2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
30 #include "print-tree.h"
31 #include "transaction.h"
34 #include "free-space-cache.h"
36 static int update_block_group(struct btrfs_trans_handle
*trans
,
37 struct btrfs_root
*root
,
38 u64 bytenr
, u64 num_bytes
, int alloc
);
39 static int update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
40 u64 num_bytes
, int reserve
, int sinfo
);
41 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
42 struct btrfs_root
*root
,
43 u64 bytenr
, u64 num_bytes
, u64 parent
,
44 u64 root_objectid
, u64 owner_objectid
,
45 u64 owner_offset
, int refs_to_drop
,
46 struct btrfs_delayed_extent_op
*extra_op
);
47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
48 struct extent_buffer
*leaf
,
49 struct btrfs_extent_item
*ei
);
50 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
51 struct btrfs_root
*root
,
52 u64 parent
, u64 root_objectid
,
53 u64 flags
, u64 owner
, u64 offset
,
54 struct btrfs_key
*ins
, int ref_mod
);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
56 struct btrfs_root
*root
,
57 u64 parent
, u64 root_objectid
,
58 u64 flags
, struct btrfs_disk_key
*key
,
59 int level
, struct btrfs_key
*ins
);
60 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
61 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
62 u64 flags
, int force
);
63 static int find_next_key(struct btrfs_path
*path
, int level
,
64 struct btrfs_key
*key
);
65 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
66 int dump_block_groups
);
69 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
72 return cache
->cached
== BTRFS_CACHE_FINISHED
;
75 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
77 return (cache
->flags
& bits
) == bits
;
80 void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
82 atomic_inc(&cache
->count
);
85 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
87 if (atomic_dec_and_test(&cache
->count
)) {
88 WARN_ON(cache
->pinned
> 0);
89 WARN_ON(cache
->reserved
> 0);
90 WARN_ON(cache
->reserved_pinned
> 0);
96 * this adds the block group to the fs_info rb tree for the block group
99 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
100 struct btrfs_block_group_cache
*block_group
)
103 struct rb_node
*parent
= NULL
;
104 struct btrfs_block_group_cache
*cache
;
106 spin_lock(&info
->block_group_cache_lock
);
107 p
= &info
->block_group_cache_tree
.rb_node
;
111 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
113 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
115 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
118 spin_unlock(&info
->block_group_cache_lock
);
123 rb_link_node(&block_group
->cache_node
, parent
, p
);
124 rb_insert_color(&block_group
->cache_node
,
125 &info
->block_group_cache_tree
);
126 spin_unlock(&info
->block_group_cache_lock
);
132 * This will return the block group at or after bytenr if contains is 0, else
133 * it will return the block group that contains the bytenr
135 static struct btrfs_block_group_cache
*
136 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
139 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
143 spin_lock(&info
->block_group_cache_lock
);
144 n
= info
->block_group_cache_tree
.rb_node
;
147 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
149 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
150 start
= cache
->key
.objectid
;
152 if (bytenr
< start
) {
153 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
156 } else if (bytenr
> start
) {
157 if (contains
&& bytenr
<= end
) {
168 btrfs_get_block_group(ret
);
169 spin_unlock(&info
->block_group_cache_lock
);
174 static int add_excluded_extent(struct btrfs_root
*root
,
175 u64 start
, u64 num_bytes
)
177 u64 end
= start
+ num_bytes
- 1;
178 set_extent_bits(&root
->fs_info
->freed_extents
[0],
179 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
180 set_extent_bits(&root
->fs_info
->freed_extents
[1],
181 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
185 static void free_excluded_extents(struct btrfs_root
*root
,
186 struct btrfs_block_group_cache
*cache
)
190 start
= cache
->key
.objectid
;
191 end
= start
+ cache
->key
.offset
- 1;
193 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
194 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
195 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
196 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
199 static int exclude_super_stripes(struct btrfs_root
*root
,
200 struct btrfs_block_group_cache
*cache
)
207 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
208 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
209 cache
->bytes_super
+= stripe_len
;
210 ret
= add_excluded_extent(root
, cache
->key
.objectid
,
215 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
216 bytenr
= btrfs_sb_offset(i
);
217 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
218 cache
->key
.objectid
, bytenr
,
219 0, &logical
, &nr
, &stripe_len
);
223 cache
->bytes_super
+= stripe_len
;
224 ret
= add_excluded_extent(root
, logical
[nr
],
234 static struct btrfs_caching_control
*
235 get_caching_control(struct btrfs_block_group_cache
*cache
)
237 struct btrfs_caching_control
*ctl
;
239 spin_lock(&cache
->lock
);
240 if (cache
->cached
!= BTRFS_CACHE_STARTED
) {
241 spin_unlock(&cache
->lock
);
245 ctl
= cache
->caching_ctl
;
246 atomic_inc(&ctl
->count
);
247 spin_unlock(&cache
->lock
);
251 static void put_caching_control(struct btrfs_caching_control
*ctl
)
253 if (atomic_dec_and_test(&ctl
->count
))
258 * this is only called by cache_block_group, since we could have freed extents
259 * we need to check the pinned_extents for any extents that can't be used yet
260 * since their free space will be released as soon as the transaction commits.
262 static u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
263 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
265 u64 extent_start
, extent_end
, size
, total_added
= 0;
268 while (start
< end
) {
269 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
270 &extent_start
, &extent_end
,
271 EXTENT_DIRTY
| EXTENT_UPTODATE
);
275 if (extent_start
<= start
) {
276 start
= extent_end
+ 1;
277 } else if (extent_start
> start
&& extent_start
< end
) {
278 size
= extent_start
- start
;
280 ret
= btrfs_add_free_space(block_group
, start
,
283 start
= extent_end
+ 1;
292 ret
= btrfs_add_free_space(block_group
, start
, size
);
299 static int caching_kthread(void *data
)
301 struct btrfs_block_group_cache
*block_group
= data
;
302 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
303 struct btrfs_caching_control
*caching_ctl
= block_group
->caching_ctl
;
304 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
305 struct btrfs_path
*path
;
306 struct extent_buffer
*leaf
;
307 struct btrfs_key key
;
313 path
= btrfs_alloc_path();
317 exclude_super_stripes(extent_root
, block_group
);
318 spin_lock(&block_group
->space_info
->lock
);
319 block_group
->space_info
->bytes_readonly
+= block_group
->bytes_super
;
320 spin_unlock(&block_group
->space_info
->lock
);
322 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
325 * We don't want to deadlock with somebody trying to allocate a new
326 * extent for the extent root while also trying to search the extent
327 * root to add free space. So we skip locking and search the commit
328 * root, since its read-only
330 path
->skip_locking
= 1;
331 path
->search_commit_root
= 1;
336 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
338 mutex_lock(&caching_ctl
->mutex
);
339 /* need to make sure the commit_root doesn't disappear */
340 down_read(&fs_info
->extent_commit_sem
);
342 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
346 leaf
= path
->nodes
[0];
347 nritems
= btrfs_header_nritems(leaf
);
351 if (fs_info
->closing
> 1) {
356 if (path
->slots
[0] < nritems
) {
357 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
359 ret
= find_next_key(path
, 0, &key
);
363 caching_ctl
->progress
= last
;
364 btrfs_release_path(extent_root
, path
);
365 up_read(&fs_info
->extent_commit_sem
);
366 mutex_unlock(&caching_ctl
->mutex
);
367 if (btrfs_transaction_in_commit(fs_info
))
374 if (key
.objectid
< block_group
->key
.objectid
) {
379 if (key
.objectid
>= block_group
->key
.objectid
+
380 block_group
->key
.offset
)
383 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
384 total_found
+= add_new_free_space(block_group
,
387 last
= key
.objectid
+ key
.offset
;
389 if (total_found
> (1024 * 1024 * 2)) {
391 wake_up(&caching_ctl
->wait
);
398 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
399 block_group
->key
.objectid
+
400 block_group
->key
.offset
);
401 caching_ctl
->progress
= (u64
)-1;
403 spin_lock(&block_group
->lock
);
404 block_group
->caching_ctl
= NULL
;
405 block_group
->cached
= BTRFS_CACHE_FINISHED
;
406 spin_unlock(&block_group
->lock
);
409 btrfs_free_path(path
);
410 up_read(&fs_info
->extent_commit_sem
);
412 free_excluded_extents(extent_root
, block_group
);
414 mutex_unlock(&caching_ctl
->mutex
);
415 wake_up(&caching_ctl
->wait
);
417 put_caching_control(caching_ctl
);
418 atomic_dec(&block_group
->space_info
->caching_threads
);
419 btrfs_put_block_group(block_group
);
424 static int cache_block_group(struct btrfs_block_group_cache
*cache
)
426 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
427 struct btrfs_caching_control
*caching_ctl
;
428 struct task_struct
*tsk
;
432 if (cache
->cached
!= BTRFS_CACHE_NO
)
435 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_KERNEL
);
436 BUG_ON(!caching_ctl
);
438 INIT_LIST_HEAD(&caching_ctl
->list
);
439 mutex_init(&caching_ctl
->mutex
);
440 init_waitqueue_head(&caching_ctl
->wait
);
441 caching_ctl
->block_group
= cache
;
442 caching_ctl
->progress
= cache
->key
.objectid
;
443 /* one for caching kthread, one for caching block group list */
444 atomic_set(&caching_ctl
->count
, 2);
446 spin_lock(&cache
->lock
);
447 if (cache
->cached
!= BTRFS_CACHE_NO
) {
448 spin_unlock(&cache
->lock
);
452 cache
->caching_ctl
= caching_ctl
;
453 cache
->cached
= BTRFS_CACHE_STARTED
;
454 spin_unlock(&cache
->lock
);
456 down_write(&fs_info
->extent_commit_sem
);
457 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
458 up_write(&fs_info
->extent_commit_sem
);
460 atomic_inc(&cache
->space_info
->caching_threads
);
461 btrfs_get_block_group(cache
);
463 tsk
= kthread_run(caching_kthread
, cache
, "btrfs-cache-%llu\n",
464 cache
->key
.objectid
);
467 printk(KERN_ERR
"error running thread %d\n", ret
);
475 * return the block group that starts at or after bytenr
477 static struct btrfs_block_group_cache
*
478 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
480 struct btrfs_block_group_cache
*cache
;
482 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
488 * return the block group that contains the given bytenr
490 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
491 struct btrfs_fs_info
*info
,
494 struct btrfs_block_group_cache
*cache
;
496 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
501 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
504 struct list_head
*head
= &info
->space_info
;
505 struct btrfs_space_info
*found
;
507 flags
&= BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_SYSTEM
|
508 BTRFS_BLOCK_GROUP_METADATA
;
511 list_for_each_entry_rcu(found
, head
, list
) {
512 if (found
->flags
== flags
) {
522 * after adding space to the filesystem, we need to clear the full flags
523 * on all the space infos.
525 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
527 struct list_head
*head
= &info
->space_info
;
528 struct btrfs_space_info
*found
;
531 list_for_each_entry_rcu(found
, head
, list
)
536 static u64
div_factor(u64 num
, int factor
)
545 u64
btrfs_find_block_group(struct btrfs_root
*root
,
546 u64 search_start
, u64 search_hint
, int owner
)
548 struct btrfs_block_group_cache
*cache
;
550 u64 last
= max(search_hint
, search_start
);
557 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
561 spin_lock(&cache
->lock
);
562 last
= cache
->key
.objectid
+ cache
->key
.offset
;
563 used
= btrfs_block_group_used(&cache
->item
);
565 if ((full_search
|| !cache
->ro
) &&
566 block_group_bits(cache
, BTRFS_BLOCK_GROUP_METADATA
)) {
567 if (used
+ cache
->pinned
+ cache
->reserved
<
568 div_factor(cache
->key
.offset
, factor
)) {
569 group_start
= cache
->key
.objectid
;
570 spin_unlock(&cache
->lock
);
571 btrfs_put_block_group(cache
);
575 spin_unlock(&cache
->lock
);
576 btrfs_put_block_group(cache
);
584 if (!full_search
&& factor
< 10) {
594 /* simple helper to search for an existing extent at a given offset */
595 int btrfs_lookup_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
598 struct btrfs_key key
;
599 struct btrfs_path
*path
;
601 path
= btrfs_alloc_path();
603 key
.objectid
= start
;
605 btrfs_set_key_type(&key
, BTRFS_EXTENT_ITEM_KEY
);
606 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
608 btrfs_free_path(path
);
613 * helper function to lookup reference count and flags of extent.
615 * the head node for delayed ref is used to store the sum of all the
616 * reference count modifications queued up in the rbtree. the head
617 * node may also store the extent flags to set. This way you can check
618 * to see what the reference count and extent flags would be if all of
619 * the delayed refs are not processed.
621 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
622 struct btrfs_root
*root
, u64 bytenr
,
623 u64 num_bytes
, u64
*refs
, u64
*flags
)
625 struct btrfs_delayed_ref_head
*head
;
626 struct btrfs_delayed_ref_root
*delayed_refs
;
627 struct btrfs_path
*path
;
628 struct btrfs_extent_item
*ei
;
629 struct extent_buffer
*leaf
;
630 struct btrfs_key key
;
636 path
= btrfs_alloc_path();
640 key
.objectid
= bytenr
;
641 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
642 key
.offset
= num_bytes
;
644 path
->skip_locking
= 1;
645 path
->search_commit_root
= 1;
648 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
,
654 leaf
= path
->nodes
[0];
655 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
656 if (item_size
>= sizeof(*ei
)) {
657 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
658 struct btrfs_extent_item
);
659 num_refs
= btrfs_extent_refs(leaf
, ei
);
660 extent_flags
= btrfs_extent_flags(leaf
, ei
);
662 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
663 struct btrfs_extent_item_v0
*ei0
;
664 BUG_ON(item_size
!= sizeof(*ei0
));
665 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
666 struct btrfs_extent_item_v0
);
667 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
668 /* FIXME: this isn't correct for data */
669 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
674 BUG_ON(num_refs
== 0);
684 delayed_refs
= &trans
->transaction
->delayed_refs
;
685 spin_lock(&delayed_refs
->lock
);
686 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
688 if (!mutex_trylock(&head
->mutex
)) {
689 atomic_inc(&head
->node
.refs
);
690 spin_unlock(&delayed_refs
->lock
);
692 btrfs_release_path(root
->fs_info
->extent_root
, path
);
694 mutex_lock(&head
->mutex
);
695 mutex_unlock(&head
->mutex
);
696 btrfs_put_delayed_ref(&head
->node
);
699 if (head
->extent_op
&& head
->extent_op
->update_flags
)
700 extent_flags
|= head
->extent_op
->flags_to_set
;
702 BUG_ON(num_refs
== 0);
704 num_refs
+= head
->node
.ref_mod
;
705 mutex_unlock(&head
->mutex
);
707 spin_unlock(&delayed_refs
->lock
);
709 WARN_ON(num_refs
== 0);
713 *flags
= extent_flags
;
715 btrfs_free_path(path
);
720 * Back reference rules. Back refs have three main goals:
722 * 1) differentiate between all holders of references to an extent so that
723 * when a reference is dropped we can make sure it was a valid reference
724 * before freeing the extent.
726 * 2) Provide enough information to quickly find the holders of an extent
727 * if we notice a given block is corrupted or bad.
729 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
730 * maintenance. This is actually the same as #2, but with a slightly
731 * different use case.
733 * There are two kinds of back refs. The implicit back refs is optimized
734 * for pointers in non-shared tree blocks. For a given pointer in a block,
735 * back refs of this kind provide information about the block's owner tree
736 * and the pointer's key. These information allow us to find the block by
737 * b-tree searching. The full back refs is for pointers in tree blocks not
738 * referenced by their owner trees. The location of tree block is recorded
739 * in the back refs. Actually the full back refs is generic, and can be
740 * used in all cases the implicit back refs is used. The major shortcoming
741 * of the full back refs is its overhead. Every time a tree block gets
742 * COWed, we have to update back refs entry for all pointers in it.
744 * For a newly allocated tree block, we use implicit back refs for
745 * pointers in it. This means most tree related operations only involve
746 * implicit back refs. For a tree block created in old transaction, the
747 * only way to drop a reference to it is COW it. So we can detect the
748 * event that tree block loses its owner tree's reference and do the
749 * back refs conversion.
751 * When a tree block is COW'd through a tree, there are four cases:
753 * The reference count of the block is one and the tree is the block's
754 * owner tree. Nothing to do in this case.
756 * The reference count of the block is one and the tree is not the
757 * block's owner tree. In this case, full back refs is used for pointers
758 * in the block. Remove these full back refs, add implicit back refs for
759 * every pointers in the new block.
761 * The reference count of the block is greater than one and the tree is
762 * the block's owner tree. In this case, implicit back refs is used for
763 * pointers in the block. Add full back refs for every pointers in the
764 * block, increase lower level extents' reference counts. The original
765 * implicit back refs are entailed to the new block.
767 * The reference count of the block is greater than one and the tree is
768 * not the block's owner tree. Add implicit back refs for every pointer in
769 * the new block, increase lower level extents' reference count.
771 * Back Reference Key composing:
773 * The key objectid corresponds to the first byte in the extent,
774 * The key type is used to differentiate between types of back refs.
775 * There are different meanings of the key offset for different types
778 * File extents can be referenced by:
780 * - multiple snapshots, subvolumes, or different generations in one subvol
781 * - different files inside a single subvolume
782 * - different offsets inside a file (bookend extents in file.c)
784 * The extent ref structure for the implicit back refs has fields for:
786 * - Objectid of the subvolume root
787 * - objectid of the file holding the reference
788 * - original offset in the file
789 * - how many bookend extents
791 * The key offset for the implicit back refs is hash of the first
794 * The extent ref structure for the full back refs has field for:
796 * - number of pointers in the tree leaf
798 * The key offset for the implicit back refs is the first byte of
801 * When a file extent is allocated, The implicit back refs is used.
802 * the fields are filled in:
804 * (root_key.objectid, inode objectid, offset in file, 1)
806 * When a file extent is removed file truncation, we find the
807 * corresponding implicit back refs and check the following fields:
809 * (btrfs_header_owner(leaf), inode objectid, offset in file)
811 * Btree extents can be referenced by:
813 * - Different subvolumes
815 * Both the implicit back refs and the full back refs for tree blocks
816 * only consist of key. The key offset for the implicit back refs is
817 * objectid of block's owner tree. The key offset for the full back refs
818 * is the first byte of parent block.
820 * When implicit back refs is used, information about the lowest key and
821 * level of the tree block are required. These information are stored in
822 * tree block info structure.
825 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
826 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
827 struct btrfs_root
*root
,
828 struct btrfs_path
*path
,
829 u64 owner
, u32 extra_size
)
831 struct btrfs_extent_item
*item
;
832 struct btrfs_extent_item_v0
*ei0
;
833 struct btrfs_extent_ref_v0
*ref0
;
834 struct btrfs_tree_block_info
*bi
;
835 struct extent_buffer
*leaf
;
836 struct btrfs_key key
;
837 struct btrfs_key found_key
;
838 u32 new_size
= sizeof(*item
);
842 leaf
= path
->nodes
[0];
843 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
845 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
846 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
847 struct btrfs_extent_item_v0
);
848 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
850 if (owner
== (u64
)-1) {
852 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
853 ret
= btrfs_next_leaf(root
, path
);
857 leaf
= path
->nodes
[0];
859 btrfs_item_key_to_cpu(leaf
, &found_key
,
861 BUG_ON(key
.objectid
!= found_key
.objectid
);
862 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
866 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
867 struct btrfs_extent_ref_v0
);
868 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
872 btrfs_release_path(root
, path
);
874 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
875 new_size
+= sizeof(*bi
);
877 new_size
-= sizeof(*ei0
);
878 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
879 new_size
+ extra_size
, 1);
884 ret
= btrfs_extend_item(trans
, root
, path
, new_size
);
887 leaf
= path
->nodes
[0];
888 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
889 btrfs_set_extent_refs(leaf
, item
, refs
);
890 /* FIXME: get real generation */
891 btrfs_set_extent_generation(leaf
, item
, 0);
892 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
893 btrfs_set_extent_flags(leaf
, item
,
894 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
895 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
896 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
897 /* FIXME: get first key of the block */
898 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
899 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
901 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
903 btrfs_mark_buffer_dirty(leaf
);
908 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
910 u32 high_crc
= ~(u32
)0;
911 u32 low_crc
= ~(u32
)0;
914 lenum
= cpu_to_le64(root_objectid
);
915 high_crc
= crc32c(high_crc
, &lenum
, sizeof(lenum
));
916 lenum
= cpu_to_le64(owner
);
917 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
918 lenum
= cpu_to_le64(offset
);
919 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
921 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
924 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
925 struct btrfs_extent_data_ref
*ref
)
927 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
928 btrfs_extent_data_ref_objectid(leaf
, ref
),
929 btrfs_extent_data_ref_offset(leaf
, ref
));
932 static int match_extent_data_ref(struct extent_buffer
*leaf
,
933 struct btrfs_extent_data_ref
*ref
,
934 u64 root_objectid
, u64 owner
, u64 offset
)
936 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
937 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
938 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
943 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
944 struct btrfs_root
*root
,
945 struct btrfs_path
*path
,
946 u64 bytenr
, u64 parent
,
948 u64 owner
, u64 offset
)
950 struct btrfs_key key
;
951 struct btrfs_extent_data_ref
*ref
;
952 struct extent_buffer
*leaf
;
958 key
.objectid
= bytenr
;
960 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
963 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
964 key
.offset
= hash_extent_data_ref(root_objectid
,
969 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
980 btrfs_release_path(root
, path
);
981 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
992 leaf
= path
->nodes
[0];
993 nritems
= btrfs_header_nritems(leaf
);
995 if (path
->slots
[0] >= nritems
) {
996 ret
= btrfs_next_leaf(root
, path
);
1002 leaf
= path
->nodes
[0];
1003 nritems
= btrfs_header_nritems(leaf
);
1007 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1008 if (key
.objectid
!= bytenr
||
1009 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1012 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1013 struct btrfs_extent_data_ref
);
1015 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1018 btrfs_release_path(root
, path
);
1030 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1031 struct btrfs_root
*root
,
1032 struct btrfs_path
*path
,
1033 u64 bytenr
, u64 parent
,
1034 u64 root_objectid
, u64 owner
,
1035 u64 offset
, int refs_to_add
)
1037 struct btrfs_key key
;
1038 struct extent_buffer
*leaf
;
1043 key
.objectid
= bytenr
;
1045 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1046 key
.offset
= parent
;
1047 size
= sizeof(struct btrfs_shared_data_ref
);
1049 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1050 key
.offset
= hash_extent_data_ref(root_objectid
,
1052 size
= sizeof(struct btrfs_extent_data_ref
);
1055 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1056 if (ret
&& ret
!= -EEXIST
)
1059 leaf
= path
->nodes
[0];
1061 struct btrfs_shared_data_ref
*ref
;
1062 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1063 struct btrfs_shared_data_ref
);
1065 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1067 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1068 num_refs
+= refs_to_add
;
1069 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1072 struct btrfs_extent_data_ref
*ref
;
1073 while (ret
== -EEXIST
) {
1074 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1075 struct btrfs_extent_data_ref
);
1076 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1079 btrfs_release_path(root
, path
);
1081 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1083 if (ret
&& ret
!= -EEXIST
)
1086 leaf
= path
->nodes
[0];
1088 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1089 struct btrfs_extent_data_ref
);
1091 btrfs_set_extent_data_ref_root(leaf
, ref
,
1093 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1094 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1095 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1097 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1098 num_refs
+= refs_to_add
;
1099 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1102 btrfs_mark_buffer_dirty(leaf
);
1105 btrfs_release_path(root
, path
);
1109 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1110 struct btrfs_root
*root
,
1111 struct btrfs_path
*path
,
1114 struct btrfs_key key
;
1115 struct btrfs_extent_data_ref
*ref1
= NULL
;
1116 struct btrfs_shared_data_ref
*ref2
= NULL
;
1117 struct extent_buffer
*leaf
;
1121 leaf
= path
->nodes
[0];
1122 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1124 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1125 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1126 struct btrfs_extent_data_ref
);
1127 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1128 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1129 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1130 struct btrfs_shared_data_ref
);
1131 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1132 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1133 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1134 struct btrfs_extent_ref_v0
*ref0
;
1135 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1136 struct btrfs_extent_ref_v0
);
1137 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1143 BUG_ON(num_refs
< refs_to_drop
);
1144 num_refs
-= refs_to_drop
;
1146 if (num_refs
== 0) {
1147 ret
= btrfs_del_item(trans
, root
, path
);
1149 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1150 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1151 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1152 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1153 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1155 struct btrfs_extent_ref_v0
*ref0
;
1156 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1157 struct btrfs_extent_ref_v0
);
1158 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1161 btrfs_mark_buffer_dirty(leaf
);
1166 static noinline u32
extent_data_ref_count(struct btrfs_root
*root
,
1167 struct btrfs_path
*path
,
1168 struct btrfs_extent_inline_ref
*iref
)
1170 struct btrfs_key key
;
1171 struct extent_buffer
*leaf
;
1172 struct btrfs_extent_data_ref
*ref1
;
1173 struct btrfs_shared_data_ref
*ref2
;
1176 leaf
= path
->nodes
[0];
1177 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1179 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1180 BTRFS_EXTENT_DATA_REF_KEY
) {
1181 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1182 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1184 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1185 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1187 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1188 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1189 struct btrfs_extent_data_ref
);
1190 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1191 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1192 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1193 struct btrfs_shared_data_ref
);
1194 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1195 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1196 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1197 struct btrfs_extent_ref_v0
*ref0
;
1198 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1199 struct btrfs_extent_ref_v0
);
1200 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1208 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1209 struct btrfs_root
*root
,
1210 struct btrfs_path
*path
,
1211 u64 bytenr
, u64 parent
,
1214 struct btrfs_key key
;
1217 key
.objectid
= bytenr
;
1219 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1220 key
.offset
= parent
;
1222 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1223 key
.offset
= root_objectid
;
1226 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1229 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1230 if (ret
== -ENOENT
&& parent
) {
1231 btrfs_release_path(root
, path
);
1232 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1233 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1241 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1242 struct btrfs_root
*root
,
1243 struct btrfs_path
*path
,
1244 u64 bytenr
, u64 parent
,
1247 struct btrfs_key key
;
1250 key
.objectid
= bytenr
;
1252 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1253 key
.offset
= parent
;
1255 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1256 key
.offset
= root_objectid
;
1259 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1260 btrfs_release_path(root
, path
);
1264 static inline int extent_ref_type(u64 parent
, u64 owner
)
1267 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1269 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1271 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1274 type
= BTRFS_SHARED_DATA_REF_KEY
;
1276 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1281 static int find_next_key(struct btrfs_path
*path
, int level
,
1282 struct btrfs_key
*key
)
1285 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1286 if (!path
->nodes
[level
])
1288 if (path
->slots
[level
] + 1 >=
1289 btrfs_header_nritems(path
->nodes
[level
]))
1292 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1293 path
->slots
[level
] + 1);
1295 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1296 path
->slots
[level
] + 1);
1303 * look for inline back ref. if back ref is found, *ref_ret is set
1304 * to the address of inline back ref, and 0 is returned.
1306 * if back ref isn't found, *ref_ret is set to the address where it
1307 * should be inserted, and -ENOENT is returned.
1309 * if insert is true and there are too many inline back refs, the path
1310 * points to the extent item, and -EAGAIN is returned.
1312 * NOTE: inline back refs are ordered in the same way that back ref
1313 * items in the tree are ordered.
1315 static noinline_for_stack
1316 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1317 struct btrfs_root
*root
,
1318 struct btrfs_path
*path
,
1319 struct btrfs_extent_inline_ref
**ref_ret
,
1320 u64 bytenr
, u64 num_bytes
,
1321 u64 parent
, u64 root_objectid
,
1322 u64 owner
, u64 offset
, int insert
)
1324 struct btrfs_key key
;
1325 struct extent_buffer
*leaf
;
1326 struct btrfs_extent_item
*ei
;
1327 struct btrfs_extent_inline_ref
*iref
;
1338 key
.objectid
= bytenr
;
1339 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1340 key
.offset
= num_bytes
;
1342 want
= extent_ref_type(parent
, owner
);
1344 extra_size
= btrfs_extent_inline_ref_size(want
);
1345 path
->keep_locks
= 1;
1348 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1355 leaf
= path
->nodes
[0];
1356 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 if (item_size
< sizeof(*ei
)) {
1363 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1369 leaf
= path
->nodes
[0];
1370 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1373 BUG_ON(item_size
< sizeof(*ei
));
1375 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1376 flags
= btrfs_extent_flags(leaf
, ei
);
1378 ptr
= (unsigned long)(ei
+ 1);
1379 end
= (unsigned long)ei
+ item_size
;
1381 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1382 ptr
+= sizeof(struct btrfs_tree_block_info
);
1385 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
1394 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1395 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1399 ptr
+= btrfs_extent_inline_ref_size(type
);
1403 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1404 struct btrfs_extent_data_ref
*dref
;
1405 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1406 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1411 if (hash_extent_data_ref_item(leaf
, dref
) <
1412 hash_extent_data_ref(root_objectid
, owner
, offset
))
1416 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1418 if (parent
== ref_offset
) {
1422 if (ref_offset
< parent
)
1425 if (root_objectid
== ref_offset
) {
1429 if (ref_offset
< root_objectid
)
1433 ptr
+= btrfs_extent_inline_ref_size(type
);
1435 if (err
== -ENOENT
&& insert
) {
1436 if (item_size
+ extra_size
>=
1437 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1442 * To add new inline back ref, we have to make sure
1443 * there is no corresponding back ref item.
1444 * For simplicity, we just do not add new inline back
1445 * ref if there is any kind of item for this block
1447 if (find_next_key(path
, 0, &key
) == 0 &&
1448 key
.objectid
== bytenr
&&
1449 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1454 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1457 path
->keep_locks
= 0;
1458 btrfs_unlock_up_safe(path
, 1);
1464 * helper to add new inline back ref
1466 static noinline_for_stack
1467 int setup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1468 struct btrfs_root
*root
,
1469 struct btrfs_path
*path
,
1470 struct btrfs_extent_inline_ref
*iref
,
1471 u64 parent
, u64 root_objectid
,
1472 u64 owner
, u64 offset
, int refs_to_add
,
1473 struct btrfs_delayed_extent_op
*extent_op
)
1475 struct extent_buffer
*leaf
;
1476 struct btrfs_extent_item
*ei
;
1479 unsigned long item_offset
;
1485 leaf
= path
->nodes
[0];
1486 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1487 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1489 type
= extent_ref_type(parent
, owner
);
1490 size
= btrfs_extent_inline_ref_size(type
);
1492 ret
= btrfs_extend_item(trans
, root
, path
, size
);
1495 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1496 refs
= btrfs_extent_refs(leaf
, ei
);
1497 refs
+= refs_to_add
;
1498 btrfs_set_extent_refs(leaf
, ei
, refs
);
1500 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1502 ptr
= (unsigned long)ei
+ item_offset
;
1503 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1504 if (ptr
< end
- size
)
1505 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1508 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1509 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1510 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1511 struct btrfs_extent_data_ref
*dref
;
1512 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1513 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1514 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1515 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1516 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1517 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1518 struct btrfs_shared_data_ref
*sref
;
1519 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1520 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1521 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1522 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1523 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1525 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1527 btrfs_mark_buffer_dirty(leaf
);
1531 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1532 struct btrfs_root
*root
,
1533 struct btrfs_path
*path
,
1534 struct btrfs_extent_inline_ref
**ref_ret
,
1535 u64 bytenr
, u64 num_bytes
, u64 parent
,
1536 u64 root_objectid
, u64 owner
, u64 offset
)
1540 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1541 bytenr
, num_bytes
, parent
,
1542 root_objectid
, owner
, offset
, 0);
1546 btrfs_release_path(root
, path
);
1549 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1550 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1553 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1554 root_objectid
, owner
, offset
);
1560 * helper to update/remove inline back ref
1562 static noinline_for_stack
1563 int update_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1564 struct btrfs_root
*root
,
1565 struct btrfs_path
*path
,
1566 struct btrfs_extent_inline_ref
*iref
,
1568 struct btrfs_delayed_extent_op
*extent_op
)
1570 struct extent_buffer
*leaf
;
1571 struct btrfs_extent_item
*ei
;
1572 struct btrfs_extent_data_ref
*dref
= NULL
;
1573 struct btrfs_shared_data_ref
*sref
= NULL
;
1582 leaf
= path
->nodes
[0];
1583 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1584 refs
= btrfs_extent_refs(leaf
, ei
);
1585 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1586 refs
+= refs_to_mod
;
1587 btrfs_set_extent_refs(leaf
, ei
, refs
);
1589 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1591 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1593 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1594 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1595 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1596 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1597 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1598 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1601 BUG_ON(refs_to_mod
!= -1);
1604 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1605 refs
+= refs_to_mod
;
1608 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1609 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1611 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1613 size
= btrfs_extent_inline_ref_size(type
);
1614 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1615 ptr
= (unsigned long)iref
;
1616 end
= (unsigned long)ei
+ item_size
;
1617 if (ptr
+ size
< end
)
1618 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1621 ret
= btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
1624 btrfs_mark_buffer_dirty(leaf
);
1628 static noinline_for_stack
1629 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1630 struct btrfs_root
*root
,
1631 struct btrfs_path
*path
,
1632 u64 bytenr
, u64 num_bytes
, u64 parent
,
1633 u64 root_objectid
, u64 owner
,
1634 u64 offset
, int refs_to_add
,
1635 struct btrfs_delayed_extent_op
*extent_op
)
1637 struct btrfs_extent_inline_ref
*iref
;
1640 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1641 bytenr
, num_bytes
, parent
,
1642 root_objectid
, owner
, offset
, 1);
1644 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1645 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1646 refs_to_add
, extent_op
);
1647 } else if (ret
== -ENOENT
) {
1648 ret
= setup_inline_extent_backref(trans
, root
, path
, iref
,
1649 parent
, root_objectid
,
1650 owner
, offset
, refs_to_add
,
1656 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1657 struct btrfs_root
*root
,
1658 struct btrfs_path
*path
,
1659 u64 bytenr
, u64 parent
, u64 root_objectid
,
1660 u64 owner
, u64 offset
, int refs_to_add
)
1663 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1664 BUG_ON(refs_to_add
!= 1);
1665 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1666 parent
, root_objectid
);
1668 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1669 parent
, root_objectid
,
1670 owner
, offset
, refs_to_add
);
1675 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1676 struct btrfs_root
*root
,
1677 struct btrfs_path
*path
,
1678 struct btrfs_extent_inline_ref
*iref
,
1679 int refs_to_drop
, int is_data
)
1683 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1685 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1686 -refs_to_drop
, NULL
);
1687 } else if (is_data
) {
1688 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
);
1690 ret
= btrfs_del_item(trans
, root
, path
);
1695 static void btrfs_issue_discard(struct block_device
*bdev
,
1698 blkdev_issue_discard(bdev
, start
>> 9, len
>> 9, GFP_KERNEL
, 0);
1701 static int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
1705 u64 map_length
= num_bytes
;
1706 struct btrfs_multi_bio
*multi
= NULL
;
1708 if (!btrfs_test_opt(root
, DISCARD
))
1711 /* Tell the block device(s) that the sectors can be discarded */
1712 ret
= btrfs_map_block(&root
->fs_info
->mapping_tree
, READ
,
1713 bytenr
, &map_length
, &multi
, 0);
1715 struct btrfs_bio_stripe
*stripe
= multi
->stripes
;
1718 if (map_length
> num_bytes
)
1719 map_length
= num_bytes
;
1721 for (i
= 0; i
< multi
->num_stripes
; i
++, stripe
++) {
1722 btrfs_issue_discard(stripe
->dev
->bdev
,
1732 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1733 struct btrfs_root
*root
,
1734 u64 bytenr
, u64 num_bytes
, u64 parent
,
1735 u64 root_objectid
, u64 owner
, u64 offset
)
1738 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
1739 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
1741 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1742 ret
= btrfs_add_delayed_tree_ref(trans
, bytenr
, num_bytes
,
1743 parent
, root_objectid
, (int)owner
,
1744 BTRFS_ADD_DELAYED_REF
, NULL
);
1746 ret
= btrfs_add_delayed_data_ref(trans
, bytenr
, num_bytes
,
1747 parent
, root_objectid
, owner
, offset
,
1748 BTRFS_ADD_DELAYED_REF
, NULL
);
1753 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1754 struct btrfs_root
*root
,
1755 u64 bytenr
, u64 num_bytes
,
1756 u64 parent
, u64 root_objectid
,
1757 u64 owner
, u64 offset
, int refs_to_add
,
1758 struct btrfs_delayed_extent_op
*extent_op
)
1760 struct btrfs_path
*path
;
1761 struct extent_buffer
*leaf
;
1762 struct btrfs_extent_item
*item
;
1767 path
= btrfs_alloc_path();
1772 path
->leave_spinning
= 1;
1773 /* this will setup the path even if it fails to insert the back ref */
1774 ret
= insert_inline_extent_backref(trans
, root
->fs_info
->extent_root
,
1775 path
, bytenr
, num_bytes
, parent
,
1776 root_objectid
, owner
, offset
,
1777 refs_to_add
, extent_op
);
1781 if (ret
!= -EAGAIN
) {
1786 leaf
= path
->nodes
[0];
1787 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1788 refs
= btrfs_extent_refs(leaf
, item
);
1789 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
1791 __run_delayed_extent_op(extent_op
, leaf
, item
);
1793 btrfs_mark_buffer_dirty(leaf
);
1794 btrfs_release_path(root
->fs_info
->extent_root
, path
);
1797 path
->leave_spinning
= 1;
1799 /* now insert the actual backref */
1800 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
1801 path
, bytenr
, parent
, root_objectid
,
1802 owner
, offset
, refs_to_add
);
1805 btrfs_free_path(path
);
1809 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
1810 struct btrfs_root
*root
,
1811 struct btrfs_delayed_ref_node
*node
,
1812 struct btrfs_delayed_extent_op
*extent_op
,
1813 int insert_reserved
)
1816 struct btrfs_delayed_data_ref
*ref
;
1817 struct btrfs_key ins
;
1822 ins
.objectid
= node
->bytenr
;
1823 ins
.offset
= node
->num_bytes
;
1824 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1826 ref
= btrfs_delayed_node_to_data_ref(node
);
1827 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1828 parent
= ref
->parent
;
1830 ref_root
= ref
->root
;
1832 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1834 BUG_ON(extent_op
->update_key
);
1835 flags
|= extent_op
->flags_to_set
;
1837 ret
= alloc_reserved_file_extent(trans
, root
,
1838 parent
, ref_root
, flags
,
1839 ref
->objectid
, ref
->offset
,
1840 &ins
, node
->ref_mod
);
1841 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1842 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
1843 node
->num_bytes
, parent
,
1844 ref_root
, ref
->objectid
,
1845 ref
->offset
, node
->ref_mod
,
1847 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1848 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
1849 node
->num_bytes
, parent
,
1850 ref_root
, ref
->objectid
,
1851 ref
->offset
, node
->ref_mod
,
1859 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
1860 struct extent_buffer
*leaf
,
1861 struct btrfs_extent_item
*ei
)
1863 u64 flags
= btrfs_extent_flags(leaf
, ei
);
1864 if (extent_op
->update_flags
) {
1865 flags
|= extent_op
->flags_to_set
;
1866 btrfs_set_extent_flags(leaf
, ei
, flags
);
1869 if (extent_op
->update_key
) {
1870 struct btrfs_tree_block_info
*bi
;
1871 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
1872 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1873 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
1877 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
1878 struct btrfs_root
*root
,
1879 struct btrfs_delayed_ref_node
*node
,
1880 struct btrfs_delayed_extent_op
*extent_op
)
1882 struct btrfs_key key
;
1883 struct btrfs_path
*path
;
1884 struct btrfs_extent_item
*ei
;
1885 struct extent_buffer
*leaf
;
1890 path
= btrfs_alloc_path();
1894 key
.objectid
= node
->bytenr
;
1895 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1896 key
.offset
= node
->num_bytes
;
1899 path
->leave_spinning
= 1;
1900 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
1911 leaf
= path
->nodes
[0];
1912 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1913 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1914 if (item_size
< sizeof(*ei
)) {
1915 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
1921 leaf
= path
->nodes
[0];
1922 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1925 BUG_ON(item_size
< sizeof(*ei
));
1926 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1927 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1929 btrfs_mark_buffer_dirty(leaf
);
1931 btrfs_free_path(path
);
1935 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
1936 struct btrfs_root
*root
,
1937 struct btrfs_delayed_ref_node
*node
,
1938 struct btrfs_delayed_extent_op
*extent_op
,
1939 int insert_reserved
)
1942 struct btrfs_delayed_tree_ref
*ref
;
1943 struct btrfs_key ins
;
1947 ins
.objectid
= node
->bytenr
;
1948 ins
.offset
= node
->num_bytes
;
1949 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1951 ref
= btrfs_delayed_node_to_tree_ref(node
);
1952 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1953 parent
= ref
->parent
;
1955 ref_root
= ref
->root
;
1957 BUG_ON(node
->ref_mod
!= 1);
1958 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1959 BUG_ON(!extent_op
|| !extent_op
->update_flags
||
1960 !extent_op
->update_key
);
1961 ret
= alloc_reserved_tree_block(trans
, root
,
1963 extent_op
->flags_to_set
,
1966 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1967 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
1968 node
->num_bytes
, parent
, ref_root
,
1969 ref
->level
, 0, 1, extent_op
);
1970 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1971 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
1972 node
->num_bytes
, parent
, ref_root
,
1973 ref
->level
, 0, 1, extent_op
);
1980 /* helper function to actually process a single delayed ref entry */
1981 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
1982 struct btrfs_root
*root
,
1983 struct btrfs_delayed_ref_node
*node
,
1984 struct btrfs_delayed_extent_op
*extent_op
,
1985 int insert_reserved
)
1988 if (btrfs_delayed_ref_is_head(node
)) {
1989 struct btrfs_delayed_ref_head
*head
;
1991 * we've hit the end of the chain and we were supposed
1992 * to insert this extent into the tree. But, it got
1993 * deleted before we ever needed to insert it, so all
1994 * we have to do is clean up the accounting
1997 head
= btrfs_delayed_node_to_head(node
);
1998 if (insert_reserved
) {
1999 btrfs_pin_extent(root
, node
->bytenr
,
2000 node
->num_bytes
, 1);
2001 if (head
->is_data
) {
2002 ret
= btrfs_del_csums(trans
, root
,
2008 mutex_unlock(&head
->mutex
);
2012 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2013 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2014 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
2016 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2017 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2018 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
2025 static noinline
struct btrfs_delayed_ref_node
*
2026 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2028 struct rb_node
*node
;
2029 struct btrfs_delayed_ref_node
*ref
;
2030 int action
= BTRFS_ADD_DELAYED_REF
;
2033 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2034 * this prevents ref count from going down to zero when
2035 * there still are pending delayed ref.
2037 node
= rb_prev(&head
->node
.rb_node
);
2041 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2043 if (ref
->bytenr
!= head
->node
.bytenr
)
2045 if (ref
->action
== action
)
2047 node
= rb_prev(node
);
2049 if (action
== BTRFS_ADD_DELAYED_REF
) {
2050 action
= BTRFS_DROP_DELAYED_REF
;
2056 static noinline
int run_clustered_refs(struct btrfs_trans_handle
*trans
,
2057 struct btrfs_root
*root
,
2058 struct list_head
*cluster
)
2060 struct btrfs_delayed_ref_root
*delayed_refs
;
2061 struct btrfs_delayed_ref_node
*ref
;
2062 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2063 struct btrfs_delayed_extent_op
*extent_op
;
2066 int must_insert_reserved
= 0;
2068 delayed_refs
= &trans
->transaction
->delayed_refs
;
2071 /* pick a new head ref from the cluster list */
2072 if (list_empty(cluster
))
2075 locked_ref
= list_entry(cluster
->next
,
2076 struct btrfs_delayed_ref_head
, cluster
);
2078 /* grab the lock that says we are going to process
2079 * all the refs for this head */
2080 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2083 * we may have dropped the spin lock to get the head
2084 * mutex lock, and that might have given someone else
2085 * time to free the head. If that's true, it has been
2086 * removed from our list and we can move on.
2088 if (ret
== -EAGAIN
) {
2096 * record the must insert reserved flag before we
2097 * drop the spin lock.
2099 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2100 locked_ref
->must_insert_reserved
= 0;
2102 extent_op
= locked_ref
->extent_op
;
2103 locked_ref
->extent_op
= NULL
;
2106 * locked_ref is the head node, so we have to go one
2107 * node back for any delayed ref updates
2109 ref
= select_delayed_ref(locked_ref
);
2111 /* All delayed refs have been processed, Go ahead
2112 * and send the head node to run_one_delayed_ref,
2113 * so that any accounting fixes can happen
2115 ref
= &locked_ref
->node
;
2117 if (extent_op
&& must_insert_reserved
) {
2123 spin_unlock(&delayed_refs
->lock
);
2125 ret
= run_delayed_extent_op(trans
, root
,
2131 spin_lock(&delayed_refs
->lock
);
2135 list_del_init(&locked_ref
->cluster
);
2140 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
2141 delayed_refs
->num_entries
--;
2143 spin_unlock(&delayed_refs
->lock
);
2145 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2146 must_insert_reserved
);
2149 btrfs_put_delayed_ref(ref
);
2154 spin_lock(&delayed_refs
->lock
);
2160 * this starts processing the delayed reference count updates and
2161 * extent insertions we have queued up so far. count can be
2162 * 0, which means to process everything in the tree at the start
2163 * of the run (but not newly added entries), or it can be some target
2164 * number you'd like to process.
2166 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2167 struct btrfs_root
*root
, unsigned long count
)
2169 struct rb_node
*node
;
2170 struct btrfs_delayed_ref_root
*delayed_refs
;
2171 struct btrfs_delayed_ref_node
*ref
;
2172 struct list_head cluster
;
2174 int run_all
= count
== (unsigned long)-1;
2177 if (root
== root
->fs_info
->extent_root
)
2178 root
= root
->fs_info
->tree_root
;
2180 delayed_refs
= &trans
->transaction
->delayed_refs
;
2181 INIT_LIST_HEAD(&cluster
);
2183 spin_lock(&delayed_refs
->lock
);
2185 count
= delayed_refs
->num_entries
* 2;
2189 if (!(run_all
|| run_most
) &&
2190 delayed_refs
->num_heads_ready
< 64)
2194 * go find something we can process in the rbtree. We start at
2195 * the beginning of the tree, and then build a cluster
2196 * of refs to process starting at the first one we are able to
2199 ret
= btrfs_find_ref_cluster(trans
, &cluster
,
2200 delayed_refs
->run_delayed_start
);
2204 ret
= run_clustered_refs(trans
, root
, &cluster
);
2207 count
-= min_t(unsigned long, ret
, count
);
2214 node
= rb_first(&delayed_refs
->root
);
2217 count
= (unsigned long)-1;
2220 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2222 if (btrfs_delayed_ref_is_head(ref
)) {
2223 struct btrfs_delayed_ref_head
*head
;
2225 head
= btrfs_delayed_node_to_head(ref
);
2226 atomic_inc(&ref
->refs
);
2228 spin_unlock(&delayed_refs
->lock
);
2229 mutex_lock(&head
->mutex
);
2230 mutex_unlock(&head
->mutex
);
2232 btrfs_put_delayed_ref(ref
);
2236 node
= rb_next(node
);
2238 spin_unlock(&delayed_refs
->lock
);
2239 schedule_timeout(1);
2243 spin_unlock(&delayed_refs
->lock
);
2247 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2248 struct btrfs_root
*root
,
2249 u64 bytenr
, u64 num_bytes
, u64 flags
,
2252 struct btrfs_delayed_extent_op
*extent_op
;
2255 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
2259 extent_op
->flags_to_set
= flags
;
2260 extent_op
->update_flags
= 1;
2261 extent_op
->update_key
= 0;
2262 extent_op
->is_data
= is_data
? 1 : 0;
2264 ret
= btrfs_add_delayed_extent_op(trans
, bytenr
, num_bytes
, extent_op
);
2270 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
2271 struct btrfs_root
*root
,
2272 struct btrfs_path
*path
,
2273 u64 objectid
, u64 offset
, u64 bytenr
)
2275 struct btrfs_delayed_ref_head
*head
;
2276 struct btrfs_delayed_ref_node
*ref
;
2277 struct btrfs_delayed_data_ref
*data_ref
;
2278 struct btrfs_delayed_ref_root
*delayed_refs
;
2279 struct rb_node
*node
;
2283 delayed_refs
= &trans
->transaction
->delayed_refs
;
2284 spin_lock(&delayed_refs
->lock
);
2285 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
2289 if (!mutex_trylock(&head
->mutex
)) {
2290 atomic_inc(&head
->node
.refs
);
2291 spin_unlock(&delayed_refs
->lock
);
2293 btrfs_release_path(root
->fs_info
->extent_root
, path
);
2295 mutex_lock(&head
->mutex
);
2296 mutex_unlock(&head
->mutex
);
2297 btrfs_put_delayed_ref(&head
->node
);
2301 node
= rb_prev(&head
->node
.rb_node
);
2305 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2307 if (ref
->bytenr
!= bytenr
)
2311 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
)
2314 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
2316 node
= rb_prev(node
);
2318 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2319 if (ref
->bytenr
== bytenr
)
2323 if (data_ref
->root
!= root
->root_key
.objectid
||
2324 data_ref
->objectid
!= objectid
|| data_ref
->offset
!= offset
)
2329 mutex_unlock(&head
->mutex
);
2331 spin_unlock(&delayed_refs
->lock
);
2335 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
2336 struct btrfs_root
*root
,
2337 struct btrfs_path
*path
,
2338 u64 objectid
, u64 offset
, u64 bytenr
)
2340 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2341 struct extent_buffer
*leaf
;
2342 struct btrfs_extent_data_ref
*ref
;
2343 struct btrfs_extent_inline_ref
*iref
;
2344 struct btrfs_extent_item
*ei
;
2345 struct btrfs_key key
;
2349 key
.objectid
= bytenr
;
2350 key
.offset
= (u64
)-1;
2351 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2353 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
2359 if (path
->slots
[0] == 0)
2363 leaf
= path
->nodes
[0];
2364 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2366 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
2370 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2371 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2372 if (item_size
< sizeof(*ei
)) {
2373 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
2377 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2379 if (item_size
!= sizeof(*ei
) +
2380 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
2383 if (btrfs_extent_generation(leaf
, ei
) <=
2384 btrfs_root_last_snapshot(&root
->root_item
))
2387 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
2388 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
2389 BTRFS_EXTENT_DATA_REF_KEY
)
2392 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
2393 if (btrfs_extent_refs(leaf
, ei
) !=
2394 btrfs_extent_data_ref_count(leaf
, ref
) ||
2395 btrfs_extent_data_ref_root(leaf
, ref
) !=
2396 root
->root_key
.objectid
||
2397 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
2398 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
2406 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
2407 struct btrfs_root
*root
,
2408 u64 objectid
, u64 offset
, u64 bytenr
)
2410 struct btrfs_path
*path
;
2414 path
= btrfs_alloc_path();
2419 ret
= check_committed_ref(trans
, root
, path
, objectid
,
2421 if (ret
&& ret
!= -ENOENT
)
2424 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
2426 } while (ret2
== -EAGAIN
);
2428 if (ret2
&& ret2
!= -ENOENT
) {
2433 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
2436 btrfs_free_path(path
);
2437 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
2443 int btrfs_cache_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2444 struct extent_buffer
*buf
, u32 nr_extents
)
2446 struct btrfs_key key
;
2447 struct btrfs_file_extent_item
*fi
;
2455 if (!root
->ref_cows
)
2458 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
2460 root_gen
= root
->root_key
.offset
;
2463 root_gen
= trans
->transid
- 1;
2466 level
= btrfs_header_level(buf
);
2467 nritems
= btrfs_header_nritems(buf
);
2470 struct btrfs_leaf_ref
*ref
;
2471 struct btrfs_extent_info
*info
;
2473 ref
= btrfs_alloc_leaf_ref(root
, nr_extents
);
2479 ref
->root_gen
= root_gen
;
2480 ref
->bytenr
= buf
->start
;
2481 ref
->owner
= btrfs_header_owner(buf
);
2482 ref
->generation
= btrfs_header_generation(buf
);
2483 ref
->nritems
= nr_extents
;
2484 info
= ref
->extents
;
2486 for (i
= 0; nr_extents
> 0 && i
< nritems
; i
++) {
2488 btrfs_item_key_to_cpu(buf
, &key
, i
);
2489 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
2491 fi
= btrfs_item_ptr(buf
, i
,
2492 struct btrfs_file_extent_item
);
2493 if (btrfs_file_extent_type(buf
, fi
) ==
2494 BTRFS_FILE_EXTENT_INLINE
)
2496 disk_bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2497 if (disk_bytenr
== 0)
2500 info
->bytenr
= disk_bytenr
;
2502 btrfs_file_extent_disk_num_bytes(buf
, fi
);
2503 info
->objectid
= key
.objectid
;
2504 info
->offset
= key
.offset
;
2508 ret
= btrfs_add_leaf_ref(root
, ref
, shared
);
2509 if (ret
== -EEXIST
&& shared
) {
2510 struct btrfs_leaf_ref
*old
;
2511 old
= btrfs_lookup_leaf_ref(root
, ref
->bytenr
);
2513 btrfs_remove_leaf_ref(root
, old
);
2514 btrfs_free_leaf_ref(root
, old
);
2515 ret
= btrfs_add_leaf_ref(root
, ref
, shared
);
2518 btrfs_free_leaf_ref(root
, ref
);
2524 /* when a block goes through cow, we update the reference counts of
2525 * everything that block points to. The internal pointers of the block
2526 * can be in just about any order, and it is likely to have clusters of
2527 * things that are close together and clusters of things that are not.
2529 * To help reduce the seeks that come with updating all of these reference
2530 * counts, sort them by byte number before actual updates are done.
2532 * struct refsort is used to match byte number to slot in the btree block.
2533 * we sort based on the byte number and then use the slot to actually
2536 * struct refsort is smaller than strcut btrfs_item and smaller than
2537 * struct btrfs_key_ptr. Since we're currently limited to the page size
2538 * for a btree block, there's no way for a kmalloc of refsorts for a
2539 * single node to be bigger than a page.
2547 * for passing into sort()
2549 static int refsort_cmp(const void *a_void
, const void *b_void
)
2551 const struct refsort
*a
= a_void
;
2552 const struct refsort
*b
= b_void
;
2554 if (a
->bytenr
< b
->bytenr
)
2556 if (a
->bytenr
> b
->bytenr
)
2562 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
2563 struct btrfs_root
*root
,
2564 struct extent_buffer
*buf
,
2565 int full_backref
, int inc
)
2572 struct btrfs_key key
;
2573 struct btrfs_file_extent_item
*fi
;
2577 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
2578 u64
, u64
, u64
, u64
, u64
, u64
);
2580 ref_root
= btrfs_header_owner(buf
);
2581 nritems
= btrfs_header_nritems(buf
);
2582 level
= btrfs_header_level(buf
);
2584 if (!root
->ref_cows
&& level
== 0)
2588 process_func
= btrfs_inc_extent_ref
;
2590 process_func
= btrfs_free_extent
;
2593 parent
= buf
->start
;
2597 for (i
= 0; i
< nritems
; i
++) {
2599 btrfs_item_key_to_cpu(buf
, &key
, i
);
2600 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
2602 fi
= btrfs_item_ptr(buf
, i
,
2603 struct btrfs_file_extent_item
);
2604 if (btrfs_file_extent_type(buf
, fi
) ==
2605 BTRFS_FILE_EXTENT_INLINE
)
2607 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2611 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
2612 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
2613 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2614 parent
, ref_root
, key
.objectid
,
2619 bytenr
= btrfs_node_blockptr(buf
, i
);
2620 num_bytes
= btrfs_level_size(root
, level
- 1);
2621 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2622 parent
, ref_root
, level
- 1, 0);
2633 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2634 struct extent_buffer
*buf
, int full_backref
)
2636 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
2639 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2640 struct extent_buffer
*buf
, int full_backref
)
2642 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
2645 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
2646 struct btrfs_root
*root
,
2647 struct btrfs_path
*path
,
2648 struct btrfs_block_group_cache
*cache
)
2651 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2653 struct extent_buffer
*leaf
;
2655 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
2660 leaf
= path
->nodes
[0];
2661 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
2662 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
2663 btrfs_mark_buffer_dirty(leaf
);
2664 btrfs_release_path(extent_root
, path
);
2672 static struct btrfs_block_group_cache
*
2673 next_block_group(struct btrfs_root
*root
,
2674 struct btrfs_block_group_cache
*cache
)
2676 struct rb_node
*node
;
2677 spin_lock(&root
->fs_info
->block_group_cache_lock
);
2678 node
= rb_next(&cache
->cache_node
);
2679 btrfs_put_block_group(cache
);
2681 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
2683 btrfs_get_block_group(cache
);
2686 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
2690 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
2691 struct btrfs_root
*root
)
2693 struct btrfs_block_group_cache
*cache
;
2695 struct btrfs_path
*path
;
2698 path
= btrfs_alloc_path();
2704 err
= btrfs_run_delayed_refs(trans
, root
,
2709 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2713 cache
= next_block_group(root
, cache
);
2723 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2725 err
= write_one_cache_group(trans
, root
, path
, cache
);
2727 btrfs_put_block_group(cache
);
2730 btrfs_free_path(path
);
2734 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
2736 struct btrfs_block_group_cache
*block_group
;
2739 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
2740 if (!block_group
|| block_group
->ro
)
2743 btrfs_put_block_group(block_group
);
2747 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
2748 u64 total_bytes
, u64 bytes_used
,
2749 struct btrfs_space_info
**space_info
)
2751 struct btrfs_space_info
*found
;
2755 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
2756 BTRFS_BLOCK_GROUP_RAID10
))
2761 found
= __find_space_info(info
, flags
);
2763 spin_lock(&found
->lock
);
2764 found
->total_bytes
+= total_bytes
;
2765 found
->bytes_used
+= bytes_used
;
2766 found
->disk_used
+= bytes_used
* factor
;
2768 spin_unlock(&found
->lock
);
2769 *space_info
= found
;
2772 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
2776 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
2777 INIT_LIST_HEAD(&found
->block_groups
[i
]);
2778 init_rwsem(&found
->groups_sem
);
2779 spin_lock_init(&found
->lock
);
2780 found
->flags
= flags
& (BTRFS_BLOCK_GROUP_DATA
|
2781 BTRFS_BLOCK_GROUP_SYSTEM
|
2782 BTRFS_BLOCK_GROUP_METADATA
);
2783 found
->total_bytes
= total_bytes
;
2784 found
->bytes_used
= bytes_used
;
2785 found
->disk_used
= bytes_used
* factor
;
2786 found
->bytes_pinned
= 0;
2787 found
->bytes_reserved
= 0;
2788 found
->bytes_readonly
= 0;
2789 found
->bytes_may_use
= 0;
2791 found
->force_alloc
= 0;
2792 *space_info
= found
;
2793 list_add_rcu(&found
->list
, &info
->space_info
);
2794 atomic_set(&found
->caching_threads
, 0);
2798 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
2800 u64 extra_flags
= flags
& (BTRFS_BLOCK_GROUP_RAID0
|
2801 BTRFS_BLOCK_GROUP_RAID1
|
2802 BTRFS_BLOCK_GROUP_RAID10
|
2803 BTRFS_BLOCK_GROUP_DUP
);
2805 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
2806 fs_info
->avail_data_alloc_bits
|= extra_flags
;
2807 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
2808 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
2809 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
2810 fs_info
->avail_system_alloc_bits
|= extra_flags
;
2814 u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
2816 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
2818 if (num_devices
== 1)
2819 flags
&= ~(BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID0
);
2820 if (num_devices
< 4)
2821 flags
&= ~BTRFS_BLOCK_GROUP_RAID10
;
2823 if ((flags
& BTRFS_BLOCK_GROUP_DUP
) &&
2824 (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
2825 BTRFS_BLOCK_GROUP_RAID10
))) {
2826 flags
&= ~BTRFS_BLOCK_GROUP_DUP
;
2829 if ((flags
& BTRFS_BLOCK_GROUP_RAID1
) &&
2830 (flags
& BTRFS_BLOCK_GROUP_RAID10
)) {
2831 flags
&= ~BTRFS_BLOCK_GROUP_RAID1
;
2834 if ((flags
& BTRFS_BLOCK_GROUP_RAID0
) &&
2835 ((flags
& BTRFS_BLOCK_GROUP_RAID1
) |
2836 (flags
& BTRFS_BLOCK_GROUP_RAID10
) |
2837 (flags
& BTRFS_BLOCK_GROUP_DUP
)))
2838 flags
&= ~BTRFS_BLOCK_GROUP_RAID0
;
2842 static u64
get_alloc_profile(struct btrfs_root
*root
, u64 flags
)
2844 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
2845 flags
|= root
->fs_info
->avail_data_alloc_bits
&
2846 root
->fs_info
->data_alloc_profile
;
2847 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
2848 flags
|= root
->fs_info
->avail_system_alloc_bits
&
2849 root
->fs_info
->system_alloc_profile
;
2850 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
2851 flags
|= root
->fs_info
->avail_metadata_alloc_bits
&
2852 root
->fs_info
->metadata_alloc_profile
;
2853 return btrfs_reduce_alloc_profile(root
, flags
);
2856 static u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, int data
)
2861 flags
= BTRFS_BLOCK_GROUP_DATA
;
2862 else if (root
== root
->fs_info
->chunk_root
)
2863 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
2865 flags
= BTRFS_BLOCK_GROUP_METADATA
;
2867 return get_alloc_profile(root
, flags
);
2870 void btrfs_set_inode_space_info(struct btrfs_root
*root
, struct inode
*inode
)
2872 BTRFS_I(inode
)->space_info
= __find_space_info(root
->fs_info
,
2873 BTRFS_BLOCK_GROUP_DATA
);
2877 * This will check the space that the inode allocates from to make sure we have
2878 * enough space for bytes.
2880 int btrfs_check_data_free_space(struct inode
*inode
, u64 bytes
)
2882 struct btrfs_space_info
*data_sinfo
;
2883 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2885 int ret
= 0, committed
= 0;
2887 /* make sure bytes are sectorsize aligned */
2888 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
2890 data_sinfo
= BTRFS_I(inode
)->space_info
;
2895 /* make sure we have enough space to handle the data first */
2896 spin_lock(&data_sinfo
->lock
);
2897 used
= data_sinfo
->bytes_used
+ data_sinfo
->bytes_reserved
+
2898 data_sinfo
->bytes_pinned
+ data_sinfo
->bytes_readonly
+
2899 data_sinfo
->bytes_may_use
;
2901 if (used
+ bytes
> data_sinfo
->total_bytes
) {
2902 struct btrfs_trans_handle
*trans
;
2905 * if we don't have enough free bytes in this space then we need
2906 * to alloc a new chunk.
2908 if (!data_sinfo
->full
) {
2911 data_sinfo
->force_alloc
= 1;
2912 spin_unlock(&data_sinfo
->lock
);
2914 alloc_target
= btrfs_get_alloc_profile(root
, 1);
2915 trans
= btrfs_join_transaction(root
, 1);
2917 return PTR_ERR(trans
);
2919 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
2920 bytes
+ 2 * 1024 * 1024,
2922 btrfs_end_transaction(trans
, root
);
2927 btrfs_set_inode_space_info(root
, inode
);
2928 data_sinfo
= BTRFS_I(inode
)->space_info
;
2932 spin_unlock(&data_sinfo
->lock
);
2934 /* commit the current transaction and try again */
2935 if (!committed
&& !root
->fs_info
->open_ioctl_trans
) {
2937 trans
= btrfs_join_transaction(root
, 1);
2939 return PTR_ERR(trans
);
2940 ret
= btrfs_commit_transaction(trans
, root
);
2946 #if 0 /* I hope we never need this code again, just in case */
2947 printk(KERN_ERR
"no space left, need %llu, %llu bytes_used, "
2948 "%llu bytes_reserved, " "%llu bytes_pinned, "
2949 "%llu bytes_readonly, %llu may use %llu total\n",
2950 (unsigned long long)bytes
,
2951 (unsigned long long)data_sinfo
->bytes_used
,
2952 (unsigned long long)data_sinfo
->bytes_reserved
,
2953 (unsigned long long)data_sinfo
->bytes_pinned
,
2954 (unsigned long long)data_sinfo
->bytes_readonly
,
2955 (unsigned long long)data_sinfo
->bytes_may_use
,
2956 (unsigned long long)data_sinfo
->total_bytes
);
2960 data_sinfo
->bytes_may_use
+= bytes
;
2961 BTRFS_I(inode
)->reserved_bytes
+= bytes
;
2962 spin_unlock(&data_sinfo
->lock
);
2968 * called when we are clearing an delalloc extent from the
2969 * inode's io_tree or there was an error for whatever reason
2970 * after calling btrfs_check_data_free_space
2972 void btrfs_free_reserved_data_space(struct inode
*inode
, u64 bytes
)
2974 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2975 struct btrfs_space_info
*data_sinfo
;
2977 /* make sure bytes are sectorsize aligned */
2978 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
2980 data_sinfo
= BTRFS_I(inode
)->space_info
;
2981 spin_lock(&data_sinfo
->lock
);
2982 data_sinfo
->bytes_may_use
-= bytes
;
2983 BTRFS_I(inode
)->reserved_bytes
-= bytes
;
2984 spin_unlock(&data_sinfo
->lock
);
2987 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
2989 struct list_head
*head
= &info
->space_info
;
2990 struct btrfs_space_info
*found
;
2993 list_for_each_entry_rcu(found
, head
, list
) {
2994 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
2995 found
->force_alloc
= 1;
3000 static int should_alloc_chunk(struct btrfs_space_info
*sinfo
,
3003 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
3005 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+
3006 alloc_bytes
+ 256 * 1024 * 1024 < num_bytes
)
3009 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+
3010 alloc_bytes
< div_factor(num_bytes
, 8))
3016 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
3017 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
3018 u64 flags
, int force
)
3020 struct btrfs_space_info
*space_info
;
3021 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
3024 mutex_lock(&fs_info
->chunk_mutex
);
3026 flags
= btrfs_reduce_alloc_profile(extent_root
, flags
);
3028 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
3030 ret
= update_space_info(extent_root
->fs_info
, flags
,
3034 BUG_ON(!space_info
);
3036 spin_lock(&space_info
->lock
);
3037 if (space_info
->force_alloc
)
3039 if (space_info
->full
) {
3040 spin_unlock(&space_info
->lock
);
3044 if (!force
&& !should_alloc_chunk(space_info
, alloc_bytes
)) {
3045 spin_unlock(&space_info
->lock
);
3048 spin_unlock(&space_info
->lock
);
3051 * if we're doing a data chunk, go ahead and make sure that
3052 * we keep a reasonable number of metadata chunks allocated in the
3055 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
3056 fs_info
->data_chunk_allocations
++;
3057 if (!(fs_info
->data_chunk_allocations
%
3058 fs_info
->metadata_ratio
))
3059 force_metadata_allocation(fs_info
);
3062 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
3063 spin_lock(&space_info
->lock
);
3065 space_info
->full
= 1;
3068 space_info
->force_alloc
= 0;
3069 spin_unlock(&space_info
->lock
);
3071 mutex_unlock(&extent_root
->fs_info
->chunk_mutex
);
3075 static int maybe_allocate_chunk(struct btrfs_trans_handle
*trans
,
3076 struct btrfs_root
*root
,
3077 struct btrfs_space_info
*sinfo
, u64 num_bytes
)
3085 spin_lock(&sinfo
->lock
);
3086 ret
= should_alloc_chunk(sinfo
, num_bytes
+ 2 * 1024 * 1024);
3087 spin_unlock(&sinfo
->lock
);
3092 trans
= btrfs_join_transaction(root
, 1);
3093 BUG_ON(IS_ERR(trans
));
3097 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3098 num_bytes
+ 2 * 1024 * 1024,
3099 get_alloc_profile(root
, sinfo
->flags
), 0);
3102 btrfs_end_transaction(trans
, root
);
3104 return ret
== 1 ? 1 : 0;
3108 * shrink metadata reservation for delalloc
3110 static int shrink_delalloc(struct btrfs_trans_handle
*trans
,
3111 struct btrfs_root
*root
, u64 to_reclaim
)
3113 struct btrfs_block_rsv
*block_rsv
;
3120 block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
3121 spin_lock(&block_rsv
->lock
);
3122 reserved
= block_rsv
->reserved
;
3123 spin_unlock(&block_rsv
->lock
);
3128 max_reclaim
= min(reserved
, to_reclaim
);
3131 ret
= btrfs_start_one_delalloc_inode(root
, trans
? 1 : 0);
3133 __set_current_state(TASK_INTERRUPTIBLE
);
3134 schedule_timeout(pause
);
3136 if (pause
> HZ
/ 10)
3142 spin_lock(&block_rsv
->lock
);
3143 if (reserved
> block_rsv
->reserved
)
3144 reclaimed
= reserved
- block_rsv
->reserved
;
3145 reserved
= block_rsv
->reserved
;
3146 spin_unlock(&block_rsv
->lock
);
3148 if (reserved
== 0 || reclaimed
>= max_reclaim
)
3151 if (trans
&& trans
->transaction
->blocked
)
3154 return reclaimed
>= to_reclaim
;
3157 static int should_retry_reserve(struct btrfs_trans_handle
*trans
,
3158 struct btrfs_root
*root
,
3159 struct btrfs_block_rsv
*block_rsv
,
3160 u64 num_bytes
, int *retries
)
3162 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
3168 ret
= maybe_allocate_chunk(trans
, root
, space_info
, num_bytes
);
3172 if (trans
&& trans
->transaction
->in_commit
)
3175 ret
= shrink_delalloc(trans
, root
, num_bytes
);
3179 spin_lock(&space_info
->lock
);
3180 if (space_info
->bytes_pinned
< num_bytes
)
3182 spin_unlock(&space_info
->lock
);
3191 trans
= btrfs_join_transaction(root
, 1);
3192 BUG_ON(IS_ERR(trans
));
3193 ret
= btrfs_commit_transaction(trans
, root
);
3199 static int reserve_metadata_bytes(struct btrfs_block_rsv
*block_rsv
,
3202 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
3206 spin_lock(&space_info
->lock
);
3207 unused
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
3208 space_info
->bytes_pinned
+ space_info
->bytes_readonly
;
3210 if (unused
< space_info
->total_bytes
)
3211 unused
= space_info
->total_bytes
- unused
;
3215 if (unused
>= num_bytes
) {
3216 if (block_rsv
->priority
>= 10) {
3217 space_info
->bytes_reserved
+= num_bytes
;
3220 if ((unused
+ block_rsv
->reserved
) *
3221 block_rsv
->priority
>=
3222 (num_bytes
+ block_rsv
->reserved
) * 10) {
3223 space_info
->bytes_reserved
+= num_bytes
;
3228 spin_unlock(&space_info
->lock
);
3233 static struct btrfs_block_rsv
*get_block_rsv(struct btrfs_trans_handle
*trans
,
3234 struct btrfs_root
*root
)
3236 struct btrfs_block_rsv
*block_rsv
;
3238 block_rsv
= trans
->block_rsv
;
3240 block_rsv
= root
->block_rsv
;
3243 block_rsv
= &root
->fs_info
->empty_block_rsv
;
3248 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
3252 spin_lock(&block_rsv
->lock
);
3253 if (block_rsv
->reserved
>= num_bytes
) {
3254 block_rsv
->reserved
-= num_bytes
;
3255 if (block_rsv
->reserved
< block_rsv
->size
)
3256 block_rsv
->full
= 0;
3259 spin_unlock(&block_rsv
->lock
);
3263 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
3264 u64 num_bytes
, int update_size
)
3266 spin_lock(&block_rsv
->lock
);
3267 block_rsv
->reserved
+= num_bytes
;
3269 block_rsv
->size
+= num_bytes
;
3270 else if (block_rsv
->reserved
>= block_rsv
->size
)
3271 block_rsv
->full
= 1;
3272 spin_unlock(&block_rsv
->lock
);
3275 void block_rsv_release_bytes(struct btrfs_block_rsv
*block_rsv
,
3276 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
3278 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
3280 spin_lock(&block_rsv
->lock
);
3281 if (num_bytes
== (u64
)-1)
3282 num_bytes
= block_rsv
->size
;
3283 block_rsv
->size
-= num_bytes
;
3284 if (block_rsv
->reserved
>= block_rsv
->size
) {
3285 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
3286 block_rsv
->reserved
= block_rsv
->size
;
3287 block_rsv
->full
= 1;
3291 spin_unlock(&block_rsv
->lock
);
3293 if (num_bytes
> 0) {
3295 block_rsv_add_bytes(dest
, num_bytes
, 0);
3297 spin_lock(&space_info
->lock
);
3298 space_info
->bytes_reserved
-= num_bytes
;
3299 spin_unlock(&space_info
->lock
);
3304 static int block_rsv_migrate_bytes(struct btrfs_block_rsv
*src
,
3305 struct btrfs_block_rsv
*dst
, u64 num_bytes
)
3309 ret
= block_rsv_use_bytes(src
, num_bytes
);
3313 block_rsv_add_bytes(dst
, num_bytes
, 1);
3317 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
)
3319 memset(rsv
, 0, sizeof(*rsv
));
3320 spin_lock_init(&rsv
->lock
);
3321 atomic_set(&rsv
->usage
, 1);
3323 INIT_LIST_HEAD(&rsv
->list
);
3326 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_root
*root
)
3328 struct btrfs_block_rsv
*block_rsv
;
3329 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3332 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
3336 btrfs_init_block_rsv(block_rsv
);
3338 alloc_target
= btrfs_get_alloc_profile(root
, 0);
3339 block_rsv
->space_info
= __find_space_info(fs_info
,
3340 BTRFS_BLOCK_GROUP_METADATA
);
3345 void btrfs_free_block_rsv(struct btrfs_root
*root
,
3346 struct btrfs_block_rsv
*rsv
)
3348 if (rsv
&& atomic_dec_and_test(&rsv
->usage
)) {
3349 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
3356 * make the block_rsv struct be able to capture freed space.
3357 * the captured space will re-add to the the block_rsv struct
3358 * after transaction commit
3360 void btrfs_add_durable_block_rsv(struct btrfs_fs_info
*fs_info
,
3361 struct btrfs_block_rsv
*block_rsv
)
3363 block_rsv
->durable
= 1;
3364 mutex_lock(&fs_info
->durable_block_rsv_mutex
);
3365 list_add_tail(&block_rsv
->list
, &fs_info
->durable_block_rsv_list
);
3366 mutex_unlock(&fs_info
->durable_block_rsv_mutex
);
3369 int btrfs_block_rsv_add(struct btrfs_trans_handle
*trans
,
3370 struct btrfs_root
*root
,
3371 struct btrfs_block_rsv
*block_rsv
,
3372 u64 num_bytes
, int *retries
)
3379 ret
= reserve_metadata_bytes(block_rsv
, num_bytes
);
3381 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
3385 ret
= should_retry_reserve(trans
, root
, block_rsv
, num_bytes
, retries
);
3392 int btrfs_block_rsv_check(struct btrfs_trans_handle
*trans
,
3393 struct btrfs_root
*root
,
3394 struct btrfs_block_rsv
*block_rsv
,
3395 u64 min_reserved
, int min_factor
)
3398 int commit_trans
= 0;
3404 spin_lock(&block_rsv
->lock
);
3406 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
3407 if (min_reserved
> num_bytes
)
3408 num_bytes
= min_reserved
;
3410 if (block_rsv
->reserved
>= num_bytes
) {
3413 num_bytes
-= block_rsv
->reserved
;
3414 if (block_rsv
->durable
&&
3415 block_rsv
->freed
[0] + block_rsv
->freed
[1] >= num_bytes
)
3418 spin_unlock(&block_rsv
->lock
);
3422 if (block_rsv
->refill_used
) {
3423 ret
= reserve_metadata_bytes(block_rsv
, num_bytes
);
3425 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
3434 trans
= btrfs_join_transaction(root
, 1);
3435 BUG_ON(IS_ERR(trans
));
3436 ret
= btrfs_commit_transaction(trans
, root
);
3441 printk(KERN_INFO
"block_rsv size %llu reserved %llu freed %llu %llu\n",
3442 block_rsv
->size
, block_rsv
->reserved
,
3443 block_rsv
->freed
[0], block_rsv
->freed
[1]);
3448 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src_rsv
,
3449 struct btrfs_block_rsv
*dst_rsv
,
3452 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
3455 void btrfs_block_rsv_release(struct btrfs_root
*root
,
3456 struct btrfs_block_rsv
*block_rsv
,
3459 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
3460 if (global_rsv
->full
|| global_rsv
== block_rsv
||
3461 block_rsv
->space_info
!= global_rsv
->space_info
)
3463 block_rsv_release_bytes(block_rsv
, global_rsv
, num_bytes
);
3467 * helper to calculate size of global block reservation.
3468 * the desired value is sum of space used by extent tree,
3469 * checksum tree and root tree
3471 static u64
calc_global_metadata_size(struct btrfs_fs_info
*fs_info
)
3473 struct btrfs_space_info
*sinfo
;
3477 int csum_size
= btrfs_super_csum_size(&fs_info
->super_copy
);
3480 * per tree used space accounting can be inaccuracy, so we
3483 spin_lock(&fs_info
->extent_root
->accounting_lock
);
3484 num_bytes
= btrfs_root_used(&fs_info
->extent_root
->root_item
);
3485 spin_unlock(&fs_info
->extent_root
->accounting_lock
);
3487 spin_lock(&fs_info
->csum_root
->accounting_lock
);
3488 num_bytes
+= btrfs_root_used(&fs_info
->csum_root
->root_item
);
3489 spin_unlock(&fs_info
->csum_root
->accounting_lock
);
3491 spin_lock(&fs_info
->tree_root
->accounting_lock
);
3492 num_bytes
+= btrfs_root_used(&fs_info
->tree_root
->root_item
);
3493 spin_unlock(&fs_info
->tree_root
->accounting_lock
);
3495 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_DATA
);
3496 spin_lock(&sinfo
->lock
);
3497 data_used
= sinfo
->bytes_used
;
3498 spin_unlock(&sinfo
->lock
);
3500 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
3501 spin_lock(&sinfo
->lock
);
3502 meta_used
= sinfo
->bytes_used
;
3503 spin_unlock(&sinfo
->lock
);
3505 num_bytes
= (data_used
>> fs_info
->sb
->s_blocksize_bits
) *
3507 num_bytes
+= div64_u64(data_used
+ meta_used
, 50);
3509 if (num_bytes
* 3 > meta_used
)
3510 num_bytes
= div64_u64(meta_used
, 3);
3512 return ALIGN(num_bytes
, fs_info
->extent_root
->leafsize
<< 10);
3515 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
3517 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
3518 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
3521 num_bytes
= calc_global_metadata_size(fs_info
);
3523 spin_lock(&block_rsv
->lock
);
3524 spin_lock(&sinfo
->lock
);
3526 block_rsv
->size
= num_bytes
;
3528 num_bytes
= sinfo
->bytes_used
+ sinfo
->bytes_pinned
+
3529 sinfo
->bytes_reserved
+ sinfo
->bytes_readonly
;
3531 if (sinfo
->total_bytes
> num_bytes
) {
3532 num_bytes
= sinfo
->total_bytes
- num_bytes
;
3533 block_rsv
->reserved
+= num_bytes
;
3534 sinfo
->bytes_reserved
+= num_bytes
;
3537 if (block_rsv
->reserved
>= block_rsv
->size
) {
3538 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
3539 sinfo
->bytes_reserved
-= num_bytes
;
3540 block_rsv
->reserved
= block_rsv
->size
;
3541 block_rsv
->full
= 1;
3544 printk(KERN_INFO
"global block rsv size %llu reserved %llu\n",
3545 block_rsv
->size
, block_rsv
->reserved
);
3547 spin_unlock(&sinfo
->lock
);
3548 spin_unlock(&block_rsv
->lock
);
3551 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
3553 struct btrfs_space_info
*space_info
;
3555 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
3556 fs_info
->chunk_block_rsv
.space_info
= space_info
;
3557 fs_info
->chunk_block_rsv
.priority
= 10;
3559 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
3560 fs_info
->global_block_rsv
.space_info
= space_info
;
3561 fs_info
->global_block_rsv
.priority
= 10;
3562 fs_info
->global_block_rsv
.refill_used
= 1;
3563 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
3564 fs_info
->trans_block_rsv
.space_info
= space_info
;
3565 fs_info
->empty_block_rsv
.space_info
= space_info
;
3566 fs_info
->empty_block_rsv
.priority
= 10;
3568 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
3569 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
3570 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
3571 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
3572 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
3574 btrfs_add_durable_block_rsv(fs_info
, &fs_info
->global_block_rsv
);
3576 btrfs_add_durable_block_rsv(fs_info
, &fs_info
->delalloc_block_rsv
);
3578 update_global_block_rsv(fs_info
);
3581 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
3583 block_rsv_release_bytes(&fs_info
->global_block_rsv
, NULL
, (u64
)-1);
3584 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
3585 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
3586 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
3587 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
3588 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
3589 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
3592 static u64
calc_trans_metadata_size(struct btrfs_root
*root
, int num_items
)
3594 return (root
->leafsize
+ root
->nodesize
* (BTRFS_MAX_LEVEL
- 1)) *
3598 int btrfs_trans_reserve_metadata(struct btrfs_trans_handle
*trans
,
3599 struct btrfs_root
*root
,
3600 int num_items
, int *retries
)
3605 if (num_items
== 0 || root
->fs_info
->chunk_root
== root
)
3608 num_bytes
= calc_trans_metadata_size(root
, num_items
);
3609 ret
= btrfs_block_rsv_add(trans
, root
, &root
->fs_info
->trans_block_rsv
,
3610 num_bytes
, retries
);
3612 trans
->bytes_reserved
+= num_bytes
;
3613 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
3618 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
3619 struct btrfs_root
*root
)
3621 if (!trans
->bytes_reserved
)
3624 BUG_ON(trans
->block_rsv
!= &root
->fs_info
->trans_block_rsv
);
3625 btrfs_block_rsv_release(root
, trans
->block_rsv
,
3626 trans
->bytes_reserved
);
3627 trans
->bytes_reserved
= 0;
3630 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
3631 struct inode
*inode
)
3633 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3634 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
3635 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
3638 * one for deleting orphan item, one for updating inode and
3639 * two for calling btrfs_truncate_inode_items.
3641 * btrfs_truncate_inode_items is a delete operation, it frees
3642 * more space than it uses in most cases. So two units of
3643 * metadata space should be enough for calling it many times.
3644 * If all of the metadata space is used, we can commit
3645 * transaction and use space it freed.
3647 u64 num_bytes
= calc_trans_metadata_size(root
, 4);
3648 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
3651 void btrfs_orphan_release_metadata(struct inode
*inode
)
3653 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3654 u64 num_bytes
= calc_trans_metadata_size(root
, 4);
3655 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
, num_bytes
);
3658 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle
*trans
,
3659 struct btrfs_pending_snapshot
*pending
)
3661 struct btrfs_root
*root
= pending
->root
;
3662 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
3663 struct btrfs_block_rsv
*dst_rsv
= &pending
->block_rsv
;
3665 * two for root back/forward refs, two for directory entries
3666 * and one for root of the snapshot.
3668 u64 num_bytes
= calc_trans_metadata_size(root
, 5);
3669 dst_rsv
->space_info
= src_rsv
->space_info
;
3670 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
3673 static u64
calc_csum_metadata_size(struct inode
*inode
, u64 num_bytes
)
3675 return num_bytes
>>= 3;
3678 int btrfs_delalloc_reserve_metadata(struct inode
*inode
, u64 num_bytes
)
3680 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3681 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
3687 if (btrfs_transaction_in_commit(root
->fs_info
))
3688 schedule_timeout(1);
3690 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
3692 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
3693 nr_extents
= atomic_read(&BTRFS_I(inode
)->outstanding_extents
) + 1;
3694 if (nr_extents
> BTRFS_I(inode
)->reserved_extents
) {
3695 nr_extents
-= BTRFS_I(inode
)->reserved_extents
;
3696 to_reserve
= calc_trans_metadata_size(root
, nr_extents
);
3702 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
);
3703 ret
= reserve_metadata_bytes(block_rsv
, to_reserve
);
3705 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
3706 ret
= should_retry_reserve(NULL
, root
, block_rsv
, to_reserve
,
3713 BTRFS_I(inode
)->reserved_extents
+= nr_extents
;
3714 atomic_inc(&BTRFS_I(inode
)->outstanding_extents
);
3715 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
3717 block_rsv_add_bytes(block_rsv
, to_reserve
, 1);
3719 if (block_rsv
->size
> 512 * 1024 * 1024)
3720 shrink_delalloc(NULL
, root
, to_reserve
);
3725 void btrfs_delalloc_release_metadata(struct inode
*inode
, u64 num_bytes
)
3727 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3731 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
3732 atomic_dec(&BTRFS_I(inode
)->outstanding_extents
);
3734 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
3735 nr_extents
= atomic_read(&BTRFS_I(inode
)->outstanding_extents
);
3736 if (nr_extents
< BTRFS_I(inode
)->reserved_extents
) {
3737 nr_extents
= BTRFS_I(inode
)->reserved_extents
- nr_extents
;
3738 BTRFS_I(inode
)->reserved_extents
-= nr_extents
;
3742 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
3744 to_free
= calc_csum_metadata_size(inode
, num_bytes
);
3746 to_free
+= calc_trans_metadata_size(root
, nr_extents
);
3748 btrfs_block_rsv_release(root
, &root
->fs_info
->delalloc_block_rsv
,
3752 int btrfs_delalloc_reserve_space(struct inode
*inode
, u64 num_bytes
)
3756 ret
= btrfs_check_data_free_space(inode
, num_bytes
);
3760 ret
= btrfs_delalloc_reserve_metadata(inode
, num_bytes
);
3762 btrfs_free_reserved_data_space(inode
, num_bytes
);
3769 void btrfs_delalloc_release_space(struct inode
*inode
, u64 num_bytes
)
3771 btrfs_delalloc_release_metadata(inode
, num_bytes
);
3772 btrfs_free_reserved_data_space(inode
, num_bytes
);
3775 static int update_block_group(struct btrfs_trans_handle
*trans
,
3776 struct btrfs_root
*root
,
3777 u64 bytenr
, u64 num_bytes
, int alloc
)
3779 struct btrfs_block_group_cache
*cache
;
3780 struct btrfs_fs_info
*info
= root
->fs_info
;
3782 u64 total
= num_bytes
;
3786 /* block accounting for super block */
3787 spin_lock(&info
->delalloc_lock
);
3788 old_val
= btrfs_super_bytes_used(&info
->super_copy
);
3790 old_val
+= num_bytes
;
3792 old_val
-= num_bytes
;
3793 btrfs_set_super_bytes_used(&info
->super_copy
, old_val
);
3794 spin_unlock(&info
->delalloc_lock
);
3797 cache
= btrfs_lookup_block_group(info
, bytenr
);
3800 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
3801 BTRFS_BLOCK_GROUP_RAID1
|
3802 BTRFS_BLOCK_GROUP_RAID10
))
3806 byte_in_group
= bytenr
- cache
->key
.objectid
;
3807 WARN_ON(byte_in_group
> cache
->key
.offset
);
3809 spin_lock(&cache
->space_info
->lock
);
3810 spin_lock(&cache
->lock
);
3812 old_val
= btrfs_block_group_used(&cache
->item
);
3813 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
3815 old_val
+= num_bytes
;
3816 btrfs_set_block_group_used(&cache
->item
, old_val
);
3817 cache
->reserved
-= num_bytes
;
3818 cache
->space_info
->bytes_reserved
-= num_bytes
;
3819 cache
->space_info
->bytes_used
+= num_bytes
;
3820 cache
->space_info
->disk_used
+= num_bytes
* factor
;
3821 spin_unlock(&cache
->lock
);
3822 spin_unlock(&cache
->space_info
->lock
);
3824 old_val
-= num_bytes
;
3825 btrfs_set_block_group_used(&cache
->item
, old_val
);
3826 cache
->pinned
+= num_bytes
;
3827 cache
->space_info
->bytes_pinned
+= num_bytes
;
3828 cache
->space_info
->bytes_used
-= num_bytes
;
3829 cache
->space_info
->disk_used
-= num_bytes
* factor
;
3830 spin_unlock(&cache
->lock
);
3831 spin_unlock(&cache
->space_info
->lock
);
3833 set_extent_dirty(info
->pinned_extents
,
3834 bytenr
, bytenr
+ num_bytes
- 1,
3835 GFP_NOFS
| __GFP_NOFAIL
);
3837 btrfs_put_block_group(cache
);
3839 bytenr
+= num_bytes
;
3844 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
3846 struct btrfs_block_group_cache
*cache
;
3849 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
3853 bytenr
= cache
->key
.objectid
;
3854 btrfs_put_block_group(cache
);
3859 static int pin_down_extent(struct btrfs_root
*root
,
3860 struct btrfs_block_group_cache
*cache
,
3861 u64 bytenr
, u64 num_bytes
, int reserved
)
3863 spin_lock(&cache
->space_info
->lock
);
3864 spin_lock(&cache
->lock
);
3865 cache
->pinned
+= num_bytes
;
3866 cache
->space_info
->bytes_pinned
+= num_bytes
;
3868 cache
->reserved
-= num_bytes
;
3869 cache
->space_info
->bytes_reserved
-= num_bytes
;
3871 spin_unlock(&cache
->lock
);
3872 spin_unlock(&cache
->space_info
->lock
);
3874 set_extent_dirty(root
->fs_info
->pinned_extents
, bytenr
,
3875 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
3880 * this function must be called within transaction
3882 int btrfs_pin_extent(struct btrfs_root
*root
,
3883 u64 bytenr
, u64 num_bytes
, int reserved
)
3885 struct btrfs_block_group_cache
*cache
;
3887 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
3890 pin_down_extent(root
, cache
, bytenr
, num_bytes
, reserved
);
3892 btrfs_put_block_group(cache
);
3897 * update size of reserved extents. this function may return -EAGAIN
3898 * if 'reserve' is true or 'sinfo' is false.
3900 static int update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
3901 u64 num_bytes
, int reserve
, int sinfo
)
3905 struct btrfs_space_info
*space_info
= cache
->space_info
;
3906 spin_lock(&space_info
->lock
);
3907 spin_lock(&cache
->lock
);
3912 cache
->reserved
+= num_bytes
;
3913 space_info
->bytes_reserved
+= num_bytes
;
3917 space_info
->bytes_readonly
+= num_bytes
;
3918 cache
->reserved
-= num_bytes
;
3919 space_info
->bytes_reserved
-= num_bytes
;
3921 spin_unlock(&cache
->lock
);
3922 spin_unlock(&space_info
->lock
);
3924 spin_lock(&cache
->lock
);
3929 cache
->reserved
+= num_bytes
;
3931 cache
->reserved
-= num_bytes
;
3933 spin_unlock(&cache
->lock
);
3938 int btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
3939 struct btrfs_root
*root
)
3941 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3942 struct btrfs_caching_control
*next
;
3943 struct btrfs_caching_control
*caching_ctl
;
3944 struct btrfs_block_group_cache
*cache
;
3946 down_write(&fs_info
->extent_commit_sem
);
3948 list_for_each_entry_safe(caching_ctl
, next
,
3949 &fs_info
->caching_block_groups
, list
) {
3950 cache
= caching_ctl
->block_group
;
3951 if (block_group_cache_done(cache
)) {
3952 cache
->last_byte_to_unpin
= (u64
)-1;
3953 list_del_init(&caching_ctl
->list
);
3954 put_caching_control(caching_ctl
);
3956 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
3960 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
3961 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
3963 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
3965 up_write(&fs_info
->extent_commit_sem
);
3967 update_global_block_rsv(fs_info
);
3971 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
3973 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3974 struct btrfs_block_group_cache
*cache
= NULL
;
3977 while (start
<= end
) {
3979 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
3981 btrfs_put_block_group(cache
);
3982 cache
= btrfs_lookup_block_group(fs_info
, start
);
3986 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
3987 len
= min(len
, end
+ 1 - start
);
3989 if (start
< cache
->last_byte_to_unpin
) {
3990 len
= min(len
, cache
->last_byte_to_unpin
- start
);
3991 btrfs_add_free_space(cache
, start
, len
);
3996 spin_lock(&cache
->space_info
->lock
);
3997 spin_lock(&cache
->lock
);
3998 cache
->pinned
-= len
;
3999 cache
->space_info
->bytes_pinned
-= len
;
4001 cache
->space_info
->bytes_readonly
+= len
;
4002 } else if (cache
->reserved_pinned
> 0) {
4003 len
= min(len
, cache
->reserved_pinned
);
4004 cache
->reserved_pinned
-= len
;
4005 cache
->space_info
->bytes_reserved
+= len
;
4007 spin_unlock(&cache
->lock
);
4008 spin_unlock(&cache
->space_info
->lock
);
4012 btrfs_put_block_group(cache
);
4016 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
4017 struct btrfs_root
*root
)
4019 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4020 struct extent_io_tree
*unpin
;
4021 struct btrfs_block_rsv
*block_rsv
;
4022 struct btrfs_block_rsv
*next_rsv
;
4028 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
4029 unpin
= &fs_info
->freed_extents
[1];
4031 unpin
= &fs_info
->freed_extents
[0];
4034 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4039 ret
= btrfs_discard_extent(root
, start
, end
+ 1 - start
);
4041 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
4042 unpin_extent_range(root
, start
, end
);
4046 mutex_lock(&fs_info
->durable_block_rsv_mutex
);
4047 list_for_each_entry_safe(block_rsv
, next_rsv
,
4048 &fs_info
->durable_block_rsv_list
, list
) {
4050 idx
= trans
->transid
& 0x1;
4051 if (block_rsv
->freed
[idx
] > 0) {
4052 block_rsv_add_bytes(block_rsv
,
4053 block_rsv
->freed
[idx
], 0);
4054 block_rsv
->freed
[idx
] = 0;
4056 if (atomic_read(&block_rsv
->usage
) == 0) {
4057 btrfs_block_rsv_release(root
, block_rsv
, (u64
)-1);
4059 if (block_rsv
->freed
[0] == 0 &&
4060 block_rsv
->freed
[1] == 0) {
4061 list_del_init(&block_rsv
->list
);
4065 btrfs_block_rsv_release(root
, block_rsv
, 0);
4068 mutex_unlock(&fs_info
->durable_block_rsv_mutex
);
4073 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
4074 struct btrfs_root
*root
,
4075 u64 bytenr
, u64 num_bytes
, u64 parent
,
4076 u64 root_objectid
, u64 owner_objectid
,
4077 u64 owner_offset
, int refs_to_drop
,
4078 struct btrfs_delayed_extent_op
*extent_op
)
4080 struct btrfs_key key
;
4081 struct btrfs_path
*path
;
4082 struct btrfs_fs_info
*info
= root
->fs_info
;
4083 struct btrfs_root
*extent_root
= info
->extent_root
;
4084 struct extent_buffer
*leaf
;
4085 struct btrfs_extent_item
*ei
;
4086 struct btrfs_extent_inline_ref
*iref
;
4089 int extent_slot
= 0;
4090 int found_extent
= 0;
4095 path
= btrfs_alloc_path();
4100 path
->leave_spinning
= 1;
4102 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
4103 BUG_ON(!is_data
&& refs_to_drop
!= 1);
4105 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
4106 bytenr
, num_bytes
, parent
,
4107 root_objectid
, owner_objectid
,
4110 extent_slot
= path
->slots
[0];
4111 while (extent_slot
>= 0) {
4112 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
4114 if (key
.objectid
!= bytenr
)
4116 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
4117 key
.offset
== num_bytes
) {
4121 if (path
->slots
[0] - extent_slot
> 5)
4125 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4126 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
4127 if (found_extent
&& item_size
< sizeof(*ei
))
4130 if (!found_extent
) {
4132 ret
= remove_extent_backref(trans
, extent_root
, path
,
4136 btrfs_release_path(extent_root
, path
);
4137 path
->leave_spinning
= 1;
4139 key
.objectid
= bytenr
;
4140 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
4141 key
.offset
= num_bytes
;
4143 ret
= btrfs_search_slot(trans
, extent_root
,
4146 printk(KERN_ERR
"umm, got %d back from search"
4147 ", was looking for %llu\n", ret
,
4148 (unsigned long long)bytenr
);
4149 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
4152 extent_slot
= path
->slots
[0];
4155 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
4157 printk(KERN_ERR
"btrfs unable to find ref byte nr %llu "
4158 "parent %llu root %llu owner %llu offset %llu\n",
4159 (unsigned long long)bytenr
,
4160 (unsigned long long)parent
,
4161 (unsigned long long)root_objectid
,
4162 (unsigned long long)owner_objectid
,
4163 (unsigned long long)owner_offset
);
4166 leaf
= path
->nodes
[0];
4167 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
4168 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4169 if (item_size
< sizeof(*ei
)) {
4170 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
4171 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
4175 btrfs_release_path(extent_root
, path
);
4176 path
->leave_spinning
= 1;
4178 key
.objectid
= bytenr
;
4179 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
4180 key
.offset
= num_bytes
;
4182 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
4185 printk(KERN_ERR
"umm, got %d back from search"
4186 ", was looking for %llu\n", ret
,
4187 (unsigned long long)bytenr
);
4188 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
4191 extent_slot
= path
->slots
[0];
4192 leaf
= path
->nodes
[0];
4193 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
4196 BUG_ON(item_size
< sizeof(*ei
));
4197 ei
= btrfs_item_ptr(leaf
, extent_slot
,
4198 struct btrfs_extent_item
);
4199 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
) {
4200 struct btrfs_tree_block_info
*bi
;
4201 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
4202 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
4203 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
4206 refs
= btrfs_extent_refs(leaf
, ei
);
4207 BUG_ON(refs
< refs_to_drop
);
4208 refs
-= refs_to_drop
;
4212 __run_delayed_extent_op(extent_op
, leaf
, ei
);
4214 * In the case of inline back ref, reference count will
4215 * be updated by remove_extent_backref
4218 BUG_ON(!found_extent
);
4220 btrfs_set_extent_refs(leaf
, ei
, refs
);
4221 btrfs_mark_buffer_dirty(leaf
);
4224 ret
= remove_extent_backref(trans
, extent_root
, path
,
4231 BUG_ON(is_data
&& refs_to_drop
!=
4232 extent_data_ref_count(root
, path
, iref
));
4234 BUG_ON(path
->slots
[0] != extent_slot
);
4236 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
4237 path
->slots
[0] = extent_slot
;
4242 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
4245 btrfs_release_path(extent_root
, path
);
4248 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
4251 invalidate_mapping_pages(info
->btree_inode
->i_mapping
,
4252 bytenr
>> PAGE_CACHE_SHIFT
,
4253 (bytenr
+ num_bytes
- 1) >> PAGE_CACHE_SHIFT
);
4256 ret
= update_block_group(trans
, root
, bytenr
, num_bytes
, 0);
4259 btrfs_free_path(path
);
4264 * when we free an block, it is possible (and likely) that we free the last
4265 * delayed ref for that extent as well. This searches the delayed ref tree for
4266 * a given extent, and if there are no other delayed refs to be processed, it
4267 * removes it from the tree.
4269 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
4270 struct btrfs_root
*root
, u64 bytenr
)
4272 struct btrfs_delayed_ref_head
*head
;
4273 struct btrfs_delayed_ref_root
*delayed_refs
;
4274 struct btrfs_delayed_ref_node
*ref
;
4275 struct rb_node
*node
;
4278 delayed_refs
= &trans
->transaction
->delayed_refs
;
4279 spin_lock(&delayed_refs
->lock
);
4280 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
4284 node
= rb_prev(&head
->node
.rb_node
);
4288 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
4290 /* there are still entries for this ref, we can't drop it */
4291 if (ref
->bytenr
== bytenr
)
4294 if (head
->extent_op
) {
4295 if (!head
->must_insert_reserved
)
4297 kfree(head
->extent_op
);
4298 head
->extent_op
= NULL
;
4302 * waiting for the lock here would deadlock. If someone else has it
4303 * locked they are already in the process of dropping it anyway
4305 if (!mutex_trylock(&head
->mutex
))
4309 * at this point we have a head with no other entries. Go
4310 * ahead and process it.
4312 head
->node
.in_tree
= 0;
4313 rb_erase(&head
->node
.rb_node
, &delayed_refs
->root
);
4315 delayed_refs
->num_entries
--;
4318 * we don't take a ref on the node because we're removing it from the
4319 * tree, so we just steal the ref the tree was holding.
4321 delayed_refs
->num_heads
--;
4322 if (list_empty(&head
->cluster
))
4323 delayed_refs
->num_heads_ready
--;
4325 list_del_init(&head
->cluster
);
4326 spin_unlock(&delayed_refs
->lock
);
4328 BUG_ON(head
->extent_op
);
4329 if (head
->must_insert_reserved
)
4332 mutex_unlock(&head
->mutex
);
4333 btrfs_put_delayed_ref(&head
->node
);
4336 spin_unlock(&delayed_refs
->lock
);
4340 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
4341 struct btrfs_root
*root
,
4342 struct extent_buffer
*buf
,
4343 u64 parent
, int last_ref
)
4345 struct btrfs_block_rsv
*block_rsv
;
4346 struct btrfs_block_group_cache
*cache
= NULL
;
4349 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4350 ret
= btrfs_add_delayed_tree_ref(trans
, buf
->start
, buf
->len
,
4351 parent
, root
->root_key
.objectid
,
4352 btrfs_header_level(buf
),
4353 BTRFS_DROP_DELAYED_REF
, NULL
);
4360 block_rsv
= get_block_rsv(trans
, root
);
4361 cache
= btrfs_lookup_block_group(root
->fs_info
, buf
->start
);
4362 if (block_rsv
->space_info
!= cache
->space_info
)
4365 if (btrfs_header_generation(buf
) == trans
->transid
) {
4366 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4367 ret
= check_ref_cleanup(trans
, root
, buf
->start
);
4372 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
4373 pin_down_extent(root
, cache
, buf
->start
, buf
->len
, 1);
4377 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
4379 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
4380 ret
= update_reserved_bytes(cache
, buf
->len
, 0, 0);
4381 if (ret
== -EAGAIN
) {
4382 /* block group became read-only */
4383 update_reserved_bytes(cache
, buf
->len
, 0, 1);
4388 spin_lock(&block_rsv
->lock
);
4389 if (block_rsv
->reserved
< block_rsv
->size
) {
4390 block_rsv
->reserved
+= buf
->len
;
4393 spin_unlock(&block_rsv
->lock
);
4396 spin_lock(&cache
->space_info
->lock
);
4397 cache
->space_info
->bytes_reserved
-= buf
->len
;
4398 spin_unlock(&cache
->space_info
->lock
);
4403 if (block_rsv
->durable
&& !cache
->ro
) {
4405 spin_lock(&cache
->lock
);
4407 cache
->reserved_pinned
+= buf
->len
;
4410 spin_unlock(&cache
->lock
);
4413 spin_lock(&block_rsv
->lock
);
4414 block_rsv
->freed
[trans
->transid
& 0x1] += buf
->len
;
4415 spin_unlock(&block_rsv
->lock
);
4419 btrfs_put_block_group(cache
);
4422 int btrfs_free_extent(struct btrfs_trans_handle
*trans
,
4423 struct btrfs_root
*root
,
4424 u64 bytenr
, u64 num_bytes
, u64 parent
,
4425 u64 root_objectid
, u64 owner
, u64 offset
)
4430 * tree log blocks never actually go into the extent allocation
4431 * tree, just update pinning info and exit early.
4433 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
4434 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
4435 /* unlocks the pinned mutex */
4436 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
4438 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
4439 ret
= btrfs_add_delayed_tree_ref(trans
, bytenr
, num_bytes
,
4440 parent
, root_objectid
, (int)owner
,
4441 BTRFS_DROP_DELAYED_REF
, NULL
);
4444 ret
= btrfs_add_delayed_data_ref(trans
, bytenr
, num_bytes
,
4445 parent
, root_objectid
, owner
,
4446 offset
, BTRFS_DROP_DELAYED_REF
, NULL
);
4452 static u64
stripe_align(struct btrfs_root
*root
, u64 val
)
4454 u64 mask
= ((u64
)root
->stripesize
- 1);
4455 u64 ret
= (val
+ mask
) & ~mask
;
4460 * when we wait for progress in the block group caching, its because
4461 * our allocation attempt failed at least once. So, we must sleep
4462 * and let some progress happen before we try again.
4464 * This function will sleep at least once waiting for new free space to
4465 * show up, and then it will check the block group free space numbers
4466 * for our min num_bytes. Another option is to have it go ahead
4467 * and look in the rbtree for a free extent of a given size, but this
4471 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
4474 struct btrfs_caching_control
*caching_ctl
;
4477 caching_ctl
= get_caching_control(cache
);
4481 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
4482 (cache
->free_space
>= num_bytes
));
4484 put_caching_control(caching_ctl
);
4489 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
4491 struct btrfs_caching_control
*caching_ctl
;
4494 caching_ctl
= get_caching_control(cache
);
4498 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
4500 put_caching_control(caching_ctl
);
4504 static int get_block_group_index(struct btrfs_block_group_cache
*cache
)
4507 if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID10
)
4509 else if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID1
)
4511 else if (cache
->flags
& BTRFS_BLOCK_GROUP_DUP
)
4513 else if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID0
)
4520 enum btrfs_loop_type
{
4521 LOOP_FIND_IDEAL
= 0,
4522 LOOP_CACHING_NOWAIT
= 1,
4523 LOOP_CACHING_WAIT
= 2,
4524 LOOP_ALLOC_CHUNK
= 3,
4525 LOOP_NO_EMPTY_SIZE
= 4,
4529 * walks the btree of allocated extents and find a hole of a given size.
4530 * The key ins is changed to record the hole:
4531 * ins->objectid == block start
4532 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4533 * ins->offset == number of blocks
4534 * Any available blocks before search_start are skipped.
4536 static noinline
int find_free_extent(struct btrfs_trans_handle
*trans
,
4537 struct btrfs_root
*orig_root
,
4538 u64 num_bytes
, u64 empty_size
,
4539 u64 search_start
, u64 search_end
,
4540 u64 hint_byte
, struct btrfs_key
*ins
,
4544 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
4545 struct btrfs_free_cluster
*last_ptr
= NULL
;
4546 struct btrfs_block_group_cache
*block_group
= NULL
;
4547 int empty_cluster
= 2 * 1024 * 1024;
4548 int allowed_chunk_alloc
= 0;
4549 int done_chunk_alloc
= 0;
4550 struct btrfs_space_info
*space_info
;
4551 int last_ptr_loop
= 0;
4554 bool found_uncached_bg
= false;
4555 bool failed_cluster_refill
= false;
4556 bool failed_alloc
= false;
4557 u64 ideal_cache_percent
= 0;
4558 u64 ideal_cache_offset
= 0;
4560 WARN_ON(num_bytes
< root
->sectorsize
);
4561 btrfs_set_key_type(ins
, BTRFS_EXTENT_ITEM_KEY
);
4565 space_info
= __find_space_info(root
->fs_info
, data
);
4567 printk(KERN_ERR
"No space info for %d\n", data
);
4571 if (orig_root
->ref_cows
|| empty_size
)
4572 allowed_chunk_alloc
= 1;
4574 if (data
& BTRFS_BLOCK_GROUP_METADATA
) {
4575 last_ptr
= &root
->fs_info
->meta_alloc_cluster
;
4576 if (!btrfs_test_opt(root
, SSD
))
4577 empty_cluster
= 64 * 1024;
4580 if ((data
& BTRFS_BLOCK_GROUP_DATA
) && btrfs_test_opt(root
, SSD
)) {
4581 last_ptr
= &root
->fs_info
->data_alloc_cluster
;
4585 spin_lock(&last_ptr
->lock
);
4586 if (last_ptr
->block_group
)
4587 hint_byte
= last_ptr
->window_start
;
4588 spin_unlock(&last_ptr
->lock
);
4591 search_start
= max(search_start
, first_logical_byte(root
, 0));
4592 search_start
= max(search_start
, hint_byte
);
4597 if (search_start
== hint_byte
) {
4599 block_group
= btrfs_lookup_block_group(root
->fs_info
,
4602 * we don't want to use the block group if it doesn't match our
4603 * allocation bits, or if its not cached.
4605 * However if we are re-searching with an ideal block group
4606 * picked out then we don't care that the block group is cached.
4608 if (block_group
&& block_group_bits(block_group
, data
) &&
4609 (block_group
->cached
!= BTRFS_CACHE_NO
||
4610 search_start
== ideal_cache_offset
)) {
4611 down_read(&space_info
->groups_sem
);
4612 if (list_empty(&block_group
->list
) ||
4615 * someone is removing this block group,
4616 * we can't jump into the have_block_group
4617 * target because our list pointers are not
4620 btrfs_put_block_group(block_group
);
4621 up_read(&space_info
->groups_sem
);
4623 index
= get_block_group_index(block_group
);
4624 goto have_block_group
;
4626 } else if (block_group
) {
4627 btrfs_put_block_group(block_group
);
4631 down_read(&space_info
->groups_sem
);
4632 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
4637 btrfs_get_block_group(block_group
);
4638 search_start
= block_group
->key
.objectid
;
4641 if (unlikely(block_group
->cached
== BTRFS_CACHE_NO
)) {
4644 free_percent
= btrfs_block_group_used(&block_group
->item
);
4645 free_percent
*= 100;
4646 free_percent
= div64_u64(free_percent
,
4647 block_group
->key
.offset
);
4648 free_percent
= 100 - free_percent
;
4649 if (free_percent
> ideal_cache_percent
&&
4650 likely(!block_group
->ro
)) {
4651 ideal_cache_offset
= block_group
->key
.objectid
;
4652 ideal_cache_percent
= free_percent
;
4656 * We only want to start kthread caching if we are at
4657 * the point where we will wait for caching to make
4658 * progress, or if our ideal search is over and we've
4659 * found somebody to start caching.
4661 if (loop
> LOOP_CACHING_NOWAIT
||
4662 (loop
> LOOP_FIND_IDEAL
&&
4663 atomic_read(&space_info
->caching_threads
) < 2)) {
4664 ret
= cache_block_group(block_group
);
4667 found_uncached_bg
= true;
4670 * If loop is set for cached only, try the next block
4673 if (loop
== LOOP_FIND_IDEAL
)
4677 cached
= block_group_cache_done(block_group
);
4678 if (unlikely(!cached
))
4679 found_uncached_bg
= true;
4681 if (unlikely(block_group
->ro
))
4685 * Ok we want to try and use the cluster allocator, so lets look
4686 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
4687 * have tried the cluster allocator plenty of times at this
4688 * point and not have found anything, so we are likely way too
4689 * fragmented for the clustering stuff to find anything, so lets
4690 * just skip it and let the allocator find whatever block it can
4693 if (last_ptr
&& loop
< LOOP_NO_EMPTY_SIZE
) {
4695 * the refill lock keeps out other
4696 * people trying to start a new cluster
4698 spin_lock(&last_ptr
->refill_lock
);
4699 if (last_ptr
->block_group
&&
4700 (last_ptr
->block_group
->ro
||
4701 !block_group_bits(last_ptr
->block_group
, data
))) {
4703 goto refill_cluster
;
4706 offset
= btrfs_alloc_from_cluster(block_group
, last_ptr
,
4707 num_bytes
, search_start
);
4709 /* we have a block, we're done */
4710 spin_unlock(&last_ptr
->refill_lock
);
4714 spin_lock(&last_ptr
->lock
);
4716 * whoops, this cluster doesn't actually point to
4717 * this block group. Get a ref on the block
4718 * group is does point to and try again
4720 if (!last_ptr_loop
&& last_ptr
->block_group
&&
4721 last_ptr
->block_group
!= block_group
) {
4723 btrfs_put_block_group(block_group
);
4724 block_group
= last_ptr
->block_group
;
4725 btrfs_get_block_group(block_group
);
4726 spin_unlock(&last_ptr
->lock
);
4727 spin_unlock(&last_ptr
->refill_lock
);
4730 search_start
= block_group
->key
.objectid
;
4732 * we know this block group is properly
4733 * in the list because
4734 * btrfs_remove_block_group, drops the
4735 * cluster before it removes the block
4736 * group from the list
4738 goto have_block_group
;
4740 spin_unlock(&last_ptr
->lock
);
4743 * this cluster didn't work out, free it and
4746 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
4750 /* allocate a cluster in this block group */
4751 ret
= btrfs_find_space_cluster(trans
, root
,
4752 block_group
, last_ptr
,
4754 empty_cluster
+ empty_size
);
4757 * now pull our allocation out of this
4760 offset
= btrfs_alloc_from_cluster(block_group
,
4761 last_ptr
, num_bytes
,
4764 /* we found one, proceed */
4765 spin_unlock(&last_ptr
->refill_lock
);
4768 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
4769 && !failed_cluster_refill
) {
4770 spin_unlock(&last_ptr
->refill_lock
);
4772 failed_cluster_refill
= true;
4773 wait_block_group_cache_progress(block_group
,
4774 num_bytes
+ empty_cluster
+ empty_size
);
4775 goto have_block_group
;
4779 * at this point we either didn't find a cluster
4780 * or we weren't able to allocate a block from our
4781 * cluster. Free the cluster we've been trying
4782 * to use, and go to the next block group
4784 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
4785 spin_unlock(&last_ptr
->refill_lock
);
4789 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
4790 num_bytes
, empty_size
);
4792 * If we didn't find a chunk, and we haven't failed on this
4793 * block group before, and this block group is in the middle of
4794 * caching and we are ok with waiting, then go ahead and wait
4795 * for progress to be made, and set failed_alloc to true.
4797 * If failed_alloc is true then we've already waited on this
4798 * block group once and should move on to the next block group.
4800 if (!offset
&& !failed_alloc
&& !cached
&&
4801 loop
> LOOP_CACHING_NOWAIT
) {
4802 wait_block_group_cache_progress(block_group
,
4803 num_bytes
+ empty_size
);
4804 failed_alloc
= true;
4805 goto have_block_group
;
4806 } else if (!offset
) {
4810 search_start
= stripe_align(root
, offset
);
4811 /* move on to the next group */
4812 if (search_start
+ num_bytes
>= search_end
) {
4813 btrfs_add_free_space(block_group
, offset
, num_bytes
);
4817 /* move on to the next group */
4818 if (search_start
+ num_bytes
>
4819 block_group
->key
.objectid
+ block_group
->key
.offset
) {
4820 btrfs_add_free_space(block_group
, offset
, num_bytes
);
4824 ins
->objectid
= search_start
;
4825 ins
->offset
= num_bytes
;
4827 if (offset
< search_start
)
4828 btrfs_add_free_space(block_group
, offset
,
4829 search_start
- offset
);
4830 BUG_ON(offset
> search_start
);
4832 ret
= update_reserved_bytes(block_group
, num_bytes
, 1,
4833 (data
& BTRFS_BLOCK_GROUP_DATA
));
4834 if (ret
== -EAGAIN
) {
4835 btrfs_add_free_space(block_group
, offset
, num_bytes
);
4839 /* we are all good, lets return */
4840 ins
->objectid
= search_start
;
4841 ins
->offset
= num_bytes
;
4843 if (offset
< search_start
)
4844 btrfs_add_free_space(block_group
, offset
,
4845 search_start
- offset
);
4846 BUG_ON(offset
> search_start
);
4849 failed_cluster_refill
= false;
4850 failed_alloc
= false;
4851 BUG_ON(index
!= get_block_group_index(block_group
));
4852 btrfs_put_block_group(block_group
);
4854 up_read(&space_info
->groups_sem
);
4856 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
4859 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
4860 * for them to make caching progress. Also
4861 * determine the best possible bg to cache
4862 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
4863 * caching kthreads as we move along
4864 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4865 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4866 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4869 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
&&
4870 (found_uncached_bg
|| empty_size
|| empty_cluster
||
4871 allowed_chunk_alloc
)) {
4873 if (loop
== LOOP_FIND_IDEAL
&& found_uncached_bg
) {
4874 found_uncached_bg
= false;
4876 if (!ideal_cache_percent
&&
4877 atomic_read(&space_info
->caching_threads
))
4881 * 1 of the following 2 things have happened so far
4883 * 1) We found an ideal block group for caching that
4884 * is mostly full and will cache quickly, so we might
4885 * as well wait for it.
4887 * 2) We searched for cached only and we didn't find
4888 * anything, and we didn't start any caching kthreads
4889 * either, so chances are we will loop through and
4890 * start a couple caching kthreads, and then come back
4891 * around and just wait for them. This will be slower
4892 * because we will have 2 caching kthreads reading at
4893 * the same time when we could have just started one
4894 * and waited for it to get far enough to give us an
4895 * allocation, so go ahead and go to the wait caching
4898 loop
= LOOP_CACHING_WAIT
;
4899 search_start
= ideal_cache_offset
;
4900 ideal_cache_percent
= 0;
4902 } else if (loop
== LOOP_FIND_IDEAL
) {
4904 * Didn't find a uncached bg, wait on anything we find
4907 loop
= LOOP_CACHING_WAIT
;
4911 if (loop
< LOOP_CACHING_WAIT
) {
4916 if (loop
== LOOP_ALLOC_CHUNK
) {
4921 if (allowed_chunk_alloc
) {
4922 ret
= do_chunk_alloc(trans
, root
, num_bytes
+
4923 2 * 1024 * 1024, data
, 1);
4924 allowed_chunk_alloc
= 0;
4925 done_chunk_alloc
= 1;
4926 } else if (!done_chunk_alloc
) {
4927 space_info
->force_alloc
= 1;
4930 if (loop
< LOOP_NO_EMPTY_SIZE
) {
4935 } else if (!ins
->objectid
) {
4939 /* we found what we needed */
4940 if (ins
->objectid
) {
4941 if (!(data
& BTRFS_BLOCK_GROUP_DATA
))
4942 trans
->block_group
= block_group
->key
.objectid
;
4944 btrfs_put_block_group(block_group
);
4951 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
4952 int dump_block_groups
)
4954 struct btrfs_block_group_cache
*cache
;
4957 spin_lock(&info
->lock
);
4958 printk(KERN_INFO
"space_info has %llu free, is %sfull\n",
4959 (unsigned long long)(info
->total_bytes
- info
->bytes_used
-
4960 info
->bytes_pinned
- info
->bytes_reserved
-
4961 info
->bytes_readonly
),
4962 (info
->full
) ? "" : "not ");
4963 printk(KERN_INFO
"space_info total=%llu, used=%llu, pinned=%llu, "
4964 "reserved=%llu, may_use=%llu, readonly=%llu\n",
4965 (unsigned long long)info
->total_bytes
,
4966 (unsigned long long)info
->bytes_used
,
4967 (unsigned long long)info
->bytes_pinned
,
4968 (unsigned long long)info
->bytes_reserved
,
4969 (unsigned long long)info
->bytes_may_use
,
4970 (unsigned long long)info
->bytes_readonly
);
4971 spin_unlock(&info
->lock
);
4973 if (!dump_block_groups
)
4976 down_read(&info
->groups_sem
);
4978 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
4979 spin_lock(&cache
->lock
);
4980 printk(KERN_INFO
"block group %llu has %llu bytes, %llu used "
4981 "%llu pinned %llu reserved\n",
4982 (unsigned long long)cache
->key
.objectid
,
4983 (unsigned long long)cache
->key
.offset
,
4984 (unsigned long long)btrfs_block_group_used(&cache
->item
),
4985 (unsigned long long)cache
->pinned
,
4986 (unsigned long long)cache
->reserved
);
4987 btrfs_dump_free_space(cache
, bytes
);
4988 spin_unlock(&cache
->lock
);
4990 if (++index
< BTRFS_NR_RAID_TYPES
)
4992 up_read(&info
->groups_sem
);
4995 int btrfs_reserve_extent(struct btrfs_trans_handle
*trans
,
4996 struct btrfs_root
*root
,
4997 u64 num_bytes
, u64 min_alloc_size
,
4998 u64 empty_size
, u64 hint_byte
,
4999 u64 search_end
, struct btrfs_key
*ins
,
5003 u64 search_start
= 0;
5005 data
= btrfs_get_alloc_profile(root
, data
);
5008 * the only place that sets empty_size is btrfs_realloc_node, which
5009 * is not called recursively on allocations
5011 if (empty_size
|| root
->ref_cows
)
5012 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
5013 num_bytes
+ 2 * 1024 * 1024, data
, 0);
5015 WARN_ON(num_bytes
< root
->sectorsize
);
5016 ret
= find_free_extent(trans
, root
, num_bytes
, empty_size
,
5017 search_start
, search_end
, hint_byte
,
5020 if (ret
== -ENOSPC
&& num_bytes
> min_alloc_size
) {
5021 num_bytes
= num_bytes
>> 1;
5022 num_bytes
= num_bytes
& ~(root
->sectorsize
- 1);
5023 num_bytes
= max(num_bytes
, min_alloc_size
);
5024 do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
5025 num_bytes
, data
, 1);
5028 if (ret
== -ENOSPC
) {
5029 struct btrfs_space_info
*sinfo
;
5031 sinfo
= __find_space_info(root
->fs_info
, data
);
5032 printk(KERN_ERR
"btrfs allocation failed flags %llu, "
5033 "wanted %llu\n", (unsigned long long)data
,
5034 (unsigned long long)num_bytes
);
5035 dump_space_info(sinfo
, num_bytes
, 1);
5041 int btrfs_free_reserved_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
5043 struct btrfs_block_group_cache
*cache
;
5046 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
5048 printk(KERN_ERR
"Unable to find block group for %llu\n",
5049 (unsigned long long)start
);
5053 ret
= btrfs_discard_extent(root
, start
, len
);
5055 btrfs_add_free_space(cache
, start
, len
);
5056 update_reserved_bytes(cache
, len
, 0, 1);
5057 btrfs_put_block_group(cache
);
5062 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
5063 struct btrfs_root
*root
,
5064 u64 parent
, u64 root_objectid
,
5065 u64 flags
, u64 owner
, u64 offset
,
5066 struct btrfs_key
*ins
, int ref_mod
)
5069 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5070 struct btrfs_extent_item
*extent_item
;
5071 struct btrfs_extent_inline_ref
*iref
;
5072 struct btrfs_path
*path
;
5073 struct extent_buffer
*leaf
;
5078 type
= BTRFS_SHARED_DATA_REF_KEY
;
5080 type
= BTRFS_EXTENT_DATA_REF_KEY
;
5082 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
5084 path
= btrfs_alloc_path();
5087 path
->leave_spinning
= 1;
5088 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
5092 leaf
= path
->nodes
[0];
5093 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5094 struct btrfs_extent_item
);
5095 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
5096 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
5097 btrfs_set_extent_flags(leaf
, extent_item
,
5098 flags
| BTRFS_EXTENT_FLAG_DATA
);
5100 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
5101 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
5103 struct btrfs_shared_data_ref
*ref
;
5104 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
5105 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
5106 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
5108 struct btrfs_extent_data_ref
*ref
;
5109 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
5110 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
5111 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
5112 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
5113 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
5116 btrfs_mark_buffer_dirty(path
->nodes
[0]);
5117 btrfs_free_path(path
);
5119 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
5121 printk(KERN_ERR
"btrfs update block group failed for %llu "
5122 "%llu\n", (unsigned long long)ins
->objectid
,
5123 (unsigned long long)ins
->offset
);
5129 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
5130 struct btrfs_root
*root
,
5131 u64 parent
, u64 root_objectid
,
5132 u64 flags
, struct btrfs_disk_key
*key
,
5133 int level
, struct btrfs_key
*ins
)
5136 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5137 struct btrfs_extent_item
*extent_item
;
5138 struct btrfs_tree_block_info
*block_info
;
5139 struct btrfs_extent_inline_ref
*iref
;
5140 struct btrfs_path
*path
;
5141 struct extent_buffer
*leaf
;
5142 u32 size
= sizeof(*extent_item
) + sizeof(*block_info
) + sizeof(*iref
);
5144 path
= btrfs_alloc_path();
5147 path
->leave_spinning
= 1;
5148 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
5152 leaf
= path
->nodes
[0];
5153 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5154 struct btrfs_extent_item
);
5155 btrfs_set_extent_refs(leaf
, extent_item
, 1);
5156 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
5157 btrfs_set_extent_flags(leaf
, extent_item
,
5158 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
5159 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
5161 btrfs_set_tree_block_key(leaf
, block_info
, key
);
5162 btrfs_set_tree_block_level(leaf
, block_info
, level
);
5164 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
5166 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
5167 btrfs_set_extent_inline_ref_type(leaf
, iref
,
5168 BTRFS_SHARED_BLOCK_REF_KEY
);
5169 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
5171 btrfs_set_extent_inline_ref_type(leaf
, iref
,
5172 BTRFS_TREE_BLOCK_REF_KEY
);
5173 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
5176 btrfs_mark_buffer_dirty(leaf
);
5177 btrfs_free_path(path
);
5179 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
5181 printk(KERN_ERR
"btrfs update block group failed for %llu "
5182 "%llu\n", (unsigned long long)ins
->objectid
,
5183 (unsigned long long)ins
->offset
);
5189 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
5190 struct btrfs_root
*root
,
5191 u64 root_objectid
, u64 owner
,
5192 u64 offset
, struct btrfs_key
*ins
)
5196 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
5198 ret
= btrfs_add_delayed_data_ref(trans
, ins
->objectid
, ins
->offset
,
5199 0, root_objectid
, owner
, offset
,
5200 BTRFS_ADD_DELAYED_EXTENT
, NULL
);
5205 * this is used by the tree logging recovery code. It records that
5206 * an extent has been allocated and makes sure to clear the free
5207 * space cache bits as well
5209 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
5210 struct btrfs_root
*root
,
5211 u64 root_objectid
, u64 owner
, u64 offset
,
5212 struct btrfs_key
*ins
)
5215 struct btrfs_block_group_cache
*block_group
;
5216 struct btrfs_caching_control
*caching_ctl
;
5217 u64 start
= ins
->objectid
;
5218 u64 num_bytes
= ins
->offset
;
5220 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
5221 cache_block_group(block_group
);
5222 caching_ctl
= get_caching_control(block_group
);
5225 BUG_ON(!block_group_cache_done(block_group
));
5226 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
5229 mutex_lock(&caching_ctl
->mutex
);
5231 if (start
>= caching_ctl
->progress
) {
5232 ret
= add_excluded_extent(root
, start
, num_bytes
);
5234 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
5235 ret
= btrfs_remove_free_space(block_group
,
5239 num_bytes
= caching_ctl
->progress
- start
;
5240 ret
= btrfs_remove_free_space(block_group
,
5244 start
= caching_ctl
->progress
;
5245 num_bytes
= ins
->objectid
+ ins
->offset
-
5246 caching_ctl
->progress
;
5247 ret
= add_excluded_extent(root
, start
, num_bytes
);
5251 mutex_unlock(&caching_ctl
->mutex
);
5252 put_caching_control(caching_ctl
);
5255 ret
= update_reserved_bytes(block_group
, ins
->offset
, 1, 1);
5257 btrfs_put_block_group(block_group
);
5258 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
5259 0, owner
, offset
, ins
, 1);
5263 struct extent_buffer
*btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
,
5264 struct btrfs_root
*root
,
5265 u64 bytenr
, u32 blocksize
,
5268 struct extent_buffer
*buf
;
5270 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
5272 return ERR_PTR(-ENOMEM
);
5273 btrfs_set_header_generation(buf
, trans
->transid
);
5274 btrfs_set_buffer_lockdep_class(buf
, level
);
5275 btrfs_tree_lock(buf
);
5276 clean_tree_block(trans
, root
, buf
);
5278 btrfs_set_lock_blocking(buf
);
5279 btrfs_set_buffer_uptodate(buf
);
5281 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
5283 * we allow two log transactions at a time, use different
5284 * EXENT bit to differentiate dirty pages.
5286 if (root
->log_transid
% 2 == 0)
5287 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
5288 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
5290 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
5291 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
5293 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
5294 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
5296 trans
->blocks_used
++;
5297 /* this returns a buffer locked for blocking */
5301 static struct btrfs_block_rsv
*
5302 use_block_rsv(struct btrfs_trans_handle
*trans
,
5303 struct btrfs_root
*root
, u32 blocksize
)
5305 struct btrfs_block_rsv
*block_rsv
;
5308 block_rsv
= get_block_rsv(trans
, root
);
5310 if (block_rsv
->size
== 0) {
5311 ret
= reserve_metadata_bytes(block_rsv
, blocksize
);
5313 return ERR_PTR(ret
);
5317 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
5322 printk(KERN_INFO
"block_rsv size %llu reserved %llu freed %llu %llu\n",
5323 block_rsv
->size
, block_rsv
->reserved
,
5324 block_rsv
->freed
[0], block_rsv
->freed
[1]);
5326 return ERR_PTR(-ENOSPC
);
5329 static void unuse_block_rsv(struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
5331 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
5332 block_rsv_release_bytes(block_rsv
, NULL
, 0);
5336 * finds a free extent and does all the dirty work required for allocation
5337 * returns the key for the extent through ins, and a tree buffer for
5338 * the first block of the extent through buf.
5340 * returns the tree buffer or NULL.
5342 struct extent_buffer
*btrfs_alloc_free_block(struct btrfs_trans_handle
*trans
,
5343 struct btrfs_root
*root
, u32 blocksize
,
5344 u64 parent
, u64 root_objectid
,
5345 struct btrfs_disk_key
*key
, int level
,
5346 u64 hint
, u64 empty_size
)
5348 struct btrfs_key ins
;
5349 struct btrfs_block_rsv
*block_rsv
;
5350 struct extent_buffer
*buf
;
5355 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
5356 if (IS_ERR(block_rsv
))
5357 return ERR_CAST(block_rsv
);
5359 ret
= btrfs_reserve_extent(trans
, root
, blocksize
, blocksize
,
5360 empty_size
, hint
, (u64
)-1, &ins
, 0);
5362 unuse_block_rsv(block_rsv
, blocksize
);
5363 return ERR_PTR(ret
);
5366 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
,
5368 BUG_ON(IS_ERR(buf
));
5370 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
5372 parent
= ins
.objectid
;
5373 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
5377 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
5378 struct btrfs_delayed_extent_op
*extent_op
;
5379 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
5382 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
5384 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
5385 extent_op
->flags_to_set
= flags
;
5386 extent_op
->update_key
= 1;
5387 extent_op
->update_flags
= 1;
5388 extent_op
->is_data
= 0;
5390 ret
= btrfs_add_delayed_tree_ref(trans
, ins
.objectid
,
5391 ins
.offset
, parent
, root_objectid
,
5392 level
, BTRFS_ADD_DELAYED_EXTENT
,
5399 struct walk_control
{
5400 u64 refs
[BTRFS_MAX_LEVEL
];
5401 u64 flags
[BTRFS_MAX_LEVEL
];
5402 struct btrfs_key update_progress
;
5412 #define DROP_REFERENCE 1
5413 #define UPDATE_BACKREF 2
5415 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
5416 struct btrfs_root
*root
,
5417 struct walk_control
*wc
,
5418 struct btrfs_path
*path
)
5427 struct btrfs_key key
;
5428 struct extent_buffer
*eb
;
5433 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
5434 wc
->reada_count
= wc
->reada_count
* 2 / 3;
5435 wc
->reada_count
= max(wc
->reada_count
, 2);
5437 wc
->reada_count
= wc
->reada_count
* 3 / 2;
5438 wc
->reada_count
= min_t(int, wc
->reada_count
,
5439 BTRFS_NODEPTRS_PER_BLOCK(root
));
5442 eb
= path
->nodes
[wc
->level
];
5443 nritems
= btrfs_header_nritems(eb
);
5444 blocksize
= btrfs_level_size(root
, wc
->level
- 1);
5446 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
5447 if (nread
>= wc
->reada_count
)
5451 bytenr
= btrfs_node_blockptr(eb
, slot
);
5452 generation
= btrfs_node_ptr_generation(eb
, slot
);
5454 if (slot
== path
->slots
[wc
->level
])
5457 if (wc
->stage
== UPDATE_BACKREF
&&
5458 generation
<= root
->root_key
.offset
)
5461 /* We don't lock the tree block, it's OK to be racy here */
5462 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
5467 if (wc
->stage
== DROP_REFERENCE
) {
5471 if (wc
->level
== 1 &&
5472 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5474 if (!wc
->update_ref
||
5475 generation
<= root
->root_key
.offset
)
5477 btrfs_node_key_to_cpu(eb
, &key
, slot
);
5478 ret
= btrfs_comp_cpu_keys(&key
,
5479 &wc
->update_progress
);
5483 if (wc
->level
== 1 &&
5484 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5488 ret
= readahead_tree_block(root
, bytenr
, blocksize
,
5492 last
= bytenr
+ blocksize
;
5495 wc
->reada_slot
= slot
;
5499 * hepler to process tree block while walking down the tree.
5501 * when wc->stage == UPDATE_BACKREF, this function updates
5502 * back refs for pointers in the block.
5504 * NOTE: return value 1 means we should stop walking down.
5506 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
5507 struct btrfs_root
*root
,
5508 struct btrfs_path
*path
,
5509 struct walk_control
*wc
, int lookup_info
)
5511 int level
= wc
->level
;
5512 struct extent_buffer
*eb
= path
->nodes
[level
];
5513 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
5516 if (wc
->stage
== UPDATE_BACKREF
&&
5517 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
5521 * when reference count of tree block is 1, it won't increase
5522 * again. once full backref flag is set, we never clear it.
5525 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
5526 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
5527 BUG_ON(!path
->locks
[level
]);
5528 ret
= btrfs_lookup_extent_info(trans
, root
,
5533 BUG_ON(wc
->refs
[level
] == 0);
5536 if (wc
->stage
== DROP_REFERENCE
) {
5537 if (wc
->refs
[level
] > 1)
5540 if (path
->locks
[level
] && !wc
->keep_locks
) {
5541 btrfs_tree_unlock(eb
);
5542 path
->locks
[level
] = 0;
5547 /* wc->stage == UPDATE_BACKREF */
5548 if (!(wc
->flags
[level
] & flag
)) {
5549 BUG_ON(!path
->locks
[level
]);
5550 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
5552 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
5554 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
5557 wc
->flags
[level
] |= flag
;
5561 * the block is shared by multiple trees, so it's not good to
5562 * keep the tree lock
5564 if (path
->locks
[level
] && level
> 0) {
5565 btrfs_tree_unlock(eb
);
5566 path
->locks
[level
] = 0;
5572 * hepler to process tree block pointer.
5574 * when wc->stage == DROP_REFERENCE, this function checks
5575 * reference count of the block pointed to. if the block
5576 * is shared and we need update back refs for the subtree
5577 * rooted at the block, this function changes wc->stage to
5578 * UPDATE_BACKREF. if the block is shared and there is no
5579 * need to update back, this function drops the reference
5582 * NOTE: return value 1 means we should stop walking down.
5584 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
5585 struct btrfs_root
*root
,
5586 struct btrfs_path
*path
,
5587 struct walk_control
*wc
, int *lookup_info
)
5593 struct btrfs_key key
;
5594 struct extent_buffer
*next
;
5595 int level
= wc
->level
;
5599 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
5600 path
->slots
[level
]);
5602 * if the lower level block was created before the snapshot
5603 * was created, we know there is no need to update back refs
5606 if (wc
->stage
== UPDATE_BACKREF
&&
5607 generation
<= root
->root_key
.offset
) {
5612 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
5613 blocksize
= btrfs_level_size(root
, level
- 1);
5615 next
= btrfs_find_tree_block(root
, bytenr
, blocksize
);
5617 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
5622 btrfs_tree_lock(next
);
5623 btrfs_set_lock_blocking(next
);
5625 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
5626 &wc
->refs
[level
- 1],
5627 &wc
->flags
[level
- 1]);
5629 BUG_ON(wc
->refs
[level
- 1] == 0);
5632 if (wc
->stage
== DROP_REFERENCE
) {
5633 if (wc
->refs
[level
- 1] > 1) {
5635 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5638 if (!wc
->update_ref
||
5639 generation
<= root
->root_key
.offset
)
5642 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
5643 path
->slots
[level
]);
5644 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
5648 wc
->stage
= UPDATE_BACKREF
;
5649 wc
->shared_level
= level
- 1;
5653 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5657 if (!btrfs_buffer_uptodate(next
, generation
)) {
5658 btrfs_tree_unlock(next
);
5659 free_extent_buffer(next
);
5665 if (reada
&& level
== 1)
5666 reada_walk_down(trans
, root
, wc
, path
);
5667 next
= read_tree_block(root
, bytenr
, blocksize
, generation
);
5668 btrfs_tree_lock(next
);
5669 btrfs_set_lock_blocking(next
);
5673 BUG_ON(level
!= btrfs_header_level(next
));
5674 path
->nodes
[level
] = next
;
5675 path
->slots
[level
] = 0;
5676 path
->locks
[level
] = 1;
5682 wc
->refs
[level
- 1] = 0;
5683 wc
->flags
[level
- 1] = 0;
5684 if (wc
->stage
== DROP_REFERENCE
) {
5685 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
5686 parent
= path
->nodes
[level
]->start
;
5688 BUG_ON(root
->root_key
.objectid
!=
5689 btrfs_header_owner(path
->nodes
[level
]));
5693 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
5694 root
->root_key
.objectid
, level
- 1, 0);
5697 btrfs_tree_unlock(next
);
5698 free_extent_buffer(next
);
5704 * hepler to process tree block while walking up the tree.
5706 * when wc->stage == DROP_REFERENCE, this function drops
5707 * reference count on the block.
5709 * when wc->stage == UPDATE_BACKREF, this function changes
5710 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5711 * to UPDATE_BACKREF previously while processing the block.
5713 * NOTE: return value 1 means we should stop walking up.
5715 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
5716 struct btrfs_root
*root
,
5717 struct btrfs_path
*path
,
5718 struct walk_control
*wc
)
5721 int level
= wc
->level
;
5722 struct extent_buffer
*eb
= path
->nodes
[level
];
5725 if (wc
->stage
== UPDATE_BACKREF
) {
5726 BUG_ON(wc
->shared_level
< level
);
5727 if (level
< wc
->shared_level
)
5730 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
5734 wc
->stage
= DROP_REFERENCE
;
5735 wc
->shared_level
= -1;
5736 path
->slots
[level
] = 0;
5739 * check reference count again if the block isn't locked.
5740 * we should start walking down the tree again if reference
5743 if (!path
->locks
[level
]) {
5745 btrfs_tree_lock(eb
);
5746 btrfs_set_lock_blocking(eb
);
5747 path
->locks
[level
] = 1;
5749 ret
= btrfs_lookup_extent_info(trans
, root
,
5754 BUG_ON(wc
->refs
[level
] == 0);
5755 if (wc
->refs
[level
] == 1) {
5756 btrfs_tree_unlock(eb
);
5757 path
->locks
[level
] = 0;
5763 /* wc->stage == DROP_REFERENCE */
5764 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
5766 if (wc
->refs
[level
] == 1) {
5768 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
5769 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
5771 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
5774 /* make block locked assertion in clean_tree_block happy */
5775 if (!path
->locks
[level
] &&
5776 btrfs_header_generation(eb
) == trans
->transid
) {
5777 btrfs_tree_lock(eb
);
5778 btrfs_set_lock_blocking(eb
);
5779 path
->locks
[level
] = 1;
5781 clean_tree_block(trans
, root
, eb
);
5784 if (eb
== root
->node
) {
5785 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
5788 BUG_ON(root
->root_key
.objectid
!=
5789 btrfs_header_owner(eb
));
5791 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
5792 parent
= path
->nodes
[level
+ 1]->start
;
5794 BUG_ON(root
->root_key
.objectid
!=
5795 btrfs_header_owner(path
->nodes
[level
+ 1]));
5798 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
5800 wc
->refs
[level
] = 0;
5801 wc
->flags
[level
] = 0;
5805 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
5806 struct btrfs_root
*root
,
5807 struct btrfs_path
*path
,
5808 struct walk_control
*wc
)
5810 int level
= wc
->level
;
5811 int lookup_info
= 1;
5814 while (level
>= 0) {
5815 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
5822 if (path
->slots
[level
] >=
5823 btrfs_header_nritems(path
->nodes
[level
]))
5826 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
5828 path
->slots
[level
]++;
5837 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
5838 struct btrfs_root
*root
,
5839 struct btrfs_path
*path
,
5840 struct walk_control
*wc
, int max_level
)
5842 int level
= wc
->level
;
5845 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
5846 while (level
< max_level
&& path
->nodes
[level
]) {
5848 if (path
->slots
[level
] + 1 <
5849 btrfs_header_nritems(path
->nodes
[level
])) {
5850 path
->slots
[level
]++;
5853 ret
= walk_up_proc(trans
, root
, path
, wc
);
5857 if (path
->locks
[level
]) {
5858 btrfs_tree_unlock(path
->nodes
[level
]);
5859 path
->locks
[level
] = 0;
5861 free_extent_buffer(path
->nodes
[level
]);
5862 path
->nodes
[level
] = NULL
;
5870 * drop a subvolume tree.
5872 * this function traverses the tree freeing any blocks that only
5873 * referenced by the tree.
5875 * when a shared tree block is found. this function decreases its
5876 * reference count by one. if update_ref is true, this function
5877 * also make sure backrefs for the shared block and all lower level
5878 * blocks are properly updated.
5880 int btrfs_drop_snapshot(struct btrfs_root
*root
,
5881 struct btrfs_block_rsv
*block_rsv
, int update_ref
)
5883 struct btrfs_path
*path
;
5884 struct btrfs_trans_handle
*trans
;
5885 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
5886 struct btrfs_root_item
*root_item
= &root
->root_item
;
5887 struct walk_control
*wc
;
5888 struct btrfs_key key
;
5893 path
= btrfs_alloc_path();
5896 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
5899 trans
= btrfs_start_transaction(tree_root
, 0);
5901 trans
->block_rsv
= block_rsv
;
5903 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
5904 level
= btrfs_header_level(root
->node
);
5905 path
->nodes
[level
] = btrfs_lock_root_node(root
);
5906 btrfs_set_lock_blocking(path
->nodes
[level
]);
5907 path
->slots
[level
] = 0;
5908 path
->locks
[level
] = 1;
5909 memset(&wc
->update_progress
, 0,
5910 sizeof(wc
->update_progress
));
5912 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
5913 memcpy(&wc
->update_progress
, &key
,
5914 sizeof(wc
->update_progress
));
5916 level
= root_item
->drop_level
;
5918 path
->lowest_level
= level
;
5919 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5920 path
->lowest_level
= 0;
5928 * unlock our path, this is safe because only this
5929 * function is allowed to delete this snapshot
5931 btrfs_unlock_up_safe(path
, 0);
5933 level
= btrfs_header_level(root
->node
);
5935 btrfs_tree_lock(path
->nodes
[level
]);
5936 btrfs_set_lock_blocking(path
->nodes
[level
]);
5938 ret
= btrfs_lookup_extent_info(trans
, root
,
5939 path
->nodes
[level
]->start
,
5940 path
->nodes
[level
]->len
,
5944 BUG_ON(wc
->refs
[level
] == 0);
5946 if (level
== root_item
->drop_level
)
5949 btrfs_tree_unlock(path
->nodes
[level
]);
5950 WARN_ON(wc
->refs
[level
] != 1);
5956 wc
->shared_level
= -1;
5957 wc
->stage
= DROP_REFERENCE
;
5958 wc
->update_ref
= update_ref
;
5960 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
5963 ret
= walk_down_tree(trans
, root
, path
, wc
);
5969 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
5976 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
5980 if (wc
->stage
== DROP_REFERENCE
) {
5982 btrfs_node_key(path
->nodes
[level
],
5983 &root_item
->drop_progress
,
5984 path
->slots
[level
]);
5985 root_item
->drop_level
= level
;
5988 BUG_ON(wc
->level
== 0);
5989 if (btrfs_should_end_transaction(trans
, tree_root
)) {
5990 ret
= btrfs_update_root(trans
, tree_root
,
5995 btrfs_end_transaction_throttle(trans
, tree_root
);
5996 trans
= btrfs_start_transaction(tree_root
, 0);
5998 trans
->block_rsv
= block_rsv
;
6001 btrfs_release_path(root
, path
);
6004 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
6007 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
6008 ret
= btrfs_find_last_root(tree_root
, root
->root_key
.objectid
,
6012 ret
= btrfs_del_orphan_item(trans
, tree_root
,
6013 root
->root_key
.objectid
);
6018 if (root
->in_radix
) {
6019 btrfs_free_fs_root(tree_root
->fs_info
, root
);
6021 free_extent_buffer(root
->node
);
6022 free_extent_buffer(root
->commit_root
);
6026 btrfs_end_transaction_throttle(trans
, tree_root
);
6028 btrfs_free_path(path
);
6033 * drop subtree rooted at tree block 'node'.
6035 * NOTE: this function will unlock and release tree block 'node'
6037 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
6038 struct btrfs_root
*root
,
6039 struct extent_buffer
*node
,
6040 struct extent_buffer
*parent
)
6042 struct btrfs_path
*path
;
6043 struct walk_control
*wc
;
6049 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
6051 path
= btrfs_alloc_path();
6054 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
6057 btrfs_assert_tree_locked(parent
);
6058 parent_level
= btrfs_header_level(parent
);
6059 extent_buffer_get(parent
);
6060 path
->nodes
[parent_level
] = parent
;
6061 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
6063 btrfs_assert_tree_locked(node
);
6064 level
= btrfs_header_level(node
);
6065 path
->nodes
[level
] = node
;
6066 path
->slots
[level
] = 0;
6067 path
->locks
[level
] = 1;
6069 wc
->refs
[parent_level
] = 1;
6070 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
6072 wc
->shared_level
= -1;
6073 wc
->stage
= DROP_REFERENCE
;
6076 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
6079 wret
= walk_down_tree(trans
, root
, path
, wc
);
6085 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
6093 btrfs_free_path(path
);
6098 static unsigned long calc_ra(unsigned long start
, unsigned long last
,
6101 return min(last
, start
+ nr
- 1);
6104 static noinline
int relocate_inode_pages(struct inode
*inode
, u64 start
,
6109 unsigned long first_index
;
6110 unsigned long last_index
;
6113 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6114 struct file_ra_state
*ra
;
6115 struct btrfs_ordered_extent
*ordered
;
6116 unsigned int total_read
= 0;
6117 unsigned int total_dirty
= 0;
6120 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
6122 mutex_lock(&inode
->i_mutex
);
6123 first_index
= start
>> PAGE_CACHE_SHIFT
;
6124 last_index
= (start
+ len
- 1) >> PAGE_CACHE_SHIFT
;
6126 /* make sure the dirty trick played by the caller work */
6127 ret
= invalidate_inode_pages2_range(inode
->i_mapping
,
6128 first_index
, last_index
);
6132 file_ra_state_init(ra
, inode
->i_mapping
);
6134 for (i
= first_index
; i
<= last_index
; i
++) {
6135 if (total_read
% ra
->ra_pages
== 0) {
6136 btrfs_force_ra(inode
->i_mapping
, ra
, NULL
, i
,
6137 calc_ra(i
, last_index
, ra
->ra_pages
));
6141 if (((u64
)i
<< PAGE_CACHE_SHIFT
) > i_size_read(inode
))
6143 page
= grab_cache_page(inode
->i_mapping
, i
);
6148 if (!PageUptodate(page
)) {
6149 btrfs_readpage(NULL
, page
);
6151 if (!PageUptodate(page
)) {
6153 page_cache_release(page
);
6158 wait_on_page_writeback(page
);
6160 page_start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
6161 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6162 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
6164 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
6166 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
6168 page_cache_release(page
);
6169 btrfs_start_ordered_extent(inode
, ordered
, 1);
6170 btrfs_put_ordered_extent(ordered
);
6173 set_page_extent_mapped(page
);
6175 if (i
== first_index
)
6176 set_extent_bits(io_tree
, page_start
, page_end
,
6177 EXTENT_BOUNDARY
, GFP_NOFS
);
6178 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
6180 set_page_dirty(page
);
6183 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
6185 page_cache_release(page
);
6190 mutex_unlock(&inode
->i_mutex
);
6191 balance_dirty_pages_ratelimited_nr(inode
->i_mapping
, total_dirty
);
6195 static noinline
int relocate_data_extent(struct inode
*reloc_inode
,
6196 struct btrfs_key
*extent_key
,
6199 struct btrfs_root
*root
= BTRFS_I(reloc_inode
)->root
;
6200 struct extent_map_tree
*em_tree
= &BTRFS_I(reloc_inode
)->extent_tree
;
6201 struct extent_map
*em
;
6202 u64 start
= extent_key
->objectid
- offset
;
6203 u64 end
= start
+ extent_key
->offset
- 1;
6205 em
= alloc_extent_map(GFP_NOFS
);
6206 BUG_ON(!em
|| IS_ERR(em
));
6209 em
->len
= extent_key
->offset
;
6210 em
->block_len
= extent_key
->offset
;
6211 em
->block_start
= extent_key
->objectid
;
6212 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
6213 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
6215 /* setup extent map to cheat btrfs_readpage */
6216 lock_extent(&BTRFS_I(reloc_inode
)->io_tree
, start
, end
, GFP_NOFS
);
6219 write_lock(&em_tree
->lock
);
6220 ret
= add_extent_mapping(em_tree
, em
);
6221 write_unlock(&em_tree
->lock
);
6222 if (ret
!= -EEXIST
) {
6223 free_extent_map(em
);
6226 btrfs_drop_extent_cache(reloc_inode
, start
, end
, 0);
6228 unlock_extent(&BTRFS_I(reloc_inode
)->io_tree
, start
, end
, GFP_NOFS
);
6230 return relocate_inode_pages(reloc_inode
, start
, extent_key
->offset
);
6233 struct btrfs_ref_path
{
6235 u64 nodes
[BTRFS_MAX_LEVEL
];
6237 u64 root_generation
;
6244 struct btrfs_key node_keys
[BTRFS_MAX_LEVEL
];
6245 u64 new_nodes
[BTRFS_MAX_LEVEL
];
6248 struct disk_extent
{
6259 static int is_cowonly_root(u64 root_objectid
)
6261 if (root_objectid
== BTRFS_ROOT_TREE_OBJECTID
||
6262 root_objectid
== BTRFS_EXTENT_TREE_OBJECTID
||
6263 root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
||
6264 root_objectid
== BTRFS_DEV_TREE_OBJECTID
||
6265 root_objectid
== BTRFS_TREE_LOG_OBJECTID
||
6266 root_objectid
== BTRFS_CSUM_TREE_OBJECTID
)
6271 static noinline
int __next_ref_path(struct btrfs_trans_handle
*trans
,
6272 struct btrfs_root
*extent_root
,
6273 struct btrfs_ref_path
*ref_path
,
6276 struct extent_buffer
*leaf
;
6277 struct btrfs_path
*path
;
6278 struct btrfs_extent_ref
*ref
;
6279 struct btrfs_key key
;
6280 struct btrfs_key found_key
;
6286 path
= btrfs_alloc_path();
6291 ref_path
->lowest_level
= -1;
6292 ref_path
->current_level
= -1;
6293 ref_path
->shared_level
= -1;
6297 level
= ref_path
->current_level
- 1;
6298 while (level
>= -1) {
6300 if (level
< ref_path
->lowest_level
)
6304 bytenr
= ref_path
->nodes
[level
];
6306 bytenr
= ref_path
->extent_start
;
6307 BUG_ON(bytenr
== 0);
6309 parent
= ref_path
->nodes
[level
+ 1];
6310 ref_path
->nodes
[level
+ 1] = 0;
6311 ref_path
->current_level
= level
;
6312 BUG_ON(parent
== 0);
6314 key
.objectid
= bytenr
;
6315 key
.offset
= parent
+ 1;
6316 key
.type
= BTRFS_EXTENT_REF_KEY
;
6318 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
, 0, 0);
6323 leaf
= path
->nodes
[0];
6324 nritems
= btrfs_header_nritems(leaf
);
6325 if (path
->slots
[0] >= nritems
) {
6326 ret
= btrfs_next_leaf(extent_root
, path
);
6331 leaf
= path
->nodes
[0];
6334 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6335 if (found_key
.objectid
== bytenr
&&
6336 found_key
.type
== BTRFS_EXTENT_REF_KEY
) {
6337 if (level
< ref_path
->shared_level
)
6338 ref_path
->shared_level
= level
;
6343 btrfs_release_path(extent_root
, path
);
6346 /* reached lowest level */
6350 level
= ref_path
->current_level
;
6351 while (level
< BTRFS_MAX_LEVEL
- 1) {
6355 bytenr
= ref_path
->nodes
[level
];
6357 bytenr
= ref_path
->extent_start
;
6359 BUG_ON(bytenr
== 0);
6361 key
.objectid
= bytenr
;
6363 key
.type
= BTRFS_EXTENT_REF_KEY
;
6365 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
, 0, 0);
6369 leaf
= path
->nodes
[0];
6370 nritems
= btrfs_header_nritems(leaf
);
6371 if (path
->slots
[0] >= nritems
) {
6372 ret
= btrfs_next_leaf(extent_root
, path
);
6376 /* the extent was freed by someone */
6377 if (ref_path
->lowest_level
== level
)
6379 btrfs_release_path(extent_root
, path
);
6382 leaf
= path
->nodes
[0];
6385 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6386 if (found_key
.objectid
!= bytenr
||
6387 found_key
.type
!= BTRFS_EXTENT_REF_KEY
) {
6388 /* the extent was freed by someone */
6389 if (ref_path
->lowest_level
== level
) {
6393 btrfs_release_path(extent_root
, path
);
6397 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
6398 struct btrfs_extent_ref
);
6399 ref_objectid
= btrfs_ref_objectid(leaf
, ref
);
6400 if (ref_objectid
< BTRFS_FIRST_FREE_OBJECTID
) {
6402 level
= (int)ref_objectid
;
6403 BUG_ON(level
>= BTRFS_MAX_LEVEL
);
6404 ref_path
->lowest_level
= level
;
6405 ref_path
->current_level
= level
;
6406 ref_path
->nodes
[level
] = bytenr
;
6408 WARN_ON(ref_objectid
!= level
);
6411 WARN_ON(level
!= -1);
6415 if (ref_path
->lowest_level
== level
) {
6416 ref_path
->owner_objectid
= ref_objectid
;
6417 ref_path
->num_refs
= btrfs_ref_num_refs(leaf
, ref
);
6421 * the block is tree root or the block isn't in reference
6424 if (found_key
.objectid
== found_key
.offset
||
6425 is_cowonly_root(btrfs_ref_root(leaf
, ref
))) {
6426 ref_path
->root_objectid
= btrfs_ref_root(leaf
, ref
);
6427 ref_path
->root_generation
=
6428 btrfs_ref_generation(leaf
, ref
);
6430 /* special reference from the tree log */
6431 ref_path
->nodes
[0] = found_key
.offset
;
6432 ref_path
->current_level
= 0;
6439 BUG_ON(ref_path
->nodes
[level
] != 0);
6440 ref_path
->nodes
[level
] = found_key
.offset
;
6441 ref_path
->current_level
= level
;
6444 * the reference was created in the running transaction,
6445 * no need to continue walking up.
6447 if (btrfs_ref_generation(leaf
, ref
) == trans
->transid
) {
6448 ref_path
->root_objectid
= btrfs_ref_root(leaf
, ref
);
6449 ref_path
->root_generation
=
6450 btrfs_ref_generation(leaf
, ref
);
6455 btrfs_release_path(extent_root
, path
);
6458 /* reached max tree level, but no tree root found. */
6461 btrfs_free_path(path
);
6465 static int btrfs_first_ref_path(struct btrfs_trans_handle
*trans
,
6466 struct btrfs_root
*extent_root
,
6467 struct btrfs_ref_path
*ref_path
,
6470 memset(ref_path
, 0, sizeof(*ref_path
));
6471 ref_path
->extent_start
= extent_start
;
6473 return __next_ref_path(trans
, extent_root
, ref_path
, 1);
6476 static int btrfs_next_ref_path(struct btrfs_trans_handle
*trans
,
6477 struct btrfs_root
*extent_root
,
6478 struct btrfs_ref_path
*ref_path
)
6480 return __next_ref_path(trans
, extent_root
, ref_path
, 0);
6483 static noinline
int get_new_locations(struct inode
*reloc_inode
,
6484 struct btrfs_key
*extent_key
,
6485 u64 offset
, int no_fragment
,
6486 struct disk_extent
**extents
,
6489 struct btrfs_root
*root
= BTRFS_I(reloc_inode
)->root
;
6490 struct btrfs_path
*path
;
6491 struct btrfs_file_extent_item
*fi
;
6492 struct extent_buffer
*leaf
;
6493 struct disk_extent
*exts
= *extents
;
6494 struct btrfs_key found_key
;
6499 int max
= *nr_extents
;
6502 WARN_ON(!no_fragment
&& *extents
);
6505 exts
= kmalloc(sizeof(*exts
) * max
, GFP_NOFS
);
6510 path
= btrfs_alloc_path();
6513 cur_pos
= extent_key
->objectid
- offset
;
6514 last_byte
= extent_key
->objectid
+ extent_key
->offset
;
6515 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, reloc_inode
->i_ino
,
6525 leaf
= path
->nodes
[0];
6526 nritems
= btrfs_header_nritems(leaf
);
6527 if (path
->slots
[0] >= nritems
) {
6528 ret
= btrfs_next_leaf(root
, path
);
6533 leaf
= path
->nodes
[0];
6536 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6537 if (found_key
.offset
!= cur_pos
||
6538 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
||
6539 found_key
.objectid
!= reloc_inode
->i_ino
)
6542 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
6543 struct btrfs_file_extent_item
);
6544 if (btrfs_file_extent_type(leaf
, fi
) !=
6545 BTRFS_FILE_EXTENT_REG
||
6546 btrfs_file_extent_disk_bytenr(leaf
, fi
) == 0)
6550 struct disk_extent
*old
= exts
;
6552 exts
= kzalloc(sizeof(*exts
) * max
, GFP_NOFS
);
6553 memcpy(exts
, old
, sizeof(*exts
) * nr
);
6554 if (old
!= *extents
)
6558 exts
[nr
].disk_bytenr
=
6559 btrfs_file_extent_disk_bytenr(leaf
, fi
);
6560 exts
[nr
].disk_num_bytes
=
6561 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
6562 exts
[nr
].offset
= btrfs_file_extent_offset(leaf
, fi
);
6563 exts
[nr
].num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
6564 exts
[nr
].ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
6565 exts
[nr
].compression
= btrfs_file_extent_compression(leaf
, fi
);
6566 exts
[nr
].encryption
= btrfs_file_extent_encryption(leaf
, fi
);
6567 exts
[nr
].other_encoding
= btrfs_file_extent_other_encoding(leaf
,
6569 BUG_ON(exts
[nr
].offset
> 0);
6570 BUG_ON(exts
[nr
].compression
|| exts
[nr
].encryption
);
6571 BUG_ON(exts
[nr
].num_bytes
!= exts
[nr
].disk_num_bytes
);
6573 cur_pos
+= exts
[nr
].num_bytes
;
6576 if (cur_pos
+ offset
>= last_byte
)
6586 BUG_ON(cur_pos
+ offset
> last_byte
);
6587 if (cur_pos
+ offset
< last_byte
) {
6593 btrfs_free_path(path
);
6595 if (exts
!= *extents
)
6604 static noinline
int replace_one_extent(struct btrfs_trans_handle
*trans
,
6605 struct btrfs_root
*root
,
6606 struct btrfs_path
*path
,
6607 struct btrfs_key
*extent_key
,
6608 struct btrfs_key
*leaf_key
,
6609 struct btrfs_ref_path
*ref_path
,
6610 struct disk_extent
*new_extents
,
6613 struct extent_buffer
*leaf
;
6614 struct btrfs_file_extent_item
*fi
;
6615 struct inode
*inode
= NULL
;
6616 struct btrfs_key key
;
6621 u64 search_end
= (u64
)-1;
6624 int extent_locked
= 0;
6628 memcpy(&key
, leaf_key
, sizeof(key
));
6629 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
) {
6630 if (key
.objectid
< ref_path
->owner_objectid
||
6631 (key
.objectid
== ref_path
->owner_objectid
&&
6632 key
.type
< BTRFS_EXTENT_DATA_KEY
)) {
6633 key
.objectid
= ref_path
->owner_objectid
;
6634 key
.type
= BTRFS_EXTENT_DATA_KEY
;
6640 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
6644 leaf
= path
->nodes
[0];
6645 nritems
= btrfs_header_nritems(leaf
);
6647 if (extent_locked
&& ret
> 0) {
6649 * the file extent item was modified by someone
6650 * before the extent got locked.
6652 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
6653 lock_end
, GFP_NOFS
);
6657 if (path
->slots
[0] >= nritems
) {
6658 if (++nr_scaned
> 2)
6661 BUG_ON(extent_locked
);
6662 ret
= btrfs_next_leaf(root
, path
);
6667 leaf
= path
->nodes
[0];
6668 nritems
= btrfs_header_nritems(leaf
);
6671 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
6673 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
) {
6674 if ((key
.objectid
> ref_path
->owner_objectid
) ||
6675 (key
.objectid
== ref_path
->owner_objectid
&&
6676 key
.type
> BTRFS_EXTENT_DATA_KEY
) ||
6677 key
.offset
>= search_end
)
6681 if (inode
&& key
.objectid
!= inode
->i_ino
) {
6682 BUG_ON(extent_locked
);
6683 btrfs_release_path(root
, path
);
6684 mutex_unlock(&inode
->i_mutex
);
6690 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
6695 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
6696 struct btrfs_file_extent_item
);
6697 extent_type
= btrfs_file_extent_type(leaf
, fi
);
6698 if ((extent_type
!= BTRFS_FILE_EXTENT_REG
&&
6699 extent_type
!= BTRFS_FILE_EXTENT_PREALLOC
) ||
6700 (btrfs_file_extent_disk_bytenr(leaf
, fi
) !=
6701 extent_key
->objectid
)) {
6707 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
6708 ext_offset
= btrfs_file_extent_offset(leaf
, fi
);
6710 if (search_end
== (u64
)-1) {
6711 search_end
= key
.offset
- ext_offset
+
6712 btrfs_file_extent_ram_bytes(leaf
, fi
);
6715 if (!extent_locked
) {
6716 lock_start
= key
.offset
;
6717 lock_end
= lock_start
+ num_bytes
- 1;
6719 if (lock_start
> key
.offset
||
6720 lock_end
+ 1 < key
.offset
+ num_bytes
) {
6721 unlock_extent(&BTRFS_I(inode
)->io_tree
,
6722 lock_start
, lock_end
, GFP_NOFS
);
6728 btrfs_release_path(root
, path
);
6730 inode
= btrfs_iget_locked(root
->fs_info
->sb
,
6731 key
.objectid
, root
);
6732 if (inode
->i_state
& I_NEW
) {
6733 BTRFS_I(inode
)->root
= root
;
6734 BTRFS_I(inode
)->location
.objectid
=
6736 BTRFS_I(inode
)->location
.type
=
6737 BTRFS_INODE_ITEM_KEY
;
6738 BTRFS_I(inode
)->location
.offset
= 0;
6739 btrfs_read_locked_inode(inode
);
6740 unlock_new_inode(inode
);
6743 * some code call btrfs_commit_transaction while
6744 * holding the i_mutex, so we can't use mutex_lock
6747 if (is_bad_inode(inode
) ||
6748 !mutex_trylock(&inode
->i_mutex
)) {
6751 key
.offset
= (u64
)-1;
6756 if (!extent_locked
) {
6757 struct btrfs_ordered_extent
*ordered
;
6759 btrfs_release_path(root
, path
);
6761 lock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
6762 lock_end
, GFP_NOFS
);
6763 ordered
= btrfs_lookup_first_ordered_extent(inode
,
6766 ordered
->file_offset
<= lock_end
&&
6767 ordered
->file_offset
+ ordered
->len
> lock_start
) {
6768 unlock_extent(&BTRFS_I(inode
)->io_tree
,
6769 lock_start
, lock_end
, GFP_NOFS
);
6770 btrfs_start_ordered_extent(inode
, ordered
, 1);
6771 btrfs_put_ordered_extent(ordered
);
6772 key
.offset
+= num_bytes
;
6776 btrfs_put_ordered_extent(ordered
);
6782 if (nr_extents
== 1) {
6783 /* update extent pointer in place */
6784 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
6785 new_extents
[0].disk_bytenr
);
6786 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
6787 new_extents
[0].disk_num_bytes
);
6788 btrfs_mark_buffer_dirty(leaf
);
6790 btrfs_drop_extent_cache(inode
, key
.offset
,
6791 key
.offset
+ num_bytes
- 1, 0);
6793 ret
= btrfs_inc_extent_ref(trans
, root
,
6794 new_extents
[0].disk_bytenr
,
6795 new_extents
[0].disk_num_bytes
,
6797 root
->root_key
.objectid
,
6802 ret
= btrfs_free_extent(trans
, root
,
6803 extent_key
->objectid
,
6806 btrfs_header_owner(leaf
),
6807 btrfs_header_generation(leaf
),
6811 btrfs_release_path(root
, path
);
6812 key
.offset
+= num_bytes
;
6820 * drop old extent pointer at first, then insert the
6821 * new pointers one bye one
6823 btrfs_release_path(root
, path
);
6824 ret
= btrfs_drop_extents(trans
, root
, inode
, key
.offset
,
6825 key
.offset
+ num_bytes
,
6826 key
.offset
, &alloc_hint
);
6829 for (i
= 0; i
< nr_extents
; i
++) {
6830 if (ext_offset
>= new_extents
[i
].num_bytes
) {
6831 ext_offset
-= new_extents
[i
].num_bytes
;
6834 extent_len
= min(new_extents
[i
].num_bytes
-
6835 ext_offset
, num_bytes
);
6837 ret
= btrfs_insert_empty_item(trans
, root
,
6842 leaf
= path
->nodes
[0];
6843 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
6844 struct btrfs_file_extent_item
);
6845 btrfs_set_file_extent_generation(leaf
, fi
,
6847 btrfs_set_file_extent_type(leaf
, fi
,
6848 BTRFS_FILE_EXTENT_REG
);
6849 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
6850 new_extents
[i
].disk_bytenr
);
6851 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
6852 new_extents
[i
].disk_num_bytes
);
6853 btrfs_set_file_extent_ram_bytes(leaf
, fi
,
6854 new_extents
[i
].ram_bytes
);
6856 btrfs_set_file_extent_compression(leaf
, fi
,
6857 new_extents
[i
].compression
);
6858 btrfs_set_file_extent_encryption(leaf
, fi
,
6859 new_extents
[i
].encryption
);
6860 btrfs_set_file_extent_other_encoding(leaf
, fi
,
6861 new_extents
[i
].other_encoding
);
6863 btrfs_set_file_extent_num_bytes(leaf
, fi
,
6865 ext_offset
+= new_extents
[i
].offset
;
6866 btrfs_set_file_extent_offset(leaf
, fi
,
6868 btrfs_mark_buffer_dirty(leaf
);
6870 btrfs_drop_extent_cache(inode
, key
.offset
,
6871 key
.offset
+ extent_len
- 1, 0);
6873 ret
= btrfs_inc_extent_ref(trans
, root
,
6874 new_extents
[i
].disk_bytenr
,
6875 new_extents
[i
].disk_num_bytes
,
6877 root
->root_key
.objectid
,
6878 trans
->transid
, key
.objectid
);
6880 btrfs_release_path(root
, path
);
6882 inode_add_bytes(inode
, extent_len
);
6885 num_bytes
-= extent_len
;
6886 key
.offset
+= extent_len
;
6891 BUG_ON(i
>= nr_extents
);
6895 if (extent_locked
) {
6896 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
6897 lock_end
, GFP_NOFS
);
6901 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
&&
6902 key
.offset
>= search_end
)
6909 btrfs_release_path(root
, path
);
6911 mutex_unlock(&inode
->i_mutex
);
6912 if (extent_locked
) {
6913 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
6914 lock_end
, GFP_NOFS
);
6921 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle
*trans
,
6922 struct btrfs_root
*root
,
6923 struct extent_buffer
*buf
, u64 orig_start
)
6928 BUG_ON(btrfs_header_generation(buf
) != trans
->transid
);
6929 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
6931 level
= btrfs_header_level(buf
);
6933 struct btrfs_leaf_ref
*ref
;
6934 struct btrfs_leaf_ref
*orig_ref
;
6936 orig_ref
= btrfs_lookup_leaf_ref(root
, orig_start
);
6940 ref
= btrfs_alloc_leaf_ref(root
, orig_ref
->nritems
);
6942 btrfs_free_leaf_ref(root
, orig_ref
);
6946 ref
->nritems
= orig_ref
->nritems
;
6947 memcpy(ref
->extents
, orig_ref
->extents
,
6948 sizeof(ref
->extents
[0]) * ref
->nritems
);
6950 btrfs_free_leaf_ref(root
, orig_ref
);
6952 ref
->root_gen
= trans
->transid
;
6953 ref
->bytenr
= buf
->start
;
6954 ref
->owner
= btrfs_header_owner(buf
);
6955 ref
->generation
= btrfs_header_generation(buf
);
6957 ret
= btrfs_add_leaf_ref(root
, ref
, 0);
6959 btrfs_free_leaf_ref(root
, ref
);
6964 static noinline
int invalidate_extent_cache(struct btrfs_root
*root
,
6965 struct extent_buffer
*leaf
,
6966 struct btrfs_block_group_cache
*group
,
6967 struct btrfs_root
*target_root
)
6969 struct btrfs_key key
;
6970 struct inode
*inode
= NULL
;
6971 struct btrfs_file_extent_item
*fi
;
6972 struct extent_state
*cached_state
= NULL
;
6974 u64 skip_objectid
= 0;
6978 nritems
= btrfs_header_nritems(leaf
);
6979 for (i
= 0; i
< nritems
; i
++) {
6980 btrfs_item_key_to_cpu(leaf
, &key
, i
);
6981 if (key
.objectid
== skip_objectid
||
6982 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6984 fi
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
6985 if (btrfs_file_extent_type(leaf
, fi
) ==
6986 BTRFS_FILE_EXTENT_INLINE
)
6988 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) == 0)
6990 if (!inode
|| inode
->i_ino
!= key
.objectid
) {
6992 inode
= btrfs_ilookup(target_root
->fs_info
->sb
,
6993 key
.objectid
, target_root
, 1);
6996 skip_objectid
= key
.objectid
;
6999 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
7001 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, key
.offset
,
7002 key
.offset
+ num_bytes
- 1, 0, &cached_state
,
7004 btrfs_drop_extent_cache(inode
, key
.offset
,
7005 key
.offset
+ num_bytes
- 1, 1);
7006 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, key
.offset
,
7007 key
.offset
+ num_bytes
- 1, &cached_state
,
7015 static noinline
int replace_extents_in_leaf(struct btrfs_trans_handle
*trans
,
7016 struct btrfs_root
*root
,
7017 struct extent_buffer
*leaf
,
7018 struct btrfs_block_group_cache
*group
,
7019 struct inode
*reloc_inode
)
7021 struct btrfs_key key
;
7022 struct btrfs_key extent_key
;
7023 struct btrfs_file_extent_item
*fi
;
7024 struct btrfs_leaf_ref
*ref
;
7025 struct disk_extent
*new_extent
;
7034 new_extent
= kmalloc(sizeof(*new_extent
), GFP_NOFS
);
7035 BUG_ON(!new_extent
);
7037 ref
= btrfs_lookup_leaf_ref(root
, leaf
->start
);
7041 nritems
= btrfs_header_nritems(leaf
);
7042 for (i
= 0; i
< nritems
; i
++) {
7043 btrfs_item_key_to_cpu(leaf
, &key
, i
);
7044 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
7046 fi
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
7047 if (btrfs_file_extent_type(leaf
, fi
) ==
7048 BTRFS_FILE_EXTENT_INLINE
)
7050 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
7051 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
7056 if (bytenr
>= group
->key
.objectid
+ group
->key
.offset
||
7057 bytenr
+ num_bytes
<= group
->key
.objectid
)
7060 extent_key
.objectid
= bytenr
;
7061 extent_key
.offset
= num_bytes
;
7062 extent_key
.type
= BTRFS_EXTENT_ITEM_KEY
;
7064 ret
= get_new_locations(reloc_inode
, &extent_key
,
7065 group
->key
.objectid
, 1,
7066 &new_extent
, &nr_extent
);
7071 BUG_ON(ref
->extents
[ext_index
].bytenr
!= bytenr
);
7072 BUG_ON(ref
->extents
[ext_index
].num_bytes
!= num_bytes
);
7073 ref
->extents
[ext_index
].bytenr
= new_extent
->disk_bytenr
;
7074 ref
->extents
[ext_index
].num_bytes
= new_extent
->disk_num_bytes
;
7076 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
7077 new_extent
->disk_bytenr
);
7078 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
7079 new_extent
->disk_num_bytes
);
7080 btrfs_mark_buffer_dirty(leaf
);
7082 ret
= btrfs_inc_extent_ref(trans
, root
,
7083 new_extent
->disk_bytenr
,
7084 new_extent
->disk_num_bytes
,
7086 root
->root_key
.objectid
,
7087 trans
->transid
, key
.objectid
);
7090 ret
= btrfs_free_extent(trans
, root
,
7091 bytenr
, num_bytes
, leaf
->start
,
7092 btrfs_header_owner(leaf
),
7093 btrfs_header_generation(leaf
),
7099 BUG_ON(ext_index
+ 1 != ref
->nritems
);
7100 btrfs_free_leaf_ref(root
, ref
);
7104 int btrfs_free_reloc_root(struct btrfs_trans_handle
*trans
,
7105 struct btrfs_root
*root
)
7107 struct btrfs_root
*reloc_root
;
7110 if (root
->reloc_root
) {
7111 reloc_root
= root
->reloc_root
;
7112 root
->reloc_root
= NULL
;
7113 list_add(&reloc_root
->dead_list
,
7114 &root
->fs_info
->dead_reloc_roots
);
7116 btrfs_set_root_bytenr(&reloc_root
->root_item
,
7117 reloc_root
->node
->start
);
7118 btrfs_set_root_level(&root
->root_item
,
7119 btrfs_header_level(reloc_root
->node
));
7120 memset(&reloc_root
->root_item
.drop_progress
, 0,
7121 sizeof(struct btrfs_disk_key
));
7122 reloc_root
->root_item
.drop_level
= 0;
7124 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
7125 &reloc_root
->root_key
,
7126 &reloc_root
->root_item
);
7132 int btrfs_drop_dead_reloc_roots(struct btrfs_root
*root
)
7134 struct btrfs_trans_handle
*trans
;
7135 struct btrfs_root
*reloc_root
;
7136 struct btrfs_root
*prev_root
= NULL
;
7137 struct list_head dead_roots
;
7141 INIT_LIST_HEAD(&dead_roots
);
7142 list_splice_init(&root
->fs_info
->dead_reloc_roots
, &dead_roots
);
7144 while (!list_empty(&dead_roots
)) {
7145 reloc_root
= list_entry(dead_roots
.prev
,
7146 struct btrfs_root
, dead_list
);
7147 list_del_init(&reloc_root
->dead_list
);
7149 BUG_ON(reloc_root
->commit_root
!= NULL
);
7151 trans
= btrfs_join_transaction(root
, 1);
7154 mutex_lock(&root
->fs_info
->drop_mutex
);
7155 ret
= btrfs_drop_snapshot(trans
, reloc_root
);
7158 mutex_unlock(&root
->fs_info
->drop_mutex
);
7160 nr
= trans
->blocks_used
;
7161 ret
= btrfs_end_transaction(trans
, root
);
7163 btrfs_btree_balance_dirty(root
, nr
);
7166 free_extent_buffer(reloc_root
->node
);
7168 ret
= btrfs_del_root(trans
, root
->fs_info
->tree_root
,
7169 &reloc_root
->root_key
);
7171 mutex_unlock(&root
->fs_info
->drop_mutex
);
7173 nr
= trans
->blocks_used
;
7174 ret
= btrfs_end_transaction(trans
, root
);
7176 btrfs_btree_balance_dirty(root
, nr
);
7179 prev_root
= reloc_root
;
7182 btrfs_remove_leaf_refs(prev_root
, (u64
)-1, 0);
7188 int btrfs_add_dead_reloc_root(struct btrfs_root
*root
)
7190 list_add(&root
->dead_list
, &root
->fs_info
->dead_reloc_roots
);
7194 int btrfs_cleanup_reloc_trees(struct btrfs_root
*root
)
7196 struct btrfs_root
*reloc_root
;
7197 struct btrfs_trans_handle
*trans
;
7198 struct btrfs_key location
;
7202 mutex_lock(&root
->fs_info
->tree_reloc_mutex
);
7203 ret
= btrfs_find_dead_roots(root
, BTRFS_TREE_RELOC_OBJECTID
, NULL
);
7205 found
= !list_empty(&root
->fs_info
->dead_reloc_roots
);
7206 mutex_unlock(&root
->fs_info
->tree_reloc_mutex
);
7209 trans
= btrfs_start_transaction(root
, 1);
7211 ret
= btrfs_commit_transaction(trans
, root
);
7215 location
.objectid
= BTRFS_DATA_RELOC_TREE_OBJECTID
;
7216 location
.offset
= (u64
)-1;
7217 location
.type
= BTRFS_ROOT_ITEM_KEY
;
7219 reloc_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &location
);
7220 BUG_ON(!reloc_root
);
7221 btrfs_orphan_cleanup(reloc_root
);
7225 static noinline
int init_reloc_tree(struct btrfs_trans_handle
*trans
,
7226 struct btrfs_root
*root
)
7228 struct btrfs_root
*reloc_root
;
7229 struct extent_buffer
*eb
;
7230 struct btrfs_root_item
*root_item
;
7231 struct btrfs_key root_key
;
7234 BUG_ON(!root
->ref_cows
);
7235 if (root
->reloc_root
)
7238 root_item
= kmalloc(sizeof(*root_item
), GFP_NOFS
);
7241 ret
= btrfs_copy_root(trans
, root
, root
->commit_root
,
7242 &eb
, BTRFS_TREE_RELOC_OBJECTID
);
7245 root_key
.objectid
= BTRFS_TREE_RELOC_OBJECTID
;
7246 root_key
.offset
= root
->root_key
.objectid
;
7247 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
7249 memcpy(root_item
, &root
->root_item
, sizeof(root_item
));
7250 btrfs_set_root_refs(root_item
, 0);
7251 btrfs_set_root_bytenr(root_item
, eb
->start
);
7252 btrfs_set_root_level(root_item
, btrfs_header_level(eb
));
7253 btrfs_set_root_generation(root_item
, trans
->transid
);
7255 btrfs_tree_unlock(eb
);
7256 free_extent_buffer(eb
);
7258 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
,
7259 &root_key
, root_item
);
7263 reloc_root
= btrfs_read_fs_root_no_radix(root
->fs_info
->tree_root
,
7265 BUG_ON(!reloc_root
);
7266 reloc_root
->last_trans
= trans
->transid
;
7267 reloc_root
->commit_root
= NULL
;
7268 reloc_root
->ref_tree
= &root
->fs_info
->reloc_ref_tree
;
7270 root
->reloc_root
= reloc_root
;
7275 * Core function of space balance.
7277 * The idea is using reloc trees to relocate tree blocks in reference
7278 * counted roots. There is one reloc tree for each subvol, and all
7279 * reloc trees share same root key objectid. Reloc trees are snapshots
7280 * of the latest committed roots of subvols (root->commit_root).
7282 * To relocate a tree block referenced by a subvol, there are two steps.
7283 * COW the block through subvol's reloc tree, then update block pointer
7284 * in the subvol to point to the new block. Since all reloc trees share
7285 * same root key objectid, doing special handing for tree blocks owned
7286 * by them is easy. Once a tree block has been COWed in one reloc tree,
7287 * we can use the resulting new block directly when the same block is
7288 * required to COW again through other reloc trees. By this way, relocated
7289 * tree blocks are shared between reloc trees, so they are also shared
7292 static noinline
int relocate_one_path(struct btrfs_trans_handle
*trans
,
7293 struct btrfs_root
*root
,
7294 struct btrfs_path
*path
,
7295 struct btrfs_key
*first_key
,
7296 struct btrfs_ref_path
*ref_path
,
7297 struct btrfs_block_group_cache
*group
,
7298 struct inode
*reloc_inode
)
7300 struct btrfs_root
*reloc_root
;
7301 struct extent_buffer
*eb
= NULL
;
7302 struct btrfs_key
*keys
;
7306 int lowest_level
= 0;
7309 if (ref_path
->owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
)
7310 lowest_level
= ref_path
->owner_objectid
;
7312 if (!root
->ref_cows
) {
7313 path
->lowest_level
= lowest_level
;
7314 ret
= btrfs_search_slot(trans
, root
, first_key
, path
, 0, 1);
7316 path
->lowest_level
= 0;
7317 btrfs_release_path(root
, path
);
7321 mutex_lock(&root
->fs_info
->tree_reloc_mutex
);
7322 ret
= init_reloc_tree(trans
, root
);
7324 reloc_root
= root
->reloc_root
;
7326 shared_level
= ref_path
->shared_level
;
7327 ref_path
->shared_level
= BTRFS_MAX_LEVEL
- 1;
7329 keys
= ref_path
->node_keys
;
7330 nodes
= ref_path
->new_nodes
;
7331 memset(&keys
[shared_level
+ 1], 0,
7332 sizeof(*keys
) * (BTRFS_MAX_LEVEL
- shared_level
- 1));
7333 memset(&nodes
[shared_level
+ 1], 0,
7334 sizeof(*nodes
) * (BTRFS_MAX_LEVEL
- shared_level
- 1));
7336 if (nodes
[lowest_level
] == 0) {
7337 path
->lowest_level
= lowest_level
;
7338 ret
= btrfs_search_slot(trans
, reloc_root
, first_key
, path
,
7341 for (level
= lowest_level
; level
< BTRFS_MAX_LEVEL
; level
++) {
7342 eb
= path
->nodes
[level
];
7343 if (!eb
|| eb
== reloc_root
->node
)
7345 nodes
[level
] = eb
->start
;
7347 btrfs_item_key_to_cpu(eb
, &keys
[level
], 0);
7349 btrfs_node_key_to_cpu(eb
, &keys
[level
], 0);
7352 ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
7353 eb
= path
->nodes
[0];
7354 ret
= replace_extents_in_leaf(trans
, reloc_root
, eb
,
7355 group
, reloc_inode
);
7358 btrfs_release_path(reloc_root
, path
);
7360 ret
= btrfs_merge_path(trans
, reloc_root
, keys
, nodes
,
7366 * replace tree blocks in the fs tree with tree blocks in
7369 ret
= btrfs_merge_path(trans
, root
, keys
, nodes
, lowest_level
);
7372 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
7373 ret
= btrfs_search_slot(trans
, reloc_root
, first_key
, path
,
7376 extent_buffer_get(path
->nodes
[0]);
7377 eb
= path
->nodes
[0];
7378 btrfs_release_path(reloc_root
, path
);
7379 ret
= invalidate_extent_cache(reloc_root
, eb
, group
, root
);
7381 free_extent_buffer(eb
);
7384 mutex_unlock(&root
->fs_info
->tree_reloc_mutex
);
7385 path
->lowest_level
= 0;
7389 static noinline
int relocate_tree_block(struct btrfs_trans_handle
*trans
,
7390 struct btrfs_root
*root
,
7391 struct btrfs_path
*path
,
7392 struct btrfs_key
*first_key
,
7393 struct btrfs_ref_path
*ref_path
)
7397 ret
= relocate_one_path(trans
, root
, path
, first_key
,
7398 ref_path
, NULL
, NULL
);
7404 static noinline
int del_extent_zero(struct btrfs_trans_handle
*trans
,
7405 struct btrfs_root
*extent_root
,
7406 struct btrfs_path
*path
,
7407 struct btrfs_key
*extent_key
)
7411 ret
= btrfs_search_slot(trans
, extent_root
, extent_key
, path
, -1, 1);
7414 ret
= btrfs_del_item(trans
, extent_root
, path
);
7416 btrfs_release_path(extent_root
, path
);
7420 static noinline
struct btrfs_root
*read_ref_root(struct btrfs_fs_info
*fs_info
,
7421 struct btrfs_ref_path
*ref_path
)
7423 struct btrfs_key root_key
;
7425 root_key
.objectid
= ref_path
->root_objectid
;
7426 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
7427 if (is_cowonly_root(ref_path
->root_objectid
))
7428 root_key
.offset
= 0;
7430 root_key
.offset
= (u64
)-1;
7432 return btrfs_read_fs_root_no_name(fs_info
, &root_key
);
7435 static noinline
int relocate_one_extent(struct btrfs_root
*extent_root
,
7436 struct btrfs_path
*path
,
7437 struct btrfs_key
*extent_key
,
7438 struct btrfs_block_group_cache
*group
,
7439 struct inode
*reloc_inode
, int pass
)
7441 struct btrfs_trans_handle
*trans
;
7442 struct btrfs_root
*found_root
;
7443 struct btrfs_ref_path
*ref_path
= NULL
;
7444 struct disk_extent
*new_extents
= NULL
;
7449 struct btrfs_key first_key
;
7453 trans
= btrfs_start_transaction(extent_root
, 1);
7456 if (extent_key
->objectid
== 0) {
7457 ret
= del_extent_zero(trans
, extent_root
, path
, extent_key
);
7461 ref_path
= kmalloc(sizeof(*ref_path
), GFP_NOFS
);
7467 for (loops
= 0; ; loops
++) {
7469 ret
= btrfs_first_ref_path(trans
, extent_root
, ref_path
,
7470 extent_key
->objectid
);
7472 ret
= btrfs_next_ref_path(trans
, extent_root
, ref_path
);
7479 if (ref_path
->root_objectid
== BTRFS_TREE_LOG_OBJECTID
||
7480 ref_path
->root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
7483 found_root
= read_ref_root(extent_root
->fs_info
, ref_path
);
7484 BUG_ON(!found_root
);
7486 * for reference counted tree, only process reference paths
7487 * rooted at the latest committed root.
7489 if (found_root
->ref_cows
&&
7490 ref_path
->root_generation
!= found_root
->root_key
.offset
)
7493 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
7496 * copy data extents to new locations
7498 u64 group_start
= group
->key
.objectid
;
7499 ret
= relocate_data_extent(reloc_inode
,
7508 level
= ref_path
->owner_objectid
;
7511 if (prev_block
!= ref_path
->nodes
[level
]) {
7512 struct extent_buffer
*eb
;
7513 u64 block_start
= ref_path
->nodes
[level
];
7514 u64 block_size
= btrfs_level_size(found_root
, level
);
7516 eb
= read_tree_block(found_root
, block_start
,
7518 btrfs_tree_lock(eb
);
7519 BUG_ON(level
!= btrfs_header_level(eb
));
7522 btrfs_item_key_to_cpu(eb
, &first_key
, 0);
7524 btrfs_node_key_to_cpu(eb
, &first_key
, 0);
7526 btrfs_tree_unlock(eb
);
7527 free_extent_buffer(eb
);
7528 prev_block
= block_start
;
7531 mutex_lock(&extent_root
->fs_info
->trans_mutex
);
7532 btrfs_record_root_in_trans(found_root
);
7533 mutex_unlock(&extent_root
->fs_info
->trans_mutex
);
7534 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
7536 * try to update data extent references while
7537 * keeping metadata shared between snapshots.
7540 ret
= relocate_one_path(trans
, found_root
,
7541 path
, &first_key
, ref_path
,
7542 group
, reloc_inode
);
7548 * use fallback method to process the remaining
7552 u64 group_start
= group
->key
.objectid
;
7553 new_extents
= kmalloc(sizeof(*new_extents
),
7556 ret
= get_new_locations(reloc_inode
,
7564 ret
= replace_one_extent(trans
, found_root
,
7566 &first_key
, ref_path
,
7567 new_extents
, nr_extents
);
7569 ret
= relocate_tree_block(trans
, found_root
, path
,
7570 &first_key
, ref_path
);
7577 btrfs_end_transaction(trans
, extent_root
);
7584 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
7587 u64 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
7588 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
7590 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
7591 if (num_devices
== 1) {
7592 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
7593 stripped
= flags
& ~stripped
;
7595 /* turn raid0 into single device chunks */
7596 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
7599 /* turn mirroring into duplication */
7600 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
7601 BTRFS_BLOCK_GROUP_RAID10
))
7602 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
7605 /* they already had raid on here, just return */
7606 if (flags
& stripped
)
7609 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
7610 stripped
= flags
& ~stripped
;
7612 /* switch duplicated blocks with raid1 */
7613 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
7614 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
7616 /* turn single device chunks into raid0 */
7617 return stripped
| BTRFS_BLOCK_GROUP_RAID0
;
7622 static int set_block_group_ro(struct btrfs_block_group_cache
*cache
)
7624 struct btrfs_space_info
*sinfo
= cache
->space_info
;
7631 spin_lock(&sinfo
->lock
);
7632 spin_lock(&cache
->lock
);
7633 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
7634 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
7636 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+ sinfo
->bytes_pinned
+
7637 sinfo
->bytes_may_use
+ sinfo
->bytes_readonly
+
7638 cache
->reserved_pinned
+ num_bytes
< sinfo
->total_bytes
) {
7639 sinfo
->bytes_readonly
+= num_bytes
;
7640 sinfo
->bytes_reserved
+= cache
->reserved_pinned
;
7641 cache
->reserved_pinned
= 0;
7645 spin_unlock(&cache
->lock
);
7646 spin_unlock(&sinfo
->lock
);
7650 int btrfs_set_block_group_ro(struct btrfs_root
*root
,
7651 struct btrfs_block_group_cache
*cache
)
7654 struct btrfs_trans_handle
*trans
;
7660 trans
= btrfs_join_transaction(root
, 1);
7661 BUG_ON(IS_ERR(trans
));
7663 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
7664 if (alloc_flags
!= cache
->flags
)
7665 do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
, 1);
7667 ret
= set_block_group_ro(cache
);
7670 alloc_flags
= get_alloc_profile(root
, cache
->space_info
->flags
);
7671 ret
= do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
, 1);
7674 ret
= set_block_group_ro(cache
);
7676 btrfs_end_transaction(trans
, root
);
7680 int btrfs_set_block_group_rw(struct btrfs_root
*root
,
7681 struct btrfs_block_group_cache
*cache
)
7683 struct btrfs_space_info
*sinfo
= cache
->space_info
;
7688 spin_lock(&sinfo
->lock
);
7689 spin_lock(&cache
->lock
);
7690 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
7691 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
7692 sinfo
->bytes_readonly
-= num_bytes
;
7694 spin_unlock(&cache
->lock
);
7695 spin_unlock(&sinfo
->lock
);
7700 * checks to see if its even possible to relocate this block group.
7702 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7703 * ok to go ahead and try.
7705 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
7707 struct btrfs_block_group_cache
*block_group
;
7708 struct btrfs_space_info
*space_info
;
7709 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
7710 struct btrfs_device
*device
;
7714 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
7716 /* odd, couldn't find the block group, leave it alone */
7720 /* no bytes used, we're good */
7721 if (!btrfs_block_group_used(&block_group
->item
))
7724 space_info
= block_group
->space_info
;
7725 spin_lock(&space_info
->lock
);
7727 full
= space_info
->full
;
7730 * if this is the last block group we have in this space, we can't
7731 * relocate it unless we're able to allocate a new chunk below.
7733 * Otherwise, we need to make sure we have room in the space to handle
7734 * all of the extents from this block group. If we can, we're good
7736 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
7737 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
7738 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
7739 btrfs_block_group_used(&block_group
->item
) <
7740 space_info
->total_bytes
)) {
7741 spin_unlock(&space_info
->lock
);
7744 spin_unlock(&space_info
->lock
);
7747 * ok we don't have enough space, but maybe we have free space on our
7748 * devices to allocate new chunks for relocation, so loop through our
7749 * alloc devices and guess if we have enough space. However, if we
7750 * were marked as full, then we know there aren't enough chunks, and we
7757 mutex_lock(&root
->fs_info
->chunk_mutex
);
7758 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
7759 u64 min_free
= btrfs_block_group_used(&block_group
->item
);
7760 u64 dev_offset
, max_avail
;
7763 * check to make sure we can actually find a chunk with enough
7764 * space to fit our block group in.
7766 if (device
->total_bytes
> device
->bytes_used
+ min_free
) {
7767 ret
= find_free_dev_extent(NULL
, device
, min_free
,
7768 &dev_offset
, &max_avail
);
7774 mutex_unlock(&root
->fs_info
->chunk_mutex
);
7776 btrfs_put_block_group(block_group
);
7780 static int find_first_block_group(struct btrfs_root
*root
,
7781 struct btrfs_path
*path
, struct btrfs_key
*key
)
7784 struct btrfs_key found_key
;
7785 struct extent_buffer
*leaf
;
7788 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
7793 slot
= path
->slots
[0];
7794 leaf
= path
->nodes
[0];
7795 if (slot
>= btrfs_header_nritems(leaf
)) {
7796 ret
= btrfs_next_leaf(root
, path
);
7803 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
7805 if (found_key
.objectid
>= key
->objectid
&&
7806 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
7816 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
7818 struct btrfs_block_group_cache
*block_group
;
7819 struct btrfs_space_info
*space_info
;
7820 struct btrfs_caching_control
*caching_ctl
;
7823 down_write(&info
->extent_commit_sem
);
7824 while (!list_empty(&info
->caching_block_groups
)) {
7825 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
7826 struct btrfs_caching_control
, list
);
7827 list_del(&caching_ctl
->list
);
7828 put_caching_control(caching_ctl
);
7830 up_write(&info
->extent_commit_sem
);
7832 spin_lock(&info
->block_group_cache_lock
);
7833 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
7834 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
7836 rb_erase(&block_group
->cache_node
,
7837 &info
->block_group_cache_tree
);
7838 spin_unlock(&info
->block_group_cache_lock
);
7840 down_write(&block_group
->space_info
->groups_sem
);
7841 list_del(&block_group
->list
);
7842 up_write(&block_group
->space_info
->groups_sem
);
7844 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
7845 wait_block_group_cache_done(block_group
);
7847 btrfs_remove_free_space_cache(block_group
);
7848 btrfs_put_block_group(block_group
);
7850 spin_lock(&info
->block_group_cache_lock
);
7852 spin_unlock(&info
->block_group_cache_lock
);
7854 /* now that all the block groups are freed, go through and
7855 * free all the space_info structs. This is only called during
7856 * the final stages of unmount, and so we know nobody is
7857 * using them. We call synchronize_rcu() once before we start,
7858 * just to be on the safe side.
7862 release_global_block_rsv(info
);
7864 while(!list_empty(&info
->space_info
)) {
7865 space_info
= list_entry(info
->space_info
.next
,
7866 struct btrfs_space_info
,
7868 if (space_info
->bytes_pinned
> 0 ||
7869 space_info
->bytes_reserved
> 0) {
7871 dump_space_info(space_info
, 0, 0);
7873 list_del(&space_info
->list
);
7879 static void __link_block_group(struct btrfs_space_info
*space_info
,
7880 struct btrfs_block_group_cache
*cache
)
7882 int index
= get_block_group_index(cache
);
7884 down_write(&space_info
->groups_sem
);
7885 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
7886 up_write(&space_info
->groups_sem
);
7889 int btrfs_read_block_groups(struct btrfs_root
*root
)
7891 struct btrfs_path
*path
;
7893 struct btrfs_block_group_cache
*cache
;
7894 struct btrfs_fs_info
*info
= root
->fs_info
;
7895 struct btrfs_space_info
*space_info
;
7896 struct btrfs_key key
;
7897 struct btrfs_key found_key
;
7898 struct extent_buffer
*leaf
;
7900 root
= info
->extent_root
;
7903 btrfs_set_key_type(&key
, BTRFS_BLOCK_GROUP_ITEM_KEY
);
7904 path
= btrfs_alloc_path();
7909 ret
= find_first_block_group(root
, path
, &key
);
7915 leaf
= path
->nodes
[0];
7916 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
7917 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
7923 atomic_set(&cache
->count
, 1);
7924 spin_lock_init(&cache
->lock
);
7925 spin_lock_init(&cache
->tree_lock
);
7926 cache
->fs_info
= info
;
7927 INIT_LIST_HEAD(&cache
->list
);
7928 INIT_LIST_HEAD(&cache
->cluster_list
);
7931 * we only want to have 32k of ram per block group for keeping
7932 * track of free space, and if we pass 1/2 of that we want to
7933 * start converting things over to using bitmaps
7935 cache
->extents_thresh
= ((1024 * 32) / 2) /
7936 sizeof(struct btrfs_free_space
);
7938 read_extent_buffer(leaf
, &cache
->item
,
7939 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
7940 sizeof(cache
->item
));
7941 memcpy(&cache
->key
, &found_key
, sizeof(found_key
));
7943 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
7944 btrfs_release_path(root
, path
);
7945 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
7946 cache
->sectorsize
= root
->sectorsize
;
7949 * check for two cases, either we are full, and therefore
7950 * don't need to bother with the caching work since we won't
7951 * find any space, or we are empty, and we can just add all
7952 * the space in and be done with it. This saves us _alot_ of
7953 * time, particularly in the full case.
7955 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
7956 exclude_super_stripes(root
, cache
);
7957 cache
->last_byte_to_unpin
= (u64
)-1;
7958 cache
->cached
= BTRFS_CACHE_FINISHED
;
7959 free_excluded_extents(root
, cache
);
7960 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
7961 exclude_super_stripes(root
, cache
);
7962 cache
->last_byte_to_unpin
= (u64
)-1;
7963 cache
->cached
= BTRFS_CACHE_FINISHED
;
7964 add_new_free_space(cache
, root
->fs_info
,
7966 found_key
.objectid
+
7968 free_excluded_extents(root
, cache
);
7971 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
7972 btrfs_block_group_used(&cache
->item
),
7975 cache
->space_info
= space_info
;
7976 spin_lock(&cache
->space_info
->lock
);
7977 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
7978 spin_unlock(&cache
->space_info
->lock
);
7980 __link_block_group(space_info
, cache
);
7982 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
7985 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
7986 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
))
7987 set_block_group_ro(cache
);
7990 list_for_each_entry_rcu(space_info
, &root
->fs_info
->space_info
, list
) {
7991 if (!(get_alloc_profile(root
, space_info
->flags
) &
7992 (BTRFS_BLOCK_GROUP_RAID10
|
7993 BTRFS_BLOCK_GROUP_RAID1
|
7994 BTRFS_BLOCK_GROUP_DUP
)))
7997 * avoid allocating from un-mirrored block group if there are
7998 * mirrored block groups.
8000 list_for_each_entry(cache
, &space_info
->block_groups
[3], list
)
8001 set_block_group_ro(cache
);
8002 list_for_each_entry(cache
, &space_info
->block_groups
[4], list
)
8003 set_block_group_ro(cache
);
8006 init_global_block_rsv(info
);
8009 btrfs_free_path(path
);
8013 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
8014 struct btrfs_root
*root
, u64 bytes_used
,
8015 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
8019 struct btrfs_root
*extent_root
;
8020 struct btrfs_block_group_cache
*cache
;
8022 extent_root
= root
->fs_info
->extent_root
;
8024 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
8026 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
8030 cache
->key
.objectid
= chunk_offset
;
8031 cache
->key
.offset
= size
;
8032 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
8033 cache
->sectorsize
= root
->sectorsize
;
8036 * we only want to have 32k of ram per block group for keeping track
8037 * of free space, and if we pass 1/2 of that we want to start
8038 * converting things over to using bitmaps
8040 cache
->extents_thresh
= ((1024 * 32) / 2) /
8041 sizeof(struct btrfs_free_space
);
8042 atomic_set(&cache
->count
, 1);
8043 spin_lock_init(&cache
->lock
);
8044 spin_lock_init(&cache
->tree_lock
);
8045 INIT_LIST_HEAD(&cache
->list
);
8046 INIT_LIST_HEAD(&cache
->cluster_list
);
8048 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
8049 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
8050 cache
->flags
= type
;
8051 btrfs_set_block_group_flags(&cache
->item
, type
);
8053 cache
->last_byte_to_unpin
= (u64
)-1;
8054 cache
->cached
= BTRFS_CACHE_FINISHED
;
8055 exclude_super_stripes(root
, cache
);
8057 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
8058 chunk_offset
+ size
);
8060 free_excluded_extents(root
, cache
);
8062 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
8063 &cache
->space_info
);
8066 spin_lock(&cache
->space_info
->lock
);
8067 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
8068 spin_unlock(&cache
->space_info
->lock
);
8070 __link_block_group(cache
->space_info
, cache
);
8072 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
8075 ret
= btrfs_insert_item(trans
, extent_root
, &cache
->key
, &cache
->item
,
8076 sizeof(cache
->item
));
8079 set_avail_alloc_bits(extent_root
->fs_info
, type
);
8084 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
8085 struct btrfs_root
*root
, u64 group_start
)
8087 struct btrfs_path
*path
;
8088 struct btrfs_block_group_cache
*block_group
;
8089 struct btrfs_free_cluster
*cluster
;
8090 struct btrfs_key key
;
8093 root
= root
->fs_info
->extent_root
;
8095 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
8096 BUG_ON(!block_group
);
8097 BUG_ON(!block_group
->ro
);
8099 memcpy(&key
, &block_group
->key
, sizeof(key
));
8101 /* make sure this block group isn't part of an allocation cluster */
8102 cluster
= &root
->fs_info
->data_alloc_cluster
;
8103 spin_lock(&cluster
->refill_lock
);
8104 btrfs_return_cluster_to_free_space(block_group
, cluster
);
8105 spin_unlock(&cluster
->refill_lock
);
8108 * make sure this block group isn't part of a metadata
8109 * allocation cluster
8111 cluster
= &root
->fs_info
->meta_alloc_cluster
;
8112 spin_lock(&cluster
->refill_lock
);
8113 btrfs_return_cluster_to_free_space(block_group
, cluster
);
8114 spin_unlock(&cluster
->refill_lock
);
8116 path
= btrfs_alloc_path();
8119 spin_lock(&root
->fs_info
->block_group_cache_lock
);
8120 rb_erase(&block_group
->cache_node
,
8121 &root
->fs_info
->block_group_cache_tree
);
8122 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
8124 down_write(&block_group
->space_info
->groups_sem
);
8126 * we must use list_del_init so people can check to see if they
8127 * are still on the list after taking the semaphore
8129 list_del_init(&block_group
->list
);
8130 up_write(&block_group
->space_info
->groups_sem
);
8132 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
8133 wait_block_group_cache_done(block_group
);
8135 btrfs_remove_free_space_cache(block_group
);
8137 spin_lock(&block_group
->space_info
->lock
);
8138 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
8139 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
8140 spin_unlock(&block_group
->space_info
->lock
);
8142 btrfs_clear_space_info_full(root
->fs_info
);
8144 btrfs_put_block_group(block_group
);
8145 btrfs_put_block_group(block_group
);
8147 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
8153 ret
= btrfs_del_item(trans
, root
, path
);
8155 btrfs_free_path(path
);