlock(&map_tree
->map_tree
.lock
);
3178 free_extent_map(em
);
3183 static int fill_device_from_item(struct extent_buffer
*leaf
,
3184 struct btrfs_dev_item
*dev_item
,
3185 struct btrfs_device
*device
)
3189 device
->devid
= btrfs_device_id(leaf
, dev_item
);
3190 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
3191 device
->total_bytes
= device
->disk_total_bytes
;
3192 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
3193 device
->type
= btrfs_device_type(leaf
, dev_item
);
3194 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
3195 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
3196 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
3198 ptr
= (unsigned long)btrfs_device_uuid(dev_item
);
3199 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
3204 static int open_seed_devices(struct btrfs_root
*root
, u8
*fsid
)
3206 struct btrfs_fs_devices
*fs_devices
;
3209 mutex_lock(&uuid_mutex
);
3211 fs_devices
= root
->fs_info
->fs_devices
->seed
;
3212 while (fs_devices
) {
3213 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
3217 fs_devices
= fs_devices
->seed
;
3220 fs_devices
= find_fsid(fsid
);
3226 fs_devices
= clone_fs_devices(fs_devices
);
3227 if (IS_ERR(fs_devices
)) {
3228 ret
= PTR_ERR(fs_devices
);
3232 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
3233 root
->fs_info
->bdev_holder
);
3237 if (!fs_devices
->seeding
) {
3238 __btrfs_close_devices(fs_devices
);
3239 free_fs_devices(fs_devices
);
3244 fs_devices
->seed
= root
->fs_info
->fs_devices
->seed
;
3245 root
->fs_info
->fs_devices
->seed
= fs_devices
;
3247 mutex_unlock(&uuid_mutex
);
3251 static int read_one_dev(struct btrfs_root
*root
,
3252 struct extent_buffer
*leaf
,
3253 struct btrfs_dev_item
*dev_item
)
3255 struct btrfs_device
*device
;
3258 u8 fs_uuid
[BTRFS_UUID_SIZE
];
3259 u8 dev_uuid
[BTRFS_UUID_SIZE
];
3261 devid
= btrfs_device_id(leaf
, dev_item
);
3262 read_extent_buffer(leaf
, dev_uuid
,
3263 (unsigned long)btrfs_device_uuid(dev_item
),
3265 read_extent_buffer(leaf
, fs_uuid
,
3266 (unsigned long)btrfs_device_fsid(dev_item
),
3269 if (memcmp(fs_uuid
, root
->fs_info
->fsid
, BTRFS_UUID_SIZE
)) {
3270 ret
= open_seed_devices(root
, fs_uuid
);
3271 if (ret
&& !btrfs_test_opt(root
, DEGRADED
))
3275 device
= btrfs_find_device(root
, devid
, dev_uuid
, fs_uuid
);
3276 if (!device
|| !device
->bdev
) {
3277 if (!btrfs_test_opt(root
, DEGRADED
))
3281 printk(KERN_WARNING
"warning devid %llu missing\n",
3282 (unsigned long long)devid
);
3283 device
= add_missing_dev(root
, devid
, dev_uuid
);
3289 if (device
->fs_devices
!= root
->fs_info
->fs_devices
) {
3290 BUG_ON(device
->writeable
);
3291 if (device
->generation
!=
3292 btrfs_device_generation(leaf
, dev_item
))
3296 fill_device_from_item(leaf
, dev_item
, device
);
3297 device
->dev_root
= root
->fs_info
->dev_root
;
3298 device
->in_fs_metadata
= 1;
3299 if (device
->writeable
)
3300 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
3305 int btrfs_read_super_device(struct btrfs_root
*root
, struct extent_buffer
*buf
)
3307 struct btrfs_dev_item
*dev_item
;
3309 dev_item
= (struct btrfs_dev_item
*)offsetof(struct btrfs_super_block
,
3311 return read_one_dev(root
, buf
, dev_item
);
3314 int btrfs_read_sys_array(struct btrfs_root
*root
)
3316 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
3317 struct extent_buffer
*sb
;
3318 struct btrfs_disk_key
*disk_key
;
3319 struct btrfs_chunk
*chunk
;
3321 unsigned long sb_ptr
;
3327 struct btrfs_key key
;
3329 sb
= btrfs_find_create_tree_block(root
, BTRFS_SUPER_INFO_OFFSET
,
3330 BTRFS_SUPER_INFO_SIZE
);
3333 btrfs_set_buffer_uptodate(sb
);
3334 btrfs_set_buffer_lockdep_class(sb
, 0);
3336 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
3337 array_size
= btrfs_super_sys_array_size(super_copy
);
3339 ptr
= super_copy
->sys_chunk_array
;
3340 sb_ptr
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
3343 while (cur
< array_size
) {
3344 disk_key
= (struct btrfs_disk_key
*)ptr
;
3345 btrfs_disk_key_to_cpu(&key
, disk_key
);
3347 len
= sizeof(*disk_key
); ptr
+= len
;
3351 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
3352 chunk
= (struct btrfs_chunk
*)sb_ptr
;
3353 ret
= read_one_chunk(root
, &key
, sb
, chunk
);
3356 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
3357 len
= btrfs_chunk_item_size(num_stripes
);
3366 free_extent_buffer(sb
);
3370 int btrfs_read_chunk_tree(struct btrfs_root
*root
)
3372 struct btrfs_path
*path
;
3373 struct extent_buffer
*leaf
;
3374 struct btrfs_key key
;
3375 struct btrfs_key found_key
;
3379 root
= root
->fs_info
->chunk_root
;
3381 path
= btrfs_alloc_path();
3385 /* first we search for all of the device items, and then we
3386 * read in all of the chunk items. This way we can create chunk
3387 * mappings that reference all of the devices that are afound
3389 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
3393 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3397 leaf
= path
->nodes
[0];
3398 slot
= path
->slots
[0];
3399 if (slot
>= btrfs_header_nritems(leaf
)) {
3400 ret
= btrfs_next_leaf(root
, path
);
3407 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3408 if (key
.objectid
== BTRFS_DEV_ITEMS_OBJECTID
) {
3409 if (found_key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
)
3411 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
3412 struct btrfs_dev_item
*dev_item
;
3413 dev_item
= btrfs_item_ptr(leaf
, slot
,
3414 struct btrfs_dev_item
);
3415 ret
= read_one_dev(root
, leaf
, dev_item
);
3419 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
3420 struct btrfs_chunk
*chunk
;
3421 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3422 ret
= read_one_chunk(root
, &found_key
, leaf
, chunk
);
3428 if (key
.objectid
== BTRFS_DEV_ITEMS_OBJECTID
) {
3430 btrfs_release_path(root
, path
);
3435 btrfs_free_path(path
);