Merge 3.0-rc2 into usb-linus as it's needed by some USB patches
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / usb / host / xhci-ring.c
blobe5530181baa3174ea5fff92bafe0d40dbeb14608
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
72 struct xhci_virt_device *virt_dev,
73 struct xhci_event_cmd *event);
76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
77 * address of the TRB.
79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
80 union xhci_trb *trb)
82 unsigned long segment_offset;
84 if (!seg || !trb || trb < seg->trbs)
85 return 0;
86 /* offset in TRBs */
87 segment_offset = trb - seg->trbs;
88 if (segment_offset > TRBS_PER_SEGMENT)
89 return 0;
90 return seg->dma + (segment_offset * sizeof(*trb));
93 /* Does this link TRB point to the first segment in a ring,
94 * or was the previous TRB the last TRB on the last segment in the ERST?
96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
97 struct xhci_segment *seg, union xhci_trb *trb)
99 if (ring == xhci->event_ring)
100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
101 (seg->next == xhci->event_ring->first_seg);
102 else
103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
107 * segment? I.e. would the updated event TRB pointer step off the end of the
108 * event seg?
110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
111 struct xhci_segment *seg, union xhci_trb *trb)
113 if (ring == xhci->event_ring)
114 return trb == &seg->trbs[TRBS_PER_SEGMENT];
115 else
116 return TRB_TYPE_LINK_LE32(trb->link.control);
119 static int enqueue_is_link_trb(struct xhci_ring *ring)
121 struct xhci_link_trb *link = &ring->enqueue->link;
122 return TRB_TYPE_LINK_LE32(link->control);
125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
126 * TRB is in a new segment. This does not skip over link TRBs, and it does not
127 * effect the ring dequeue or enqueue pointers.
129 static void next_trb(struct xhci_hcd *xhci,
130 struct xhci_ring *ring,
131 struct xhci_segment **seg,
132 union xhci_trb **trb)
134 if (last_trb(xhci, ring, *seg, *trb)) {
135 *seg = (*seg)->next;
136 *trb = ((*seg)->trbs);
137 } else {
138 (*trb)++;
143 * See Cycle bit rules. SW is the consumer for the event ring only.
144 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
146 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer)
148 union xhci_trb *next = ++(ring->dequeue);
149 unsigned long long addr;
151 ring->deq_updates++;
152 /* Update the dequeue pointer further if that was a link TRB or we're at
153 * the end of an event ring segment (which doesn't have link TRBS)
155 while (last_trb(xhci, ring, ring->deq_seg, next)) {
156 if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) {
157 ring->cycle_state = (ring->cycle_state ? 0 : 1);
158 if (!in_interrupt())
159 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
160 ring,
161 (unsigned int) ring->cycle_state);
163 ring->deq_seg = ring->deq_seg->next;
164 ring->dequeue = ring->deq_seg->trbs;
165 next = ring->dequeue;
167 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
171 * See Cycle bit rules. SW is the consumer for the event ring only.
172 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
174 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
175 * chain bit is set), then set the chain bit in all the following link TRBs.
176 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
177 * have their chain bit cleared (so that each Link TRB is a separate TD).
179 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
180 * set, but other sections talk about dealing with the chain bit set. This was
181 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
182 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
184 * @more_trbs_coming: Will you enqueue more TRBs before calling
185 * prepare_transfer()?
187 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
188 bool consumer, bool more_trbs_coming)
190 u32 chain;
191 union xhci_trb *next;
192 unsigned long long addr;
194 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
195 next = ++(ring->enqueue);
197 ring->enq_updates++;
198 /* Update the dequeue pointer further if that was a link TRB or we're at
199 * the end of an event ring segment (which doesn't have link TRBS)
201 while (last_trb(xhci, ring, ring->enq_seg, next)) {
202 if (!consumer) {
203 if (ring != xhci->event_ring) {
205 * If the caller doesn't plan on enqueueing more
206 * TDs before ringing the doorbell, then we
207 * don't want to give the link TRB to the
208 * hardware just yet. We'll give the link TRB
209 * back in prepare_ring() just before we enqueue
210 * the TD at the top of the ring.
212 if (!chain && !more_trbs_coming)
213 break;
215 /* If we're not dealing with 0.95 hardware,
216 * carry over the chain bit of the previous TRB
217 * (which may mean the chain bit is cleared).
219 if (!xhci_link_trb_quirk(xhci)) {
220 next->link.control &=
221 cpu_to_le32(~TRB_CHAIN);
222 next->link.control |=
223 cpu_to_le32(chain);
225 /* Give this link TRB to the hardware */
226 wmb();
227 next->link.control ^= cpu_to_le32(TRB_CYCLE);
229 /* Toggle the cycle bit after the last ring segment. */
230 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
231 ring->cycle_state = (ring->cycle_state ? 0 : 1);
232 if (!in_interrupt())
233 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
234 ring,
235 (unsigned int) ring->cycle_state);
238 ring->enq_seg = ring->enq_seg->next;
239 ring->enqueue = ring->enq_seg->trbs;
240 next = ring->enqueue;
242 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
246 * Check to see if there's room to enqueue num_trbs on the ring. See rules
247 * above.
248 * FIXME: this would be simpler and faster if we just kept track of the number
249 * of free TRBs in a ring.
251 static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
252 unsigned int num_trbs)
254 int i;
255 union xhci_trb *enq = ring->enqueue;
256 struct xhci_segment *enq_seg = ring->enq_seg;
257 struct xhci_segment *cur_seg;
258 unsigned int left_on_ring;
260 /* If we are currently pointing to a link TRB, advance the
261 * enqueue pointer before checking for space */
262 while (last_trb(xhci, ring, enq_seg, enq)) {
263 enq_seg = enq_seg->next;
264 enq = enq_seg->trbs;
267 /* Check if ring is empty */
268 if (enq == ring->dequeue) {
269 /* Can't use link trbs */
270 left_on_ring = TRBS_PER_SEGMENT - 1;
271 for (cur_seg = enq_seg->next; cur_seg != enq_seg;
272 cur_seg = cur_seg->next)
273 left_on_ring += TRBS_PER_SEGMENT - 1;
275 /* Always need one TRB free in the ring. */
276 left_on_ring -= 1;
277 if (num_trbs > left_on_ring) {
278 xhci_warn(xhci, "Not enough room on ring; "
279 "need %u TRBs, %u TRBs left\n",
280 num_trbs, left_on_ring);
281 return 0;
283 return 1;
285 /* Make sure there's an extra empty TRB available */
286 for (i = 0; i <= num_trbs; ++i) {
287 if (enq == ring->dequeue)
288 return 0;
289 enq++;
290 while (last_trb(xhci, ring, enq_seg, enq)) {
291 enq_seg = enq_seg->next;
292 enq = enq_seg->trbs;
295 return 1;
298 /* Ring the host controller doorbell after placing a command on the ring */
299 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
301 xhci_dbg(xhci, "// Ding dong!\n");
302 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
303 /* Flush PCI posted writes */
304 xhci_readl(xhci, &xhci->dba->doorbell[0]);
307 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
308 unsigned int slot_id,
309 unsigned int ep_index,
310 unsigned int stream_id)
312 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
313 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
314 unsigned int ep_state = ep->ep_state;
316 /* Don't ring the doorbell for this endpoint if there are pending
317 * cancellations because we don't want to interrupt processing.
318 * We don't want to restart any stream rings if there's a set dequeue
319 * pointer command pending because the device can choose to start any
320 * stream once the endpoint is on the HW schedule.
321 * FIXME - check all the stream rings for pending cancellations.
323 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
324 (ep_state & EP_HALTED))
325 return;
326 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
327 /* The CPU has better things to do at this point than wait for a
328 * write-posting flush. It'll get there soon enough.
332 /* Ring the doorbell for any rings with pending URBs */
333 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
334 unsigned int slot_id,
335 unsigned int ep_index)
337 unsigned int stream_id;
338 struct xhci_virt_ep *ep;
340 ep = &xhci->devs[slot_id]->eps[ep_index];
342 /* A ring has pending URBs if its TD list is not empty */
343 if (!(ep->ep_state & EP_HAS_STREAMS)) {
344 if (!(list_empty(&ep->ring->td_list)))
345 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
346 return;
349 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
350 stream_id++) {
351 struct xhci_stream_info *stream_info = ep->stream_info;
352 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
353 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
354 stream_id);
359 * Find the segment that trb is in. Start searching in start_seg.
360 * If we must move past a segment that has a link TRB with a toggle cycle state
361 * bit set, then we will toggle the value pointed at by cycle_state.
363 static struct xhci_segment *find_trb_seg(
364 struct xhci_segment *start_seg,
365 union xhci_trb *trb, int *cycle_state)
367 struct xhci_segment *cur_seg = start_seg;
368 struct xhci_generic_trb *generic_trb;
370 while (cur_seg->trbs > trb ||
371 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
372 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
373 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
374 *cycle_state ^= 0x1;
375 cur_seg = cur_seg->next;
376 if (cur_seg == start_seg)
377 /* Looped over the entire list. Oops! */
378 return NULL;
380 return cur_seg;
384 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
385 unsigned int slot_id, unsigned int ep_index,
386 unsigned int stream_id)
388 struct xhci_virt_ep *ep;
390 ep = &xhci->devs[slot_id]->eps[ep_index];
391 /* Common case: no streams */
392 if (!(ep->ep_state & EP_HAS_STREAMS))
393 return ep->ring;
395 if (stream_id == 0) {
396 xhci_warn(xhci,
397 "WARN: Slot ID %u, ep index %u has streams, "
398 "but URB has no stream ID.\n",
399 slot_id, ep_index);
400 return NULL;
403 if (stream_id < ep->stream_info->num_streams)
404 return ep->stream_info->stream_rings[stream_id];
406 xhci_warn(xhci,
407 "WARN: Slot ID %u, ep index %u has "
408 "stream IDs 1 to %u allocated, "
409 "but stream ID %u is requested.\n",
410 slot_id, ep_index,
411 ep->stream_info->num_streams - 1,
412 stream_id);
413 return NULL;
416 /* Get the right ring for the given URB.
417 * If the endpoint supports streams, boundary check the URB's stream ID.
418 * If the endpoint doesn't support streams, return the singular endpoint ring.
420 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
421 struct urb *urb)
423 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
424 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
428 * Move the xHC's endpoint ring dequeue pointer past cur_td.
429 * Record the new state of the xHC's endpoint ring dequeue segment,
430 * dequeue pointer, and new consumer cycle state in state.
431 * Update our internal representation of the ring's dequeue pointer.
433 * We do this in three jumps:
434 * - First we update our new ring state to be the same as when the xHC stopped.
435 * - Then we traverse the ring to find the segment that contains
436 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
437 * any link TRBs with the toggle cycle bit set.
438 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
439 * if we've moved it past a link TRB with the toggle cycle bit set.
441 * Some of the uses of xhci_generic_trb are grotty, but if they're done
442 * with correct __le32 accesses they should work fine. Only users of this are
443 * in here.
445 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
446 unsigned int slot_id, unsigned int ep_index,
447 unsigned int stream_id, struct xhci_td *cur_td,
448 struct xhci_dequeue_state *state)
450 struct xhci_virt_device *dev = xhci->devs[slot_id];
451 struct xhci_ring *ep_ring;
452 struct xhci_generic_trb *trb;
453 struct xhci_ep_ctx *ep_ctx;
454 dma_addr_t addr;
456 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
457 ep_index, stream_id);
458 if (!ep_ring) {
459 xhci_warn(xhci, "WARN can't find new dequeue state "
460 "for invalid stream ID %u.\n",
461 stream_id);
462 return;
464 state->new_cycle_state = 0;
465 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
466 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
467 dev->eps[ep_index].stopped_trb,
468 &state->new_cycle_state);
469 if (!state->new_deq_seg) {
470 WARN_ON(1);
471 return;
474 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
475 xhci_dbg(xhci, "Finding endpoint context\n");
476 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
477 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
479 state->new_deq_ptr = cur_td->last_trb;
480 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
481 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
482 state->new_deq_ptr,
483 &state->new_cycle_state);
484 if (!state->new_deq_seg) {
485 WARN_ON(1);
486 return;
489 trb = &state->new_deq_ptr->generic;
490 if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
491 (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
492 state->new_cycle_state ^= 0x1;
493 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
496 * If there is only one segment in a ring, find_trb_seg()'s while loop
497 * will not run, and it will return before it has a chance to see if it
498 * needs to toggle the cycle bit. It can't tell if the stalled transfer
499 * ended just before the link TRB on a one-segment ring, or if the TD
500 * wrapped around the top of the ring, because it doesn't have the TD in
501 * question. Look for the one-segment case where stalled TRB's address
502 * is greater than the new dequeue pointer address.
504 if (ep_ring->first_seg == ep_ring->first_seg->next &&
505 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
506 state->new_cycle_state ^= 0x1;
507 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
509 /* Don't update the ring cycle state for the producer (us). */
510 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
511 state->new_deq_seg);
512 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
513 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
514 (unsigned long long) addr);
517 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
518 struct xhci_td *cur_td)
520 struct xhci_segment *cur_seg;
521 union xhci_trb *cur_trb;
523 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
524 true;
525 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
526 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
527 /* Unchain any chained Link TRBs, but
528 * leave the pointers intact.
530 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
531 xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
532 xhci_dbg(xhci, "Address = %p (0x%llx dma); "
533 "in seg %p (0x%llx dma)\n",
534 cur_trb,
535 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
536 cur_seg,
537 (unsigned long long)cur_seg->dma);
538 } else {
539 cur_trb->generic.field[0] = 0;
540 cur_trb->generic.field[1] = 0;
541 cur_trb->generic.field[2] = 0;
542 /* Preserve only the cycle bit of this TRB */
543 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
544 cur_trb->generic.field[3] |= cpu_to_le32(
545 TRB_TYPE(TRB_TR_NOOP));
546 xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) "
547 "in seg %p (0x%llx dma)\n",
548 cur_trb,
549 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
550 cur_seg,
551 (unsigned long long)cur_seg->dma);
553 if (cur_trb == cur_td->last_trb)
554 break;
558 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
559 unsigned int ep_index, unsigned int stream_id,
560 struct xhci_segment *deq_seg,
561 union xhci_trb *deq_ptr, u32 cycle_state);
563 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
564 unsigned int slot_id, unsigned int ep_index,
565 unsigned int stream_id,
566 struct xhci_dequeue_state *deq_state)
568 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
570 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
571 "new deq ptr = %p (0x%llx dma), new cycle = %u\n",
572 deq_state->new_deq_seg,
573 (unsigned long long)deq_state->new_deq_seg->dma,
574 deq_state->new_deq_ptr,
575 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
576 deq_state->new_cycle_state);
577 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
578 deq_state->new_deq_seg,
579 deq_state->new_deq_ptr,
580 (u32) deq_state->new_cycle_state);
581 /* Stop the TD queueing code from ringing the doorbell until
582 * this command completes. The HC won't set the dequeue pointer
583 * if the ring is running, and ringing the doorbell starts the
584 * ring running.
586 ep->ep_state |= SET_DEQ_PENDING;
589 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
590 struct xhci_virt_ep *ep)
592 ep->ep_state &= ~EP_HALT_PENDING;
593 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
594 * timer is running on another CPU, we don't decrement stop_cmds_pending
595 * (since we didn't successfully stop the watchdog timer).
597 if (del_timer(&ep->stop_cmd_timer))
598 ep->stop_cmds_pending--;
601 /* Must be called with xhci->lock held in interrupt context */
602 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
603 struct xhci_td *cur_td, int status, char *adjective)
605 struct usb_hcd *hcd;
606 struct urb *urb;
607 struct urb_priv *urb_priv;
609 urb = cur_td->urb;
610 urb_priv = urb->hcpriv;
611 urb_priv->td_cnt++;
612 hcd = bus_to_hcd(urb->dev->bus);
614 /* Only giveback urb when this is the last td in urb */
615 if (urb_priv->td_cnt == urb_priv->length) {
616 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
617 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
618 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
619 if (xhci->quirks & XHCI_AMD_PLL_FIX)
620 usb_amd_quirk_pll_enable();
623 usb_hcd_unlink_urb_from_ep(hcd, urb);
625 spin_unlock(&xhci->lock);
626 usb_hcd_giveback_urb(hcd, urb, status);
627 xhci_urb_free_priv(xhci, urb_priv);
628 spin_lock(&xhci->lock);
633 * When we get a command completion for a Stop Endpoint Command, we need to
634 * unlink any cancelled TDs from the ring. There are two ways to do that:
636 * 1. If the HW was in the middle of processing the TD that needs to be
637 * cancelled, then we must move the ring's dequeue pointer past the last TRB
638 * in the TD with a Set Dequeue Pointer Command.
639 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
640 * bit cleared) so that the HW will skip over them.
642 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
643 union xhci_trb *trb, struct xhci_event_cmd *event)
645 unsigned int slot_id;
646 unsigned int ep_index;
647 struct xhci_virt_device *virt_dev;
648 struct xhci_ring *ep_ring;
649 struct xhci_virt_ep *ep;
650 struct list_head *entry;
651 struct xhci_td *cur_td = NULL;
652 struct xhci_td *last_unlinked_td;
654 struct xhci_dequeue_state deq_state;
656 if (unlikely(TRB_TO_SUSPEND_PORT(
657 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
658 slot_id = TRB_TO_SLOT_ID(
659 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
660 virt_dev = xhci->devs[slot_id];
661 if (virt_dev)
662 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
663 event);
664 else
665 xhci_warn(xhci, "Stop endpoint command "
666 "completion for disabled slot %u\n",
667 slot_id);
668 return;
671 memset(&deq_state, 0, sizeof(deq_state));
672 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
673 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
674 ep = &xhci->devs[slot_id]->eps[ep_index];
676 if (list_empty(&ep->cancelled_td_list)) {
677 xhci_stop_watchdog_timer_in_irq(xhci, ep);
678 ep->stopped_td = NULL;
679 ep->stopped_trb = NULL;
680 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
681 return;
684 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
685 * We have the xHCI lock, so nothing can modify this list until we drop
686 * it. We're also in the event handler, so we can't get re-interrupted
687 * if another Stop Endpoint command completes
689 list_for_each(entry, &ep->cancelled_td_list) {
690 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
691 xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n",
692 cur_td->first_trb,
693 (unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb));
694 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
695 if (!ep_ring) {
696 /* This shouldn't happen unless a driver is mucking
697 * with the stream ID after submission. This will
698 * leave the TD on the hardware ring, and the hardware
699 * will try to execute it, and may access a buffer
700 * that has already been freed. In the best case, the
701 * hardware will execute it, and the event handler will
702 * ignore the completion event for that TD, since it was
703 * removed from the td_list for that endpoint. In
704 * short, don't muck with the stream ID after
705 * submission.
707 xhci_warn(xhci, "WARN Cancelled URB %p "
708 "has invalid stream ID %u.\n",
709 cur_td->urb,
710 cur_td->urb->stream_id);
711 goto remove_finished_td;
714 * If we stopped on the TD we need to cancel, then we have to
715 * move the xHC endpoint ring dequeue pointer past this TD.
717 if (cur_td == ep->stopped_td)
718 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
719 cur_td->urb->stream_id,
720 cur_td, &deq_state);
721 else
722 td_to_noop(xhci, ep_ring, cur_td);
723 remove_finished_td:
725 * The event handler won't see a completion for this TD anymore,
726 * so remove it from the endpoint ring's TD list. Keep it in
727 * the cancelled TD list for URB completion later.
729 list_del(&cur_td->td_list);
731 last_unlinked_td = cur_td;
732 xhci_stop_watchdog_timer_in_irq(xhci, ep);
734 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
735 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
736 xhci_queue_new_dequeue_state(xhci,
737 slot_id, ep_index,
738 ep->stopped_td->urb->stream_id,
739 &deq_state);
740 xhci_ring_cmd_db(xhci);
741 } else {
742 /* Otherwise ring the doorbell(s) to restart queued transfers */
743 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
745 ep->stopped_td = NULL;
746 ep->stopped_trb = NULL;
749 * Drop the lock and complete the URBs in the cancelled TD list.
750 * New TDs to be cancelled might be added to the end of the list before
751 * we can complete all the URBs for the TDs we already unlinked.
752 * So stop when we've completed the URB for the last TD we unlinked.
754 do {
755 cur_td = list_entry(ep->cancelled_td_list.next,
756 struct xhci_td, cancelled_td_list);
757 list_del(&cur_td->cancelled_td_list);
759 /* Clean up the cancelled URB */
760 /* Doesn't matter what we pass for status, since the core will
761 * just overwrite it (because the URB has been unlinked).
763 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
765 /* Stop processing the cancelled list if the watchdog timer is
766 * running.
768 if (xhci->xhc_state & XHCI_STATE_DYING)
769 return;
770 } while (cur_td != last_unlinked_td);
772 /* Return to the event handler with xhci->lock re-acquired */
775 /* Watchdog timer function for when a stop endpoint command fails to complete.
776 * In this case, we assume the host controller is broken or dying or dead. The
777 * host may still be completing some other events, so we have to be careful to
778 * let the event ring handler and the URB dequeueing/enqueueing functions know
779 * through xhci->state.
781 * The timer may also fire if the host takes a very long time to respond to the
782 * command, and the stop endpoint command completion handler cannot delete the
783 * timer before the timer function is called. Another endpoint cancellation may
784 * sneak in before the timer function can grab the lock, and that may queue
785 * another stop endpoint command and add the timer back. So we cannot use a
786 * simple flag to say whether there is a pending stop endpoint command for a
787 * particular endpoint.
789 * Instead we use a combination of that flag and a counter for the number of
790 * pending stop endpoint commands. If the timer is the tail end of the last
791 * stop endpoint command, and the endpoint's command is still pending, we assume
792 * the host is dying.
794 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
796 struct xhci_hcd *xhci;
797 struct xhci_virt_ep *ep;
798 struct xhci_virt_ep *temp_ep;
799 struct xhci_ring *ring;
800 struct xhci_td *cur_td;
801 int ret, i, j;
803 ep = (struct xhci_virt_ep *) arg;
804 xhci = ep->xhci;
806 spin_lock(&xhci->lock);
808 ep->stop_cmds_pending--;
809 if (xhci->xhc_state & XHCI_STATE_DYING) {
810 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
811 "xHCI as DYING, exiting.\n");
812 spin_unlock(&xhci->lock);
813 return;
815 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
816 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
817 "exiting.\n");
818 spin_unlock(&xhci->lock);
819 return;
822 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
823 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
824 /* Oops, HC is dead or dying or at least not responding to the stop
825 * endpoint command.
827 xhci->xhc_state |= XHCI_STATE_DYING;
828 /* Disable interrupts from the host controller and start halting it */
829 xhci_quiesce(xhci);
830 spin_unlock(&xhci->lock);
832 ret = xhci_halt(xhci);
834 spin_lock(&xhci->lock);
835 if (ret < 0) {
836 /* This is bad; the host is not responding to commands and it's
837 * not allowing itself to be halted. At least interrupts are
838 * disabled. If we call usb_hc_died(), it will attempt to
839 * disconnect all device drivers under this host. Those
840 * disconnect() methods will wait for all URBs to be unlinked,
841 * so we must complete them.
843 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
844 xhci_warn(xhci, "Completing active URBs anyway.\n");
845 /* We could turn all TDs on the rings to no-ops. This won't
846 * help if the host has cached part of the ring, and is slow if
847 * we want to preserve the cycle bit. Skip it and hope the host
848 * doesn't touch the memory.
851 for (i = 0; i < MAX_HC_SLOTS; i++) {
852 if (!xhci->devs[i])
853 continue;
854 for (j = 0; j < 31; j++) {
855 temp_ep = &xhci->devs[i]->eps[j];
856 ring = temp_ep->ring;
857 if (!ring)
858 continue;
859 xhci_dbg(xhci, "Killing URBs for slot ID %u, "
860 "ep index %u\n", i, j);
861 while (!list_empty(&ring->td_list)) {
862 cur_td = list_first_entry(&ring->td_list,
863 struct xhci_td,
864 td_list);
865 list_del(&cur_td->td_list);
866 if (!list_empty(&cur_td->cancelled_td_list))
867 list_del(&cur_td->cancelled_td_list);
868 xhci_giveback_urb_in_irq(xhci, cur_td,
869 -ESHUTDOWN, "killed");
871 while (!list_empty(&temp_ep->cancelled_td_list)) {
872 cur_td = list_first_entry(
873 &temp_ep->cancelled_td_list,
874 struct xhci_td,
875 cancelled_td_list);
876 list_del(&cur_td->cancelled_td_list);
877 xhci_giveback_urb_in_irq(xhci, cur_td,
878 -ESHUTDOWN, "killed");
882 spin_unlock(&xhci->lock);
883 xhci_dbg(xhci, "Calling usb_hc_died()\n");
884 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
885 xhci_dbg(xhci, "xHCI host controller is dead.\n");
889 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
890 * we need to clear the set deq pending flag in the endpoint ring state, so that
891 * the TD queueing code can ring the doorbell again. We also need to ring the
892 * endpoint doorbell to restart the ring, but only if there aren't more
893 * cancellations pending.
895 static void handle_set_deq_completion(struct xhci_hcd *xhci,
896 struct xhci_event_cmd *event,
897 union xhci_trb *trb)
899 unsigned int slot_id;
900 unsigned int ep_index;
901 unsigned int stream_id;
902 struct xhci_ring *ep_ring;
903 struct xhci_virt_device *dev;
904 struct xhci_ep_ctx *ep_ctx;
905 struct xhci_slot_ctx *slot_ctx;
907 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
908 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
909 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
910 dev = xhci->devs[slot_id];
912 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
913 if (!ep_ring) {
914 xhci_warn(xhci, "WARN Set TR deq ptr command for "
915 "freed stream ID %u\n",
916 stream_id);
917 /* XXX: Harmless??? */
918 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
919 return;
922 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
923 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
925 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
926 unsigned int ep_state;
927 unsigned int slot_state;
929 switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
930 case COMP_TRB_ERR:
931 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
932 "of stream ID configuration\n");
933 break;
934 case COMP_CTX_STATE:
935 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
936 "to incorrect slot or ep state.\n");
937 ep_state = le32_to_cpu(ep_ctx->ep_info);
938 ep_state &= EP_STATE_MASK;
939 slot_state = le32_to_cpu(slot_ctx->dev_state);
940 slot_state = GET_SLOT_STATE(slot_state);
941 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
942 slot_state, ep_state);
943 break;
944 case COMP_EBADSLT:
945 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
946 "slot %u was not enabled.\n", slot_id);
947 break;
948 default:
949 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
950 "completion code of %u.\n",
951 GET_COMP_CODE(le32_to_cpu(event->status)));
952 break;
954 /* OK what do we do now? The endpoint state is hosed, and we
955 * should never get to this point if the synchronization between
956 * queueing, and endpoint state are correct. This might happen
957 * if the device gets disconnected after we've finished
958 * cancelling URBs, which might not be an error...
960 } else {
961 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
962 le64_to_cpu(ep_ctx->deq));
963 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
964 dev->eps[ep_index].queued_deq_ptr) ==
965 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
966 /* Update the ring's dequeue segment and dequeue pointer
967 * to reflect the new position.
969 ep_ring->deq_seg = dev->eps[ep_index].queued_deq_seg;
970 ep_ring->dequeue = dev->eps[ep_index].queued_deq_ptr;
971 } else {
972 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
973 "Ptr command & xHCI internal state.\n");
974 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
975 dev->eps[ep_index].queued_deq_seg,
976 dev->eps[ep_index].queued_deq_ptr);
980 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
981 dev->eps[ep_index].queued_deq_seg = NULL;
982 dev->eps[ep_index].queued_deq_ptr = NULL;
983 /* Restart any rings with pending URBs */
984 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
987 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
988 struct xhci_event_cmd *event,
989 union xhci_trb *trb)
991 int slot_id;
992 unsigned int ep_index;
994 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
995 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
996 /* This command will only fail if the endpoint wasn't halted,
997 * but we don't care.
999 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
1000 GET_COMP_CODE(le32_to_cpu(event->status)));
1002 /* HW with the reset endpoint quirk needs to have a configure endpoint
1003 * command complete before the endpoint can be used. Queue that here
1004 * because the HW can't handle two commands being queued in a row.
1006 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1007 xhci_dbg(xhci, "Queueing configure endpoint command\n");
1008 xhci_queue_configure_endpoint(xhci,
1009 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1010 false);
1011 xhci_ring_cmd_db(xhci);
1012 } else {
1013 /* Clear our internal halted state and restart the ring(s) */
1014 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1015 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1019 /* Check to see if a command in the device's command queue matches this one.
1020 * Signal the completion or free the command, and return 1. Return 0 if the
1021 * completed command isn't at the head of the command list.
1023 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1024 struct xhci_virt_device *virt_dev,
1025 struct xhci_event_cmd *event)
1027 struct xhci_command *command;
1029 if (list_empty(&virt_dev->cmd_list))
1030 return 0;
1032 command = list_entry(virt_dev->cmd_list.next,
1033 struct xhci_command, cmd_list);
1034 if (xhci->cmd_ring->dequeue != command->command_trb)
1035 return 0;
1037 command->status = GET_COMP_CODE(le32_to_cpu(event->status));
1038 list_del(&command->cmd_list);
1039 if (command->completion)
1040 complete(command->completion);
1041 else
1042 xhci_free_command(xhci, command);
1043 return 1;
1046 static void handle_cmd_completion(struct xhci_hcd *xhci,
1047 struct xhci_event_cmd *event)
1049 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1050 u64 cmd_dma;
1051 dma_addr_t cmd_dequeue_dma;
1052 struct xhci_input_control_ctx *ctrl_ctx;
1053 struct xhci_virt_device *virt_dev;
1054 unsigned int ep_index;
1055 struct xhci_ring *ep_ring;
1056 unsigned int ep_state;
1058 cmd_dma = le64_to_cpu(event->cmd_trb);
1059 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1060 xhci->cmd_ring->dequeue);
1061 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1062 if (cmd_dequeue_dma == 0) {
1063 xhci->error_bitmask |= 1 << 4;
1064 return;
1066 /* Does the DMA address match our internal dequeue pointer address? */
1067 if (cmd_dma != (u64) cmd_dequeue_dma) {
1068 xhci->error_bitmask |= 1 << 5;
1069 return;
1071 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1072 & TRB_TYPE_BITMASK) {
1073 case TRB_TYPE(TRB_ENABLE_SLOT):
1074 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1075 xhci->slot_id = slot_id;
1076 else
1077 xhci->slot_id = 0;
1078 complete(&xhci->addr_dev);
1079 break;
1080 case TRB_TYPE(TRB_DISABLE_SLOT):
1081 if (xhci->devs[slot_id]) {
1082 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1083 /* Delete default control endpoint resources */
1084 xhci_free_device_endpoint_resources(xhci,
1085 xhci->devs[slot_id], true);
1086 xhci_free_virt_device(xhci, slot_id);
1088 break;
1089 case TRB_TYPE(TRB_CONFIG_EP):
1090 virt_dev = xhci->devs[slot_id];
1091 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1092 break;
1094 * Configure endpoint commands can come from the USB core
1095 * configuration or alt setting changes, or because the HW
1096 * needed an extra configure endpoint command after a reset
1097 * endpoint command or streams were being configured.
1098 * If the command was for a halted endpoint, the xHCI driver
1099 * is not waiting on the configure endpoint command.
1101 ctrl_ctx = xhci_get_input_control_ctx(xhci,
1102 virt_dev->in_ctx);
1103 /* Input ctx add_flags are the endpoint index plus one */
1104 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1105 /* A usb_set_interface() call directly after clearing a halted
1106 * condition may race on this quirky hardware. Not worth
1107 * worrying about, since this is prototype hardware. Not sure
1108 * if this will work for streams, but streams support was
1109 * untested on this prototype.
1111 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1112 ep_index != (unsigned int) -1 &&
1113 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1114 le32_to_cpu(ctrl_ctx->drop_flags)) {
1115 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1116 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1117 if (!(ep_state & EP_HALTED))
1118 goto bandwidth_change;
1119 xhci_dbg(xhci, "Completed config ep cmd - "
1120 "last ep index = %d, state = %d\n",
1121 ep_index, ep_state);
1122 /* Clear internal halted state and restart ring(s) */
1123 xhci->devs[slot_id]->eps[ep_index].ep_state &=
1124 ~EP_HALTED;
1125 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1126 break;
1128 bandwidth_change:
1129 xhci_dbg(xhci, "Completed config ep cmd\n");
1130 xhci->devs[slot_id]->cmd_status =
1131 GET_COMP_CODE(le32_to_cpu(event->status));
1132 complete(&xhci->devs[slot_id]->cmd_completion);
1133 break;
1134 case TRB_TYPE(TRB_EVAL_CONTEXT):
1135 virt_dev = xhci->devs[slot_id];
1136 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1137 break;
1138 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1139 complete(&xhci->devs[slot_id]->cmd_completion);
1140 break;
1141 case TRB_TYPE(TRB_ADDR_DEV):
1142 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1143 complete(&xhci->addr_dev);
1144 break;
1145 case TRB_TYPE(TRB_STOP_RING):
1146 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1147 break;
1148 case TRB_TYPE(TRB_SET_DEQ):
1149 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1150 break;
1151 case TRB_TYPE(TRB_CMD_NOOP):
1152 break;
1153 case TRB_TYPE(TRB_RESET_EP):
1154 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1155 break;
1156 case TRB_TYPE(TRB_RESET_DEV):
1157 xhci_dbg(xhci, "Completed reset device command.\n");
1158 slot_id = TRB_TO_SLOT_ID(
1159 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1160 virt_dev = xhci->devs[slot_id];
1161 if (virt_dev)
1162 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1163 else
1164 xhci_warn(xhci, "Reset device command completion "
1165 "for disabled slot %u\n", slot_id);
1166 break;
1167 case TRB_TYPE(TRB_NEC_GET_FW):
1168 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1169 xhci->error_bitmask |= 1 << 6;
1170 break;
1172 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n",
1173 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1174 NEC_FW_MINOR(le32_to_cpu(event->status)));
1175 break;
1176 default:
1177 /* Skip over unknown commands on the event ring */
1178 xhci->error_bitmask |= 1 << 6;
1179 break;
1181 inc_deq(xhci, xhci->cmd_ring, false);
1184 static void handle_vendor_event(struct xhci_hcd *xhci,
1185 union xhci_trb *event)
1187 u32 trb_type;
1189 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1190 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1191 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1192 handle_cmd_completion(xhci, &event->event_cmd);
1195 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1196 * port registers -- USB 3.0 and USB 2.0).
1198 * Returns a zero-based port number, which is suitable for indexing into each of
1199 * the split roothubs' port arrays and bus state arrays.
1201 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1202 struct xhci_hcd *xhci, u32 port_id)
1204 unsigned int i;
1205 unsigned int num_similar_speed_ports = 0;
1207 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1208 * and usb2_ports are 0-based indexes. Count the number of similar
1209 * speed ports, up to 1 port before this port.
1211 for (i = 0; i < (port_id - 1); i++) {
1212 u8 port_speed = xhci->port_array[i];
1215 * Skip ports that don't have known speeds, or have duplicate
1216 * Extended Capabilities port speed entries.
1218 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1219 continue;
1222 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1223 * 1.1 ports are under the USB 2.0 hub. If the port speed
1224 * matches the device speed, it's a similar speed port.
1226 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1227 num_similar_speed_ports++;
1229 return num_similar_speed_ports;
1232 static void handle_port_status(struct xhci_hcd *xhci,
1233 union xhci_trb *event)
1235 struct usb_hcd *hcd;
1236 u32 port_id;
1237 u32 temp, temp1;
1238 int max_ports;
1239 int slot_id;
1240 unsigned int faked_port_index;
1241 u8 major_revision;
1242 struct xhci_bus_state *bus_state;
1243 __le32 __iomem **port_array;
1244 bool bogus_port_status = false;
1246 /* Port status change events always have a successful completion code */
1247 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1248 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1249 xhci->error_bitmask |= 1 << 8;
1251 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1252 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1254 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1255 if ((port_id <= 0) || (port_id > max_ports)) {
1256 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1257 bogus_port_status = true;
1258 goto cleanup;
1261 /* Figure out which usb_hcd this port is attached to:
1262 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1264 major_revision = xhci->port_array[port_id - 1];
1265 if (major_revision == 0) {
1266 xhci_warn(xhci, "Event for port %u not in "
1267 "Extended Capabilities, ignoring.\n",
1268 port_id);
1269 bogus_port_status = true;
1270 goto cleanup;
1272 if (major_revision == DUPLICATE_ENTRY) {
1273 xhci_warn(xhci, "Event for port %u duplicated in"
1274 "Extended Capabilities, ignoring.\n",
1275 port_id);
1276 bogus_port_status = true;
1277 goto cleanup;
1281 * Hardware port IDs reported by a Port Status Change Event include USB
1282 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1283 * resume event, but we first need to translate the hardware port ID
1284 * into the index into the ports on the correct split roothub, and the
1285 * correct bus_state structure.
1287 /* Find the right roothub. */
1288 hcd = xhci_to_hcd(xhci);
1289 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1290 hcd = xhci->shared_hcd;
1291 bus_state = &xhci->bus_state[hcd_index(hcd)];
1292 if (hcd->speed == HCD_USB3)
1293 port_array = xhci->usb3_ports;
1294 else
1295 port_array = xhci->usb2_ports;
1296 /* Find the faked port hub number */
1297 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1298 port_id);
1300 temp = xhci_readl(xhci, port_array[faked_port_index]);
1301 if (hcd->state == HC_STATE_SUSPENDED) {
1302 xhci_dbg(xhci, "resume root hub\n");
1303 usb_hcd_resume_root_hub(hcd);
1306 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1307 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1309 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1310 if (!(temp1 & CMD_RUN)) {
1311 xhci_warn(xhci, "xHC is not running.\n");
1312 goto cleanup;
1315 if (DEV_SUPERSPEED(temp)) {
1316 xhci_dbg(xhci, "resume SS port %d\n", port_id);
1317 temp = xhci_port_state_to_neutral(temp);
1318 temp &= ~PORT_PLS_MASK;
1319 temp |= PORT_LINK_STROBE | XDEV_U0;
1320 xhci_writel(xhci, temp, port_array[faked_port_index]);
1321 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1322 faked_port_index);
1323 if (!slot_id) {
1324 xhci_dbg(xhci, "slot_id is zero\n");
1325 goto cleanup;
1327 xhci_ring_device(xhci, slot_id);
1328 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1329 /* Clear PORT_PLC */
1330 temp = xhci_readl(xhci, port_array[faked_port_index]);
1331 temp = xhci_port_state_to_neutral(temp);
1332 temp |= PORT_PLC;
1333 xhci_writel(xhci, temp, port_array[faked_port_index]);
1334 } else {
1335 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1336 bus_state->resume_done[faked_port_index] = jiffies +
1337 msecs_to_jiffies(20);
1338 mod_timer(&hcd->rh_timer,
1339 bus_state->resume_done[faked_port_index]);
1340 /* Do the rest in GetPortStatus */
1344 cleanup:
1345 /* Update event ring dequeue pointer before dropping the lock */
1346 inc_deq(xhci, xhci->event_ring, true);
1348 /* Don't make the USB core poll the roothub if we got a bad port status
1349 * change event. Besides, at that point we can't tell which roothub
1350 * (USB 2.0 or USB 3.0) to kick.
1352 if (bogus_port_status)
1353 return;
1355 spin_unlock(&xhci->lock);
1356 /* Pass this up to the core */
1357 usb_hcd_poll_rh_status(hcd);
1358 spin_lock(&xhci->lock);
1362 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1363 * at end_trb, which may be in another segment. If the suspect DMA address is a
1364 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1365 * returns 0.
1367 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1368 union xhci_trb *start_trb,
1369 union xhci_trb *end_trb,
1370 dma_addr_t suspect_dma)
1372 dma_addr_t start_dma;
1373 dma_addr_t end_seg_dma;
1374 dma_addr_t end_trb_dma;
1375 struct xhci_segment *cur_seg;
1377 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1378 cur_seg = start_seg;
1380 do {
1381 if (start_dma == 0)
1382 return NULL;
1383 /* We may get an event for a Link TRB in the middle of a TD */
1384 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1385 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1386 /* If the end TRB isn't in this segment, this is set to 0 */
1387 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1389 if (end_trb_dma > 0) {
1390 /* The end TRB is in this segment, so suspect should be here */
1391 if (start_dma <= end_trb_dma) {
1392 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1393 return cur_seg;
1394 } else {
1395 /* Case for one segment with
1396 * a TD wrapped around to the top
1398 if ((suspect_dma >= start_dma &&
1399 suspect_dma <= end_seg_dma) ||
1400 (suspect_dma >= cur_seg->dma &&
1401 suspect_dma <= end_trb_dma))
1402 return cur_seg;
1404 return NULL;
1405 } else {
1406 /* Might still be somewhere in this segment */
1407 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1408 return cur_seg;
1410 cur_seg = cur_seg->next;
1411 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1412 } while (cur_seg != start_seg);
1414 return NULL;
1417 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1418 unsigned int slot_id, unsigned int ep_index,
1419 unsigned int stream_id,
1420 struct xhci_td *td, union xhci_trb *event_trb)
1422 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1423 ep->ep_state |= EP_HALTED;
1424 ep->stopped_td = td;
1425 ep->stopped_trb = event_trb;
1426 ep->stopped_stream = stream_id;
1428 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1429 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1431 ep->stopped_td = NULL;
1432 ep->stopped_trb = NULL;
1433 ep->stopped_stream = 0;
1435 xhci_ring_cmd_db(xhci);
1438 /* Check if an error has halted the endpoint ring. The class driver will
1439 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1440 * However, a babble and other errors also halt the endpoint ring, and the class
1441 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1442 * Ring Dequeue Pointer command manually.
1444 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1445 struct xhci_ep_ctx *ep_ctx,
1446 unsigned int trb_comp_code)
1448 /* TRB completion codes that may require a manual halt cleanup */
1449 if (trb_comp_code == COMP_TX_ERR ||
1450 trb_comp_code == COMP_BABBLE ||
1451 trb_comp_code == COMP_SPLIT_ERR)
1452 /* The 0.96 spec says a babbling control endpoint
1453 * is not halted. The 0.96 spec says it is. Some HW
1454 * claims to be 0.95 compliant, but it halts the control
1455 * endpoint anyway. Check if a babble halted the
1456 * endpoint.
1458 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1459 cpu_to_le32(EP_STATE_HALTED))
1460 return 1;
1462 return 0;
1465 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1467 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1468 /* Vendor defined "informational" completion code,
1469 * treat as not-an-error.
1471 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1472 trb_comp_code);
1473 xhci_dbg(xhci, "Treating code as success.\n");
1474 return 1;
1476 return 0;
1480 * Finish the td processing, remove the td from td list;
1481 * Return 1 if the urb can be given back.
1483 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1484 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1485 struct xhci_virt_ep *ep, int *status, bool skip)
1487 struct xhci_virt_device *xdev;
1488 struct xhci_ring *ep_ring;
1489 unsigned int slot_id;
1490 int ep_index;
1491 struct urb *urb = NULL;
1492 struct xhci_ep_ctx *ep_ctx;
1493 int ret = 0;
1494 struct urb_priv *urb_priv;
1495 u32 trb_comp_code;
1497 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1498 xdev = xhci->devs[slot_id];
1499 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1500 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1501 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1502 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1504 if (skip)
1505 goto td_cleanup;
1507 if (trb_comp_code == COMP_STOP_INVAL ||
1508 trb_comp_code == COMP_STOP) {
1509 /* The Endpoint Stop Command completion will take care of any
1510 * stopped TDs. A stopped TD may be restarted, so don't update
1511 * the ring dequeue pointer or take this TD off any lists yet.
1513 ep->stopped_td = td;
1514 ep->stopped_trb = event_trb;
1515 return 0;
1516 } else {
1517 if (trb_comp_code == COMP_STALL) {
1518 /* The transfer is completed from the driver's
1519 * perspective, but we need to issue a set dequeue
1520 * command for this stalled endpoint to move the dequeue
1521 * pointer past the TD. We can't do that here because
1522 * the halt condition must be cleared first. Let the
1523 * USB class driver clear the stall later.
1525 ep->stopped_td = td;
1526 ep->stopped_trb = event_trb;
1527 ep->stopped_stream = ep_ring->stream_id;
1528 } else if (xhci_requires_manual_halt_cleanup(xhci,
1529 ep_ctx, trb_comp_code)) {
1530 /* Other types of errors halt the endpoint, but the
1531 * class driver doesn't call usb_reset_endpoint() unless
1532 * the error is -EPIPE. Clear the halted status in the
1533 * xHCI hardware manually.
1535 xhci_cleanup_halted_endpoint(xhci,
1536 slot_id, ep_index, ep_ring->stream_id,
1537 td, event_trb);
1538 } else {
1539 /* Update ring dequeue pointer */
1540 while (ep_ring->dequeue != td->last_trb)
1541 inc_deq(xhci, ep_ring, false);
1542 inc_deq(xhci, ep_ring, false);
1545 td_cleanup:
1546 /* Clean up the endpoint's TD list */
1547 urb = td->urb;
1548 urb_priv = urb->hcpriv;
1550 /* Do one last check of the actual transfer length.
1551 * If the host controller said we transferred more data than
1552 * the buffer length, urb->actual_length will be a very big
1553 * number (since it's unsigned). Play it safe and say we didn't
1554 * transfer anything.
1556 if (urb->actual_length > urb->transfer_buffer_length) {
1557 xhci_warn(xhci, "URB transfer length is wrong, "
1558 "xHC issue? req. len = %u, "
1559 "act. len = %u\n",
1560 urb->transfer_buffer_length,
1561 urb->actual_length);
1562 urb->actual_length = 0;
1563 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1564 *status = -EREMOTEIO;
1565 else
1566 *status = 0;
1568 list_del(&td->td_list);
1569 /* Was this TD slated to be cancelled but completed anyway? */
1570 if (!list_empty(&td->cancelled_td_list))
1571 list_del(&td->cancelled_td_list);
1573 urb_priv->td_cnt++;
1574 /* Giveback the urb when all the tds are completed */
1575 if (urb_priv->td_cnt == urb_priv->length) {
1576 ret = 1;
1577 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1578 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1579 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1580 == 0) {
1581 if (xhci->quirks & XHCI_AMD_PLL_FIX)
1582 usb_amd_quirk_pll_enable();
1588 return ret;
1592 * Process control tds, update urb status and actual_length.
1594 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1595 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1596 struct xhci_virt_ep *ep, int *status)
1598 struct xhci_virt_device *xdev;
1599 struct xhci_ring *ep_ring;
1600 unsigned int slot_id;
1601 int ep_index;
1602 struct xhci_ep_ctx *ep_ctx;
1603 u32 trb_comp_code;
1605 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1606 xdev = xhci->devs[slot_id];
1607 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1608 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1609 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1610 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1612 xhci_debug_trb(xhci, xhci->event_ring->dequeue);
1613 switch (trb_comp_code) {
1614 case COMP_SUCCESS:
1615 if (event_trb == ep_ring->dequeue) {
1616 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1617 "without IOC set??\n");
1618 *status = -ESHUTDOWN;
1619 } else if (event_trb != td->last_trb) {
1620 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1621 "without IOC set??\n");
1622 *status = -ESHUTDOWN;
1623 } else {
1624 *status = 0;
1626 break;
1627 case COMP_SHORT_TX:
1628 xhci_warn(xhci, "WARN: short transfer on control ep\n");
1629 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1630 *status = -EREMOTEIO;
1631 else
1632 *status = 0;
1633 break;
1634 case COMP_STOP_INVAL:
1635 case COMP_STOP:
1636 return finish_td(xhci, td, event_trb, event, ep, status, false);
1637 default:
1638 if (!xhci_requires_manual_halt_cleanup(xhci,
1639 ep_ctx, trb_comp_code))
1640 break;
1641 xhci_dbg(xhci, "TRB error code %u, "
1642 "halted endpoint index = %u\n",
1643 trb_comp_code, ep_index);
1644 /* else fall through */
1645 case COMP_STALL:
1646 /* Did we transfer part of the data (middle) phase? */
1647 if (event_trb != ep_ring->dequeue &&
1648 event_trb != td->last_trb)
1649 td->urb->actual_length =
1650 td->urb->transfer_buffer_length
1651 - TRB_LEN(le32_to_cpu(event->transfer_len));
1652 else
1653 td->urb->actual_length = 0;
1655 xhci_cleanup_halted_endpoint(xhci,
1656 slot_id, ep_index, 0, td, event_trb);
1657 return finish_td(xhci, td, event_trb, event, ep, status, true);
1660 * Did we transfer any data, despite the errors that might have
1661 * happened? I.e. did we get past the setup stage?
1663 if (event_trb != ep_ring->dequeue) {
1664 /* The event was for the status stage */
1665 if (event_trb == td->last_trb) {
1666 if (td->urb->actual_length != 0) {
1667 /* Don't overwrite a previously set error code
1669 if ((*status == -EINPROGRESS || *status == 0) &&
1670 (td->urb->transfer_flags
1671 & URB_SHORT_NOT_OK))
1672 /* Did we already see a short data
1673 * stage? */
1674 *status = -EREMOTEIO;
1675 } else {
1676 td->urb->actual_length =
1677 td->urb->transfer_buffer_length;
1679 } else {
1680 /* Maybe the event was for the data stage? */
1681 td->urb->actual_length =
1682 td->urb->transfer_buffer_length -
1683 TRB_LEN(le32_to_cpu(event->transfer_len));
1684 xhci_dbg(xhci, "Waiting for status "
1685 "stage event\n");
1686 return 0;
1690 return finish_td(xhci, td, event_trb, event, ep, status, false);
1694 * Process isochronous tds, update urb packet status and actual_length.
1696 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1697 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1698 struct xhci_virt_ep *ep, int *status)
1700 struct xhci_ring *ep_ring;
1701 struct urb_priv *urb_priv;
1702 int idx;
1703 int len = 0;
1704 union xhci_trb *cur_trb;
1705 struct xhci_segment *cur_seg;
1706 struct usb_iso_packet_descriptor *frame;
1707 u32 trb_comp_code;
1708 bool skip_td = false;
1710 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1711 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1712 urb_priv = td->urb->hcpriv;
1713 idx = urb_priv->td_cnt;
1714 frame = &td->urb->iso_frame_desc[idx];
1716 /* handle completion code */
1717 switch (trb_comp_code) {
1718 case COMP_SUCCESS:
1719 frame->status = 0;
1720 break;
1721 case COMP_SHORT_TX:
1722 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
1723 -EREMOTEIO : 0;
1724 break;
1725 case COMP_BW_OVER:
1726 frame->status = -ECOMM;
1727 skip_td = true;
1728 break;
1729 case COMP_BUFF_OVER:
1730 case COMP_BABBLE:
1731 frame->status = -EOVERFLOW;
1732 skip_td = true;
1733 break;
1734 case COMP_STALL:
1735 frame->status = -EPROTO;
1736 skip_td = true;
1737 break;
1738 case COMP_STOP:
1739 case COMP_STOP_INVAL:
1740 break;
1741 default:
1742 frame->status = -1;
1743 break;
1746 if (trb_comp_code == COMP_SUCCESS || skip_td) {
1747 frame->actual_length = frame->length;
1748 td->urb->actual_length += frame->length;
1749 } else {
1750 for (cur_trb = ep_ring->dequeue,
1751 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
1752 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1753 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1754 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1755 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1757 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1758 TRB_LEN(le32_to_cpu(event->transfer_len));
1760 if (trb_comp_code != COMP_STOP_INVAL) {
1761 frame->actual_length = len;
1762 td->urb->actual_length += len;
1766 if ((idx == urb_priv->length - 1) && *status == -EINPROGRESS)
1767 *status = 0;
1769 return finish_td(xhci, td, event_trb, event, ep, status, false);
1772 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1773 struct xhci_transfer_event *event,
1774 struct xhci_virt_ep *ep, int *status)
1776 struct xhci_ring *ep_ring;
1777 struct urb_priv *urb_priv;
1778 struct usb_iso_packet_descriptor *frame;
1779 int idx;
1781 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1782 urb_priv = td->urb->hcpriv;
1783 idx = urb_priv->td_cnt;
1784 frame = &td->urb->iso_frame_desc[idx];
1786 /* The transfer is partly done */
1787 *status = -EXDEV;
1788 frame->status = -EXDEV;
1790 /* calc actual length */
1791 frame->actual_length = 0;
1793 /* Update ring dequeue pointer */
1794 while (ep_ring->dequeue != td->last_trb)
1795 inc_deq(xhci, ep_ring, false);
1796 inc_deq(xhci, ep_ring, false);
1798 return finish_td(xhci, td, NULL, event, ep, status, true);
1802 * Process bulk and interrupt tds, update urb status and actual_length.
1804 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
1805 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1806 struct xhci_virt_ep *ep, int *status)
1808 struct xhci_ring *ep_ring;
1809 union xhci_trb *cur_trb;
1810 struct xhci_segment *cur_seg;
1811 u32 trb_comp_code;
1813 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1814 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1816 switch (trb_comp_code) {
1817 case COMP_SUCCESS:
1818 /* Double check that the HW transferred everything. */
1819 if (event_trb != td->last_trb) {
1820 xhci_warn(xhci, "WARN Successful completion "
1821 "on short TX\n");
1822 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1823 *status = -EREMOTEIO;
1824 else
1825 *status = 0;
1826 } else {
1827 *status = 0;
1829 break;
1830 case COMP_SHORT_TX:
1831 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1832 *status = -EREMOTEIO;
1833 else
1834 *status = 0;
1835 break;
1836 default:
1837 /* Others already handled above */
1838 break;
1840 if (trb_comp_code == COMP_SHORT_TX)
1841 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
1842 "%d bytes untransferred\n",
1843 td->urb->ep->desc.bEndpointAddress,
1844 td->urb->transfer_buffer_length,
1845 TRB_LEN(le32_to_cpu(event->transfer_len)));
1846 /* Fast path - was this the last TRB in the TD for this URB? */
1847 if (event_trb == td->last_trb) {
1848 if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
1849 td->urb->actual_length =
1850 td->urb->transfer_buffer_length -
1851 TRB_LEN(le32_to_cpu(event->transfer_len));
1852 if (td->urb->transfer_buffer_length <
1853 td->urb->actual_length) {
1854 xhci_warn(xhci, "HC gave bad length "
1855 "of %d bytes left\n",
1856 TRB_LEN(le32_to_cpu(event->transfer_len)));
1857 td->urb->actual_length = 0;
1858 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1859 *status = -EREMOTEIO;
1860 else
1861 *status = 0;
1863 /* Don't overwrite a previously set error code */
1864 if (*status == -EINPROGRESS) {
1865 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1866 *status = -EREMOTEIO;
1867 else
1868 *status = 0;
1870 } else {
1871 td->urb->actual_length =
1872 td->urb->transfer_buffer_length;
1873 /* Ignore a short packet completion if the
1874 * untransferred length was zero.
1876 if (*status == -EREMOTEIO)
1877 *status = 0;
1879 } else {
1880 /* Slow path - walk the list, starting from the dequeue
1881 * pointer, to get the actual length transferred.
1883 td->urb->actual_length = 0;
1884 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
1885 cur_trb != event_trb;
1886 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1887 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1888 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1889 td->urb->actual_length +=
1890 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1892 /* If the ring didn't stop on a Link or No-op TRB, add
1893 * in the actual bytes transferred from the Normal TRB
1895 if (trb_comp_code != COMP_STOP_INVAL)
1896 td->urb->actual_length +=
1897 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1898 TRB_LEN(le32_to_cpu(event->transfer_len));
1901 return finish_td(xhci, td, event_trb, event, ep, status, false);
1905 * If this function returns an error condition, it means it got a Transfer
1906 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
1907 * At this point, the host controller is probably hosed and should be reset.
1909 static int handle_tx_event(struct xhci_hcd *xhci,
1910 struct xhci_transfer_event *event)
1912 struct xhci_virt_device *xdev;
1913 struct xhci_virt_ep *ep;
1914 struct xhci_ring *ep_ring;
1915 unsigned int slot_id;
1916 int ep_index;
1917 struct xhci_td *td = NULL;
1918 dma_addr_t event_dma;
1919 struct xhci_segment *event_seg;
1920 union xhci_trb *event_trb;
1921 struct urb *urb = NULL;
1922 int status = -EINPROGRESS;
1923 struct urb_priv *urb_priv;
1924 struct xhci_ep_ctx *ep_ctx;
1925 u32 trb_comp_code;
1926 int ret = 0;
1928 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1929 xdev = xhci->devs[slot_id];
1930 if (!xdev) {
1931 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
1932 return -ENODEV;
1935 /* Endpoint ID is 1 based, our index is zero based */
1936 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1937 ep = &xdev->eps[ep_index];
1938 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1939 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1940 if (!ep_ring ||
1941 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
1942 EP_STATE_DISABLED) {
1943 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
1944 "or incorrect stream ring\n");
1945 return -ENODEV;
1948 event_dma = le64_to_cpu(event->buffer);
1949 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1950 /* Look for common error cases */
1951 switch (trb_comp_code) {
1952 /* Skip codes that require special handling depending on
1953 * transfer type
1955 case COMP_SUCCESS:
1956 case COMP_SHORT_TX:
1957 break;
1958 case COMP_STOP:
1959 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
1960 break;
1961 case COMP_STOP_INVAL:
1962 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
1963 break;
1964 case COMP_STALL:
1965 xhci_warn(xhci, "WARN: Stalled endpoint\n");
1966 ep->ep_state |= EP_HALTED;
1967 status = -EPIPE;
1968 break;
1969 case COMP_TRB_ERR:
1970 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
1971 status = -EILSEQ;
1972 break;
1973 case COMP_SPLIT_ERR:
1974 case COMP_TX_ERR:
1975 xhci_warn(xhci, "WARN: transfer error on endpoint\n");
1976 status = -EPROTO;
1977 break;
1978 case COMP_BABBLE:
1979 xhci_warn(xhci, "WARN: babble error on endpoint\n");
1980 status = -EOVERFLOW;
1981 break;
1982 case COMP_DB_ERR:
1983 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
1984 status = -ENOSR;
1985 break;
1986 case COMP_BW_OVER:
1987 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
1988 break;
1989 case COMP_BUFF_OVER:
1990 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
1991 break;
1992 case COMP_UNDERRUN:
1994 * When the Isoch ring is empty, the xHC will generate
1995 * a Ring Overrun Event for IN Isoch endpoint or Ring
1996 * Underrun Event for OUT Isoch endpoint.
1998 xhci_dbg(xhci, "underrun event on endpoint\n");
1999 if (!list_empty(&ep_ring->td_list))
2000 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2001 "still with TDs queued?\n",
2002 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2003 ep_index);
2004 goto cleanup;
2005 case COMP_OVERRUN:
2006 xhci_dbg(xhci, "overrun event on endpoint\n");
2007 if (!list_empty(&ep_ring->td_list))
2008 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2009 "still with TDs queued?\n",
2010 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2011 ep_index);
2012 goto cleanup;
2013 case COMP_MISSED_INT:
2015 * When encounter missed service error, one or more isoc tds
2016 * may be missed by xHC.
2017 * Set skip flag of the ep_ring; Complete the missed tds as
2018 * short transfer when process the ep_ring next time.
2020 ep->skip = true;
2021 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2022 goto cleanup;
2023 default:
2024 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2025 status = 0;
2026 break;
2028 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2029 "busted\n");
2030 goto cleanup;
2033 do {
2034 /* This TRB should be in the TD at the head of this ring's
2035 * TD list.
2037 if (list_empty(&ep_ring->td_list)) {
2038 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d "
2039 "with no TDs queued?\n",
2040 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2041 ep_index);
2042 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2043 (le32_to_cpu(event->flags) &
2044 TRB_TYPE_BITMASK)>>10);
2045 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2046 if (ep->skip) {
2047 ep->skip = false;
2048 xhci_dbg(xhci, "td_list is empty while skip "
2049 "flag set. Clear skip flag.\n");
2051 ret = 0;
2052 goto cleanup;
2055 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2057 /* Is this a TRB in the currently executing TD? */
2058 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2059 td->last_trb, event_dma);
2060 if (!event_seg) {
2061 if (!ep->skip ||
2062 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2063 /* Some host controllers give a spurious
2064 * successful event after a short transfer.
2065 * Ignore it.
2067 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2068 ep_ring->last_td_was_short) {
2069 ep_ring->last_td_was_short = false;
2070 ret = 0;
2071 goto cleanup;
2073 /* HC is busted, give up! */
2074 xhci_err(xhci,
2075 "ERROR Transfer event TRB DMA ptr not "
2076 "part of current TD\n");
2077 return -ESHUTDOWN;
2080 ret = skip_isoc_td(xhci, td, event, ep, &status);
2081 goto cleanup;
2083 if (trb_comp_code == COMP_SHORT_TX)
2084 ep_ring->last_td_was_short = true;
2085 else
2086 ep_ring->last_td_was_short = false;
2088 if (ep->skip) {
2089 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2090 ep->skip = false;
2093 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2094 sizeof(*event_trb)];
2096 * No-op TRB should not trigger interrupts.
2097 * If event_trb is a no-op TRB, it means the
2098 * corresponding TD has been cancelled. Just ignore
2099 * the TD.
2101 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2102 xhci_dbg(xhci,
2103 "event_trb is a no-op TRB. Skip it\n");
2104 goto cleanup;
2107 /* Now update the urb's actual_length and give back to
2108 * the core
2110 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2111 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2112 &status);
2113 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2114 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2115 &status);
2116 else
2117 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2118 ep, &status);
2120 cleanup:
2122 * Do not update event ring dequeue pointer if ep->skip is set.
2123 * Will roll back to continue process missed tds.
2125 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2126 inc_deq(xhci, xhci->event_ring, true);
2129 if (ret) {
2130 urb = td->urb;
2131 urb_priv = urb->hcpriv;
2132 /* Leave the TD around for the reset endpoint function
2133 * to use(but only if it's not a control endpoint,
2134 * since we already queued the Set TR dequeue pointer
2135 * command for stalled control endpoints).
2137 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2138 (trb_comp_code != COMP_STALL &&
2139 trb_comp_code != COMP_BABBLE))
2140 xhci_urb_free_priv(xhci, urb_priv);
2142 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2143 if ((urb->actual_length != urb->transfer_buffer_length &&
2144 (urb->transfer_flags &
2145 URB_SHORT_NOT_OK)) ||
2146 status != 0)
2147 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2148 "expected = %x, status = %d\n",
2149 urb, urb->actual_length,
2150 urb->transfer_buffer_length,
2151 status);
2152 spin_unlock(&xhci->lock);
2153 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2154 spin_lock(&xhci->lock);
2158 * If ep->skip is set, it means there are missed tds on the
2159 * endpoint ring need to take care of.
2160 * Process them as short transfer until reach the td pointed by
2161 * the event.
2163 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2165 return 0;
2169 * This function handles all OS-owned events on the event ring. It may drop
2170 * xhci->lock between event processing (e.g. to pass up port status changes).
2171 * Returns >0 for "possibly more events to process" (caller should call again),
2172 * otherwise 0 if done. In future, <0 returns should indicate error code.
2174 static int xhci_handle_event(struct xhci_hcd *xhci)
2176 union xhci_trb *event;
2177 int update_ptrs = 1;
2178 int ret;
2180 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2181 xhci->error_bitmask |= 1 << 1;
2182 return 0;
2185 event = xhci->event_ring->dequeue;
2186 /* Does the HC or OS own the TRB? */
2187 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2188 xhci->event_ring->cycle_state) {
2189 xhci->error_bitmask |= 1 << 2;
2190 return 0;
2194 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2195 * speculative reads of the event's flags/data below.
2197 rmb();
2198 /* FIXME: Handle more event types. */
2199 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2200 case TRB_TYPE(TRB_COMPLETION):
2201 handle_cmd_completion(xhci, &event->event_cmd);
2202 break;
2203 case TRB_TYPE(TRB_PORT_STATUS):
2204 handle_port_status(xhci, event);
2205 update_ptrs = 0;
2206 break;
2207 case TRB_TYPE(TRB_TRANSFER):
2208 ret = handle_tx_event(xhci, &event->trans_event);
2209 if (ret < 0)
2210 xhci->error_bitmask |= 1 << 9;
2211 else
2212 update_ptrs = 0;
2213 break;
2214 default:
2215 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2216 TRB_TYPE(48))
2217 handle_vendor_event(xhci, event);
2218 else
2219 xhci->error_bitmask |= 1 << 3;
2221 /* Any of the above functions may drop and re-acquire the lock, so check
2222 * to make sure a watchdog timer didn't mark the host as non-responsive.
2224 if (xhci->xhc_state & XHCI_STATE_DYING) {
2225 xhci_dbg(xhci, "xHCI host dying, returning from "
2226 "event handler.\n");
2227 return 0;
2230 if (update_ptrs)
2231 /* Update SW event ring dequeue pointer */
2232 inc_deq(xhci, xhci->event_ring, true);
2234 /* Are there more items on the event ring? Caller will call us again to
2235 * check.
2237 return 1;
2241 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2242 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2243 * indicators of an event TRB error, but we check the status *first* to be safe.
2245 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2247 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2248 u32 status;
2249 union xhci_trb *trb;
2250 u64 temp_64;
2251 union xhci_trb *event_ring_deq;
2252 dma_addr_t deq;
2254 spin_lock(&xhci->lock);
2255 trb = xhci->event_ring->dequeue;
2256 /* Check if the xHC generated the interrupt, or the irq is shared */
2257 status = xhci_readl(xhci, &xhci->op_regs->status);
2258 if (status == 0xffffffff)
2259 goto hw_died;
2261 if (!(status & STS_EINT)) {
2262 spin_unlock(&xhci->lock);
2263 return IRQ_NONE;
2265 if (status & STS_FATAL) {
2266 xhci_warn(xhci, "WARNING: Host System Error\n");
2267 xhci_halt(xhci);
2268 hw_died:
2269 spin_unlock(&xhci->lock);
2270 return -ESHUTDOWN;
2274 * Clear the op reg interrupt status first,
2275 * so we can receive interrupts from other MSI-X interrupters.
2276 * Write 1 to clear the interrupt status.
2278 status |= STS_EINT;
2279 xhci_writel(xhci, status, &xhci->op_regs->status);
2280 /* FIXME when MSI-X is supported and there are multiple vectors */
2281 /* Clear the MSI-X event interrupt status */
2283 if (hcd->irq != -1) {
2284 u32 irq_pending;
2285 /* Acknowledge the PCI interrupt */
2286 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2287 irq_pending |= 0x3;
2288 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2291 if (xhci->xhc_state & XHCI_STATE_DYING) {
2292 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2293 "Shouldn't IRQs be disabled?\n");
2294 /* Clear the event handler busy flag (RW1C);
2295 * the event ring should be empty.
2297 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2298 xhci_write_64(xhci, temp_64 | ERST_EHB,
2299 &xhci->ir_set->erst_dequeue);
2300 spin_unlock(&xhci->lock);
2302 return IRQ_HANDLED;
2305 event_ring_deq = xhci->event_ring->dequeue;
2306 /* FIXME this should be a delayed service routine
2307 * that clears the EHB.
2309 while (xhci_handle_event(xhci) > 0) {}
2311 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2312 /* If necessary, update the HW's version of the event ring deq ptr. */
2313 if (event_ring_deq != xhci->event_ring->dequeue) {
2314 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2315 xhci->event_ring->dequeue);
2316 if (deq == 0)
2317 xhci_warn(xhci, "WARN something wrong with SW event "
2318 "ring dequeue ptr.\n");
2319 /* Update HC event ring dequeue pointer */
2320 temp_64 &= ERST_PTR_MASK;
2321 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2324 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2325 temp_64 |= ERST_EHB;
2326 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2328 spin_unlock(&xhci->lock);
2330 return IRQ_HANDLED;
2333 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd)
2335 irqreturn_t ret;
2336 struct xhci_hcd *xhci;
2338 xhci = hcd_to_xhci(hcd);
2339 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2340 if (xhci->shared_hcd)
2341 set_bit(HCD_FLAG_SAW_IRQ, &xhci->shared_hcd->flags);
2343 ret = xhci_irq(hcd);
2345 return ret;
2348 /**** Endpoint Ring Operations ****/
2351 * Generic function for queueing a TRB on a ring.
2352 * The caller must have checked to make sure there's room on the ring.
2354 * @more_trbs_coming: Will you enqueue more TRBs before calling
2355 * prepare_transfer()?
2357 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2358 bool consumer, bool more_trbs_coming,
2359 u32 field1, u32 field2, u32 field3, u32 field4)
2361 struct xhci_generic_trb *trb;
2363 trb = &ring->enqueue->generic;
2364 trb->field[0] = cpu_to_le32(field1);
2365 trb->field[1] = cpu_to_le32(field2);
2366 trb->field[2] = cpu_to_le32(field3);
2367 trb->field[3] = cpu_to_le32(field4);
2368 inc_enq(xhci, ring, consumer, more_trbs_coming);
2372 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2373 * FIXME allocate segments if the ring is full.
2375 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2376 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2378 /* Make sure the endpoint has been added to xHC schedule */
2379 switch (ep_state) {
2380 case EP_STATE_DISABLED:
2382 * USB core changed config/interfaces without notifying us,
2383 * or hardware is reporting the wrong state.
2385 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2386 return -ENOENT;
2387 case EP_STATE_ERROR:
2388 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2389 /* FIXME event handling code for error needs to clear it */
2390 /* XXX not sure if this should be -ENOENT or not */
2391 return -EINVAL;
2392 case EP_STATE_HALTED:
2393 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2394 case EP_STATE_STOPPED:
2395 case EP_STATE_RUNNING:
2396 break;
2397 default:
2398 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2400 * FIXME issue Configure Endpoint command to try to get the HC
2401 * back into a known state.
2403 return -EINVAL;
2405 if (!room_on_ring(xhci, ep_ring, num_trbs)) {
2406 /* FIXME allocate more room */
2407 xhci_err(xhci, "ERROR no room on ep ring\n");
2408 return -ENOMEM;
2411 if (enqueue_is_link_trb(ep_ring)) {
2412 struct xhci_ring *ring = ep_ring;
2413 union xhci_trb *next;
2415 next = ring->enqueue;
2417 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2418 /* If we're not dealing with 0.95 hardware,
2419 * clear the chain bit.
2421 if (!xhci_link_trb_quirk(xhci))
2422 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2423 else
2424 next->link.control |= cpu_to_le32(TRB_CHAIN);
2426 wmb();
2427 next->link.control ^= cpu_to_le32(TRB_CYCLE);
2429 /* Toggle the cycle bit after the last ring segment. */
2430 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2431 ring->cycle_state = (ring->cycle_state ? 0 : 1);
2432 if (!in_interrupt()) {
2433 xhci_dbg(xhci, "queue_trb: Toggle cycle "
2434 "state for ring %p = %i\n",
2435 ring, (unsigned int)ring->cycle_state);
2438 ring->enq_seg = ring->enq_seg->next;
2439 ring->enqueue = ring->enq_seg->trbs;
2440 next = ring->enqueue;
2444 return 0;
2447 static int prepare_transfer(struct xhci_hcd *xhci,
2448 struct xhci_virt_device *xdev,
2449 unsigned int ep_index,
2450 unsigned int stream_id,
2451 unsigned int num_trbs,
2452 struct urb *urb,
2453 unsigned int td_index,
2454 gfp_t mem_flags)
2456 int ret;
2457 struct urb_priv *urb_priv;
2458 struct xhci_td *td;
2459 struct xhci_ring *ep_ring;
2460 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2462 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2463 if (!ep_ring) {
2464 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2465 stream_id);
2466 return -EINVAL;
2469 ret = prepare_ring(xhci, ep_ring,
2470 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2471 num_trbs, mem_flags);
2472 if (ret)
2473 return ret;
2475 urb_priv = urb->hcpriv;
2476 td = urb_priv->td[td_index];
2478 INIT_LIST_HEAD(&td->td_list);
2479 INIT_LIST_HEAD(&td->cancelled_td_list);
2481 if (td_index == 0) {
2482 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2483 if (unlikely(ret)) {
2484 xhci_urb_free_priv(xhci, urb_priv);
2485 urb->hcpriv = NULL;
2486 return ret;
2490 td->urb = urb;
2491 /* Add this TD to the tail of the endpoint ring's TD list */
2492 list_add_tail(&td->td_list, &ep_ring->td_list);
2493 td->start_seg = ep_ring->enq_seg;
2494 td->first_trb = ep_ring->enqueue;
2496 urb_priv->td[td_index] = td;
2498 return 0;
2501 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2503 int num_sgs, num_trbs, running_total, temp, i;
2504 struct scatterlist *sg;
2506 sg = NULL;
2507 num_sgs = urb->num_sgs;
2508 temp = urb->transfer_buffer_length;
2510 xhci_dbg(xhci, "count sg list trbs: \n");
2511 num_trbs = 0;
2512 for_each_sg(urb->sg, sg, num_sgs, i) {
2513 unsigned int previous_total_trbs = num_trbs;
2514 unsigned int len = sg_dma_len(sg);
2516 /* Scatter gather list entries may cross 64KB boundaries */
2517 running_total = TRB_MAX_BUFF_SIZE -
2518 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2519 running_total &= TRB_MAX_BUFF_SIZE - 1;
2520 if (running_total != 0)
2521 num_trbs++;
2523 /* How many more 64KB chunks to transfer, how many more TRBs? */
2524 while (running_total < sg_dma_len(sg) && running_total < temp) {
2525 num_trbs++;
2526 running_total += TRB_MAX_BUFF_SIZE;
2528 xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n",
2529 i, (unsigned long long)sg_dma_address(sg),
2530 len, len, num_trbs - previous_total_trbs);
2532 len = min_t(int, len, temp);
2533 temp -= len;
2534 if (temp == 0)
2535 break;
2537 xhci_dbg(xhci, "\n");
2538 if (!in_interrupt())
2539 xhci_dbg(xhci, "ep %#x - urb len = %d, sglist used, "
2540 "num_trbs = %d\n",
2541 urb->ep->desc.bEndpointAddress,
2542 urb->transfer_buffer_length,
2543 num_trbs);
2544 return num_trbs;
2547 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2549 if (num_trbs != 0)
2550 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2551 "TRBs, %d left\n", __func__,
2552 urb->ep->desc.bEndpointAddress, num_trbs);
2553 if (running_total != urb->transfer_buffer_length)
2554 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2555 "queued %#x (%d), asked for %#x (%d)\n",
2556 __func__,
2557 urb->ep->desc.bEndpointAddress,
2558 running_total, running_total,
2559 urb->transfer_buffer_length,
2560 urb->transfer_buffer_length);
2563 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2564 unsigned int ep_index, unsigned int stream_id, int start_cycle,
2565 struct xhci_generic_trb *start_trb)
2568 * Pass all the TRBs to the hardware at once and make sure this write
2569 * isn't reordered.
2571 wmb();
2572 if (start_cycle)
2573 start_trb->field[3] |= cpu_to_le32(start_cycle);
2574 else
2575 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2576 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2580 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
2581 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
2582 * (comprised of sg list entries) can take several service intervals to
2583 * transmit.
2585 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2586 struct urb *urb, int slot_id, unsigned int ep_index)
2588 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
2589 xhci->devs[slot_id]->out_ctx, ep_index);
2590 int xhci_interval;
2591 int ep_interval;
2593 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
2594 ep_interval = urb->interval;
2595 /* Convert to microframes */
2596 if (urb->dev->speed == USB_SPEED_LOW ||
2597 urb->dev->speed == USB_SPEED_FULL)
2598 ep_interval *= 8;
2599 /* FIXME change this to a warning and a suggestion to use the new API
2600 * to set the polling interval (once the API is added).
2602 if (xhci_interval != ep_interval) {
2603 if (printk_ratelimit())
2604 dev_dbg(&urb->dev->dev, "Driver uses different interval"
2605 " (%d microframe%s) than xHCI "
2606 "(%d microframe%s)\n",
2607 ep_interval,
2608 ep_interval == 1 ? "" : "s",
2609 xhci_interval,
2610 xhci_interval == 1 ? "" : "s");
2611 urb->interval = xhci_interval;
2612 /* Convert back to frames for LS/FS devices */
2613 if (urb->dev->speed == USB_SPEED_LOW ||
2614 urb->dev->speed == USB_SPEED_FULL)
2615 urb->interval /= 8;
2617 return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
2621 * The TD size is the number of bytes remaining in the TD (including this TRB),
2622 * right shifted by 10.
2623 * It must fit in bits 21:17, so it can't be bigger than 31.
2625 static u32 xhci_td_remainder(unsigned int remainder)
2627 u32 max = (1 << (21 - 17 + 1)) - 1;
2629 if ((remainder >> 10) >= max)
2630 return max << 17;
2631 else
2632 return (remainder >> 10) << 17;
2636 * For xHCI 1.0 host controllers, TD size is the number of packets remaining in
2637 * the TD (*not* including this TRB).
2639 * Total TD packet count = total_packet_count =
2640 * roundup(TD size in bytes / wMaxPacketSize)
2642 * Packets transferred up to and including this TRB = packets_transferred =
2643 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
2645 * TD size = total_packet_count - packets_transferred
2647 * It must fit in bits 21:17, so it can't be bigger than 31.
2650 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
2651 unsigned int total_packet_count, struct urb *urb)
2653 int packets_transferred;
2655 /* All the TRB queueing functions don't count the current TRB in
2656 * running_total.
2658 packets_transferred = (running_total + trb_buff_len) /
2659 le16_to_cpu(urb->ep->desc.wMaxPacketSize);
2661 return xhci_td_remainder(total_packet_count - packets_transferred);
2664 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2665 struct urb *urb, int slot_id, unsigned int ep_index)
2667 struct xhci_ring *ep_ring;
2668 unsigned int num_trbs;
2669 struct urb_priv *urb_priv;
2670 struct xhci_td *td;
2671 struct scatterlist *sg;
2672 int num_sgs;
2673 int trb_buff_len, this_sg_len, running_total;
2674 unsigned int total_packet_count;
2675 bool first_trb;
2676 u64 addr;
2677 bool more_trbs_coming;
2679 struct xhci_generic_trb *start_trb;
2680 int start_cycle;
2682 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2683 if (!ep_ring)
2684 return -EINVAL;
2686 num_trbs = count_sg_trbs_needed(xhci, urb);
2687 num_sgs = urb->num_sgs;
2688 total_packet_count = roundup(urb->transfer_buffer_length,
2689 le16_to_cpu(urb->ep->desc.wMaxPacketSize));
2691 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
2692 ep_index, urb->stream_id,
2693 num_trbs, urb, 0, mem_flags);
2694 if (trb_buff_len < 0)
2695 return trb_buff_len;
2697 urb_priv = urb->hcpriv;
2698 td = urb_priv->td[0];
2701 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2702 * until we've finished creating all the other TRBs. The ring's cycle
2703 * state may change as we enqueue the other TRBs, so save it too.
2705 start_trb = &ep_ring->enqueue->generic;
2706 start_cycle = ep_ring->cycle_state;
2708 running_total = 0;
2710 * How much data is in the first TRB?
2712 * There are three forces at work for TRB buffer pointers and lengths:
2713 * 1. We don't want to walk off the end of this sg-list entry buffer.
2714 * 2. The transfer length that the driver requested may be smaller than
2715 * the amount of memory allocated for this scatter-gather list.
2716 * 3. TRBs buffers can't cross 64KB boundaries.
2718 sg = urb->sg;
2719 addr = (u64) sg_dma_address(sg);
2720 this_sg_len = sg_dma_len(sg);
2721 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
2722 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2723 if (trb_buff_len > urb->transfer_buffer_length)
2724 trb_buff_len = urb->transfer_buffer_length;
2725 xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n",
2726 trb_buff_len);
2728 first_trb = true;
2729 /* Queue the first TRB, even if it's zero-length */
2730 do {
2731 u32 field = 0;
2732 u32 length_field = 0;
2733 u32 remainder = 0;
2735 /* Don't change the cycle bit of the first TRB until later */
2736 if (first_trb) {
2737 first_trb = false;
2738 if (start_cycle == 0)
2739 field |= 0x1;
2740 } else
2741 field |= ep_ring->cycle_state;
2743 /* Chain all the TRBs together; clear the chain bit in the last
2744 * TRB to indicate it's the last TRB in the chain.
2746 if (num_trbs > 1) {
2747 field |= TRB_CHAIN;
2748 } else {
2749 /* FIXME - add check for ZERO_PACKET flag before this */
2750 td->last_trb = ep_ring->enqueue;
2751 field |= TRB_IOC;
2754 /* Only set interrupt on short packet for IN endpoints */
2755 if (usb_urb_dir_in(urb))
2756 field |= TRB_ISP;
2758 xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), "
2759 "64KB boundary at %#x, end dma = %#x\n",
2760 (unsigned int) addr, trb_buff_len, trb_buff_len,
2761 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2762 (unsigned int) addr + trb_buff_len);
2763 if (TRB_MAX_BUFF_SIZE -
2764 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
2765 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
2766 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
2767 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2768 (unsigned int) addr + trb_buff_len);
2771 /* Set the TRB length, TD size, and interrupter fields. */
2772 if (xhci->hci_version < 0x100) {
2773 remainder = xhci_td_remainder(
2774 urb->transfer_buffer_length -
2775 running_total);
2776 } else {
2777 remainder = xhci_v1_0_td_remainder(running_total,
2778 trb_buff_len, total_packet_count, urb);
2780 length_field = TRB_LEN(trb_buff_len) |
2781 remainder |
2782 TRB_INTR_TARGET(0);
2784 if (num_trbs > 1)
2785 more_trbs_coming = true;
2786 else
2787 more_trbs_coming = false;
2788 queue_trb(xhci, ep_ring, false, more_trbs_coming,
2789 lower_32_bits(addr),
2790 upper_32_bits(addr),
2791 length_field,
2792 field | TRB_TYPE(TRB_NORMAL));
2793 --num_trbs;
2794 running_total += trb_buff_len;
2796 /* Calculate length for next transfer --
2797 * Are we done queueing all the TRBs for this sg entry?
2799 this_sg_len -= trb_buff_len;
2800 if (this_sg_len == 0) {
2801 --num_sgs;
2802 if (num_sgs == 0)
2803 break;
2804 sg = sg_next(sg);
2805 addr = (u64) sg_dma_address(sg);
2806 this_sg_len = sg_dma_len(sg);
2807 } else {
2808 addr += trb_buff_len;
2811 trb_buff_len = TRB_MAX_BUFF_SIZE -
2812 (addr & (TRB_MAX_BUFF_SIZE - 1));
2813 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2814 if (running_total + trb_buff_len > urb->transfer_buffer_length)
2815 trb_buff_len =
2816 urb->transfer_buffer_length - running_total;
2817 } while (running_total < urb->transfer_buffer_length);
2819 check_trb_math(urb, num_trbs, running_total);
2820 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
2821 start_cycle, start_trb);
2822 return 0;
2825 /* This is very similar to what ehci-q.c qtd_fill() does */
2826 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2827 struct urb *urb, int slot_id, unsigned int ep_index)
2829 struct xhci_ring *ep_ring;
2830 struct urb_priv *urb_priv;
2831 struct xhci_td *td;
2832 int num_trbs;
2833 struct xhci_generic_trb *start_trb;
2834 bool first_trb;
2835 bool more_trbs_coming;
2836 int start_cycle;
2837 u32 field, length_field;
2839 int running_total, trb_buff_len, ret;
2840 unsigned int total_packet_count;
2841 u64 addr;
2843 if (urb->num_sgs)
2844 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
2846 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2847 if (!ep_ring)
2848 return -EINVAL;
2850 num_trbs = 0;
2851 /* How much data is (potentially) left before the 64KB boundary? */
2852 running_total = TRB_MAX_BUFF_SIZE -
2853 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2854 running_total &= TRB_MAX_BUFF_SIZE - 1;
2856 /* If there's some data on this 64KB chunk, or we have to send a
2857 * zero-length transfer, we need at least one TRB
2859 if (running_total != 0 || urb->transfer_buffer_length == 0)
2860 num_trbs++;
2861 /* How many more 64KB chunks to transfer, how many more TRBs? */
2862 while (running_total < urb->transfer_buffer_length) {
2863 num_trbs++;
2864 running_total += TRB_MAX_BUFF_SIZE;
2866 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
2868 if (!in_interrupt())
2869 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d), "
2870 "addr = %#llx, num_trbs = %d\n",
2871 urb->ep->desc.bEndpointAddress,
2872 urb->transfer_buffer_length,
2873 urb->transfer_buffer_length,
2874 (unsigned long long)urb->transfer_dma,
2875 num_trbs);
2877 ret = prepare_transfer(xhci, xhci->devs[slot_id],
2878 ep_index, urb->stream_id,
2879 num_trbs, urb, 0, mem_flags);
2880 if (ret < 0)
2881 return ret;
2883 urb_priv = urb->hcpriv;
2884 td = urb_priv->td[0];
2887 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2888 * until we've finished creating all the other TRBs. The ring's cycle
2889 * state may change as we enqueue the other TRBs, so save it too.
2891 start_trb = &ep_ring->enqueue->generic;
2892 start_cycle = ep_ring->cycle_state;
2894 running_total = 0;
2895 total_packet_count = roundup(urb->transfer_buffer_length,
2896 le16_to_cpu(urb->ep->desc.wMaxPacketSize));
2897 /* How much data is in the first TRB? */
2898 addr = (u64) urb->transfer_dma;
2899 trb_buff_len = TRB_MAX_BUFF_SIZE -
2900 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2901 if (trb_buff_len > urb->transfer_buffer_length)
2902 trb_buff_len = urb->transfer_buffer_length;
2904 first_trb = true;
2906 /* Queue the first TRB, even if it's zero-length */
2907 do {
2908 u32 remainder = 0;
2909 field = 0;
2911 /* Don't change the cycle bit of the first TRB until later */
2912 if (first_trb) {
2913 first_trb = false;
2914 if (start_cycle == 0)
2915 field |= 0x1;
2916 } else
2917 field |= ep_ring->cycle_state;
2919 /* Chain all the TRBs together; clear the chain bit in the last
2920 * TRB to indicate it's the last TRB in the chain.
2922 if (num_trbs > 1) {
2923 field |= TRB_CHAIN;
2924 } else {
2925 /* FIXME - add check for ZERO_PACKET flag before this */
2926 td->last_trb = ep_ring->enqueue;
2927 field |= TRB_IOC;
2930 /* Only set interrupt on short packet for IN endpoints */
2931 if (usb_urb_dir_in(urb))
2932 field |= TRB_ISP;
2934 /* Set the TRB length, TD size, and interrupter fields. */
2935 if (xhci->hci_version < 0x100) {
2936 remainder = xhci_td_remainder(
2937 urb->transfer_buffer_length -
2938 running_total);
2939 } else {
2940 remainder = xhci_v1_0_td_remainder(running_total,
2941 trb_buff_len, total_packet_count, urb);
2943 length_field = TRB_LEN(trb_buff_len) |
2944 remainder |
2945 TRB_INTR_TARGET(0);
2947 if (num_trbs > 1)
2948 more_trbs_coming = true;
2949 else
2950 more_trbs_coming = false;
2951 queue_trb(xhci, ep_ring, false, more_trbs_coming,
2952 lower_32_bits(addr),
2953 upper_32_bits(addr),
2954 length_field,
2955 field | TRB_TYPE(TRB_NORMAL));
2956 --num_trbs;
2957 running_total += trb_buff_len;
2959 /* Calculate length for next transfer */
2960 addr += trb_buff_len;
2961 trb_buff_len = urb->transfer_buffer_length - running_total;
2962 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
2963 trb_buff_len = TRB_MAX_BUFF_SIZE;
2964 } while (running_total < urb->transfer_buffer_length);
2966 check_trb_math(urb, num_trbs, running_total);
2967 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
2968 start_cycle, start_trb);
2969 return 0;
2972 /* Caller must have locked xhci->lock */
2973 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2974 struct urb *urb, int slot_id, unsigned int ep_index)
2976 struct xhci_ring *ep_ring;
2977 int num_trbs;
2978 int ret;
2979 struct usb_ctrlrequest *setup;
2980 struct xhci_generic_trb *start_trb;
2981 int start_cycle;
2982 u32 field, length_field;
2983 struct urb_priv *urb_priv;
2984 struct xhci_td *td;
2986 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2987 if (!ep_ring)
2988 return -EINVAL;
2991 * Need to copy setup packet into setup TRB, so we can't use the setup
2992 * DMA address.
2994 if (!urb->setup_packet)
2995 return -EINVAL;
2997 if (!in_interrupt())
2998 xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n",
2999 slot_id, ep_index);
3000 /* 1 TRB for setup, 1 for status */
3001 num_trbs = 2;
3003 * Don't need to check if we need additional event data and normal TRBs,
3004 * since data in control transfers will never get bigger than 16MB
3005 * XXX: can we get a buffer that crosses 64KB boundaries?
3007 if (urb->transfer_buffer_length > 0)
3008 num_trbs++;
3009 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3010 ep_index, urb->stream_id,
3011 num_trbs, urb, 0, mem_flags);
3012 if (ret < 0)
3013 return ret;
3015 urb_priv = urb->hcpriv;
3016 td = urb_priv->td[0];
3019 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3020 * until we've finished creating all the other TRBs. The ring's cycle
3021 * state may change as we enqueue the other TRBs, so save it too.
3023 start_trb = &ep_ring->enqueue->generic;
3024 start_cycle = ep_ring->cycle_state;
3026 /* Queue setup TRB - see section 6.4.1.2.1 */
3027 /* FIXME better way to translate setup_packet into two u32 fields? */
3028 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3029 field = 0;
3030 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3031 if (start_cycle == 0)
3032 field |= 0x1;
3034 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3035 if (xhci->hci_version == 0x100) {
3036 if (urb->transfer_buffer_length > 0) {
3037 if (setup->bRequestType & USB_DIR_IN)
3038 field |= TRB_TX_TYPE(TRB_DATA_IN);
3039 else
3040 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3044 queue_trb(xhci, ep_ring, false, true,
3045 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3046 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3047 TRB_LEN(8) | TRB_INTR_TARGET(0),
3048 /* Immediate data in pointer */
3049 field);
3051 /* If there's data, queue data TRBs */
3052 /* Only set interrupt on short packet for IN endpoints */
3053 if (usb_urb_dir_in(urb))
3054 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3055 else
3056 field = TRB_TYPE(TRB_DATA);
3058 length_field = TRB_LEN(urb->transfer_buffer_length) |
3059 xhci_td_remainder(urb->transfer_buffer_length) |
3060 TRB_INTR_TARGET(0);
3061 if (urb->transfer_buffer_length > 0) {
3062 if (setup->bRequestType & USB_DIR_IN)
3063 field |= TRB_DIR_IN;
3064 queue_trb(xhci, ep_ring, false, true,
3065 lower_32_bits(urb->transfer_dma),
3066 upper_32_bits(urb->transfer_dma),
3067 length_field,
3068 field | ep_ring->cycle_state);
3071 /* Save the DMA address of the last TRB in the TD */
3072 td->last_trb = ep_ring->enqueue;
3074 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3075 /* If the device sent data, the status stage is an OUT transfer */
3076 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3077 field = 0;
3078 else
3079 field = TRB_DIR_IN;
3080 queue_trb(xhci, ep_ring, false, false,
3083 TRB_INTR_TARGET(0),
3084 /* Event on completion */
3085 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3087 giveback_first_trb(xhci, slot_id, ep_index, 0,
3088 start_cycle, start_trb);
3089 return 0;
3092 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3093 struct urb *urb, int i)
3095 int num_trbs = 0;
3096 u64 addr, td_len, running_total;
3098 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3099 td_len = urb->iso_frame_desc[i].length;
3101 running_total = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
3102 running_total &= TRB_MAX_BUFF_SIZE - 1;
3103 if (running_total != 0)
3104 num_trbs++;
3106 while (running_total < td_len) {
3107 num_trbs++;
3108 running_total += TRB_MAX_BUFF_SIZE;
3111 return num_trbs;
3115 * The transfer burst count field of the isochronous TRB defines the number of
3116 * bursts that are required to move all packets in this TD. Only SuperSpeed
3117 * devices can burst up to bMaxBurst number of packets per service interval.
3118 * This field is zero based, meaning a value of zero in the field means one
3119 * burst. Basically, for everything but SuperSpeed devices, this field will be
3120 * zero. Only xHCI 1.0 host controllers support this field.
3122 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3123 struct usb_device *udev,
3124 struct urb *urb, unsigned int total_packet_count)
3126 unsigned int max_burst;
3128 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3129 return 0;
3131 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3132 return roundup(total_packet_count, max_burst + 1) - 1;
3136 * Returns the number of packets in the last "burst" of packets. This field is
3137 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3138 * the last burst packet count is equal to the total number of packets in the
3139 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3140 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3141 * contain 1 to (bMaxBurst + 1) packets.
3143 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3144 struct usb_device *udev,
3145 struct urb *urb, unsigned int total_packet_count)
3147 unsigned int max_burst;
3148 unsigned int residue;
3150 if (xhci->hci_version < 0x100)
3151 return 0;
3153 switch (udev->speed) {
3154 case USB_SPEED_SUPER:
3155 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3156 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3157 residue = total_packet_count % (max_burst + 1);
3158 /* If residue is zero, the last burst contains (max_burst + 1)
3159 * number of packets, but the TLBPC field is zero-based.
3161 if (residue == 0)
3162 return max_burst;
3163 return residue - 1;
3164 default:
3165 if (total_packet_count == 0)
3166 return 0;
3167 return total_packet_count - 1;
3171 /* This is for isoc transfer */
3172 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3173 struct urb *urb, int slot_id, unsigned int ep_index)
3175 struct xhci_ring *ep_ring;
3176 struct urb_priv *urb_priv;
3177 struct xhci_td *td;
3178 int num_tds, trbs_per_td;
3179 struct xhci_generic_trb *start_trb;
3180 bool first_trb;
3181 int start_cycle;
3182 u32 field, length_field;
3183 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3184 u64 start_addr, addr;
3185 int i, j;
3186 bool more_trbs_coming;
3188 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3190 num_tds = urb->number_of_packets;
3191 if (num_tds < 1) {
3192 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3193 return -EINVAL;
3196 if (!in_interrupt())
3197 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d),"
3198 " addr = %#llx, num_tds = %d\n",
3199 urb->ep->desc.bEndpointAddress,
3200 urb->transfer_buffer_length,
3201 urb->transfer_buffer_length,
3202 (unsigned long long)urb->transfer_dma,
3203 num_tds);
3205 start_addr = (u64) urb->transfer_dma;
3206 start_trb = &ep_ring->enqueue->generic;
3207 start_cycle = ep_ring->cycle_state;
3209 /* Queue the first TRB, even if it's zero-length */
3210 for (i = 0; i < num_tds; i++) {
3211 unsigned int total_packet_count;
3212 unsigned int burst_count;
3213 unsigned int residue;
3215 first_trb = true;
3216 running_total = 0;
3217 addr = start_addr + urb->iso_frame_desc[i].offset;
3218 td_len = urb->iso_frame_desc[i].length;
3219 td_remain_len = td_len;
3220 /* FIXME: Ignoring zero-length packets, can those happen? */
3221 total_packet_count = roundup(td_len,
3222 le16_to_cpu(urb->ep->desc.wMaxPacketSize));
3223 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3224 total_packet_count);
3225 residue = xhci_get_last_burst_packet_count(xhci,
3226 urb->dev, urb, total_packet_count);
3228 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3230 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3231 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3232 if (ret < 0)
3233 return ret;
3235 urb_priv = urb->hcpriv;
3236 td = urb_priv->td[i];
3238 for (j = 0; j < trbs_per_td; j++) {
3239 u32 remainder = 0;
3240 field = TRB_TBC(burst_count) | TRB_TLBPC(residue);
3242 if (first_trb) {
3243 /* Queue the isoc TRB */
3244 field |= TRB_TYPE(TRB_ISOC);
3245 /* Assume URB_ISO_ASAP is set */
3246 field |= TRB_SIA;
3247 if (i == 0) {
3248 if (start_cycle == 0)
3249 field |= 0x1;
3250 } else
3251 field |= ep_ring->cycle_state;
3252 first_trb = false;
3253 } else {
3254 /* Queue other normal TRBs */
3255 field |= TRB_TYPE(TRB_NORMAL);
3256 field |= ep_ring->cycle_state;
3259 /* Only set interrupt on short packet for IN EPs */
3260 if (usb_urb_dir_in(urb))
3261 field |= TRB_ISP;
3263 /* Chain all the TRBs together; clear the chain bit in
3264 * the last TRB to indicate it's the last TRB in the
3265 * chain.
3267 if (j < trbs_per_td - 1) {
3268 field |= TRB_CHAIN;
3269 more_trbs_coming = true;
3270 } else {
3271 td->last_trb = ep_ring->enqueue;
3272 field |= TRB_IOC;
3273 if (xhci->hci_version == 0x100) {
3274 /* Set BEI bit except for the last td */
3275 if (i < num_tds - 1)
3276 field |= TRB_BEI;
3278 more_trbs_coming = false;
3281 /* Calculate TRB length */
3282 trb_buff_len = TRB_MAX_BUFF_SIZE -
3283 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3284 if (trb_buff_len > td_remain_len)
3285 trb_buff_len = td_remain_len;
3287 /* Set the TRB length, TD size, & interrupter fields. */
3288 if (xhci->hci_version < 0x100) {
3289 remainder = xhci_td_remainder(
3290 td_len - running_total);
3291 } else {
3292 remainder = xhci_v1_0_td_remainder(
3293 running_total, trb_buff_len,
3294 total_packet_count, urb);
3296 length_field = TRB_LEN(trb_buff_len) |
3297 remainder |
3298 TRB_INTR_TARGET(0);
3300 queue_trb(xhci, ep_ring, false, more_trbs_coming,
3301 lower_32_bits(addr),
3302 upper_32_bits(addr),
3303 length_field,
3304 field);
3305 running_total += trb_buff_len;
3307 addr += trb_buff_len;
3308 td_remain_len -= trb_buff_len;
3311 /* Check TD length */
3312 if (running_total != td_len) {
3313 xhci_err(xhci, "ISOC TD length unmatch\n");
3314 return -EINVAL;
3318 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3319 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3320 usb_amd_quirk_pll_disable();
3322 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3324 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3325 start_cycle, start_trb);
3326 return 0;
3330 * Check transfer ring to guarantee there is enough room for the urb.
3331 * Update ISO URB start_frame and interval.
3332 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3333 * update the urb->start_frame by now.
3334 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3336 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3337 struct urb *urb, int slot_id, unsigned int ep_index)
3339 struct xhci_virt_device *xdev;
3340 struct xhci_ring *ep_ring;
3341 struct xhci_ep_ctx *ep_ctx;
3342 int start_frame;
3343 int xhci_interval;
3344 int ep_interval;
3345 int num_tds, num_trbs, i;
3346 int ret;
3348 xdev = xhci->devs[slot_id];
3349 ep_ring = xdev->eps[ep_index].ring;
3350 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3352 num_trbs = 0;
3353 num_tds = urb->number_of_packets;
3354 for (i = 0; i < num_tds; i++)
3355 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3357 /* Check the ring to guarantee there is enough room for the whole urb.
3358 * Do not insert any td of the urb to the ring if the check failed.
3360 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3361 num_trbs, mem_flags);
3362 if (ret)
3363 return ret;
3365 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3366 start_frame &= 0x3fff;
3368 urb->start_frame = start_frame;
3369 if (urb->dev->speed == USB_SPEED_LOW ||
3370 urb->dev->speed == USB_SPEED_FULL)
3371 urb->start_frame >>= 3;
3373 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3374 ep_interval = urb->interval;
3375 /* Convert to microframes */
3376 if (urb->dev->speed == USB_SPEED_LOW ||
3377 urb->dev->speed == USB_SPEED_FULL)
3378 ep_interval *= 8;
3379 /* FIXME change this to a warning and a suggestion to use the new API
3380 * to set the polling interval (once the API is added).
3382 if (xhci_interval != ep_interval) {
3383 if (printk_ratelimit())
3384 dev_dbg(&urb->dev->dev, "Driver uses different interval"
3385 " (%d microframe%s) than xHCI "
3386 "(%d microframe%s)\n",
3387 ep_interval,
3388 ep_interval == 1 ? "" : "s",
3389 xhci_interval,
3390 xhci_interval == 1 ? "" : "s");
3391 urb->interval = xhci_interval;
3392 /* Convert back to frames for LS/FS devices */
3393 if (urb->dev->speed == USB_SPEED_LOW ||
3394 urb->dev->speed == USB_SPEED_FULL)
3395 urb->interval /= 8;
3397 return xhci_queue_isoc_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
3400 /**** Command Ring Operations ****/
3402 /* Generic function for queueing a command TRB on the command ring.
3403 * Check to make sure there's room on the command ring for one command TRB.
3404 * Also check that there's room reserved for commands that must not fail.
3405 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3406 * then only check for the number of reserved spots.
3407 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3408 * because the command event handler may want to resubmit a failed command.
3410 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3411 u32 field3, u32 field4, bool command_must_succeed)
3413 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3414 int ret;
3416 if (!command_must_succeed)
3417 reserved_trbs++;
3419 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3420 reserved_trbs, GFP_ATOMIC);
3421 if (ret < 0) {
3422 xhci_err(xhci, "ERR: No room for command on command ring\n");
3423 if (command_must_succeed)
3424 xhci_err(xhci, "ERR: Reserved TRB counting for "
3425 "unfailable commands failed.\n");
3426 return ret;
3428 queue_trb(xhci, xhci->cmd_ring, false, false, field1, field2, field3,
3429 field4 | xhci->cmd_ring->cycle_state);
3430 return 0;
3433 /* Queue a slot enable or disable request on the command ring */
3434 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3436 return queue_command(xhci, 0, 0, 0,
3437 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3440 /* Queue an address device command TRB */
3441 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3442 u32 slot_id)
3444 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3445 upper_32_bits(in_ctx_ptr), 0,
3446 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3447 false);
3450 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3451 u32 field1, u32 field2, u32 field3, u32 field4)
3453 return queue_command(xhci, field1, field2, field3, field4, false);
3456 /* Queue a reset device command TRB */
3457 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
3459 return queue_command(xhci, 0, 0, 0,
3460 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3461 false);
3464 /* Queue a configure endpoint command TRB */
3465 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3466 u32 slot_id, bool command_must_succeed)
3468 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3469 upper_32_bits(in_ctx_ptr), 0,
3470 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3471 command_must_succeed);
3474 /* Queue an evaluate context command TRB */
3475 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3476 u32 slot_id)
3478 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3479 upper_32_bits(in_ctx_ptr), 0,
3480 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3481 false);
3485 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3486 * activity on an endpoint that is about to be suspended.
3488 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3489 unsigned int ep_index, int suspend)
3491 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3492 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3493 u32 type = TRB_TYPE(TRB_STOP_RING);
3494 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3496 return queue_command(xhci, 0, 0, 0,
3497 trb_slot_id | trb_ep_index | type | trb_suspend, false);
3500 /* Set Transfer Ring Dequeue Pointer command.
3501 * This should not be used for endpoints that have streams enabled.
3503 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
3504 unsigned int ep_index, unsigned int stream_id,
3505 struct xhci_segment *deq_seg,
3506 union xhci_trb *deq_ptr, u32 cycle_state)
3508 dma_addr_t addr;
3509 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3510 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3511 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3512 u32 type = TRB_TYPE(TRB_SET_DEQ);
3513 struct xhci_virt_ep *ep;
3515 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
3516 if (addr == 0) {
3517 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3518 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3519 deq_seg, deq_ptr);
3520 return 0;
3522 ep = &xhci->devs[slot_id]->eps[ep_index];
3523 if ((ep->ep_state & SET_DEQ_PENDING)) {
3524 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3525 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3526 return 0;
3528 ep->queued_deq_seg = deq_seg;
3529 ep->queued_deq_ptr = deq_ptr;
3530 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
3531 upper_32_bits(addr), trb_stream_id,
3532 trb_slot_id | trb_ep_index | type, false);
3535 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
3536 unsigned int ep_index)
3538 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3539 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3540 u32 type = TRB_TYPE(TRB_RESET_EP);
3542 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
3543 false);