[MTD] Fix OTP for top-parameter devices
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / mtd / chips / cfi_cmdset_0001.c
blobb99400f6e484fad44a105bdd1486c6c305cd2ad9
1 /*
2 * Common Flash Interface support:
3 * Intel Extended Vendor Command Set (ID 0x0001)
5 * (C) 2000 Red Hat. GPL'd
7 * $Id: cfi_cmdset_0001.c,v 1.175 2005/04/01 16:36:25 nico Exp $
9 *
10 * 10/10/2000 Nicolas Pitre <nico@cam.org>
11 * - completely revamped method functions so they are aware and
12 * independent of the flash geometry (buswidth, interleave, etc.)
13 * - scalability vs code size is completely set at compile-time
14 * (see include/linux/mtd/cfi.h for selection)
15 * - optimized write buffer method
16 * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
17 * - reworked lock/unlock/erase support for var size flash
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/init.h>
25 #include <asm/io.h>
26 #include <asm/byteorder.h>
28 #include <linux/errno.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/reboot.h>
33 #include <linux/mtd/xip.h>
34 #include <linux/mtd/map.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/compatmac.h>
37 #include <linux/mtd/cfi.h>
39 /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
40 /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
42 // debugging, turns off buffer write mode if set to 1
43 #define FORCE_WORD_WRITE 0
45 #define MANUFACTURER_INTEL 0x0089
46 #define I82802AB 0x00ad
47 #define I82802AC 0x00ac
48 #define MANUFACTURER_ST 0x0020
49 #define M50LPW080 0x002F
51 static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
52 static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
53 static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
55 static void cfi_intelext_sync (struct mtd_info *);
56 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
57 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
58 #ifdef CONFIG_MTD_OTP
59 static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
60 static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
61 static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
62 static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
63 static int cfi_intelext_get_fact_prot_info (struct mtd_info *,
64 struct otp_info *, size_t);
65 static int cfi_intelext_get_user_prot_info (struct mtd_info *,
66 struct otp_info *, size_t);
67 #endif
68 static int cfi_intelext_suspend (struct mtd_info *);
69 static void cfi_intelext_resume (struct mtd_info *);
70 static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
72 static void cfi_intelext_destroy(struct mtd_info *);
74 struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
76 static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
77 static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
79 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
80 size_t *retlen, u_char **mtdbuf);
81 static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from,
82 size_t len);
84 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
85 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
86 #include "fwh_lock.h"
91 * *********** SETUP AND PROBE BITS ***********
94 static struct mtd_chip_driver cfi_intelext_chipdrv = {
95 .probe = NULL, /* Not usable directly */
96 .destroy = cfi_intelext_destroy,
97 .name = "cfi_cmdset_0001",
98 .module = THIS_MODULE
101 /* #define DEBUG_LOCK_BITS */
102 /* #define DEBUG_CFI_FEATURES */
104 #ifdef DEBUG_CFI_FEATURES
105 static void cfi_tell_features(struct cfi_pri_intelext *extp)
107 int i;
108 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
109 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
110 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
111 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
112 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
113 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
114 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
115 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
116 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
117 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
118 printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
119 for (i=10; i<32; i++) {
120 if (extp->FeatureSupport & (1<<i))
121 printk(" - Unknown Bit %X: supported\n", i);
124 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
125 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
126 for (i=1; i<8; i++) {
127 if (extp->SuspendCmdSupport & (1<<i))
128 printk(" - Unknown Bit %X: supported\n", i);
131 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
132 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
133 printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
134 for (i=2; i<16; i++) {
135 if (extp->BlkStatusRegMask & (1<<i))
136 printk(" - Unknown Bit %X Active: yes\n",i);
139 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
140 extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
141 if (extp->VppOptimal)
142 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
143 extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
145 #endif
147 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
148 /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
149 static void fixup_intel_strataflash(struct mtd_info *mtd, void* param)
151 struct map_info *map = mtd->priv;
152 struct cfi_private *cfi = map->fldrv_priv;
153 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
155 printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
156 "erase on write disabled.\n");
157 extp->SuspendCmdSupport &= ~1;
159 #endif
161 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
162 static void fixup_no_write_suspend(struct mtd_info *mtd, void* param)
164 struct map_info *map = mtd->priv;
165 struct cfi_private *cfi = map->fldrv_priv;
166 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
168 if (cfip && (cfip->FeatureSupport&4)) {
169 cfip->FeatureSupport &= ~4;
170 printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
173 #endif
175 static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param)
177 struct map_info *map = mtd->priv;
178 struct cfi_private *cfi = map->fldrv_priv;
180 cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */
181 cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */
184 static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param)
186 struct map_info *map = mtd->priv;
187 struct cfi_private *cfi = map->fldrv_priv;
189 /* Note this is done after the region info is endian swapped */
190 cfi->cfiq->EraseRegionInfo[1] =
191 (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
194 static void fixup_use_point(struct mtd_info *mtd, void *param)
196 struct map_info *map = mtd->priv;
197 if (!mtd->point && map_is_linear(map)) {
198 mtd->point = cfi_intelext_point;
199 mtd->unpoint = cfi_intelext_unpoint;
203 static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
205 struct map_info *map = mtd->priv;
206 struct cfi_private *cfi = map->fldrv_priv;
207 if (cfi->cfiq->BufWriteTimeoutTyp) {
208 printk(KERN_INFO "Using buffer write method\n" );
209 mtd->write = cfi_intelext_write_buffers;
213 static struct cfi_fixup cfi_fixup_table[] = {
214 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
215 { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL },
216 #endif
217 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
218 { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL },
219 #endif
220 #if !FORCE_WORD_WRITE
221 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL },
222 #endif
223 { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL },
224 { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL },
225 { 0, 0, NULL, NULL }
228 static struct cfi_fixup jedec_fixup_table[] = {
229 { MANUFACTURER_INTEL, I82802AB, fixup_use_fwh_lock, NULL, },
230 { MANUFACTURER_INTEL, I82802AC, fixup_use_fwh_lock, NULL, },
231 { MANUFACTURER_ST, M50LPW080, fixup_use_fwh_lock, NULL, },
232 { 0, 0, NULL, NULL }
234 static struct cfi_fixup fixup_table[] = {
235 /* The CFI vendor ids and the JEDEC vendor IDs appear
236 * to be common. It is like the devices id's are as
237 * well. This table is to pick all cases where
238 * we know that is the case.
240 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL },
241 { 0, 0, NULL, NULL }
244 static inline struct cfi_pri_intelext *
245 read_pri_intelext(struct map_info *map, __u16 adr)
247 struct cfi_pri_intelext *extp;
248 unsigned int extp_size = sizeof(*extp);
250 again:
251 extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
252 if (!extp)
253 return NULL;
255 /* Do some byteswapping if necessary */
256 extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
257 extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
258 extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
260 if (extp->MajorVersion == '1' && extp->MinorVersion == '3') {
261 unsigned int extra_size = 0;
262 int nb_parts, i;
264 /* Protection Register info */
265 extra_size += (extp->NumProtectionFields - 1) *
266 sizeof(struct cfi_intelext_otpinfo);
268 /* Burst Read info */
269 extra_size += 6;
271 /* Number of hardware-partitions */
272 extra_size += 1;
273 if (extp_size < sizeof(*extp) + extra_size)
274 goto need_more;
275 nb_parts = extp->extra[extra_size - 1];
277 for (i = 0; i < nb_parts; i++) {
278 struct cfi_intelext_regioninfo *rinfo;
279 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
280 extra_size += sizeof(*rinfo);
281 if (extp_size < sizeof(*extp) + extra_size)
282 goto need_more;
283 rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
284 extra_size += (rinfo->NumBlockTypes - 1)
285 * sizeof(struct cfi_intelext_blockinfo);
288 if (extp_size < sizeof(*extp) + extra_size) {
289 need_more:
290 extp_size = sizeof(*extp) + extra_size;
291 kfree(extp);
292 if (extp_size > 4096) {
293 printk(KERN_ERR
294 "%s: cfi_pri_intelext is too fat\n",
295 __FUNCTION__);
296 return NULL;
298 goto again;
302 return extp;
305 /* This routine is made available to other mtd code via
306 * inter_module_register. It must only be accessed through
307 * inter_module_get which will bump the use count of this module. The
308 * addresses passed back in cfi are valid as long as the use count of
309 * this module is non-zero, i.e. between inter_module_get and
310 * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
312 struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
314 struct cfi_private *cfi = map->fldrv_priv;
315 struct mtd_info *mtd;
316 int i;
318 mtd = kmalloc(sizeof(*mtd), GFP_KERNEL);
319 if (!mtd) {
320 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
321 return NULL;
323 memset(mtd, 0, sizeof(*mtd));
324 mtd->priv = map;
325 mtd->type = MTD_NORFLASH;
327 /* Fill in the default mtd operations */
328 mtd->erase = cfi_intelext_erase_varsize;
329 mtd->read = cfi_intelext_read;
330 mtd->write = cfi_intelext_write_words;
331 mtd->sync = cfi_intelext_sync;
332 mtd->lock = cfi_intelext_lock;
333 mtd->unlock = cfi_intelext_unlock;
334 mtd->suspend = cfi_intelext_suspend;
335 mtd->resume = cfi_intelext_resume;
336 mtd->flags = MTD_CAP_NORFLASH;
337 mtd->name = map->name;
339 mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;
341 if (cfi->cfi_mode == CFI_MODE_CFI) {
343 * It's a real CFI chip, not one for which the probe
344 * routine faked a CFI structure. So we read the feature
345 * table from it.
347 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
348 struct cfi_pri_intelext *extp;
350 extp = read_pri_intelext(map, adr);
351 if (!extp) {
352 kfree(mtd);
353 return NULL;
356 /* Install our own private info structure */
357 cfi->cmdset_priv = extp;
359 cfi_fixup(mtd, cfi_fixup_table);
361 #ifdef DEBUG_CFI_FEATURES
362 /* Tell the user about it in lots of lovely detail */
363 cfi_tell_features(extp);
364 #endif
366 if(extp->SuspendCmdSupport & 1) {
367 printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
370 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
371 /* Apply jedec specific fixups */
372 cfi_fixup(mtd, jedec_fixup_table);
374 /* Apply generic fixups */
375 cfi_fixup(mtd, fixup_table);
377 for (i=0; i< cfi->numchips; i++) {
378 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
379 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
380 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
381 cfi->chips[i].ref_point_counter = 0;
384 map->fldrv = &cfi_intelext_chipdrv;
386 return cfi_intelext_setup(mtd);
389 static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
391 struct map_info *map = mtd->priv;
392 struct cfi_private *cfi = map->fldrv_priv;
393 unsigned long offset = 0;
394 int i,j;
395 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
397 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
399 mtd->size = devsize * cfi->numchips;
401 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
402 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
403 * mtd->numeraseregions, GFP_KERNEL);
404 if (!mtd->eraseregions) {
405 printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
406 goto setup_err;
409 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
410 unsigned long ernum, ersize;
411 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
412 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
414 if (mtd->erasesize < ersize) {
415 mtd->erasesize = ersize;
417 for (j=0; j<cfi->numchips; j++) {
418 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
419 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
420 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
422 offset += (ersize * ernum);
425 if (offset != devsize) {
426 /* Argh */
427 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
428 goto setup_err;
431 for (i=0; i<mtd->numeraseregions;i++){
432 printk(KERN_DEBUG "%d: offset=0x%x,size=0x%x,blocks=%d\n",
433 i,mtd->eraseregions[i].offset,
434 mtd->eraseregions[i].erasesize,
435 mtd->eraseregions[i].numblocks);
438 #ifdef CONFIG_MTD_OTP
439 mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
440 mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg;
441 mtd->write_user_prot_reg = cfi_intelext_write_user_prot_reg;
442 mtd->lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
443 mtd->get_fact_prot_info = cfi_intelext_get_fact_prot_info;
444 mtd->get_user_prot_info = cfi_intelext_get_user_prot_info;
445 #endif
447 /* This function has the potential to distort the reality
448 a bit and therefore should be called last. */
449 if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
450 goto setup_err;
452 __module_get(THIS_MODULE);
453 register_reboot_notifier(&mtd->reboot_notifier);
454 return mtd;
456 setup_err:
457 if(mtd) {
458 if(mtd->eraseregions)
459 kfree(mtd->eraseregions);
460 kfree(mtd);
462 kfree(cfi->cmdset_priv);
463 return NULL;
466 static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
467 struct cfi_private **pcfi)
469 struct map_info *map = mtd->priv;
470 struct cfi_private *cfi = *pcfi;
471 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
474 * Probing of multi-partition flash ships.
476 * To support multiple partitions when available, we simply arrange
477 * for each of them to have their own flchip structure even if they
478 * are on the same physical chip. This means completely recreating
479 * a new cfi_private structure right here which is a blatent code
480 * layering violation, but this is still the least intrusive
481 * arrangement at this point. This can be rearranged in the future
482 * if someone feels motivated enough. --nico
484 if (extp && extp->MajorVersion == '1' && extp->MinorVersion == '3'
485 && extp->FeatureSupport & (1 << 9)) {
486 struct cfi_private *newcfi;
487 struct flchip *chip;
488 struct flchip_shared *shared;
489 int offs, numregions, numparts, partshift, numvirtchips, i, j;
491 /* Protection Register info */
492 offs = (extp->NumProtectionFields - 1) *
493 sizeof(struct cfi_intelext_otpinfo);
495 /* Burst Read info */
496 offs += 6;
498 /* Number of partition regions */
499 numregions = extp->extra[offs];
500 offs += 1;
502 /* Number of hardware partitions */
503 numparts = 0;
504 for (i = 0; i < numregions; i++) {
505 struct cfi_intelext_regioninfo *rinfo;
506 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
507 numparts += rinfo->NumIdentPartitions;
508 offs += sizeof(*rinfo)
509 + (rinfo->NumBlockTypes - 1) *
510 sizeof(struct cfi_intelext_blockinfo);
514 * All functions below currently rely on all chips having
515 * the same geometry so we'll just assume that all hardware
516 * partitions are of the same size too.
518 partshift = cfi->chipshift - __ffs(numparts);
520 if ((1 << partshift) < mtd->erasesize) {
521 printk( KERN_ERR
522 "%s: bad number of hw partitions (%d)\n",
523 __FUNCTION__, numparts);
524 return -EINVAL;
527 numvirtchips = cfi->numchips * numparts;
528 newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL);
529 if (!newcfi)
530 return -ENOMEM;
531 shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL);
532 if (!shared) {
533 kfree(newcfi);
534 return -ENOMEM;
536 memcpy(newcfi, cfi, sizeof(struct cfi_private));
537 newcfi->numchips = numvirtchips;
538 newcfi->chipshift = partshift;
540 chip = &newcfi->chips[0];
541 for (i = 0; i < cfi->numchips; i++) {
542 shared[i].writing = shared[i].erasing = NULL;
543 spin_lock_init(&shared[i].lock);
544 for (j = 0; j < numparts; j++) {
545 *chip = cfi->chips[i];
546 chip->start += j << partshift;
547 chip->priv = &shared[i];
548 /* those should be reset too since
549 they create memory references. */
550 init_waitqueue_head(&chip->wq);
551 spin_lock_init(&chip->_spinlock);
552 chip->mutex = &chip->_spinlock;
553 chip++;
557 printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
558 "--> %d partitions of %d KiB\n",
559 map->name, cfi->numchips, cfi->interleave,
560 newcfi->numchips, 1<<(newcfi->chipshift-10));
562 map->fldrv_priv = newcfi;
563 *pcfi = newcfi;
564 kfree(cfi);
567 return 0;
571 * *********** CHIP ACCESS FUNCTIONS ***********
574 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
576 DECLARE_WAITQUEUE(wait, current);
577 struct cfi_private *cfi = map->fldrv_priv;
578 map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
579 unsigned long timeo;
580 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
582 resettime:
583 timeo = jiffies + HZ;
584 retry:
585 if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE)) {
587 * OK. We have possibility for contension on the write/erase
588 * operations which are global to the real chip and not per
589 * partition. So let's fight it over in the partition which
590 * currently has authority on the operation.
592 * The rules are as follows:
594 * - any write operation must own shared->writing.
596 * - any erase operation must own _both_ shared->writing and
597 * shared->erasing.
599 * - contension arbitration is handled in the owner's context.
601 * The 'shared' struct can be read when its lock is taken.
602 * However any writes to it can only be made when the current
603 * owner's lock is also held.
605 struct flchip_shared *shared = chip->priv;
606 struct flchip *contender;
607 spin_lock(&shared->lock);
608 contender = shared->writing;
609 if (contender && contender != chip) {
611 * The engine to perform desired operation on this
612 * partition is already in use by someone else.
613 * Let's fight over it in the context of the chip
614 * currently using it. If it is possible to suspend,
615 * that other partition will do just that, otherwise
616 * it'll happily send us to sleep. In any case, when
617 * get_chip returns success we're clear to go ahead.
619 int ret = spin_trylock(contender->mutex);
620 spin_unlock(&shared->lock);
621 if (!ret)
622 goto retry;
623 spin_unlock(chip->mutex);
624 ret = get_chip(map, contender, contender->start, mode);
625 spin_lock(chip->mutex);
626 if (ret) {
627 spin_unlock(contender->mutex);
628 return ret;
630 timeo = jiffies + HZ;
631 spin_lock(&shared->lock);
634 /* We now own it */
635 shared->writing = chip;
636 if (mode == FL_ERASING)
637 shared->erasing = chip;
638 if (contender && contender != chip)
639 spin_unlock(contender->mutex);
640 spin_unlock(&shared->lock);
643 switch (chip->state) {
645 case FL_STATUS:
646 for (;;) {
647 status = map_read(map, adr);
648 if (map_word_andequal(map, status, status_OK, status_OK))
649 break;
651 /* At this point we're fine with write operations
652 in other partitions as they don't conflict. */
653 if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
654 break;
656 if (time_after(jiffies, timeo)) {
657 printk(KERN_ERR "Waiting for chip to be ready timed out. Status %lx\n",
658 status.x[0]);
659 return -EIO;
661 spin_unlock(chip->mutex);
662 cfi_udelay(1);
663 spin_lock(chip->mutex);
664 /* Someone else might have been playing with it. */
665 goto retry;
668 case FL_READY:
669 case FL_CFI_QUERY:
670 case FL_JEDEC_QUERY:
671 return 0;
673 case FL_ERASING:
674 if (!cfip ||
675 !(cfip->FeatureSupport & 2) ||
676 !(mode == FL_READY || mode == FL_POINT ||
677 (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
678 goto sleep;
681 /* Erase suspend */
682 map_write(map, CMD(0xB0), adr);
684 /* If the flash has finished erasing, then 'erase suspend'
685 * appears to make some (28F320) flash devices switch to
686 * 'read' mode. Make sure that we switch to 'read status'
687 * mode so we get the right data. --rmk
689 map_write(map, CMD(0x70), adr);
690 chip->oldstate = FL_ERASING;
691 chip->state = FL_ERASE_SUSPENDING;
692 chip->erase_suspended = 1;
693 for (;;) {
694 status = map_read(map, adr);
695 if (map_word_andequal(map, status, status_OK, status_OK))
696 break;
698 if (time_after(jiffies, timeo)) {
699 /* Urgh. Resume and pretend we weren't here. */
700 map_write(map, CMD(0xd0), adr);
701 /* Make sure we're in 'read status' mode if it had finished */
702 map_write(map, CMD(0x70), adr);
703 chip->state = FL_ERASING;
704 chip->oldstate = FL_READY;
705 printk(KERN_ERR "Chip not ready after erase "
706 "suspended: status = 0x%lx\n", status.x[0]);
707 return -EIO;
710 spin_unlock(chip->mutex);
711 cfi_udelay(1);
712 spin_lock(chip->mutex);
713 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
714 So we can just loop here. */
716 chip->state = FL_STATUS;
717 return 0;
719 case FL_XIP_WHILE_ERASING:
720 if (mode != FL_READY && mode != FL_POINT &&
721 (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
722 goto sleep;
723 chip->oldstate = chip->state;
724 chip->state = FL_READY;
725 return 0;
727 case FL_POINT:
728 /* Only if there's no operation suspended... */
729 if (mode == FL_READY && chip->oldstate == FL_READY)
730 return 0;
732 default:
733 sleep:
734 set_current_state(TASK_UNINTERRUPTIBLE);
735 add_wait_queue(&chip->wq, &wait);
736 spin_unlock(chip->mutex);
737 schedule();
738 remove_wait_queue(&chip->wq, &wait);
739 spin_lock(chip->mutex);
740 goto resettime;
744 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
746 struct cfi_private *cfi = map->fldrv_priv;
748 if (chip->priv) {
749 struct flchip_shared *shared = chip->priv;
750 spin_lock(&shared->lock);
751 if (shared->writing == chip && chip->oldstate == FL_READY) {
752 /* We own the ability to write, but we're done */
753 shared->writing = shared->erasing;
754 if (shared->writing && shared->writing != chip) {
755 /* give back ownership to who we loaned it from */
756 struct flchip *loaner = shared->writing;
757 spin_lock(loaner->mutex);
758 spin_unlock(&shared->lock);
759 spin_unlock(chip->mutex);
760 put_chip(map, loaner, loaner->start);
761 spin_lock(chip->mutex);
762 spin_unlock(loaner->mutex);
763 wake_up(&chip->wq);
764 return;
766 shared->erasing = NULL;
767 shared->writing = NULL;
768 } else if (shared->erasing == chip && shared->writing != chip) {
770 * We own the ability to erase without the ability
771 * to write, which means the erase was suspended
772 * and some other partition is currently writing.
773 * Don't let the switch below mess things up since
774 * we don't have ownership to resume anything.
776 spin_unlock(&shared->lock);
777 wake_up(&chip->wq);
778 return;
780 spin_unlock(&shared->lock);
783 switch(chip->oldstate) {
784 case FL_ERASING:
785 chip->state = chip->oldstate;
786 /* What if one interleaved chip has finished and the
787 other hasn't? The old code would leave the finished
788 one in READY mode. That's bad, and caused -EROFS
789 errors to be returned from do_erase_oneblock because
790 that's the only bit it checked for at the time.
791 As the state machine appears to explicitly allow
792 sending the 0x70 (Read Status) command to an erasing
793 chip and expecting it to be ignored, that's what we
794 do. */
795 map_write(map, CMD(0xd0), adr);
796 map_write(map, CMD(0x70), adr);
797 chip->oldstate = FL_READY;
798 chip->state = FL_ERASING;
799 break;
801 case FL_XIP_WHILE_ERASING:
802 chip->state = chip->oldstate;
803 chip->oldstate = FL_READY;
804 break;
806 case FL_READY:
807 case FL_STATUS:
808 case FL_JEDEC_QUERY:
809 /* We should really make set_vpp() count, rather than doing this */
810 DISABLE_VPP(map);
811 break;
812 default:
813 printk(KERN_ERR "put_chip() called with oldstate %d!!\n", chip->oldstate);
815 wake_up(&chip->wq);
818 #ifdef CONFIG_MTD_XIP
821 * No interrupt what so ever can be serviced while the flash isn't in array
822 * mode. This is ensured by the xip_disable() and xip_enable() functions
823 * enclosing any code path where the flash is known not to be in array mode.
824 * And within a XIP disabled code path, only functions marked with __xipram
825 * may be called and nothing else (it's a good thing to inspect generated
826 * assembly to make sure inline functions were actually inlined and that gcc
827 * didn't emit calls to its own support functions). Also configuring MTD CFI
828 * support to a single buswidth and a single interleave is also recommended.
829 * Note that not only IRQs are disabled but the preemption count is also
830 * increased to prevent other locking primitives (namely spin_unlock) from
831 * decrementing the preempt count to zero and scheduling the CPU away while
832 * not in array mode.
835 static void xip_disable(struct map_info *map, struct flchip *chip,
836 unsigned long adr)
838 /* TODO: chips with no XIP use should ignore and return */
839 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
840 preempt_disable();
841 local_irq_disable();
844 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
845 unsigned long adr)
847 struct cfi_private *cfi = map->fldrv_priv;
848 if (chip->state != FL_POINT && chip->state != FL_READY) {
849 map_write(map, CMD(0xff), adr);
850 chip->state = FL_READY;
852 (void) map_read(map, adr);
853 asm volatile (".rep 8; nop; .endr"); /* fill instruction prefetch */
854 local_irq_enable();
855 preempt_enable();
859 * When a delay is required for the flash operation to complete, the
860 * xip_udelay() function is polling for both the given timeout and pending
861 * (but still masked) hardware interrupts. Whenever there is an interrupt
862 * pending then the flash erase or write operation is suspended, array mode
863 * restored and interrupts unmasked. Task scheduling might also happen at that
864 * point. The CPU eventually returns from the interrupt or the call to
865 * schedule() and the suspended flash operation is resumed for the remaining
866 * of the delay period.
868 * Warning: this function _will_ fool interrupt latency tracing tools.
871 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
872 unsigned long adr, int usec)
874 struct cfi_private *cfi = map->fldrv_priv;
875 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
876 map_word status, OK = CMD(0x80);
877 unsigned long suspended, start = xip_currtime();
878 flstate_t oldstate, newstate;
880 do {
881 cpu_relax();
882 if (xip_irqpending() && cfip &&
883 ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
884 (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
885 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
887 * Let's suspend the erase or write operation when
888 * supported. Note that we currently don't try to
889 * suspend interleaved chips if there is already
890 * another operation suspended (imagine what happens
891 * when one chip was already done with the current
892 * operation while another chip suspended it, then
893 * we resume the whole thing at once). Yes, it
894 * can happen!
896 map_write(map, CMD(0xb0), adr);
897 map_write(map, CMD(0x70), adr);
898 usec -= xip_elapsed_since(start);
899 suspended = xip_currtime();
900 do {
901 if (xip_elapsed_since(suspended) > 100000) {
903 * The chip doesn't want to suspend
904 * after waiting for 100 msecs.
905 * This is a critical error but there
906 * is not much we can do here.
908 return;
910 status = map_read(map, adr);
911 } while (!map_word_andequal(map, status, OK, OK));
913 /* Suspend succeeded */
914 oldstate = chip->state;
915 if (oldstate == FL_ERASING) {
916 if (!map_word_bitsset(map, status, CMD(0x40)))
917 break;
918 newstate = FL_XIP_WHILE_ERASING;
919 chip->erase_suspended = 1;
920 } else {
921 if (!map_word_bitsset(map, status, CMD(0x04)))
922 break;
923 newstate = FL_XIP_WHILE_WRITING;
924 chip->write_suspended = 1;
926 chip->state = newstate;
927 map_write(map, CMD(0xff), adr);
928 (void) map_read(map, adr);
929 asm volatile (".rep 8; nop; .endr");
930 local_irq_enable();
931 preempt_enable();
932 asm volatile (".rep 8; nop; .endr");
933 cond_resched();
936 * We're back. However someone else might have
937 * decided to go write to the chip if we are in
938 * a suspended erase state. If so let's wait
939 * until it's done.
941 preempt_disable();
942 while (chip->state != newstate) {
943 DECLARE_WAITQUEUE(wait, current);
944 set_current_state(TASK_UNINTERRUPTIBLE);
945 add_wait_queue(&chip->wq, &wait);
946 preempt_enable();
947 schedule();
948 remove_wait_queue(&chip->wq, &wait);
949 preempt_disable();
951 /* Disallow XIP again */
952 local_irq_disable();
954 /* Resume the write or erase operation */
955 map_write(map, CMD(0xd0), adr);
956 map_write(map, CMD(0x70), adr);
957 chip->state = oldstate;
958 start = xip_currtime();
959 } else if (usec >= 1000000/HZ) {
961 * Try to save on CPU power when waiting delay
962 * is at least a system timer tick period.
963 * No need to be extremely accurate here.
965 xip_cpu_idle();
967 status = map_read(map, adr);
968 } while (!map_word_andequal(map, status, OK, OK)
969 && xip_elapsed_since(start) < usec);
972 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
975 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
976 * the flash is actively programming or erasing since we have to poll for
977 * the operation to complete anyway. We can't do that in a generic way with
978 * a XIP setup so do it before the actual flash operation in this case.
980 #undef INVALIDATE_CACHED_RANGE
981 #define INVALIDATE_CACHED_RANGE(x...)
982 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
983 do { if(map->inval_cache) map->inval_cache(map, from, size); } while(0)
986 * Extra notes:
988 * Activating this XIP support changes the way the code works a bit. For
989 * example the code to suspend the current process when concurrent access
990 * happens is never executed because xip_udelay() will always return with the
991 * same chip state as it was entered with. This is why there is no care for
992 * the presence of add_wait_queue() or schedule() calls from within a couple
993 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
994 * The queueing and scheduling are always happening within xip_udelay().
996 * Similarly, get_chip() and put_chip() just happen to always be executed
997 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
998 * is in array mode, therefore never executing many cases therein and not
999 * causing any problem with XIP.
1002 #else
1004 #define xip_disable(map, chip, adr)
1005 #define xip_enable(map, chip, adr)
1007 #define UDELAY(map, chip, adr, usec) cfi_udelay(usec)
1009 #define XIP_INVAL_CACHED_RANGE(x...)
1011 #endif
1013 static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
1015 unsigned long cmd_addr;
1016 struct cfi_private *cfi = map->fldrv_priv;
1017 int ret = 0;
1019 adr += chip->start;
1021 /* Ensure cmd read/writes are aligned. */
1022 cmd_addr = adr & ~(map_bankwidth(map)-1);
1024 spin_lock(chip->mutex);
1026 ret = get_chip(map, chip, cmd_addr, FL_POINT);
1028 if (!ret) {
1029 if (chip->state != FL_POINT && chip->state != FL_READY)
1030 map_write(map, CMD(0xff), cmd_addr);
1032 chip->state = FL_POINT;
1033 chip->ref_point_counter++;
1035 spin_unlock(chip->mutex);
1037 return ret;
1040 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf)
1042 struct map_info *map = mtd->priv;
1043 struct cfi_private *cfi = map->fldrv_priv;
1044 unsigned long ofs;
1045 int chipnum;
1046 int ret = 0;
1048 if (!map->virt || (from + len > mtd->size))
1049 return -EINVAL;
1051 *mtdbuf = (void *)map->virt + from;
1052 *retlen = 0;
1054 /* Now lock the chip(s) to POINT state */
1056 /* ofs: offset within the first chip that the first read should start */
1057 chipnum = (from >> cfi->chipshift);
1058 ofs = from - (chipnum << cfi->chipshift);
1060 while (len) {
1061 unsigned long thislen;
1063 if (chipnum >= cfi->numchips)
1064 break;
1066 if ((len + ofs -1) >> cfi->chipshift)
1067 thislen = (1<<cfi->chipshift) - ofs;
1068 else
1069 thislen = len;
1071 ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
1072 if (ret)
1073 break;
1075 *retlen += thislen;
1076 len -= thislen;
1078 ofs = 0;
1079 chipnum++;
1081 return 0;
1084 static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
1086 struct map_info *map = mtd->priv;
1087 struct cfi_private *cfi = map->fldrv_priv;
1088 unsigned long ofs;
1089 int chipnum;
1091 /* Now unlock the chip(s) POINT state */
1093 /* ofs: offset within the first chip that the first read should start */
1094 chipnum = (from >> cfi->chipshift);
1095 ofs = from - (chipnum << cfi->chipshift);
1097 while (len) {
1098 unsigned long thislen;
1099 struct flchip *chip;
1101 chip = &cfi->chips[chipnum];
1102 if (chipnum >= cfi->numchips)
1103 break;
1105 if ((len + ofs -1) >> cfi->chipshift)
1106 thislen = (1<<cfi->chipshift) - ofs;
1107 else
1108 thislen = len;
1110 spin_lock(chip->mutex);
1111 if (chip->state == FL_POINT) {
1112 chip->ref_point_counter--;
1113 if(chip->ref_point_counter == 0)
1114 chip->state = FL_READY;
1115 } else
1116 printk(KERN_ERR "Warning: unpoint called on non pointed region\n"); /* Should this give an error? */
1118 put_chip(map, chip, chip->start);
1119 spin_unlock(chip->mutex);
1121 len -= thislen;
1122 ofs = 0;
1123 chipnum++;
1127 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1129 unsigned long cmd_addr;
1130 struct cfi_private *cfi = map->fldrv_priv;
1131 int ret;
1133 adr += chip->start;
1135 /* Ensure cmd read/writes are aligned. */
1136 cmd_addr = adr & ~(map_bankwidth(map)-1);
1138 spin_lock(chip->mutex);
1139 ret = get_chip(map, chip, cmd_addr, FL_READY);
1140 if (ret) {
1141 spin_unlock(chip->mutex);
1142 return ret;
1145 if (chip->state != FL_POINT && chip->state != FL_READY) {
1146 map_write(map, CMD(0xff), cmd_addr);
1148 chip->state = FL_READY;
1151 map_copy_from(map, buf, adr, len);
1153 put_chip(map, chip, cmd_addr);
1155 spin_unlock(chip->mutex);
1156 return 0;
1159 static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1161 struct map_info *map = mtd->priv;
1162 struct cfi_private *cfi = map->fldrv_priv;
1163 unsigned long ofs;
1164 int chipnum;
1165 int ret = 0;
1167 /* ofs: offset within the first chip that the first read should start */
1168 chipnum = (from >> cfi->chipshift);
1169 ofs = from - (chipnum << cfi->chipshift);
1171 *retlen = 0;
1173 while (len) {
1174 unsigned long thislen;
1176 if (chipnum >= cfi->numchips)
1177 break;
1179 if ((len + ofs -1) >> cfi->chipshift)
1180 thislen = (1<<cfi->chipshift) - ofs;
1181 else
1182 thislen = len;
1184 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1185 if (ret)
1186 break;
1188 *retlen += thislen;
1189 len -= thislen;
1190 buf += thislen;
1192 ofs = 0;
1193 chipnum++;
1195 return ret;
1198 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1199 unsigned long adr, map_word datum, int mode)
1201 struct cfi_private *cfi = map->fldrv_priv;
1202 map_word status, status_OK, write_cmd;
1203 unsigned long timeo;
1204 int z, ret=0;
1206 adr += chip->start;
1208 /* Let's determine this according to the interleave only once */
1209 status_OK = CMD(0x80);
1210 switch (mode) {
1211 case FL_WRITING: write_cmd = CMD(0x40); break;
1212 case FL_OTP_WRITE: write_cmd = CMD(0xc0); break;
1213 default: return -EINVAL;
1216 spin_lock(chip->mutex);
1217 ret = get_chip(map, chip, adr, mode);
1218 if (ret) {
1219 spin_unlock(chip->mutex);
1220 return ret;
1223 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1224 ENABLE_VPP(map);
1225 xip_disable(map, chip, adr);
1226 map_write(map, write_cmd, adr);
1227 map_write(map, datum, adr);
1228 chip->state = mode;
1230 spin_unlock(chip->mutex);
1231 INVALIDATE_CACHED_RANGE(map, adr, map_bankwidth(map));
1232 UDELAY(map, chip, adr, chip->word_write_time);
1233 spin_lock(chip->mutex);
1235 timeo = jiffies + (HZ/2);
1236 z = 0;
1237 for (;;) {
1238 if (chip->state != mode) {
1239 /* Someone's suspended the write. Sleep */
1240 DECLARE_WAITQUEUE(wait, current);
1242 set_current_state(TASK_UNINTERRUPTIBLE);
1243 add_wait_queue(&chip->wq, &wait);
1244 spin_unlock(chip->mutex);
1245 schedule();
1246 remove_wait_queue(&chip->wq, &wait);
1247 timeo = jiffies + (HZ / 2); /* FIXME */
1248 spin_lock(chip->mutex);
1249 continue;
1252 status = map_read(map, adr);
1253 if (map_word_andequal(map, status, status_OK, status_OK))
1254 break;
1256 /* OK Still waiting */
1257 if (time_after(jiffies, timeo)) {
1258 chip->state = FL_STATUS;
1259 xip_enable(map, chip, adr);
1260 printk(KERN_ERR "waiting for chip to be ready timed out in word write\n");
1261 ret = -EIO;
1262 goto out;
1265 /* Latency issues. Drop the lock, wait a while and retry */
1266 spin_unlock(chip->mutex);
1267 z++;
1268 UDELAY(map, chip, adr, 1);
1269 spin_lock(chip->mutex);
1271 if (!z) {
1272 chip->word_write_time--;
1273 if (!chip->word_write_time)
1274 chip->word_write_time++;
1276 if (z > 1)
1277 chip->word_write_time++;
1279 /* Done and happy. */
1280 chip->state = FL_STATUS;
1282 /* check for lock bit */
1283 if (map_word_bitsset(map, status, CMD(0x02))) {
1284 /* clear status */
1285 map_write(map, CMD(0x50), adr);
1286 /* put back into read status register mode */
1287 map_write(map, CMD(0x70), adr);
1288 ret = -EROFS;
1291 xip_enable(map, chip, adr);
1292 out: put_chip(map, chip, adr);
1293 spin_unlock(chip->mutex);
1295 return ret;
1299 static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
1301 struct map_info *map = mtd->priv;
1302 struct cfi_private *cfi = map->fldrv_priv;
1303 int ret = 0;
1304 int chipnum;
1305 unsigned long ofs;
1307 *retlen = 0;
1308 if (!len)
1309 return 0;
1311 chipnum = to >> cfi->chipshift;
1312 ofs = to - (chipnum << cfi->chipshift);
1314 /* If it's not bus-aligned, do the first byte write */
1315 if (ofs & (map_bankwidth(map)-1)) {
1316 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1317 int gap = ofs - bus_ofs;
1318 int n;
1319 map_word datum;
1321 n = min_t(int, len, map_bankwidth(map)-gap);
1322 datum = map_word_ff(map);
1323 datum = map_word_load_partial(map, datum, buf, gap, n);
1325 ret = do_write_oneword(map, &cfi->chips[chipnum],
1326 bus_ofs, datum, FL_WRITING);
1327 if (ret)
1328 return ret;
1330 len -= n;
1331 ofs += n;
1332 buf += n;
1333 (*retlen) += n;
1335 if (ofs >> cfi->chipshift) {
1336 chipnum ++;
1337 ofs = 0;
1338 if (chipnum == cfi->numchips)
1339 return 0;
1343 while(len >= map_bankwidth(map)) {
1344 map_word datum = map_word_load(map, buf);
1346 ret = do_write_oneword(map, &cfi->chips[chipnum],
1347 ofs, datum, FL_WRITING);
1348 if (ret)
1349 return ret;
1351 ofs += map_bankwidth(map);
1352 buf += map_bankwidth(map);
1353 (*retlen) += map_bankwidth(map);
1354 len -= map_bankwidth(map);
1356 if (ofs >> cfi->chipshift) {
1357 chipnum ++;
1358 ofs = 0;
1359 if (chipnum == cfi->numchips)
1360 return 0;
1364 if (len & (map_bankwidth(map)-1)) {
1365 map_word datum;
1367 datum = map_word_ff(map);
1368 datum = map_word_load_partial(map, datum, buf, 0, len);
1370 ret = do_write_oneword(map, &cfi->chips[chipnum],
1371 ofs, datum, FL_WRITING);
1372 if (ret)
1373 return ret;
1375 (*retlen) += len;
1378 return 0;
1382 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1383 unsigned long adr, const u_char *buf, int len)
1385 struct cfi_private *cfi = map->fldrv_priv;
1386 map_word status, status_OK;
1387 unsigned long cmd_adr, timeo;
1388 int wbufsize, z, ret=0, bytes, words;
1390 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1391 adr += chip->start;
1392 cmd_adr = adr & ~(wbufsize-1);
1394 /* Let's determine this according to the interleave only once */
1395 status_OK = CMD(0x80);
1397 spin_lock(chip->mutex);
1398 ret = get_chip(map, chip, cmd_adr, FL_WRITING);
1399 if (ret) {
1400 spin_unlock(chip->mutex);
1401 return ret;
1404 XIP_INVAL_CACHED_RANGE(map, adr, len);
1405 ENABLE_VPP(map);
1406 xip_disable(map, chip, cmd_adr);
1408 /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
1409 [...], the device will not accept any more Write to Buffer commands".
1410 So we must check here and reset those bits if they're set. Otherwise
1411 we're just pissing in the wind */
1412 if (chip->state != FL_STATUS)
1413 map_write(map, CMD(0x70), cmd_adr);
1414 status = map_read(map, cmd_adr);
1415 if (map_word_bitsset(map, status, CMD(0x30))) {
1416 xip_enable(map, chip, cmd_adr);
1417 printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
1418 xip_disable(map, chip, cmd_adr);
1419 map_write(map, CMD(0x50), cmd_adr);
1420 map_write(map, CMD(0x70), cmd_adr);
1423 chip->state = FL_WRITING_TO_BUFFER;
1425 z = 0;
1426 for (;;) {
1427 map_write(map, CMD(0xe8), cmd_adr);
1429 status = map_read(map, cmd_adr);
1430 if (map_word_andequal(map, status, status_OK, status_OK))
1431 break;
1433 spin_unlock(chip->mutex);
1434 UDELAY(map, chip, cmd_adr, 1);
1435 spin_lock(chip->mutex);
1437 if (++z > 20) {
1438 /* Argh. Not ready for write to buffer */
1439 map_word Xstatus;
1440 map_write(map, CMD(0x70), cmd_adr);
1441 chip->state = FL_STATUS;
1442 Xstatus = map_read(map, cmd_adr);
1443 /* Odd. Clear status bits */
1444 map_write(map, CMD(0x50), cmd_adr);
1445 map_write(map, CMD(0x70), cmd_adr);
1446 xip_enable(map, chip, cmd_adr);
1447 printk(KERN_ERR "Chip not ready for buffer write. status = %lx, Xstatus = %lx\n",
1448 status.x[0], Xstatus.x[0]);
1449 ret = -EIO;
1450 goto out;
1454 /* Write length of data to come */
1455 bytes = len & (map_bankwidth(map)-1);
1456 words = len / map_bankwidth(map);
1457 map_write(map, CMD(words - !bytes), cmd_adr );
1459 /* Write data */
1460 z = 0;
1461 while(z < words * map_bankwidth(map)) {
1462 map_word datum = map_word_load(map, buf);
1463 map_write(map, datum, adr+z);
1465 z += map_bankwidth(map);
1466 buf += map_bankwidth(map);
1469 if (bytes) {
1470 map_word datum;
1472 datum = map_word_ff(map);
1473 datum = map_word_load_partial(map, datum, buf, 0, bytes);
1474 map_write(map, datum, adr+z);
1477 /* GO GO GO */
1478 map_write(map, CMD(0xd0), cmd_adr);
1479 chip->state = FL_WRITING;
1481 spin_unlock(chip->mutex);
1482 INVALIDATE_CACHED_RANGE(map, adr, len);
1483 UDELAY(map, chip, cmd_adr, chip->buffer_write_time);
1484 spin_lock(chip->mutex);
1486 timeo = jiffies + (HZ/2);
1487 z = 0;
1488 for (;;) {
1489 if (chip->state != FL_WRITING) {
1490 /* Someone's suspended the write. Sleep */
1491 DECLARE_WAITQUEUE(wait, current);
1492 set_current_state(TASK_UNINTERRUPTIBLE);
1493 add_wait_queue(&chip->wq, &wait);
1494 spin_unlock(chip->mutex);
1495 schedule();
1496 remove_wait_queue(&chip->wq, &wait);
1497 timeo = jiffies + (HZ / 2); /* FIXME */
1498 spin_lock(chip->mutex);
1499 continue;
1502 status = map_read(map, cmd_adr);
1503 if (map_word_andequal(map, status, status_OK, status_OK))
1504 break;
1506 /* OK Still waiting */
1507 if (time_after(jiffies, timeo)) {
1508 chip->state = FL_STATUS;
1509 xip_enable(map, chip, cmd_adr);
1510 printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n");
1511 ret = -EIO;
1512 goto out;
1515 /* Latency issues. Drop the lock, wait a while and retry */
1516 spin_unlock(chip->mutex);
1517 UDELAY(map, chip, cmd_adr, 1);
1518 z++;
1519 spin_lock(chip->mutex);
1521 if (!z) {
1522 chip->buffer_write_time--;
1523 if (!chip->buffer_write_time)
1524 chip->buffer_write_time++;
1526 if (z > 1)
1527 chip->buffer_write_time++;
1529 /* Done and happy. */
1530 chip->state = FL_STATUS;
1532 /* check for lock bit */
1533 if (map_word_bitsset(map, status, CMD(0x02))) {
1534 /* clear status */
1535 map_write(map, CMD(0x50), cmd_adr);
1536 /* put back into read status register mode */
1537 map_write(map, CMD(0x70), adr);
1538 ret = -EROFS;
1541 xip_enable(map, chip, cmd_adr);
1542 out: put_chip(map, chip, cmd_adr);
1543 spin_unlock(chip->mutex);
1544 return ret;
1547 static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to,
1548 size_t len, size_t *retlen, const u_char *buf)
1550 struct map_info *map = mtd->priv;
1551 struct cfi_private *cfi = map->fldrv_priv;
1552 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1553 int ret = 0;
1554 int chipnum;
1555 unsigned long ofs;
1557 *retlen = 0;
1558 if (!len)
1559 return 0;
1561 chipnum = to >> cfi->chipshift;
1562 ofs = to - (chipnum << cfi->chipshift);
1564 /* If it's not bus-aligned, do the first word write */
1565 if (ofs & (map_bankwidth(map)-1)) {
1566 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1567 if (local_len > len)
1568 local_len = len;
1569 ret = cfi_intelext_write_words(mtd, to, local_len,
1570 retlen, buf);
1571 if (ret)
1572 return ret;
1573 ofs += local_len;
1574 buf += local_len;
1575 len -= local_len;
1577 if (ofs >> cfi->chipshift) {
1578 chipnum ++;
1579 ofs = 0;
1580 if (chipnum == cfi->numchips)
1581 return 0;
1585 while(len) {
1586 /* We must not cross write block boundaries */
1587 int size = wbufsize - (ofs & (wbufsize-1));
1589 if (size > len)
1590 size = len;
1591 ret = do_write_buffer(map, &cfi->chips[chipnum],
1592 ofs, buf, size);
1593 if (ret)
1594 return ret;
1596 ofs += size;
1597 buf += size;
1598 (*retlen) += size;
1599 len -= size;
1601 if (ofs >> cfi->chipshift) {
1602 chipnum ++;
1603 ofs = 0;
1604 if (chipnum == cfi->numchips)
1605 return 0;
1608 return 0;
1611 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
1612 unsigned long adr, int len, void *thunk)
1614 struct cfi_private *cfi = map->fldrv_priv;
1615 map_word status, status_OK;
1616 unsigned long timeo;
1617 int retries = 3;
1618 DECLARE_WAITQUEUE(wait, current);
1619 int ret = 0;
1621 adr += chip->start;
1623 /* Let's determine this according to the interleave only once */
1624 status_OK = CMD(0x80);
1626 retry:
1627 spin_lock(chip->mutex);
1628 ret = get_chip(map, chip, adr, FL_ERASING);
1629 if (ret) {
1630 spin_unlock(chip->mutex);
1631 return ret;
1634 XIP_INVAL_CACHED_RANGE(map, adr, len);
1635 ENABLE_VPP(map);
1636 xip_disable(map, chip, adr);
1638 /* Clear the status register first */
1639 map_write(map, CMD(0x50), adr);
1641 /* Now erase */
1642 map_write(map, CMD(0x20), adr);
1643 map_write(map, CMD(0xD0), adr);
1644 chip->state = FL_ERASING;
1645 chip->erase_suspended = 0;
1647 spin_unlock(chip->mutex);
1648 INVALIDATE_CACHED_RANGE(map, adr, len);
1649 UDELAY(map, chip, adr, chip->erase_time*1000/2);
1650 spin_lock(chip->mutex);
1652 /* FIXME. Use a timer to check this, and return immediately. */
1653 /* Once the state machine's known to be working I'll do that */
1655 timeo = jiffies + (HZ*20);
1656 for (;;) {
1657 if (chip->state != FL_ERASING) {
1658 /* Someone's suspended the erase. Sleep */
1659 set_current_state(TASK_UNINTERRUPTIBLE);
1660 add_wait_queue(&chip->wq, &wait);
1661 spin_unlock(chip->mutex);
1662 schedule();
1663 remove_wait_queue(&chip->wq, &wait);
1664 spin_lock(chip->mutex);
1665 continue;
1667 if (chip->erase_suspended) {
1668 /* This erase was suspended and resumed.
1669 Adjust the timeout */
1670 timeo = jiffies + (HZ*20); /* FIXME */
1671 chip->erase_suspended = 0;
1674 status = map_read(map, adr);
1675 if (map_word_andequal(map, status, status_OK, status_OK))
1676 break;
1678 /* OK Still waiting */
1679 if (time_after(jiffies, timeo)) {
1680 map_word Xstatus;
1681 map_write(map, CMD(0x70), adr);
1682 chip->state = FL_STATUS;
1683 Xstatus = map_read(map, adr);
1684 /* Clear status bits */
1685 map_write(map, CMD(0x50), adr);
1686 map_write(map, CMD(0x70), adr);
1687 xip_enable(map, chip, adr);
1688 printk(KERN_ERR "waiting for erase at %08lx to complete timed out. status = %lx, Xstatus = %lx.\n",
1689 adr, status.x[0], Xstatus.x[0]);
1690 ret = -EIO;
1691 goto out;
1694 /* Latency issues. Drop the lock, wait a while and retry */
1695 spin_unlock(chip->mutex);
1696 UDELAY(map, chip, adr, 1000000/HZ);
1697 spin_lock(chip->mutex);
1700 /* We've broken this before. It doesn't hurt to be safe */
1701 map_write(map, CMD(0x70), adr);
1702 chip->state = FL_STATUS;
1703 status = map_read(map, adr);
1705 /* check for lock bit */
1706 if (map_word_bitsset(map, status, CMD(0x3a))) {
1707 unsigned long chipstatus;
1709 /* Reset the error bits */
1710 map_write(map, CMD(0x50), adr);
1711 map_write(map, CMD(0x70), adr);
1712 xip_enable(map, chip, adr);
1714 chipstatus = MERGESTATUS(status);
1716 if ((chipstatus & 0x30) == 0x30) {
1717 printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%lx\n", chipstatus);
1718 ret = -EIO;
1719 } else if (chipstatus & 0x02) {
1720 /* Protection bit set */
1721 ret = -EROFS;
1722 } else if (chipstatus & 0x8) {
1723 /* Voltage */
1724 printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%lx\n", chipstatus);
1725 ret = -EIO;
1726 } else if (chipstatus & 0x20) {
1727 if (retries--) {
1728 printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
1729 timeo = jiffies + HZ;
1730 put_chip(map, chip, adr);
1731 spin_unlock(chip->mutex);
1732 goto retry;
1734 printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%lx\n", adr, chipstatus);
1735 ret = -EIO;
1737 } else {
1738 xip_enable(map, chip, adr);
1739 ret = 0;
1742 out: put_chip(map, chip, adr);
1743 spin_unlock(chip->mutex);
1744 return ret;
1747 int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1749 unsigned long ofs, len;
1750 int ret;
1752 ofs = instr->addr;
1753 len = instr->len;
1755 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1756 if (ret)
1757 return ret;
1759 instr->state = MTD_ERASE_DONE;
1760 mtd_erase_callback(instr);
1762 return 0;
1765 static void cfi_intelext_sync (struct mtd_info *mtd)
1767 struct map_info *map = mtd->priv;
1768 struct cfi_private *cfi = map->fldrv_priv;
1769 int i;
1770 struct flchip *chip;
1771 int ret = 0;
1773 for (i=0; !ret && i<cfi->numchips; i++) {
1774 chip = &cfi->chips[i];
1776 spin_lock(chip->mutex);
1777 ret = get_chip(map, chip, chip->start, FL_SYNCING);
1779 if (!ret) {
1780 chip->oldstate = chip->state;
1781 chip->state = FL_SYNCING;
1782 /* No need to wake_up() on this state change -
1783 * as the whole point is that nobody can do anything
1784 * with the chip now anyway.
1787 spin_unlock(chip->mutex);
1790 /* Unlock the chips again */
1792 for (i--; i >=0; i--) {
1793 chip = &cfi->chips[i];
1795 spin_lock(chip->mutex);
1797 if (chip->state == FL_SYNCING) {
1798 chip->state = chip->oldstate;
1799 chip->oldstate = FL_READY;
1800 wake_up(&chip->wq);
1802 spin_unlock(chip->mutex);
1806 #ifdef DEBUG_LOCK_BITS
1807 static int __xipram do_printlockstatus_oneblock(struct map_info *map,
1808 struct flchip *chip,
1809 unsigned long adr,
1810 int len, void *thunk)
1812 struct cfi_private *cfi = map->fldrv_priv;
1813 int status, ofs_factor = cfi->interleave * cfi->device_type;
1815 xip_disable(map, chip, adr+(2*ofs_factor));
1816 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1817 chip->state = FL_JEDEC_QUERY;
1818 status = cfi_read_query(map, adr+(2*ofs_factor));
1819 xip_enable(map, chip, 0);
1820 printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
1821 adr, status);
1822 return 0;
1824 #endif
1826 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1)
1827 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2)
1829 static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
1830 unsigned long adr, int len, void *thunk)
1832 struct cfi_private *cfi = map->fldrv_priv;
1833 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
1834 map_word status, status_OK;
1835 unsigned long timeo = jiffies + HZ;
1836 int ret;
1838 adr += chip->start;
1840 /* Let's determine this according to the interleave only once */
1841 status_OK = CMD(0x80);
1843 spin_lock(chip->mutex);
1844 ret = get_chip(map, chip, adr, FL_LOCKING);
1845 if (ret) {
1846 spin_unlock(chip->mutex);
1847 return ret;
1850 ENABLE_VPP(map);
1851 xip_disable(map, chip, adr);
1853 map_write(map, CMD(0x60), adr);
1854 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
1855 map_write(map, CMD(0x01), adr);
1856 chip->state = FL_LOCKING;
1857 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
1858 map_write(map, CMD(0xD0), adr);
1859 chip->state = FL_UNLOCKING;
1860 } else
1861 BUG();
1864 * If Instant Individual Block Locking supported then no need
1865 * to delay.
1868 if (!extp || !(extp->FeatureSupport & (1 << 5))) {
1869 spin_unlock(chip->mutex);
1870 UDELAY(map, chip, adr, 1000000/HZ);
1871 spin_lock(chip->mutex);
1874 /* FIXME. Use a timer to check this, and return immediately. */
1875 /* Once the state machine's known to be working I'll do that */
1877 timeo = jiffies + (HZ*20);
1878 for (;;) {
1880 status = map_read(map, adr);
1881 if (map_word_andequal(map, status, status_OK, status_OK))
1882 break;
1884 /* OK Still waiting */
1885 if (time_after(jiffies, timeo)) {
1886 map_word Xstatus;
1887 map_write(map, CMD(0x70), adr);
1888 chip->state = FL_STATUS;
1889 Xstatus = map_read(map, adr);
1890 xip_enable(map, chip, adr);
1891 printk(KERN_ERR "waiting for unlock to complete timed out. status = %lx, Xstatus = %lx.\n",
1892 status.x[0], Xstatus.x[0]);
1893 put_chip(map, chip, adr);
1894 spin_unlock(chip->mutex);
1895 return -EIO;
1898 /* Latency issues. Drop the lock, wait a while and retry */
1899 spin_unlock(chip->mutex);
1900 UDELAY(map, chip, adr, 1);
1901 spin_lock(chip->mutex);
1904 /* Done and happy. */
1905 chip->state = FL_STATUS;
1906 xip_enable(map, chip, adr);
1907 put_chip(map, chip, adr);
1908 spin_unlock(chip->mutex);
1909 return 0;
1912 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
1914 int ret;
1916 #ifdef DEBUG_LOCK_BITS
1917 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
1918 __FUNCTION__, ofs, len);
1919 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
1920 ofs, len, 0);
1921 #endif
1923 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
1924 ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
1926 #ifdef DEBUG_LOCK_BITS
1927 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
1928 __FUNCTION__, ret);
1929 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
1930 ofs, len, 0);
1931 #endif
1933 return ret;
1936 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1938 int ret;
1940 #ifdef DEBUG_LOCK_BITS
1941 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
1942 __FUNCTION__, ofs, len);
1943 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
1944 ofs, len, 0);
1945 #endif
1947 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
1948 ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
1950 #ifdef DEBUG_LOCK_BITS
1951 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
1952 __FUNCTION__, ret);
1953 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
1954 ofs, len, 0);
1955 #endif
1957 return ret;
1960 #ifdef CONFIG_MTD_OTP
1962 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
1963 u_long data_offset, u_char *buf, u_int size,
1964 u_long prot_offset, u_int groupno, u_int groupsize);
1966 static int __xipram
1967 do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
1968 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
1970 struct cfi_private *cfi = map->fldrv_priv;
1971 int ret;
1973 spin_lock(chip->mutex);
1974 ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
1975 if (ret) {
1976 spin_unlock(chip->mutex);
1977 return ret;
1980 /* let's ensure we're not reading back cached data from array mode */
1981 if (map->inval_cache)
1982 map->inval_cache(map, chip->start + offset, size);
1984 xip_disable(map, chip, chip->start);
1985 if (chip->state != FL_JEDEC_QUERY) {
1986 map_write(map, CMD(0x90), chip->start);
1987 chip->state = FL_JEDEC_QUERY;
1989 map_copy_from(map, buf, chip->start + offset, size);
1990 xip_enable(map, chip, chip->start);
1992 /* then ensure we don't keep OTP data in the cache */
1993 if (map->inval_cache)
1994 map->inval_cache(map, chip->start + offset, size);
1996 put_chip(map, chip, chip->start);
1997 spin_unlock(chip->mutex);
1998 return 0;
2001 static int
2002 do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
2003 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2005 int ret;
2007 while (size) {
2008 unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
2009 int gap = offset - bus_ofs;
2010 int n = min_t(int, size, map_bankwidth(map)-gap);
2011 map_word datum = map_word_ff(map);
2013 datum = map_word_load_partial(map, datum, buf, gap, n);
2014 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
2015 if (ret)
2016 return ret;
2018 offset += n;
2019 buf += n;
2020 size -= n;
2023 return 0;
2026 static int
2027 do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
2028 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2030 struct cfi_private *cfi = map->fldrv_priv;
2031 map_word datum;
2033 /* make sure area matches group boundaries */
2034 if (size != grpsz)
2035 return -EXDEV;
2037 datum = map_word_ff(map);
2038 datum = map_word_clr(map, datum, CMD(1 << grpno));
2039 return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
2042 static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2043 size_t *retlen, u_char *buf,
2044 otp_op_t action, int user_regs)
2046 struct map_info *map = mtd->priv;
2047 struct cfi_private *cfi = map->fldrv_priv;
2048 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2049 struct flchip *chip;
2050 struct cfi_intelext_otpinfo *otp;
2051 u_long devsize, reg_prot_offset, data_offset;
2052 u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
2053 u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
2054 int ret;
2056 *retlen = 0;
2058 /* Check that we actually have some OTP registers */
2059 if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
2060 return -ENODATA;
2062 /* we need real chips here not virtual ones */
2063 devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
2064 chip_step = devsize >> cfi->chipshift;
2065 chip_num = 0;
2067 /* Some chips have OTP located in the _top_ partition only.
2068 For example: Intel 28F256L18T (T means top-parameter device) */
2069 if (cfi->mfr == MANUFACTURER_INTEL) {
2070 switch (cfi->id) {
2071 case 0x880b:
2072 case 0x880c:
2073 case 0x880d:
2074 chip_num = chip_step - 1;
2078 for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
2079 chip = &cfi->chips[chip_num];
2080 otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];
2082 /* first OTP region */
2083 field = 0;
2084 reg_prot_offset = extp->ProtRegAddr;
2085 reg_fact_groups = 1;
2086 reg_fact_size = 1 << extp->FactProtRegSize;
2087 reg_user_groups = 1;
2088 reg_user_size = 1 << extp->UserProtRegSize;
2090 while (len > 0) {
2091 /* flash geometry fixup */
2092 data_offset = reg_prot_offset + 1;
2093 data_offset *= cfi->interleave * cfi->device_type;
2094 reg_prot_offset *= cfi->interleave * cfi->device_type;
2095 reg_fact_size *= cfi->interleave;
2096 reg_user_size *= cfi->interleave;
2098 if (user_regs) {
2099 groups = reg_user_groups;
2100 groupsize = reg_user_size;
2101 /* skip over factory reg area */
2102 groupno = reg_fact_groups;
2103 data_offset += reg_fact_groups * reg_fact_size;
2104 } else {
2105 groups = reg_fact_groups;
2106 groupsize = reg_fact_size;
2107 groupno = 0;
2110 while (len > 0 && groups > 0) {
2111 if (!action) {
2113 * Special case: if action is NULL
2114 * we fill buf with otp_info records.
2116 struct otp_info *otpinfo;
2117 map_word lockword;
2118 len -= sizeof(struct otp_info);
2119 if (len <= 0)
2120 return -ENOSPC;
2121 ret = do_otp_read(map, chip,
2122 reg_prot_offset,
2123 (u_char *)&lockword,
2124 map_bankwidth(map),
2125 0, 0, 0);
2126 if (ret)
2127 return ret;
2128 otpinfo = (struct otp_info *)buf;
2129 otpinfo->start = from;
2130 otpinfo->length = groupsize;
2131 otpinfo->locked =
2132 !map_word_bitsset(map, lockword,
2133 CMD(1 << groupno));
2134 from += groupsize;
2135 buf += sizeof(*otpinfo);
2136 *retlen += sizeof(*otpinfo);
2137 } else if (from >= groupsize) {
2138 from -= groupsize;
2139 data_offset += groupsize;
2140 } else {
2141 int size = groupsize;
2142 data_offset += from;
2143 size -= from;
2144 from = 0;
2145 if (size > len)
2146 size = len;
2147 ret = action(map, chip, data_offset,
2148 buf, size, reg_prot_offset,
2149 groupno, groupsize);
2150 if (ret < 0)
2151 return ret;
2152 buf += size;
2153 len -= size;
2154 *retlen += size;
2155 data_offset += size;
2157 groupno++;
2158 groups--;
2161 /* next OTP region */
2162 if (++field == extp->NumProtectionFields)
2163 break;
2164 reg_prot_offset = otp->ProtRegAddr;
2165 reg_fact_groups = otp->FactGroups;
2166 reg_fact_size = 1 << otp->FactProtRegSize;
2167 reg_user_groups = otp->UserGroups;
2168 reg_user_size = 1 << otp->UserProtRegSize;
2169 otp++;
2173 return 0;
2176 static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2177 size_t len, size_t *retlen,
2178 u_char *buf)
2180 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2181 buf, do_otp_read, 0);
2184 static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2185 size_t len, size_t *retlen,
2186 u_char *buf)
2188 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2189 buf, do_otp_read, 1);
2192 static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2193 size_t len, size_t *retlen,
2194 u_char *buf)
2196 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2197 buf, do_otp_write, 1);
2200 static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
2201 loff_t from, size_t len)
2203 size_t retlen;
2204 return cfi_intelext_otp_walk(mtd, from, len, &retlen,
2205 NULL, do_otp_lock, 1);
2208 static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd,
2209 struct otp_info *buf, size_t len)
2211 size_t retlen;
2212 int ret;
2214 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0);
2215 return ret ? : retlen;
2218 static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd,
2219 struct otp_info *buf, size_t len)
2221 size_t retlen;
2222 int ret;
2224 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1);
2225 return ret ? : retlen;
2228 #endif
2230 static int cfi_intelext_suspend(struct mtd_info *mtd)
2232 struct map_info *map = mtd->priv;
2233 struct cfi_private *cfi = map->fldrv_priv;
2234 int i;
2235 struct flchip *chip;
2236 int ret = 0;
2238 for (i=0; !ret && i<cfi->numchips; i++) {
2239 chip = &cfi->chips[i];
2241 spin_lock(chip->mutex);
2243 switch (chip->state) {
2244 case FL_READY:
2245 case FL_STATUS:
2246 case FL_CFI_QUERY:
2247 case FL_JEDEC_QUERY:
2248 if (chip->oldstate == FL_READY) {
2249 chip->oldstate = chip->state;
2250 chip->state = FL_PM_SUSPENDED;
2251 /* No need to wake_up() on this state change -
2252 * as the whole point is that nobody can do anything
2253 * with the chip now anyway.
2255 } else {
2256 /* There seems to be an operation pending. We must wait for it. */
2257 printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
2258 ret = -EAGAIN;
2260 break;
2261 default:
2262 /* Should we actually wait? Once upon a time these routines weren't
2263 allowed to. Or should we return -EAGAIN, because the upper layers
2264 ought to have already shut down anything which was using the device
2265 anyway? The latter for now. */
2266 printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate);
2267 ret = -EAGAIN;
2268 case FL_PM_SUSPENDED:
2269 break;
2271 spin_unlock(chip->mutex);
2274 /* Unlock the chips again */
2276 if (ret) {
2277 for (i--; i >=0; i--) {
2278 chip = &cfi->chips[i];
2280 spin_lock(chip->mutex);
2282 if (chip->state == FL_PM_SUSPENDED) {
2283 /* No need to force it into a known state here,
2284 because we're returning failure, and it didn't
2285 get power cycled */
2286 chip->state = chip->oldstate;
2287 chip->oldstate = FL_READY;
2288 wake_up(&chip->wq);
2290 spin_unlock(chip->mutex);
2294 return ret;
2297 static void cfi_intelext_resume(struct mtd_info *mtd)
2299 struct map_info *map = mtd->priv;
2300 struct cfi_private *cfi = map->fldrv_priv;
2301 int i;
2302 struct flchip *chip;
2304 for (i=0; i<cfi->numchips; i++) {
2306 chip = &cfi->chips[i];
2308 spin_lock(chip->mutex);
2310 /* Go to known state. Chip may have been power cycled */
2311 if (chip->state == FL_PM_SUSPENDED) {
2312 map_write(map, CMD(0xFF), cfi->chips[i].start);
2313 chip->oldstate = chip->state = FL_READY;
2314 wake_up(&chip->wq);
2317 spin_unlock(chip->mutex);
2321 static int cfi_intelext_reset(struct mtd_info *mtd)
2323 struct map_info *map = mtd->priv;
2324 struct cfi_private *cfi = map->fldrv_priv;
2325 int i, ret;
2327 for (i=0; i < cfi->numchips; i++) {
2328 struct flchip *chip = &cfi->chips[i];
2330 /* force the completion of any ongoing operation
2331 and switch to array mode so any bootloader in
2332 flash is accessible for soft reboot. */
2333 spin_lock(chip->mutex);
2334 ret = get_chip(map, chip, chip->start, FL_SYNCING);
2335 if (!ret) {
2336 map_write(map, CMD(0xff), chip->start);
2337 chip->state = FL_READY;
2339 spin_unlock(chip->mutex);
2342 return 0;
2345 static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
2346 void *v)
2348 struct mtd_info *mtd;
2350 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2351 cfi_intelext_reset(mtd);
2352 return NOTIFY_DONE;
2355 static void cfi_intelext_destroy(struct mtd_info *mtd)
2357 struct map_info *map = mtd->priv;
2358 struct cfi_private *cfi = map->fldrv_priv;
2359 cfi_intelext_reset(mtd);
2360 unregister_reboot_notifier(&mtd->reboot_notifier);
2361 kfree(cfi->cmdset_priv);
2362 kfree(cfi->cfiq);
2363 kfree(cfi->chips[0].priv);
2364 kfree(cfi);
2365 kfree(mtd->eraseregions);
2368 static char im_name_1[]="cfi_cmdset_0001";
2369 static char im_name_3[]="cfi_cmdset_0003";
2371 static int __init cfi_intelext_init(void)
2373 inter_module_register(im_name_1, THIS_MODULE, &cfi_cmdset_0001);
2374 inter_module_register(im_name_3, THIS_MODULE, &cfi_cmdset_0001);
2375 return 0;
2378 static void __exit cfi_intelext_exit(void)
2380 inter_module_unregister(im_name_1);
2381 inter_module_unregister(im_name_3);
2384 module_init(cfi_intelext_init);
2385 module_exit(cfi_intelext_exit);
2387 MODULE_LICENSE("GPL");
2388 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
2389 MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");