Documentation: configfs examples crash fix
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / usb / host / xhci-ring.c
blob237a765f8d187eb6312d35365f20bd9afae7c913
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
72 struct xhci_virt_device *virt_dev,
73 struct xhci_event_cmd *event);
76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
77 * address of the TRB.
79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
80 union xhci_trb *trb)
82 unsigned long segment_offset;
84 if (!seg || !trb || trb < seg->trbs)
85 return 0;
86 /* offset in TRBs */
87 segment_offset = trb - seg->trbs;
88 if (segment_offset > TRBS_PER_SEGMENT)
89 return 0;
90 return seg->dma + (segment_offset * sizeof(*trb));
93 /* Does this link TRB point to the first segment in a ring,
94 * or was the previous TRB the last TRB on the last segment in the ERST?
96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
97 struct xhci_segment *seg, union xhci_trb *trb)
99 if (ring == xhci->event_ring)
100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
101 (seg->next == xhci->event_ring->first_seg);
102 else
103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
107 * segment? I.e. would the updated event TRB pointer step off the end of the
108 * event seg?
110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
111 struct xhci_segment *seg, union xhci_trb *trb)
113 if (ring == xhci->event_ring)
114 return trb == &seg->trbs[TRBS_PER_SEGMENT];
115 else
116 return (le32_to_cpu(trb->link.control) & TRB_TYPE_BITMASK)
117 == TRB_TYPE(TRB_LINK);
120 static int enqueue_is_link_trb(struct xhci_ring *ring)
122 struct xhci_link_trb *link = &ring->enqueue->link;
123 return ((le32_to_cpu(link->control) & TRB_TYPE_BITMASK) ==
124 TRB_TYPE(TRB_LINK));
127 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
128 * TRB is in a new segment. This does not skip over link TRBs, and it does not
129 * effect the ring dequeue or enqueue pointers.
131 static void next_trb(struct xhci_hcd *xhci,
132 struct xhci_ring *ring,
133 struct xhci_segment **seg,
134 union xhci_trb **trb)
136 if (last_trb(xhci, ring, *seg, *trb)) {
137 *seg = (*seg)->next;
138 *trb = ((*seg)->trbs);
139 } else {
140 (*trb)++;
145 * See Cycle bit rules. SW is the consumer for the event ring only.
146 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
148 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer)
150 union xhci_trb *next = ++(ring->dequeue);
151 unsigned long long addr;
153 ring->deq_updates++;
154 /* Update the dequeue pointer further if that was a link TRB or we're at
155 * the end of an event ring segment (which doesn't have link TRBS)
157 while (last_trb(xhci, ring, ring->deq_seg, next)) {
158 if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) {
159 ring->cycle_state = (ring->cycle_state ? 0 : 1);
160 if (!in_interrupt())
161 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
162 ring,
163 (unsigned int) ring->cycle_state);
165 ring->deq_seg = ring->deq_seg->next;
166 ring->dequeue = ring->deq_seg->trbs;
167 next = ring->dequeue;
169 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
170 if (ring == xhci->event_ring)
171 xhci_dbg(xhci, "Event ring deq = 0x%llx (DMA)\n", addr);
172 else if (ring == xhci->cmd_ring)
173 xhci_dbg(xhci, "Command ring deq = 0x%llx (DMA)\n", addr);
174 else
175 xhci_dbg(xhci, "Ring deq = 0x%llx (DMA)\n", addr);
179 * See Cycle bit rules. SW is the consumer for the event ring only.
180 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
182 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
183 * chain bit is set), then set the chain bit in all the following link TRBs.
184 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
185 * have their chain bit cleared (so that each Link TRB is a separate TD).
187 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
188 * set, but other sections talk about dealing with the chain bit set. This was
189 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
190 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
192 * @more_trbs_coming: Will you enqueue more TRBs before calling
193 * prepare_transfer()?
195 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
196 bool consumer, bool more_trbs_coming)
198 u32 chain;
199 union xhci_trb *next;
200 unsigned long long addr;
202 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
203 next = ++(ring->enqueue);
205 ring->enq_updates++;
206 /* Update the dequeue pointer further if that was a link TRB or we're at
207 * the end of an event ring segment (which doesn't have link TRBS)
209 while (last_trb(xhci, ring, ring->enq_seg, next)) {
210 if (!consumer) {
211 if (ring != xhci->event_ring) {
213 * If the caller doesn't plan on enqueueing more
214 * TDs before ringing the doorbell, then we
215 * don't want to give the link TRB to the
216 * hardware just yet. We'll give the link TRB
217 * back in prepare_ring() just before we enqueue
218 * the TD at the top of the ring.
220 if (!chain && !more_trbs_coming)
221 break;
223 /* If we're not dealing with 0.95 hardware,
224 * carry over the chain bit of the previous TRB
225 * (which may mean the chain bit is cleared).
227 if (!xhci_link_trb_quirk(xhci)) {
228 next->link.control &=
229 cpu_to_le32(~TRB_CHAIN);
230 next->link.control |=
231 cpu_to_le32(chain);
233 /* Give this link TRB to the hardware */
234 wmb();
235 next->link.control ^= cpu_to_le32(TRB_CYCLE);
237 /* Toggle the cycle bit after the last ring segment. */
238 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
239 ring->cycle_state = (ring->cycle_state ? 0 : 1);
240 if (!in_interrupt())
241 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
242 ring,
243 (unsigned int) ring->cycle_state);
246 ring->enq_seg = ring->enq_seg->next;
247 ring->enqueue = ring->enq_seg->trbs;
248 next = ring->enqueue;
250 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
251 if (ring == xhci->event_ring)
252 xhci_dbg(xhci, "Event ring enq = 0x%llx (DMA)\n", addr);
253 else if (ring == xhci->cmd_ring)
254 xhci_dbg(xhci, "Command ring enq = 0x%llx (DMA)\n", addr);
255 else
256 xhci_dbg(xhci, "Ring enq = 0x%llx (DMA)\n", addr);
260 * Check to see if there's room to enqueue num_trbs on the ring. See rules
261 * above.
262 * FIXME: this would be simpler and faster if we just kept track of the number
263 * of free TRBs in a ring.
265 static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
266 unsigned int num_trbs)
268 int i;
269 union xhci_trb *enq = ring->enqueue;
270 struct xhci_segment *enq_seg = ring->enq_seg;
271 struct xhci_segment *cur_seg;
272 unsigned int left_on_ring;
274 /* If we are currently pointing to a link TRB, advance the
275 * enqueue pointer before checking for space */
276 while (last_trb(xhci, ring, enq_seg, enq)) {
277 enq_seg = enq_seg->next;
278 enq = enq_seg->trbs;
281 /* Check if ring is empty */
282 if (enq == ring->dequeue) {
283 /* Can't use link trbs */
284 left_on_ring = TRBS_PER_SEGMENT - 1;
285 for (cur_seg = enq_seg->next; cur_seg != enq_seg;
286 cur_seg = cur_seg->next)
287 left_on_ring += TRBS_PER_SEGMENT - 1;
289 /* Always need one TRB free in the ring. */
290 left_on_ring -= 1;
291 if (num_trbs > left_on_ring) {
292 xhci_warn(xhci, "Not enough room on ring; "
293 "need %u TRBs, %u TRBs left\n",
294 num_trbs, left_on_ring);
295 return 0;
297 return 1;
299 /* Make sure there's an extra empty TRB available */
300 for (i = 0; i <= num_trbs; ++i) {
301 if (enq == ring->dequeue)
302 return 0;
303 enq++;
304 while (last_trb(xhci, ring, enq_seg, enq)) {
305 enq_seg = enq_seg->next;
306 enq = enq_seg->trbs;
309 return 1;
312 /* Ring the host controller doorbell after placing a command on the ring */
313 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
315 xhci_dbg(xhci, "// Ding dong!\n");
316 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
317 /* Flush PCI posted writes */
318 xhci_readl(xhci, &xhci->dba->doorbell[0]);
321 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
322 unsigned int slot_id,
323 unsigned int ep_index,
324 unsigned int stream_id)
326 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
327 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
328 unsigned int ep_state = ep->ep_state;
330 /* Don't ring the doorbell for this endpoint if there are pending
331 * cancellations because we don't want to interrupt processing.
332 * We don't want to restart any stream rings if there's a set dequeue
333 * pointer command pending because the device can choose to start any
334 * stream once the endpoint is on the HW schedule.
335 * FIXME - check all the stream rings for pending cancellations.
337 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
338 (ep_state & EP_HALTED))
339 return;
340 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
341 /* The CPU has better things to do at this point than wait for a
342 * write-posting flush. It'll get there soon enough.
346 /* Ring the doorbell for any rings with pending URBs */
347 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
348 unsigned int slot_id,
349 unsigned int ep_index)
351 unsigned int stream_id;
352 struct xhci_virt_ep *ep;
354 ep = &xhci->devs[slot_id]->eps[ep_index];
356 /* A ring has pending URBs if its TD list is not empty */
357 if (!(ep->ep_state & EP_HAS_STREAMS)) {
358 if (!(list_empty(&ep->ring->td_list)))
359 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
360 return;
363 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
364 stream_id++) {
365 struct xhci_stream_info *stream_info = ep->stream_info;
366 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
367 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
368 stream_id);
373 * Find the segment that trb is in. Start searching in start_seg.
374 * If we must move past a segment that has a link TRB with a toggle cycle state
375 * bit set, then we will toggle the value pointed at by cycle_state.
377 static struct xhci_segment *find_trb_seg(
378 struct xhci_segment *start_seg,
379 union xhci_trb *trb, int *cycle_state)
381 struct xhci_segment *cur_seg = start_seg;
382 struct xhci_generic_trb *generic_trb;
384 while (cur_seg->trbs > trb ||
385 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
386 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
387 if (le32_to_cpu(generic_trb->field[3]) & LINK_TOGGLE)
388 *cycle_state ^= 0x1;
389 cur_seg = cur_seg->next;
390 if (cur_seg == start_seg)
391 /* Looped over the entire list. Oops! */
392 return NULL;
394 return cur_seg;
398 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
399 unsigned int slot_id, unsigned int ep_index,
400 unsigned int stream_id)
402 struct xhci_virt_ep *ep;
404 ep = &xhci->devs[slot_id]->eps[ep_index];
405 /* Common case: no streams */
406 if (!(ep->ep_state & EP_HAS_STREAMS))
407 return ep->ring;
409 if (stream_id == 0) {
410 xhci_warn(xhci,
411 "WARN: Slot ID %u, ep index %u has streams, "
412 "but URB has no stream ID.\n",
413 slot_id, ep_index);
414 return NULL;
417 if (stream_id < ep->stream_info->num_streams)
418 return ep->stream_info->stream_rings[stream_id];
420 xhci_warn(xhci,
421 "WARN: Slot ID %u, ep index %u has "
422 "stream IDs 1 to %u allocated, "
423 "but stream ID %u is requested.\n",
424 slot_id, ep_index,
425 ep->stream_info->num_streams - 1,
426 stream_id);
427 return NULL;
430 /* Get the right ring for the given URB.
431 * If the endpoint supports streams, boundary check the URB's stream ID.
432 * If the endpoint doesn't support streams, return the singular endpoint ring.
434 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
435 struct urb *urb)
437 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
438 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
442 * Move the xHC's endpoint ring dequeue pointer past cur_td.
443 * Record the new state of the xHC's endpoint ring dequeue segment,
444 * dequeue pointer, and new consumer cycle state in state.
445 * Update our internal representation of the ring's dequeue pointer.
447 * We do this in three jumps:
448 * - First we update our new ring state to be the same as when the xHC stopped.
449 * - Then we traverse the ring to find the segment that contains
450 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
451 * any link TRBs with the toggle cycle bit set.
452 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
453 * if we've moved it past a link TRB with the toggle cycle bit set.
455 * Some of the uses of xhci_generic_trb are grotty, but if they're done
456 * with correct __le32 accesses they should work fine. Only users of this are
457 * in here.
459 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
460 unsigned int slot_id, unsigned int ep_index,
461 unsigned int stream_id, struct xhci_td *cur_td,
462 struct xhci_dequeue_state *state)
464 struct xhci_virt_device *dev = xhci->devs[slot_id];
465 struct xhci_ring *ep_ring;
466 struct xhci_generic_trb *trb;
467 struct xhci_ep_ctx *ep_ctx;
468 dma_addr_t addr;
470 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
471 ep_index, stream_id);
472 if (!ep_ring) {
473 xhci_warn(xhci, "WARN can't find new dequeue state "
474 "for invalid stream ID %u.\n",
475 stream_id);
476 return;
478 state->new_cycle_state = 0;
479 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
480 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
481 dev->eps[ep_index].stopped_trb,
482 &state->new_cycle_state);
483 if (!state->new_deq_seg) {
484 WARN_ON(1);
485 return;
488 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
489 xhci_dbg(xhci, "Finding endpoint context\n");
490 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
491 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
493 state->new_deq_ptr = cur_td->last_trb;
494 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
495 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
496 state->new_deq_ptr,
497 &state->new_cycle_state);
498 if (!state->new_deq_seg) {
499 WARN_ON(1);
500 return;
503 trb = &state->new_deq_ptr->generic;
504 if ((le32_to_cpu(trb->field[3]) & TRB_TYPE_BITMASK) ==
505 TRB_TYPE(TRB_LINK) && (le32_to_cpu(trb->field[3]) & LINK_TOGGLE))
506 state->new_cycle_state ^= 0x1;
507 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
510 * If there is only one segment in a ring, find_trb_seg()'s while loop
511 * will not run, and it will return before it has a chance to see if it
512 * needs to toggle the cycle bit. It can't tell if the stalled transfer
513 * ended just before the link TRB on a one-segment ring, or if the TD
514 * wrapped around the top of the ring, because it doesn't have the TD in
515 * question. Look for the one-segment case where stalled TRB's address
516 * is greater than the new dequeue pointer address.
518 if (ep_ring->first_seg == ep_ring->first_seg->next &&
519 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
520 state->new_cycle_state ^= 0x1;
521 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
523 /* Don't update the ring cycle state for the producer (us). */
524 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
525 state->new_deq_seg);
526 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
527 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
528 (unsigned long long) addr);
531 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
532 struct xhci_td *cur_td)
534 struct xhci_segment *cur_seg;
535 union xhci_trb *cur_trb;
537 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
538 true;
539 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
540 if ((le32_to_cpu(cur_trb->generic.field[3]) & TRB_TYPE_BITMASK)
541 == TRB_TYPE(TRB_LINK)) {
542 /* Unchain any chained Link TRBs, but
543 * leave the pointers intact.
545 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
546 xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
547 xhci_dbg(xhci, "Address = %p (0x%llx dma); "
548 "in seg %p (0x%llx dma)\n",
549 cur_trb,
550 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
551 cur_seg,
552 (unsigned long long)cur_seg->dma);
553 } else {
554 cur_trb->generic.field[0] = 0;
555 cur_trb->generic.field[1] = 0;
556 cur_trb->generic.field[2] = 0;
557 /* Preserve only the cycle bit of this TRB */
558 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
559 cur_trb->generic.field[3] |= cpu_to_le32(
560 TRB_TYPE(TRB_TR_NOOP));
561 xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) "
562 "in seg %p (0x%llx dma)\n",
563 cur_trb,
564 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
565 cur_seg,
566 (unsigned long long)cur_seg->dma);
568 if (cur_trb == cur_td->last_trb)
569 break;
573 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
574 unsigned int ep_index, unsigned int stream_id,
575 struct xhci_segment *deq_seg,
576 union xhci_trb *deq_ptr, u32 cycle_state);
578 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
579 unsigned int slot_id, unsigned int ep_index,
580 unsigned int stream_id,
581 struct xhci_dequeue_state *deq_state)
583 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
585 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
586 "new deq ptr = %p (0x%llx dma), new cycle = %u\n",
587 deq_state->new_deq_seg,
588 (unsigned long long)deq_state->new_deq_seg->dma,
589 deq_state->new_deq_ptr,
590 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
591 deq_state->new_cycle_state);
592 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
593 deq_state->new_deq_seg,
594 deq_state->new_deq_ptr,
595 (u32) deq_state->new_cycle_state);
596 /* Stop the TD queueing code from ringing the doorbell until
597 * this command completes. The HC won't set the dequeue pointer
598 * if the ring is running, and ringing the doorbell starts the
599 * ring running.
601 ep->ep_state |= SET_DEQ_PENDING;
604 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
605 struct xhci_virt_ep *ep)
607 ep->ep_state &= ~EP_HALT_PENDING;
608 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
609 * timer is running on another CPU, we don't decrement stop_cmds_pending
610 * (since we didn't successfully stop the watchdog timer).
612 if (del_timer(&ep->stop_cmd_timer))
613 ep->stop_cmds_pending--;
616 /* Must be called with xhci->lock held in interrupt context */
617 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
618 struct xhci_td *cur_td, int status, char *adjective)
620 struct usb_hcd *hcd;
621 struct urb *urb;
622 struct urb_priv *urb_priv;
624 urb = cur_td->urb;
625 urb_priv = urb->hcpriv;
626 urb_priv->td_cnt++;
627 hcd = bus_to_hcd(urb->dev->bus);
629 /* Only giveback urb when this is the last td in urb */
630 if (urb_priv->td_cnt == urb_priv->length) {
631 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
632 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
633 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
634 if (xhci->quirks & XHCI_AMD_PLL_FIX)
635 usb_amd_quirk_pll_enable();
638 usb_hcd_unlink_urb_from_ep(hcd, urb);
639 xhci_dbg(xhci, "Giveback %s URB %p\n", adjective, urb);
641 spin_unlock(&xhci->lock);
642 usb_hcd_giveback_urb(hcd, urb, status);
643 xhci_urb_free_priv(xhci, urb_priv);
644 spin_lock(&xhci->lock);
645 xhci_dbg(xhci, "%s URB given back\n", adjective);
650 * When we get a command completion for a Stop Endpoint Command, we need to
651 * unlink any cancelled TDs from the ring. There are two ways to do that:
653 * 1. If the HW was in the middle of processing the TD that needs to be
654 * cancelled, then we must move the ring's dequeue pointer past the last TRB
655 * in the TD with a Set Dequeue Pointer Command.
656 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
657 * bit cleared) so that the HW will skip over them.
659 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
660 union xhci_trb *trb, struct xhci_event_cmd *event)
662 unsigned int slot_id;
663 unsigned int ep_index;
664 struct xhci_virt_device *virt_dev;
665 struct xhci_ring *ep_ring;
666 struct xhci_virt_ep *ep;
667 struct list_head *entry;
668 struct xhci_td *cur_td = NULL;
669 struct xhci_td *last_unlinked_td;
671 struct xhci_dequeue_state deq_state;
673 if (unlikely(TRB_TO_SUSPEND_PORT(
674 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
675 slot_id = TRB_TO_SLOT_ID(
676 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
677 virt_dev = xhci->devs[slot_id];
678 if (virt_dev)
679 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
680 event);
681 else
682 xhci_warn(xhci, "Stop endpoint command "
683 "completion for disabled slot %u\n",
684 slot_id);
685 return;
688 memset(&deq_state, 0, sizeof(deq_state));
689 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
690 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
691 ep = &xhci->devs[slot_id]->eps[ep_index];
693 if (list_empty(&ep->cancelled_td_list)) {
694 xhci_stop_watchdog_timer_in_irq(xhci, ep);
695 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
696 return;
699 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
700 * We have the xHCI lock, so nothing can modify this list until we drop
701 * it. We're also in the event handler, so we can't get re-interrupted
702 * if another Stop Endpoint command completes
704 list_for_each(entry, &ep->cancelled_td_list) {
705 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
706 xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n",
707 cur_td->first_trb,
708 (unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb));
709 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
710 if (!ep_ring) {
711 /* This shouldn't happen unless a driver is mucking
712 * with the stream ID after submission. This will
713 * leave the TD on the hardware ring, and the hardware
714 * will try to execute it, and may access a buffer
715 * that has already been freed. In the best case, the
716 * hardware will execute it, and the event handler will
717 * ignore the completion event for that TD, since it was
718 * removed from the td_list for that endpoint. In
719 * short, don't muck with the stream ID after
720 * submission.
722 xhci_warn(xhci, "WARN Cancelled URB %p "
723 "has invalid stream ID %u.\n",
724 cur_td->urb,
725 cur_td->urb->stream_id);
726 goto remove_finished_td;
729 * If we stopped on the TD we need to cancel, then we have to
730 * move the xHC endpoint ring dequeue pointer past this TD.
732 if (cur_td == ep->stopped_td)
733 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
734 cur_td->urb->stream_id,
735 cur_td, &deq_state);
736 else
737 td_to_noop(xhci, ep_ring, cur_td);
738 remove_finished_td:
740 * The event handler won't see a completion for this TD anymore,
741 * so remove it from the endpoint ring's TD list. Keep it in
742 * the cancelled TD list for URB completion later.
744 list_del(&cur_td->td_list);
746 last_unlinked_td = cur_td;
747 xhci_stop_watchdog_timer_in_irq(xhci, ep);
749 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
750 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
751 xhci_queue_new_dequeue_state(xhci,
752 slot_id, ep_index,
753 ep->stopped_td->urb->stream_id,
754 &deq_state);
755 xhci_ring_cmd_db(xhci);
756 } else {
757 /* Otherwise ring the doorbell(s) to restart queued transfers */
758 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
760 ep->stopped_td = NULL;
761 ep->stopped_trb = NULL;
764 * Drop the lock and complete the URBs in the cancelled TD list.
765 * New TDs to be cancelled might be added to the end of the list before
766 * we can complete all the URBs for the TDs we already unlinked.
767 * So stop when we've completed the URB for the last TD we unlinked.
769 do {
770 cur_td = list_entry(ep->cancelled_td_list.next,
771 struct xhci_td, cancelled_td_list);
772 list_del(&cur_td->cancelled_td_list);
774 /* Clean up the cancelled URB */
775 /* Doesn't matter what we pass for status, since the core will
776 * just overwrite it (because the URB has been unlinked).
778 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
780 /* Stop processing the cancelled list if the watchdog timer is
781 * running.
783 if (xhci->xhc_state & XHCI_STATE_DYING)
784 return;
785 } while (cur_td != last_unlinked_td);
787 /* Return to the event handler with xhci->lock re-acquired */
790 /* Watchdog timer function for when a stop endpoint command fails to complete.
791 * In this case, we assume the host controller is broken or dying or dead. The
792 * host may still be completing some other events, so we have to be careful to
793 * let the event ring handler and the URB dequeueing/enqueueing functions know
794 * through xhci->state.
796 * The timer may also fire if the host takes a very long time to respond to the
797 * command, and the stop endpoint command completion handler cannot delete the
798 * timer before the timer function is called. Another endpoint cancellation may
799 * sneak in before the timer function can grab the lock, and that may queue
800 * another stop endpoint command and add the timer back. So we cannot use a
801 * simple flag to say whether there is a pending stop endpoint command for a
802 * particular endpoint.
804 * Instead we use a combination of that flag and a counter for the number of
805 * pending stop endpoint commands. If the timer is the tail end of the last
806 * stop endpoint command, and the endpoint's command is still pending, we assume
807 * the host is dying.
809 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
811 struct xhci_hcd *xhci;
812 struct xhci_virt_ep *ep;
813 struct xhci_virt_ep *temp_ep;
814 struct xhci_ring *ring;
815 struct xhci_td *cur_td;
816 int ret, i, j;
818 ep = (struct xhci_virt_ep *) arg;
819 xhci = ep->xhci;
821 spin_lock(&xhci->lock);
823 ep->stop_cmds_pending--;
824 if (xhci->xhc_state & XHCI_STATE_DYING) {
825 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
826 "xHCI as DYING, exiting.\n");
827 spin_unlock(&xhci->lock);
828 return;
830 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
831 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
832 "exiting.\n");
833 spin_unlock(&xhci->lock);
834 return;
837 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
838 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
839 /* Oops, HC is dead or dying or at least not responding to the stop
840 * endpoint command.
842 xhci->xhc_state |= XHCI_STATE_DYING;
843 /* Disable interrupts from the host controller and start halting it */
844 xhci_quiesce(xhci);
845 spin_unlock(&xhci->lock);
847 ret = xhci_halt(xhci);
849 spin_lock(&xhci->lock);
850 if (ret < 0) {
851 /* This is bad; the host is not responding to commands and it's
852 * not allowing itself to be halted. At least interrupts are
853 * disabled. If we call usb_hc_died(), it will attempt to
854 * disconnect all device drivers under this host. Those
855 * disconnect() methods will wait for all URBs to be unlinked,
856 * so we must complete them.
858 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
859 xhci_warn(xhci, "Completing active URBs anyway.\n");
860 /* We could turn all TDs on the rings to no-ops. This won't
861 * help if the host has cached part of the ring, and is slow if
862 * we want to preserve the cycle bit. Skip it and hope the host
863 * doesn't touch the memory.
866 for (i = 0; i < MAX_HC_SLOTS; i++) {
867 if (!xhci->devs[i])
868 continue;
869 for (j = 0; j < 31; j++) {
870 temp_ep = &xhci->devs[i]->eps[j];
871 ring = temp_ep->ring;
872 if (!ring)
873 continue;
874 xhci_dbg(xhci, "Killing URBs for slot ID %u, "
875 "ep index %u\n", i, j);
876 while (!list_empty(&ring->td_list)) {
877 cur_td = list_first_entry(&ring->td_list,
878 struct xhci_td,
879 td_list);
880 list_del(&cur_td->td_list);
881 if (!list_empty(&cur_td->cancelled_td_list))
882 list_del(&cur_td->cancelled_td_list);
883 xhci_giveback_urb_in_irq(xhci, cur_td,
884 -ESHUTDOWN, "killed");
886 while (!list_empty(&temp_ep->cancelled_td_list)) {
887 cur_td = list_first_entry(
888 &temp_ep->cancelled_td_list,
889 struct xhci_td,
890 cancelled_td_list);
891 list_del(&cur_td->cancelled_td_list);
892 xhci_giveback_urb_in_irq(xhci, cur_td,
893 -ESHUTDOWN, "killed");
897 spin_unlock(&xhci->lock);
898 xhci_dbg(xhci, "Calling usb_hc_died()\n");
899 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
900 xhci_dbg(xhci, "xHCI host controller is dead.\n");
904 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
905 * we need to clear the set deq pending flag in the endpoint ring state, so that
906 * the TD queueing code can ring the doorbell again. We also need to ring the
907 * endpoint doorbell to restart the ring, but only if there aren't more
908 * cancellations pending.
910 static void handle_set_deq_completion(struct xhci_hcd *xhci,
911 struct xhci_event_cmd *event,
912 union xhci_trb *trb)
914 unsigned int slot_id;
915 unsigned int ep_index;
916 unsigned int stream_id;
917 struct xhci_ring *ep_ring;
918 struct xhci_virt_device *dev;
919 struct xhci_ep_ctx *ep_ctx;
920 struct xhci_slot_ctx *slot_ctx;
922 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
923 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
924 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
925 dev = xhci->devs[slot_id];
927 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
928 if (!ep_ring) {
929 xhci_warn(xhci, "WARN Set TR deq ptr command for "
930 "freed stream ID %u\n",
931 stream_id);
932 /* XXX: Harmless??? */
933 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
934 return;
937 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
938 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
940 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
941 unsigned int ep_state;
942 unsigned int slot_state;
944 switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
945 case COMP_TRB_ERR:
946 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
947 "of stream ID configuration\n");
948 break;
949 case COMP_CTX_STATE:
950 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
951 "to incorrect slot or ep state.\n");
952 ep_state = le32_to_cpu(ep_ctx->ep_info);
953 ep_state &= EP_STATE_MASK;
954 slot_state = le32_to_cpu(slot_ctx->dev_state);
955 slot_state = GET_SLOT_STATE(slot_state);
956 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
957 slot_state, ep_state);
958 break;
959 case COMP_EBADSLT:
960 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
961 "slot %u was not enabled.\n", slot_id);
962 break;
963 default:
964 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
965 "completion code of %u.\n",
966 GET_COMP_CODE(le32_to_cpu(event->status)));
967 break;
969 /* OK what do we do now? The endpoint state is hosed, and we
970 * should never get to this point if the synchronization between
971 * queueing, and endpoint state are correct. This might happen
972 * if the device gets disconnected after we've finished
973 * cancelling URBs, which might not be an error...
975 } else {
976 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
977 le64_to_cpu(ep_ctx->deq));
978 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
979 dev->eps[ep_index].queued_deq_ptr) ==
980 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
981 /* Update the ring's dequeue segment and dequeue pointer
982 * to reflect the new position.
984 ep_ring->deq_seg = dev->eps[ep_index].queued_deq_seg;
985 ep_ring->dequeue = dev->eps[ep_index].queued_deq_ptr;
986 } else {
987 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
988 "Ptr command & xHCI internal state.\n");
989 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
990 dev->eps[ep_index].queued_deq_seg,
991 dev->eps[ep_index].queued_deq_ptr);
995 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
996 dev->eps[ep_index].queued_deq_seg = NULL;
997 dev->eps[ep_index].queued_deq_ptr = NULL;
998 /* Restart any rings with pending URBs */
999 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1002 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
1003 struct xhci_event_cmd *event,
1004 union xhci_trb *trb)
1006 int slot_id;
1007 unsigned int ep_index;
1009 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1010 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1011 /* This command will only fail if the endpoint wasn't halted,
1012 * but we don't care.
1014 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
1015 (unsigned int) GET_COMP_CODE(le32_to_cpu(event->status)));
1017 /* HW with the reset endpoint quirk needs to have a configure endpoint
1018 * command complete before the endpoint can be used. Queue that here
1019 * because the HW can't handle two commands being queued in a row.
1021 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1022 xhci_dbg(xhci, "Queueing configure endpoint command\n");
1023 xhci_queue_configure_endpoint(xhci,
1024 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1025 false);
1026 xhci_ring_cmd_db(xhci);
1027 } else {
1028 /* Clear our internal halted state and restart the ring(s) */
1029 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1030 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1034 /* Check to see if a command in the device's command queue matches this one.
1035 * Signal the completion or free the command, and return 1. Return 0 if the
1036 * completed command isn't at the head of the command list.
1038 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1039 struct xhci_virt_device *virt_dev,
1040 struct xhci_event_cmd *event)
1042 struct xhci_command *command;
1044 if (list_empty(&virt_dev->cmd_list))
1045 return 0;
1047 command = list_entry(virt_dev->cmd_list.next,
1048 struct xhci_command, cmd_list);
1049 if (xhci->cmd_ring->dequeue != command->command_trb)
1050 return 0;
1052 command->status = GET_COMP_CODE(le32_to_cpu(event->status));
1053 list_del(&command->cmd_list);
1054 if (command->completion)
1055 complete(command->completion);
1056 else
1057 xhci_free_command(xhci, command);
1058 return 1;
1061 static void handle_cmd_completion(struct xhci_hcd *xhci,
1062 struct xhci_event_cmd *event)
1064 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1065 u64 cmd_dma;
1066 dma_addr_t cmd_dequeue_dma;
1067 struct xhci_input_control_ctx *ctrl_ctx;
1068 struct xhci_virt_device *virt_dev;
1069 unsigned int ep_index;
1070 struct xhci_ring *ep_ring;
1071 unsigned int ep_state;
1073 cmd_dma = le64_to_cpu(event->cmd_trb);
1074 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1075 xhci->cmd_ring->dequeue);
1076 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1077 if (cmd_dequeue_dma == 0) {
1078 xhci->error_bitmask |= 1 << 4;
1079 return;
1081 /* Does the DMA address match our internal dequeue pointer address? */
1082 if (cmd_dma != (u64) cmd_dequeue_dma) {
1083 xhci->error_bitmask |= 1 << 5;
1084 return;
1086 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1087 & TRB_TYPE_BITMASK) {
1088 case TRB_TYPE(TRB_ENABLE_SLOT):
1089 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1090 xhci->slot_id = slot_id;
1091 else
1092 xhci->slot_id = 0;
1093 complete(&xhci->addr_dev);
1094 break;
1095 case TRB_TYPE(TRB_DISABLE_SLOT):
1096 if (xhci->devs[slot_id])
1097 xhci_free_virt_device(xhci, slot_id);
1098 break;
1099 case TRB_TYPE(TRB_CONFIG_EP):
1100 virt_dev = xhci->devs[slot_id];
1101 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1102 break;
1104 * Configure endpoint commands can come from the USB core
1105 * configuration or alt setting changes, or because the HW
1106 * needed an extra configure endpoint command after a reset
1107 * endpoint command or streams were being configured.
1108 * If the command was for a halted endpoint, the xHCI driver
1109 * is not waiting on the configure endpoint command.
1111 ctrl_ctx = xhci_get_input_control_ctx(xhci,
1112 virt_dev->in_ctx);
1113 /* Input ctx add_flags are the endpoint index plus one */
1114 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1115 /* A usb_set_interface() call directly after clearing a halted
1116 * condition may race on this quirky hardware. Not worth
1117 * worrying about, since this is prototype hardware. Not sure
1118 * if this will work for streams, but streams support was
1119 * untested on this prototype.
1121 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1122 ep_index != (unsigned int) -1 &&
1123 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1124 le32_to_cpu(ctrl_ctx->drop_flags)) {
1125 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1126 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1127 if (!(ep_state & EP_HALTED))
1128 goto bandwidth_change;
1129 xhci_dbg(xhci, "Completed config ep cmd - "
1130 "last ep index = %d, state = %d\n",
1131 ep_index, ep_state);
1132 /* Clear internal halted state and restart ring(s) */
1133 xhci->devs[slot_id]->eps[ep_index].ep_state &=
1134 ~EP_HALTED;
1135 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1136 break;
1138 bandwidth_change:
1139 xhci_dbg(xhci, "Completed config ep cmd\n");
1140 xhci->devs[slot_id]->cmd_status =
1141 GET_COMP_CODE(le32_to_cpu(event->status));
1142 complete(&xhci->devs[slot_id]->cmd_completion);
1143 break;
1144 case TRB_TYPE(TRB_EVAL_CONTEXT):
1145 virt_dev = xhci->devs[slot_id];
1146 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1147 break;
1148 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1149 complete(&xhci->devs[slot_id]->cmd_completion);
1150 break;
1151 case TRB_TYPE(TRB_ADDR_DEV):
1152 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1153 complete(&xhci->addr_dev);
1154 break;
1155 case TRB_TYPE(TRB_STOP_RING):
1156 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1157 break;
1158 case TRB_TYPE(TRB_SET_DEQ):
1159 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1160 break;
1161 case TRB_TYPE(TRB_CMD_NOOP):
1162 break;
1163 case TRB_TYPE(TRB_RESET_EP):
1164 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1165 break;
1166 case TRB_TYPE(TRB_RESET_DEV):
1167 xhci_dbg(xhci, "Completed reset device command.\n");
1168 slot_id = TRB_TO_SLOT_ID(
1169 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1170 virt_dev = xhci->devs[slot_id];
1171 if (virt_dev)
1172 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1173 else
1174 xhci_warn(xhci, "Reset device command completion "
1175 "for disabled slot %u\n", slot_id);
1176 break;
1177 case TRB_TYPE(TRB_NEC_GET_FW):
1178 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1179 xhci->error_bitmask |= 1 << 6;
1180 break;
1182 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n",
1183 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1184 NEC_FW_MINOR(le32_to_cpu(event->status)));
1185 break;
1186 default:
1187 /* Skip over unknown commands on the event ring */
1188 xhci->error_bitmask |= 1 << 6;
1189 break;
1191 inc_deq(xhci, xhci->cmd_ring, false);
1194 static void handle_vendor_event(struct xhci_hcd *xhci,
1195 union xhci_trb *event)
1197 u32 trb_type;
1199 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1200 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1201 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1202 handle_cmd_completion(xhci, &event->event_cmd);
1205 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1206 * port registers -- USB 3.0 and USB 2.0).
1208 * Returns a zero-based port number, which is suitable for indexing into each of
1209 * the split roothubs' port arrays and bus state arrays.
1211 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1212 struct xhci_hcd *xhci, u32 port_id)
1214 unsigned int i;
1215 unsigned int num_similar_speed_ports = 0;
1217 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1218 * and usb2_ports are 0-based indexes. Count the number of similar
1219 * speed ports, up to 1 port before this port.
1221 for (i = 0; i < (port_id - 1); i++) {
1222 u8 port_speed = xhci->port_array[i];
1225 * Skip ports that don't have known speeds, or have duplicate
1226 * Extended Capabilities port speed entries.
1228 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1229 continue;
1232 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1233 * 1.1 ports are under the USB 2.0 hub. If the port speed
1234 * matches the device speed, it's a similar speed port.
1236 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1237 num_similar_speed_ports++;
1239 return num_similar_speed_ports;
1242 static void handle_port_status(struct xhci_hcd *xhci,
1243 union xhci_trb *event)
1245 struct usb_hcd *hcd;
1246 u32 port_id;
1247 u32 temp, temp1;
1248 int max_ports;
1249 int slot_id;
1250 unsigned int faked_port_index;
1251 u8 major_revision;
1252 struct xhci_bus_state *bus_state;
1253 __le32 __iomem **port_array;
1254 bool bogus_port_status = false;
1256 /* Port status change events always have a successful completion code */
1257 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1258 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1259 xhci->error_bitmask |= 1 << 8;
1261 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1262 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1264 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1265 if ((port_id <= 0) || (port_id > max_ports)) {
1266 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1267 bogus_port_status = true;
1268 goto cleanup;
1271 /* Figure out which usb_hcd this port is attached to:
1272 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1274 major_revision = xhci->port_array[port_id - 1];
1275 if (major_revision == 0) {
1276 xhci_warn(xhci, "Event for port %u not in "
1277 "Extended Capabilities, ignoring.\n",
1278 port_id);
1279 bogus_port_status = true;
1280 goto cleanup;
1282 if (major_revision == DUPLICATE_ENTRY) {
1283 xhci_warn(xhci, "Event for port %u duplicated in"
1284 "Extended Capabilities, ignoring.\n",
1285 port_id);
1286 bogus_port_status = true;
1287 goto cleanup;
1291 * Hardware port IDs reported by a Port Status Change Event include USB
1292 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1293 * resume event, but we first need to translate the hardware port ID
1294 * into the index into the ports on the correct split roothub, and the
1295 * correct bus_state structure.
1297 /* Find the right roothub. */
1298 hcd = xhci_to_hcd(xhci);
1299 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1300 hcd = xhci->shared_hcd;
1301 bus_state = &xhci->bus_state[hcd_index(hcd)];
1302 if (hcd->speed == HCD_USB3)
1303 port_array = xhci->usb3_ports;
1304 else
1305 port_array = xhci->usb2_ports;
1306 /* Find the faked port hub number */
1307 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1308 port_id);
1310 temp = xhci_readl(xhci, port_array[faked_port_index]);
1311 if (hcd->state == HC_STATE_SUSPENDED) {
1312 xhci_dbg(xhci, "resume root hub\n");
1313 usb_hcd_resume_root_hub(hcd);
1316 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1317 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1319 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1320 if (!(temp1 & CMD_RUN)) {
1321 xhci_warn(xhci, "xHC is not running.\n");
1322 goto cleanup;
1325 if (DEV_SUPERSPEED(temp)) {
1326 xhci_dbg(xhci, "resume SS port %d\n", port_id);
1327 temp = xhci_port_state_to_neutral(temp);
1328 temp &= ~PORT_PLS_MASK;
1329 temp |= PORT_LINK_STROBE | XDEV_U0;
1330 xhci_writel(xhci, temp, port_array[faked_port_index]);
1331 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1332 faked_port_index);
1333 if (!slot_id) {
1334 xhci_dbg(xhci, "slot_id is zero\n");
1335 goto cleanup;
1337 xhci_ring_device(xhci, slot_id);
1338 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1339 /* Clear PORT_PLC */
1340 temp = xhci_readl(xhci, port_array[faked_port_index]);
1341 temp = xhci_port_state_to_neutral(temp);
1342 temp |= PORT_PLC;
1343 xhci_writel(xhci, temp, port_array[faked_port_index]);
1344 } else {
1345 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1346 bus_state->resume_done[faked_port_index] = jiffies +
1347 msecs_to_jiffies(20);
1348 mod_timer(&hcd->rh_timer,
1349 bus_state->resume_done[faked_port_index]);
1350 /* Do the rest in GetPortStatus */
1354 cleanup:
1355 /* Update event ring dequeue pointer before dropping the lock */
1356 inc_deq(xhci, xhci->event_ring, true);
1358 /* Don't make the USB core poll the roothub if we got a bad port status
1359 * change event. Besides, at that point we can't tell which roothub
1360 * (USB 2.0 or USB 3.0) to kick.
1362 if (bogus_port_status)
1363 return;
1365 spin_unlock(&xhci->lock);
1366 /* Pass this up to the core */
1367 usb_hcd_poll_rh_status(hcd);
1368 spin_lock(&xhci->lock);
1372 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1373 * at end_trb, which may be in another segment. If the suspect DMA address is a
1374 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1375 * returns 0.
1377 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1378 union xhci_trb *start_trb,
1379 union xhci_trb *end_trb,
1380 dma_addr_t suspect_dma)
1382 dma_addr_t start_dma;
1383 dma_addr_t end_seg_dma;
1384 dma_addr_t end_trb_dma;
1385 struct xhci_segment *cur_seg;
1387 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1388 cur_seg = start_seg;
1390 do {
1391 if (start_dma == 0)
1392 return NULL;
1393 /* We may get an event for a Link TRB in the middle of a TD */
1394 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1395 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1396 /* If the end TRB isn't in this segment, this is set to 0 */
1397 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1399 if (end_trb_dma > 0) {
1400 /* The end TRB is in this segment, so suspect should be here */
1401 if (start_dma <= end_trb_dma) {
1402 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1403 return cur_seg;
1404 } else {
1405 /* Case for one segment with
1406 * a TD wrapped around to the top
1408 if ((suspect_dma >= start_dma &&
1409 suspect_dma <= end_seg_dma) ||
1410 (suspect_dma >= cur_seg->dma &&
1411 suspect_dma <= end_trb_dma))
1412 return cur_seg;
1414 return NULL;
1415 } else {
1416 /* Might still be somewhere in this segment */
1417 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1418 return cur_seg;
1420 cur_seg = cur_seg->next;
1421 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1422 } while (cur_seg != start_seg);
1424 return NULL;
1427 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1428 unsigned int slot_id, unsigned int ep_index,
1429 unsigned int stream_id,
1430 struct xhci_td *td, union xhci_trb *event_trb)
1432 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1433 ep->ep_state |= EP_HALTED;
1434 ep->stopped_td = td;
1435 ep->stopped_trb = event_trb;
1436 ep->stopped_stream = stream_id;
1438 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1439 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1441 ep->stopped_td = NULL;
1442 ep->stopped_trb = NULL;
1443 ep->stopped_stream = 0;
1445 xhci_ring_cmd_db(xhci);
1448 /* Check if an error has halted the endpoint ring. The class driver will
1449 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1450 * However, a babble and other errors also halt the endpoint ring, and the class
1451 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1452 * Ring Dequeue Pointer command manually.
1454 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1455 struct xhci_ep_ctx *ep_ctx,
1456 unsigned int trb_comp_code)
1458 /* TRB completion codes that may require a manual halt cleanup */
1459 if (trb_comp_code == COMP_TX_ERR ||
1460 trb_comp_code == COMP_BABBLE ||
1461 trb_comp_code == COMP_SPLIT_ERR)
1462 /* The 0.96 spec says a babbling control endpoint
1463 * is not halted. The 0.96 spec says it is. Some HW
1464 * claims to be 0.95 compliant, but it halts the control
1465 * endpoint anyway. Check if a babble halted the
1466 * endpoint.
1468 if ((le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == EP_STATE_HALTED)
1469 return 1;
1471 return 0;
1474 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1476 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1477 /* Vendor defined "informational" completion code,
1478 * treat as not-an-error.
1480 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1481 trb_comp_code);
1482 xhci_dbg(xhci, "Treating code as success.\n");
1483 return 1;
1485 return 0;
1489 * Finish the td processing, remove the td from td list;
1490 * Return 1 if the urb can be given back.
1492 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1493 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1494 struct xhci_virt_ep *ep, int *status, bool skip)
1496 struct xhci_virt_device *xdev;
1497 struct xhci_ring *ep_ring;
1498 unsigned int slot_id;
1499 int ep_index;
1500 struct urb *urb = NULL;
1501 struct xhci_ep_ctx *ep_ctx;
1502 int ret = 0;
1503 struct urb_priv *urb_priv;
1504 u32 trb_comp_code;
1506 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1507 xdev = xhci->devs[slot_id];
1508 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1509 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1510 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1511 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1513 if (skip)
1514 goto td_cleanup;
1516 if (trb_comp_code == COMP_STOP_INVAL ||
1517 trb_comp_code == COMP_STOP) {
1518 /* The Endpoint Stop Command completion will take care of any
1519 * stopped TDs. A stopped TD may be restarted, so don't update
1520 * the ring dequeue pointer or take this TD off any lists yet.
1522 ep->stopped_td = td;
1523 ep->stopped_trb = event_trb;
1524 return 0;
1525 } else {
1526 if (trb_comp_code == COMP_STALL) {
1527 /* The transfer is completed from the driver's
1528 * perspective, but we need to issue a set dequeue
1529 * command for this stalled endpoint to move the dequeue
1530 * pointer past the TD. We can't do that here because
1531 * the halt condition must be cleared first. Let the
1532 * USB class driver clear the stall later.
1534 ep->stopped_td = td;
1535 ep->stopped_trb = event_trb;
1536 ep->stopped_stream = ep_ring->stream_id;
1537 } else if (xhci_requires_manual_halt_cleanup(xhci,
1538 ep_ctx, trb_comp_code)) {
1539 /* Other types of errors halt the endpoint, but the
1540 * class driver doesn't call usb_reset_endpoint() unless
1541 * the error is -EPIPE. Clear the halted status in the
1542 * xHCI hardware manually.
1544 xhci_cleanup_halted_endpoint(xhci,
1545 slot_id, ep_index, ep_ring->stream_id,
1546 td, event_trb);
1547 } else {
1548 /* Update ring dequeue pointer */
1549 while (ep_ring->dequeue != td->last_trb)
1550 inc_deq(xhci, ep_ring, false);
1551 inc_deq(xhci, ep_ring, false);
1554 td_cleanup:
1555 /* Clean up the endpoint's TD list */
1556 urb = td->urb;
1557 urb_priv = urb->hcpriv;
1559 /* Do one last check of the actual transfer length.
1560 * If the host controller said we transferred more data than
1561 * the buffer length, urb->actual_length will be a very big
1562 * number (since it's unsigned). Play it safe and say we didn't
1563 * transfer anything.
1565 if (urb->actual_length > urb->transfer_buffer_length) {
1566 xhci_warn(xhci, "URB transfer length is wrong, "
1567 "xHC issue? req. len = %u, "
1568 "act. len = %u\n",
1569 urb->transfer_buffer_length,
1570 urb->actual_length);
1571 urb->actual_length = 0;
1572 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1573 *status = -EREMOTEIO;
1574 else
1575 *status = 0;
1577 list_del(&td->td_list);
1578 /* Was this TD slated to be cancelled but completed anyway? */
1579 if (!list_empty(&td->cancelled_td_list))
1580 list_del(&td->cancelled_td_list);
1582 urb_priv->td_cnt++;
1583 /* Giveback the urb when all the tds are completed */
1584 if (urb_priv->td_cnt == urb_priv->length) {
1585 ret = 1;
1586 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1587 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1588 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1589 == 0) {
1590 if (xhci->quirks & XHCI_AMD_PLL_FIX)
1591 usb_amd_quirk_pll_enable();
1597 return ret;
1601 * Process control tds, update urb status and actual_length.
1603 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1604 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1605 struct xhci_virt_ep *ep, int *status)
1607 struct xhci_virt_device *xdev;
1608 struct xhci_ring *ep_ring;
1609 unsigned int slot_id;
1610 int ep_index;
1611 struct xhci_ep_ctx *ep_ctx;
1612 u32 trb_comp_code;
1614 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1615 xdev = xhci->devs[slot_id];
1616 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1617 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1618 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1619 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1621 xhci_debug_trb(xhci, xhci->event_ring->dequeue);
1622 switch (trb_comp_code) {
1623 case COMP_SUCCESS:
1624 if (event_trb == ep_ring->dequeue) {
1625 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1626 "without IOC set??\n");
1627 *status = -ESHUTDOWN;
1628 } else if (event_trb != td->last_trb) {
1629 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1630 "without IOC set??\n");
1631 *status = -ESHUTDOWN;
1632 } else {
1633 xhci_dbg(xhci, "Successful control transfer!\n");
1634 *status = 0;
1636 break;
1637 case COMP_SHORT_TX:
1638 xhci_warn(xhci, "WARN: short transfer on control ep\n");
1639 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1640 *status = -EREMOTEIO;
1641 else
1642 *status = 0;
1643 break;
1644 case COMP_STOP_INVAL:
1645 case COMP_STOP:
1646 return finish_td(xhci, td, event_trb, event, ep, status, false);
1647 default:
1648 if (!xhci_requires_manual_halt_cleanup(xhci,
1649 ep_ctx, trb_comp_code))
1650 break;
1651 xhci_dbg(xhci, "TRB error code %u, "
1652 "halted endpoint index = %u\n",
1653 trb_comp_code, ep_index);
1654 /* else fall through */
1655 case COMP_STALL:
1656 /* Did we transfer part of the data (middle) phase? */
1657 if (event_trb != ep_ring->dequeue &&
1658 event_trb != td->last_trb)
1659 td->urb->actual_length =
1660 td->urb->transfer_buffer_length
1661 - TRB_LEN(le32_to_cpu(event->transfer_len));
1662 else
1663 td->urb->actual_length = 0;
1665 xhci_cleanup_halted_endpoint(xhci,
1666 slot_id, ep_index, 0, td, event_trb);
1667 return finish_td(xhci, td, event_trb, event, ep, status, true);
1670 * Did we transfer any data, despite the errors that might have
1671 * happened? I.e. did we get past the setup stage?
1673 if (event_trb != ep_ring->dequeue) {
1674 /* The event was for the status stage */
1675 if (event_trb == td->last_trb) {
1676 if (td->urb->actual_length != 0) {
1677 /* Don't overwrite a previously set error code
1679 if ((*status == -EINPROGRESS || *status == 0) &&
1680 (td->urb->transfer_flags
1681 & URB_SHORT_NOT_OK))
1682 /* Did we already see a short data
1683 * stage? */
1684 *status = -EREMOTEIO;
1685 } else {
1686 td->urb->actual_length =
1687 td->urb->transfer_buffer_length;
1689 } else {
1690 /* Maybe the event was for the data stage? */
1691 td->urb->actual_length =
1692 td->urb->transfer_buffer_length -
1693 TRB_LEN(le32_to_cpu(event->transfer_len));
1694 xhci_dbg(xhci, "Waiting for status "
1695 "stage event\n");
1696 return 0;
1700 return finish_td(xhci, td, event_trb, event, ep, status, false);
1704 * Process isochronous tds, update urb packet status and actual_length.
1706 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1707 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1708 struct xhci_virt_ep *ep, int *status)
1710 struct xhci_ring *ep_ring;
1711 struct urb_priv *urb_priv;
1712 int idx;
1713 int len = 0;
1714 union xhci_trb *cur_trb;
1715 struct xhci_segment *cur_seg;
1716 struct usb_iso_packet_descriptor *frame;
1717 u32 trb_comp_code;
1718 bool skip_td = false;
1720 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1721 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1722 urb_priv = td->urb->hcpriv;
1723 idx = urb_priv->td_cnt;
1724 frame = &td->urb->iso_frame_desc[idx];
1726 /* handle completion code */
1727 switch (trb_comp_code) {
1728 case COMP_SUCCESS:
1729 frame->status = 0;
1730 xhci_dbg(xhci, "Successful isoc transfer!\n");
1731 break;
1732 case COMP_SHORT_TX:
1733 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
1734 -EREMOTEIO : 0;
1735 break;
1736 case COMP_BW_OVER:
1737 frame->status = -ECOMM;
1738 skip_td = true;
1739 break;
1740 case COMP_BUFF_OVER:
1741 case COMP_BABBLE:
1742 frame->status = -EOVERFLOW;
1743 skip_td = true;
1744 break;
1745 case COMP_STALL:
1746 frame->status = -EPROTO;
1747 skip_td = true;
1748 break;
1749 case COMP_STOP:
1750 case COMP_STOP_INVAL:
1751 break;
1752 default:
1753 frame->status = -1;
1754 break;
1757 if (trb_comp_code == COMP_SUCCESS || skip_td) {
1758 frame->actual_length = frame->length;
1759 td->urb->actual_length += frame->length;
1760 } else {
1761 for (cur_trb = ep_ring->dequeue,
1762 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
1763 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1764 if ((le32_to_cpu(cur_trb->generic.field[3]) &
1765 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_TR_NOOP) &&
1766 (le32_to_cpu(cur_trb->generic.field[3]) &
1767 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_LINK))
1768 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1770 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1771 TRB_LEN(le32_to_cpu(event->transfer_len));
1773 if (trb_comp_code != COMP_STOP_INVAL) {
1774 frame->actual_length = len;
1775 td->urb->actual_length += len;
1779 if ((idx == urb_priv->length - 1) && *status == -EINPROGRESS)
1780 *status = 0;
1782 return finish_td(xhci, td, event_trb, event, ep, status, false);
1785 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1786 struct xhci_transfer_event *event,
1787 struct xhci_virt_ep *ep, int *status)
1789 struct xhci_ring *ep_ring;
1790 struct urb_priv *urb_priv;
1791 struct usb_iso_packet_descriptor *frame;
1792 int idx;
1794 ep_ring = xhci_dma_to_transfer_ring(ep, event->buffer);
1795 urb_priv = td->urb->hcpriv;
1796 idx = urb_priv->td_cnt;
1797 frame = &td->urb->iso_frame_desc[idx];
1799 /* The transfer is partly done */
1800 *status = -EXDEV;
1801 frame->status = -EXDEV;
1803 /* calc actual length */
1804 frame->actual_length = 0;
1806 /* Update ring dequeue pointer */
1807 while (ep_ring->dequeue != td->last_trb)
1808 inc_deq(xhci, ep_ring, false);
1809 inc_deq(xhci, ep_ring, false);
1811 return finish_td(xhci, td, NULL, event, ep, status, true);
1815 * Process bulk and interrupt tds, update urb status and actual_length.
1817 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
1818 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1819 struct xhci_virt_ep *ep, int *status)
1821 struct xhci_ring *ep_ring;
1822 union xhci_trb *cur_trb;
1823 struct xhci_segment *cur_seg;
1824 u32 trb_comp_code;
1826 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1827 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1829 switch (trb_comp_code) {
1830 case COMP_SUCCESS:
1831 /* Double check that the HW transferred everything. */
1832 if (event_trb != td->last_trb) {
1833 xhci_warn(xhci, "WARN Successful completion "
1834 "on short TX\n");
1835 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1836 *status = -EREMOTEIO;
1837 else
1838 *status = 0;
1839 } else {
1840 if (usb_endpoint_xfer_bulk(&td->urb->ep->desc))
1841 xhci_dbg(xhci, "Successful bulk "
1842 "transfer!\n");
1843 else
1844 xhci_dbg(xhci, "Successful interrupt "
1845 "transfer!\n");
1846 *status = 0;
1848 break;
1849 case COMP_SHORT_TX:
1850 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1851 *status = -EREMOTEIO;
1852 else
1853 *status = 0;
1854 break;
1855 default:
1856 /* Others already handled above */
1857 break;
1859 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
1860 "%d bytes untransferred\n",
1861 td->urb->ep->desc.bEndpointAddress,
1862 td->urb->transfer_buffer_length,
1863 TRB_LEN(le32_to_cpu(event->transfer_len)));
1864 /* Fast path - was this the last TRB in the TD for this URB? */
1865 if (event_trb == td->last_trb) {
1866 if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
1867 td->urb->actual_length =
1868 td->urb->transfer_buffer_length -
1869 TRB_LEN(le32_to_cpu(event->transfer_len));
1870 if (td->urb->transfer_buffer_length <
1871 td->urb->actual_length) {
1872 xhci_warn(xhci, "HC gave bad length "
1873 "of %d bytes left\n",
1874 TRB_LEN(le32_to_cpu(event->transfer_len)));
1875 td->urb->actual_length = 0;
1876 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1877 *status = -EREMOTEIO;
1878 else
1879 *status = 0;
1881 /* Don't overwrite a previously set error code */
1882 if (*status == -EINPROGRESS) {
1883 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1884 *status = -EREMOTEIO;
1885 else
1886 *status = 0;
1888 } else {
1889 td->urb->actual_length =
1890 td->urb->transfer_buffer_length;
1891 /* Ignore a short packet completion if the
1892 * untransferred length was zero.
1894 if (*status == -EREMOTEIO)
1895 *status = 0;
1897 } else {
1898 /* Slow path - walk the list, starting from the dequeue
1899 * pointer, to get the actual length transferred.
1901 td->urb->actual_length = 0;
1902 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
1903 cur_trb != event_trb;
1904 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1905 if ((le32_to_cpu(cur_trb->generic.field[3]) &
1906 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_TR_NOOP) &&
1907 (le32_to_cpu(cur_trb->generic.field[3]) &
1908 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_LINK))
1909 td->urb->actual_length +=
1910 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1912 /* If the ring didn't stop on a Link or No-op TRB, add
1913 * in the actual bytes transferred from the Normal TRB
1915 if (trb_comp_code != COMP_STOP_INVAL)
1916 td->urb->actual_length +=
1917 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1918 TRB_LEN(le32_to_cpu(event->transfer_len));
1921 return finish_td(xhci, td, event_trb, event, ep, status, false);
1925 * If this function returns an error condition, it means it got a Transfer
1926 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
1927 * At this point, the host controller is probably hosed and should be reset.
1929 static int handle_tx_event(struct xhci_hcd *xhci,
1930 struct xhci_transfer_event *event)
1932 struct xhci_virt_device *xdev;
1933 struct xhci_virt_ep *ep;
1934 struct xhci_ring *ep_ring;
1935 unsigned int slot_id;
1936 int ep_index;
1937 struct xhci_td *td = NULL;
1938 dma_addr_t event_dma;
1939 struct xhci_segment *event_seg;
1940 union xhci_trb *event_trb;
1941 struct urb *urb = NULL;
1942 int status = -EINPROGRESS;
1943 struct urb_priv *urb_priv;
1944 struct xhci_ep_ctx *ep_ctx;
1945 u32 trb_comp_code;
1946 int ret = 0;
1948 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1949 xdev = xhci->devs[slot_id];
1950 if (!xdev) {
1951 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
1952 return -ENODEV;
1955 /* Endpoint ID is 1 based, our index is zero based */
1956 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1957 xhci_dbg(xhci, "%s - ep index = %d\n", __func__, ep_index);
1958 ep = &xdev->eps[ep_index];
1959 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1960 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1961 if (!ep_ring ||
1962 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
1963 EP_STATE_DISABLED) {
1964 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
1965 "or incorrect stream ring\n");
1966 return -ENODEV;
1969 event_dma = le64_to_cpu(event->buffer);
1970 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1971 /* Look for common error cases */
1972 switch (trb_comp_code) {
1973 /* Skip codes that require special handling depending on
1974 * transfer type
1976 case COMP_SUCCESS:
1977 case COMP_SHORT_TX:
1978 break;
1979 case COMP_STOP:
1980 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
1981 break;
1982 case COMP_STOP_INVAL:
1983 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
1984 break;
1985 case COMP_STALL:
1986 xhci_warn(xhci, "WARN: Stalled endpoint\n");
1987 ep->ep_state |= EP_HALTED;
1988 status = -EPIPE;
1989 break;
1990 case COMP_TRB_ERR:
1991 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
1992 status = -EILSEQ;
1993 break;
1994 case COMP_SPLIT_ERR:
1995 case COMP_TX_ERR:
1996 xhci_warn(xhci, "WARN: transfer error on endpoint\n");
1997 status = -EPROTO;
1998 break;
1999 case COMP_BABBLE:
2000 xhci_warn(xhci, "WARN: babble error on endpoint\n");
2001 status = -EOVERFLOW;
2002 break;
2003 case COMP_DB_ERR:
2004 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2005 status = -ENOSR;
2006 break;
2007 case COMP_BW_OVER:
2008 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2009 break;
2010 case COMP_BUFF_OVER:
2011 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2012 break;
2013 case COMP_UNDERRUN:
2015 * When the Isoch ring is empty, the xHC will generate
2016 * a Ring Overrun Event for IN Isoch endpoint or Ring
2017 * Underrun Event for OUT Isoch endpoint.
2019 xhci_dbg(xhci, "underrun event on endpoint\n");
2020 if (!list_empty(&ep_ring->td_list))
2021 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2022 "still with TDs queued?\n",
2023 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2024 ep_index);
2025 goto cleanup;
2026 case COMP_OVERRUN:
2027 xhci_dbg(xhci, "overrun event on endpoint\n");
2028 if (!list_empty(&ep_ring->td_list))
2029 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2030 "still with TDs queued?\n",
2031 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2032 ep_index);
2033 goto cleanup;
2034 case COMP_MISSED_INT:
2036 * When encounter missed service error, one or more isoc tds
2037 * may be missed by xHC.
2038 * Set skip flag of the ep_ring; Complete the missed tds as
2039 * short transfer when process the ep_ring next time.
2041 ep->skip = true;
2042 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2043 goto cleanup;
2044 default:
2045 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2046 status = 0;
2047 break;
2049 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2050 "busted\n");
2051 goto cleanup;
2054 do {
2055 /* This TRB should be in the TD at the head of this ring's
2056 * TD list.
2058 if (list_empty(&ep_ring->td_list)) {
2059 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d "
2060 "with no TDs queued?\n",
2061 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2062 ep_index);
2063 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2064 (unsigned int) (le32_to_cpu(event->flags)
2065 & TRB_TYPE_BITMASK)>>10);
2066 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2067 if (ep->skip) {
2068 ep->skip = false;
2069 xhci_dbg(xhci, "td_list is empty while skip "
2070 "flag set. Clear skip flag.\n");
2072 ret = 0;
2073 goto cleanup;
2076 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2078 /* Is this a TRB in the currently executing TD? */
2079 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2080 td->last_trb, event_dma);
2081 if (!event_seg) {
2082 if (!ep->skip ||
2083 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2084 /* HC is busted, give up! */
2085 xhci_err(xhci,
2086 "ERROR Transfer event TRB DMA ptr not "
2087 "part of current TD\n");
2088 return -ESHUTDOWN;
2091 ret = skip_isoc_td(xhci, td, event, ep, &status);
2092 goto cleanup;
2095 if (ep->skip) {
2096 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2097 ep->skip = false;
2100 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2101 sizeof(*event_trb)];
2103 * No-op TRB should not trigger interrupts.
2104 * If event_trb is a no-op TRB, it means the
2105 * corresponding TD has been cancelled. Just ignore
2106 * the TD.
2108 if ((le32_to_cpu(event_trb->generic.field[3])
2109 & TRB_TYPE_BITMASK)
2110 == TRB_TYPE(TRB_TR_NOOP)) {
2111 xhci_dbg(xhci,
2112 "event_trb is a no-op TRB. Skip it\n");
2113 goto cleanup;
2116 /* Now update the urb's actual_length and give back to
2117 * the core
2119 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2120 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2121 &status);
2122 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2123 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2124 &status);
2125 else
2126 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2127 ep, &status);
2129 cleanup:
2131 * Do not update event ring dequeue pointer if ep->skip is set.
2132 * Will roll back to continue process missed tds.
2134 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2135 inc_deq(xhci, xhci->event_ring, true);
2138 if (ret) {
2139 urb = td->urb;
2140 urb_priv = urb->hcpriv;
2141 /* Leave the TD around for the reset endpoint function
2142 * to use(but only if it's not a control endpoint,
2143 * since we already queued the Set TR dequeue pointer
2144 * command for stalled control endpoints).
2146 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2147 (trb_comp_code != COMP_STALL &&
2148 trb_comp_code != COMP_BABBLE))
2149 xhci_urb_free_priv(xhci, urb_priv);
2151 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2152 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2153 "status = %d\n",
2154 urb, urb->actual_length, status);
2155 spin_unlock(&xhci->lock);
2156 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2157 spin_lock(&xhci->lock);
2161 * If ep->skip is set, it means there are missed tds on the
2162 * endpoint ring need to take care of.
2163 * Process them as short transfer until reach the td pointed by
2164 * the event.
2166 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2168 return 0;
2172 * This function handles all OS-owned events on the event ring. It may drop
2173 * xhci->lock between event processing (e.g. to pass up port status changes).
2174 * Returns >0 for "possibly more events to process" (caller should call again),
2175 * otherwise 0 if done. In future, <0 returns should indicate error code.
2177 static int xhci_handle_event(struct xhci_hcd *xhci)
2179 union xhci_trb *event;
2180 int update_ptrs = 1;
2181 int ret;
2183 xhci_dbg(xhci, "In %s\n", __func__);
2184 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2185 xhci->error_bitmask |= 1 << 1;
2186 return 0;
2189 event = xhci->event_ring->dequeue;
2190 /* Does the HC or OS own the TRB? */
2191 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2192 xhci->event_ring->cycle_state) {
2193 xhci->error_bitmask |= 1 << 2;
2194 return 0;
2196 xhci_dbg(xhci, "%s - OS owns TRB\n", __func__);
2199 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2200 * speculative reads of the event's flags/data below.
2202 rmb();
2203 /* FIXME: Handle more event types. */
2204 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2205 case TRB_TYPE(TRB_COMPLETION):
2206 xhci_dbg(xhci, "%s - calling handle_cmd_completion\n", __func__);
2207 handle_cmd_completion(xhci, &event->event_cmd);
2208 xhci_dbg(xhci, "%s - returned from handle_cmd_completion\n", __func__);
2209 break;
2210 case TRB_TYPE(TRB_PORT_STATUS):
2211 xhci_dbg(xhci, "%s - calling handle_port_status\n", __func__);
2212 handle_port_status(xhci, event);
2213 xhci_dbg(xhci, "%s - returned from handle_port_status\n", __func__);
2214 update_ptrs = 0;
2215 break;
2216 case TRB_TYPE(TRB_TRANSFER):
2217 xhci_dbg(xhci, "%s - calling handle_tx_event\n", __func__);
2218 ret = handle_tx_event(xhci, &event->trans_event);
2219 xhci_dbg(xhci, "%s - returned from handle_tx_event\n", __func__);
2220 if (ret < 0)
2221 xhci->error_bitmask |= 1 << 9;
2222 else
2223 update_ptrs = 0;
2224 break;
2225 default:
2226 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2227 TRB_TYPE(48))
2228 handle_vendor_event(xhci, event);
2229 else
2230 xhci->error_bitmask |= 1 << 3;
2232 /* Any of the above functions may drop and re-acquire the lock, so check
2233 * to make sure a watchdog timer didn't mark the host as non-responsive.
2235 if (xhci->xhc_state & XHCI_STATE_DYING) {
2236 xhci_dbg(xhci, "xHCI host dying, returning from "
2237 "event handler.\n");
2238 return 0;
2241 if (update_ptrs)
2242 /* Update SW event ring dequeue pointer */
2243 inc_deq(xhci, xhci->event_ring, true);
2245 /* Are there more items on the event ring? Caller will call us again to
2246 * check.
2248 return 1;
2252 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2253 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2254 * indicators of an event TRB error, but we check the status *first* to be safe.
2256 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2258 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2259 u32 status;
2260 union xhci_trb *trb;
2261 u64 temp_64;
2262 union xhci_trb *event_ring_deq;
2263 dma_addr_t deq;
2265 spin_lock(&xhci->lock);
2266 trb = xhci->event_ring->dequeue;
2267 /* Check if the xHC generated the interrupt, or the irq is shared */
2268 status = xhci_readl(xhci, &xhci->op_regs->status);
2269 if (status == 0xffffffff)
2270 goto hw_died;
2272 if (!(status & STS_EINT)) {
2273 spin_unlock(&xhci->lock);
2274 return IRQ_NONE;
2276 xhci_dbg(xhci, "op reg status = %08x\n", status);
2277 xhci_dbg(xhci, "Event ring dequeue ptr:\n");
2278 xhci_dbg(xhci, "@%llx %08x %08x %08x %08x\n",
2279 (unsigned long long)
2280 xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, trb),
2281 lower_32_bits(le64_to_cpu(trb->link.segment_ptr)),
2282 upper_32_bits(le64_to_cpu(trb->link.segment_ptr)),
2283 (unsigned int) le32_to_cpu(trb->link.intr_target),
2284 (unsigned int) le32_to_cpu(trb->link.control));
2286 if (status & STS_FATAL) {
2287 xhci_warn(xhci, "WARNING: Host System Error\n");
2288 xhci_halt(xhci);
2289 hw_died:
2290 spin_unlock(&xhci->lock);
2291 return -ESHUTDOWN;
2295 * Clear the op reg interrupt status first,
2296 * so we can receive interrupts from other MSI-X interrupters.
2297 * Write 1 to clear the interrupt status.
2299 status |= STS_EINT;
2300 xhci_writel(xhci, status, &xhci->op_regs->status);
2301 /* FIXME when MSI-X is supported and there are multiple vectors */
2302 /* Clear the MSI-X event interrupt status */
2304 if (hcd->irq != -1) {
2305 u32 irq_pending;
2306 /* Acknowledge the PCI interrupt */
2307 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2308 irq_pending |= 0x3;
2309 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2312 if (xhci->xhc_state & XHCI_STATE_DYING) {
2313 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2314 "Shouldn't IRQs be disabled?\n");
2315 /* Clear the event handler busy flag (RW1C);
2316 * the event ring should be empty.
2318 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2319 xhci_write_64(xhci, temp_64 | ERST_EHB,
2320 &xhci->ir_set->erst_dequeue);
2321 spin_unlock(&xhci->lock);
2323 return IRQ_HANDLED;
2326 event_ring_deq = xhci->event_ring->dequeue;
2327 /* FIXME this should be a delayed service routine
2328 * that clears the EHB.
2330 while (xhci_handle_event(xhci) > 0) {}
2332 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2333 /* If necessary, update the HW's version of the event ring deq ptr. */
2334 if (event_ring_deq != xhci->event_ring->dequeue) {
2335 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2336 xhci->event_ring->dequeue);
2337 if (deq == 0)
2338 xhci_warn(xhci, "WARN something wrong with SW event "
2339 "ring dequeue ptr.\n");
2340 /* Update HC event ring dequeue pointer */
2341 temp_64 &= ERST_PTR_MASK;
2342 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2345 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2346 temp_64 |= ERST_EHB;
2347 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2349 spin_unlock(&xhci->lock);
2351 return IRQ_HANDLED;
2354 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd)
2356 irqreturn_t ret;
2357 struct xhci_hcd *xhci;
2359 xhci = hcd_to_xhci(hcd);
2360 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2361 if (xhci->shared_hcd)
2362 set_bit(HCD_FLAG_SAW_IRQ, &xhci->shared_hcd->flags);
2364 ret = xhci_irq(hcd);
2366 return ret;
2369 /**** Endpoint Ring Operations ****/
2372 * Generic function for queueing a TRB on a ring.
2373 * The caller must have checked to make sure there's room on the ring.
2375 * @more_trbs_coming: Will you enqueue more TRBs before calling
2376 * prepare_transfer()?
2378 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2379 bool consumer, bool more_trbs_coming,
2380 u32 field1, u32 field2, u32 field3, u32 field4)
2382 struct xhci_generic_trb *trb;
2384 trb = &ring->enqueue->generic;
2385 trb->field[0] = cpu_to_le32(field1);
2386 trb->field[1] = cpu_to_le32(field2);
2387 trb->field[2] = cpu_to_le32(field3);
2388 trb->field[3] = cpu_to_le32(field4);
2389 inc_enq(xhci, ring, consumer, more_trbs_coming);
2393 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2394 * FIXME allocate segments if the ring is full.
2396 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2397 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2399 /* Make sure the endpoint has been added to xHC schedule */
2400 xhci_dbg(xhci, "Endpoint state = 0x%x\n", ep_state);
2401 switch (ep_state) {
2402 case EP_STATE_DISABLED:
2404 * USB core changed config/interfaces without notifying us,
2405 * or hardware is reporting the wrong state.
2407 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2408 return -ENOENT;
2409 case EP_STATE_ERROR:
2410 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2411 /* FIXME event handling code for error needs to clear it */
2412 /* XXX not sure if this should be -ENOENT or not */
2413 return -EINVAL;
2414 case EP_STATE_HALTED:
2415 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2416 case EP_STATE_STOPPED:
2417 case EP_STATE_RUNNING:
2418 break;
2419 default:
2420 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2422 * FIXME issue Configure Endpoint command to try to get the HC
2423 * back into a known state.
2425 return -EINVAL;
2427 if (!room_on_ring(xhci, ep_ring, num_trbs)) {
2428 /* FIXME allocate more room */
2429 xhci_err(xhci, "ERROR no room on ep ring\n");
2430 return -ENOMEM;
2433 if (enqueue_is_link_trb(ep_ring)) {
2434 struct xhci_ring *ring = ep_ring;
2435 union xhci_trb *next;
2437 xhci_dbg(xhci, "prepare_ring: pointing to link trb\n");
2438 next = ring->enqueue;
2440 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2441 /* If we're not dealing with 0.95 hardware,
2442 * clear the chain bit.
2444 if (!xhci_link_trb_quirk(xhci))
2445 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2446 else
2447 next->link.control |= cpu_to_le32(TRB_CHAIN);
2449 wmb();
2450 next->link.control ^= cpu_to_le32((u32) TRB_CYCLE);
2452 /* Toggle the cycle bit after the last ring segment. */
2453 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2454 ring->cycle_state = (ring->cycle_state ? 0 : 1);
2455 if (!in_interrupt()) {
2456 xhci_dbg(xhci, "queue_trb: Toggle cycle "
2457 "state for ring %p = %i\n",
2458 ring, (unsigned int)ring->cycle_state);
2461 ring->enq_seg = ring->enq_seg->next;
2462 ring->enqueue = ring->enq_seg->trbs;
2463 next = ring->enqueue;
2467 return 0;
2470 static int prepare_transfer(struct xhci_hcd *xhci,
2471 struct xhci_virt_device *xdev,
2472 unsigned int ep_index,
2473 unsigned int stream_id,
2474 unsigned int num_trbs,
2475 struct urb *urb,
2476 unsigned int td_index,
2477 gfp_t mem_flags)
2479 int ret;
2480 struct urb_priv *urb_priv;
2481 struct xhci_td *td;
2482 struct xhci_ring *ep_ring;
2483 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2485 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2486 if (!ep_ring) {
2487 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2488 stream_id);
2489 return -EINVAL;
2492 ret = prepare_ring(xhci, ep_ring,
2493 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2494 num_trbs, mem_flags);
2495 if (ret)
2496 return ret;
2498 urb_priv = urb->hcpriv;
2499 td = urb_priv->td[td_index];
2501 INIT_LIST_HEAD(&td->td_list);
2502 INIT_LIST_HEAD(&td->cancelled_td_list);
2504 if (td_index == 0) {
2505 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2506 if (unlikely(ret)) {
2507 xhci_urb_free_priv(xhci, urb_priv);
2508 urb->hcpriv = NULL;
2509 return ret;
2513 td->urb = urb;
2514 /* Add this TD to the tail of the endpoint ring's TD list */
2515 list_add_tail(&td->td_list, &ep_ring->td_list);
2516 td->start_seg = ep_ring->enq_seg;
2517 td->first_trb = ep_ring->enqueue;
2519 urb_priv->td[td_index] = td;
2521 return 0;
2524 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2526 int num_sgs, num_trbs, running_total, temp, i;
2527 struct scatterlist *sg;
2529 sg = NULL;
2530 num_sgs = urb->num_sgs;
2531 temp = urb->transfer_buffer_length;
2533 xhci_dbg(xhci, "count sg list trbs: \n");
2534 num_trbs = 0;
2535 for_each_sg(urb->sg, sg, num_sgs, i) {
2536 unsigned int previous_total_trbs = num_trbs;
2537 unsigned int len = sg_dma_len(sg);
2539 /* Scatter gather list entries may cross 64KB boundaries */
2540 running_total = TRB_MAX_BUFF_SIZE -
2541 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2542 running_total &= TRB_MAX_BUFF_SIZE - 1;
2543 if (running_total != 0)
2544 num_trbs++;
2546 /* How many more 64KB chunks to transfer, how many more TRBs? */
2547 while (running_total < sg_dma_len(sg) && running_total < temp) {
2548 num_trbs++;
2549 running_total += TRB_MAX_BUFF_SIZE;
2551 xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n",
2552 i, (unsigned long long)sg_dma_address(sg),
2553 len, len, num_trbs - previous_total_trbs);
2555 len = min_t(int, len, temp);
2556 temp -= len;
2557 if (temp == 0)
2558 break;
2560 xhci_dbg(xhci, "\n");
2561 if (!in_interrupt())
2562 xhci_dbg(xhci, "ep %#x - urb len = %d, sglist used, "
2563 "num_trbs = %d\n",
2564 urb->ep->desc.bEndpointAddress,
2565 urb->transfer_buffer_length,
2566 num_trbs);
2567 return num_trbs;
2570 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2572 if (num_trbs != 0)
2573 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2574 "TRBs, %d left\n", __func__,
2575 urb->ep->desc.bEndpointAddress, num_trbs);
2576 if (running_total != urb->transfer_buffer_length)
2577 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2578 "queued %#x (%d), asked for %#x (%d)\n",
2579 __func__,
2580 urb->ep->desc.bEndpointAddress,
2581 running_total, running_total,
2582 urb->transfer_buffer_length,
2583 urb->transfer_buffer_length);
2586 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2587 unsigned int ep_index, unsigned int stream_id, int start_cycle,
2588 struct xhci_generic_trb *start_trb)
2591 * Pass all the TRBs to the hardware at once and make sure this write
2592 * isn't reordered.
2594 wmb();
2595 if (start_cycle)
2596 start_trb->field[3] |= cpu_to_le32(start_cycle);
2597 else
2598 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2599 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2603 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
2604 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
2605 * (comprised of sg list entries) can take several service intervals to
2606 * transmit.
2608 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2609 struct urb *urb, int slot_id, unsigned int ep_index)
2611 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
2612 xhci->devs[slot_id]->out_ctx, ep_index);
2613 int xhci_interval;
2614 int ep_interval;
2616 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
2617 ep_interval = urb->interval;
2618 /* Convert to microframes */
2619 if (urb->dev->speed == USB_SPEED_LOW ||
2620 urb->dev->speed == USB_SPEED_FULL)
2621 ep_interval *= 8;
2622 /* FIXME change this to a warning and a suggestion to use the new API
2623 * to set the polling interval (once the API is added).
2625 if (xhci_interval != ep_interval) {
2626 if (printk_ratelimit())
2627 dev_dbg(&urb->dev->dev, "Driver uses different interval"
2628 " (%d microframe%s) than xHCI "
2629 "(%d microframe%s)\n",
2630 ep_interval,
2631 ep_interval == 1 ? "" : "s",
2632 xhci_interval,
2633 xhci_interval == 1 ? "" : "s");
2634 urb->interval = xhci_interval;
2635 /* Convert back to frames for LS/FS devices */
2636 if (urb->dev->speed == USB_SPEED_LOW ||
2637 urb->dev->speed == USB_SPEED_FULL)
2638 urb->interval /= 8;
2640 return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
2644 * The TD size is the number of bytes remaining in the TD (including this TRB),
2645 * right shifted by 10.
2646 * It must fit in bits 21:17, so it can't be bigger than 31.
2648 static u32 xhci_td_remainder(unsigned int remainder)
2650 u32 max = (1 << (21 - 17 + 1)) - 1;
2652 if ((remainder >> 10) >= max)
2653 return max << 17;
2654 else
2655 return (remainder >> 10) << 17;
2659 * For xHCI 1.0 host controllers, TD size is the number of packets remaining in
2660 * the TD (*not* including this TRB).
2662 * Total TD packet count = total_packet_count =
2663 * roundup(TD size in bytes / wMaxPacketSize)
2665 * Packets transferred up to and including this TRB = packets_transferred =
2666 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
2668 * TD size = total_packet_count - packets_transferred
2670 * It must fit in bits 21:17, so it can't be bigger than 31.
2673 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
2674 unsigned int total_packet_count, struct urb *urb)
2676 int packets_transferred;
2678 /* All the TRB queueing functions don't count the current TRB in
2679 * running_total.
2681 packets_transferred = (running_total + trb_buff_len) /
2682 le16_to_cpu(urb->ep->desc.wMaxPacketSize);
2684 return xhci_td_remainder(total_packet_count - packets_transferred);
2687 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2688 struct urb *urb, int slot_id, unsigned int ep_index)
2690 struct xhci_ring *ep_ring;
2691 unsigned int num_trbs;
2692 struct urb_priv *urb_priv;
2693 struct xhci_td *td;
2694 struct scatterlist *sg;
2695 int num_sgs;
2696 int trb_buff_len, this_sg_len, running_total;
2697 unsigned int total_packet_count;
2698 bool first_trb;
2699 u64 addr;
2700 bool more_trbs_coming;
2702 struct xhci_generic_trb *start_trb;
2703 int start_cycle;
2705 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2706 if (!ep_ring)
2707 return -EINVAL;
2709 num_trbs = count_sg_trbs_needed(xhci, urb);
2710 num_sgs = urb->num_sgs;
2711 total_packet_count = roundup(urb->transfer_buffer_length,
2712 le16_to_cpu(urb->ep->desc.wMaxPacketSize));
2714 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
2715 ep_index, urb->stream_id,
2716 num_trbs, urb, 0, mem_flags);
2717 if (trb_buff_len < 0)
2718 return trb_buff_len;
2720 urb_priv = urb->hcpriv;
2721 td = urb_priv->td[0];
2724 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2725 * until we've finished creating all the other TRBs. The ring's cycle
2726 * state may change as we enqueue the other TRBs, so save it too.
2728 start_trb = &ep_ring->enqueue->generic;
2729 start_cycle = ep_ring->cycle_state;
2731 running_total = 0;
2733 * How much data is in the first TRB?
2735 * There are three forces at work for TRB buffer pointers and lengths:
2736 * 1. We don't want to walk off the end of this sg-list entry buffer.
2737 * 2. The transfer length that the driver requested may be smaller than
2738 * the amount of memory allocated for this scatter-gather list.
2739 * 3. TRBs buffers can't cross 64KB boundaries.
2741 sg = urb->sg;
2742 addr = (u64) sg_dma_address(sg);
2743 this_sg_len = sg_dma_len(sg);
2744 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
2745 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2746 if (trb_buff_len > urb->transfer_buffer_length)
2747 trb_buff_len = urb->transfer_buffer_length;
2748 xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n",
2749 trb_buff_len);
2751 first_trb = true;
2752 /* Queue the first TRB, even if it's zero-length */
2753 do {
2754 u32 field = 0;
2755 u32 length_field = 0;
2756 u32 remainder = 0;
2758 /* Don't change the cycle bit of the first TRB until later */
2759 if (first_trb) {
2760 first_trb = false;
2761 if (start_cycle == 0)
2762 field |= 0x1;
2763 } else
2764 field |= ep_ring->cycle_state;
2766 /* Chain all the TRBs together; clear the chain bit in the last
2767 * TRB to indicate it's the last TRB in the chain.
2769 if (num_trbs > 1) {
2770 field |= TRB_CHAIN;
2771 } else {
2772 /* FIXME - add check for ZERO_PACKET flag before this */
2773 td->last_trb = ep_ring->enqueue;
2774 field |= TRB_IOC;
2777 /* Only set interrupt on short packet for IN endpoints */
2778 if (usb_urb_dir_in(urb))
2779 field |= TRB_ISP;
2781 xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), "
2782 "64KB boundary at %#x, end dma = %#x\n",
2783 (unsigned int) addr, trb_buff_len, trb_buff_len,
2784 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2785 (unsigned int) addr + trb_buff_len);
2786 if (TRB_MAX_BUFF_SIZE -
2787 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
2788 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
2789 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
2790 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2791 (unsigned int) addr + trb_buff_len);
2794 /* Set the TRB length, TD size, and interrupter fields. */
2795 if (xhci->hci_version < 0x100) {
2796 remainder = xhci_td_remainder(
2797 urb->transfer_buffer_length -
2798 running_total);
2799 } else {
2800 remainder = xhci_v1_0_td_remainder(running_total,
2801 trb_buff_len, total_packet_count, urb);
2803 length_field = TRB_LEN(trb_buff_len) |
2804 remainder |
2805 TRB_INTR_TARGET(0);
2807 if (num_trbs > 1)
2808 more_trbs_coming = true;
2809 else
2810 more_trbs_coming = false;
2811 queue_trb(xhci, ep_ring, false, more_trbs_coming,
2812 lower_32_bits(addr),
2813 upper_32_bits(addr),
2814 length_field,
2815 field | TRB_TYPE(TRB_NORMAL));
2816 --num_trbs;
2817 running_total += trb_buff_len;
2819 /* Calculate length for next transfer --
2820 * Are we done queueing all the TRBs for this sg entry?
2822 this_sg_len -= trb_buff_len;
2823 if (this_sg_len == 0) {
2824 --num_sgs;
2825 if (num_sgs == 0)
2826 break;
2827 sg = sg_next(sg);
2828 addr = (u64) sg_dma_address(sg);
2829 this_sg_len = sg_dma_len(sg);
2830 } else {
2831 addr += trb_buff_len;
2834 trb_buff_len = TRB_MAX_BUFF_SIZE -
2835 (addr & (TRB_MAX_BUFF_SIZE - 1));
2836 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2837 if (running_total + trb_buff_len > urb->transfer_buffer_length)
2838 trb_buff_len =
2839 urb->transfer_buffer_length - running_total;
2840 } while (running_total < urb->transfer_buffer_length);
2842 check_trb_math(urb, num_trbs, running_total);
2843 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
2844 start_cycle, start_trb);
2845 return 0;
2848 /* This is very similar to what ehci-q.c qtd_fill() does */
2849 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2850 struct urb *urb, int slot_id, unsigned int ep_index)
2852 struct xhci_ring *ep_ring;
2853 struct urb_priv *urb_priv;
2854 struct xhci_td *td;
2855 int num_trbs;
2856 struct xhci_generic_trb *start_trb;
2857 bool first_trb;
2858 bool more_trbs_coming;
2859 int start_cycle;
2860 u32 field, length_field;
2862 int running_total, trb_buff_len, ret;
2863 unsigned int total_packet_count;
2864 u64 addr;
2866 if (urb->num_sgs)
2867 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
2869 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2870 if (!ep_ring)
2871 return -EINVAL;
2873 num_trbs = 0;
2874 /* How much data is (potentially) left before the 64KB boundary? */
2875 running_total = TRB_MAX_BUFF_SIZE -
2876 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2877 running_total &= TRB_MAX_BUFF_SIZE - 1;
2879 /* If there's some data on this 64KB chunk, or we have to send a
2880 * zero-length transfer, we need at least one TRB
2882 if (running_total != 0 || urb->transfer_buffer_length == 0)
2883 num_trbs++;
2884 /* How many more 64KB chunks to transfer, how many more TRBs? */
2885 while (running_total < urb->transfer_buffer_length) {
2886 num_trbs++;
2887 running_total += TRB_MAX_BUFF_SIZE;
2889 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
2891 if (!in_interrupt())
2892 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d), "
2893 "addr = %#llx, num_trbs = %d\n",
2894 urb->ep->desc.bEndpointAddress,
2895 urb->transfer_buffer_length,
2896 urb->transfer_buffer_length,
2897 (unsigned long long)urb->transfer_dma,
2898 num_trbs);
2900 ret = prepare_transfer(xhci, xhci->devs[slot_id],
2901 ep_index, urb->stream_id,
2902 num_trbs, urb, 0, mem_flags);
2903 if (ret < 0)
2904 return ret;
2906 urb_priv = urb->hcpriv;
2907 td = urb_priv->td[0];
2910 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2911 * until we've finished creating all the other TRBs. The ring's cycle
2912 * state may change as we enqueue the other TRBs, so save it too.
2914 start_trb = &ep_ring->enqueue->generic;
2915 start_cycle = ep_ring->cycle_state;
2917 running_total = 0;
2918 total_packet_count = roundup(urb->transfer_buffer_length,
2919 le16_to_cpu(urb->ep->desc.wMaxPacketSize));
2920 /* How much data is in the first TRB? */
2921 addr = (u64) urb->transfer_dma;
2922 trb_buff_len = TRB_MAX_BUFF_SIZE -
2923 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2924 if (trb_buff_len > urb->transfer_buffer_length)
2925 trb_buff_len = urb->transfer_buffer_length;
2927 first_trb = true;
2929 /* Queue the first TRB, even if it's zero-length */
2930 do {
2931 u32 remainder = 0;
2932 field = 0;
2934 /* Don't change the cycle bit of the first TRB until later */
2935 if (first_trb) {
2936 first_trb = false;
2937 if (start_cycle == 0)
2938 field |= 0x1;
2939 } else
2940 field |= ep_ring->cycle_state;
2942 /* Chain all the TRBs together; clear the chain bit in the last
2943 * TRB to indicate it's the last TRB in the chain.
2945 if (num_trbs > 1) {
2946 field |= TRB_CHAIN;
2947 } else {
2948 /* FIXME - add check for ZERO_PACKET flag before this */
2949 td->last_trb = ep_ring->enqueue;
2950 field |= TRB_IOC;
2953 /* Only set interrupt on short packet for IN endpoints */
2954 if (usb_urb_dir_in(urb))
2955 field |= TRB_ISP;
2957 /* Set the TRB length, TD size, and interrupter fields. */
2958 if (xhci->hci_version < 0x100) {
2959 remainder = xhci_td_remainder(
2960 urb->transfer_buffer_length -
2961 running_total);
2962 } else {
2963 remainder = xhci_v1_0_td_remainder(running_total,
2964 trb_buff_len, total_packet_count, urb);
2966 length_field = TRB_LEN(trb_buff_len) |
2967 remainder |
2968 TRB_INTR_TARGET(0);
2970 if (num_trbs > 1)
2971 more_trbs_coming = true;
2972 else
2973 more_trbs_coming = false;
2974 queue_trb(xhci, ep_ring, false, more_trbs_coming,
2975 lower_32_bits(addr),
2976 upper_32_bits(addr),
2977 length_field,
2978 field | TRB_TYPE(TRB_NORMAL));
2979 --num_trbs;
2980 running_total += trb_buff_len;
2982 /* Calculate length for next transfer */
2983 addr += trb_buff_len;
2984 trb_buff_len = urb->transfer_buffer_length - running_total;
2985 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
2986 trb_buff_len = TRB_MAX_BUFF_SIZE;
2987 } while (running_total < urb->transfer_buffer_length);
2989 check_trb_math(urb, num_trbs, running_total);
2990 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
2991 start_cycle, start_trb);
2992 return 0;
2995 /* Caller must have locked xhci->lock */
2996 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2997 struct urb *urb, int slot_id, unsigned int ep_index)
2999 struct xhci_ring *ep_ring;
3000 int num_trbs;
3001 int ret;
3002 struct usb_ctrlrequest *setup;
3003 struct xhci_generic_trb *start_trb;
3004 int start_cycle;
3005 u32 field, length_field;
3006 struct urb_priv *urb_priv;
3007 struct xhci_td *td;
3009 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3010 if (!ep_ring)
3011 return -EINVAL;
3014 * Need to copy setup packet into setup TRB, so we can't use the setup
3015 * DMA address.
3017 if (!urb->setup_packet)
3018 return -EINVAL;
3020 if (!in_interrupt())
3021 xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n",
3022 slot_id, ep_index);
3023 /* 1 TRB for setup, 1 for status */
3024 num_trbs = 2;
3026 * Don't need to check if we need additional event data and normal TRBs,
3027 * since data in control transfers will never get bigger than 16MB
3028 * XXX: can we get a buffer that crosses 64KB boundaries?
3030 if (urb->transfer_buffer_length > 0)
3031 num_trbs++;
3032 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3033 ep_index, urb->stream_id,
3034 num_trbs, urb, 0, mem_flags);
3035 if (ret < 0)
3036 return ret;
3038 urb_priv = urb->hcpriv;
3039 td = urb_priv->td[0];
3042 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3043 * until we've finished creating all the other TRBs. The ring's cycle
3044 * state may change as we enqueue the other TRBs, so save it too.
3046 start_trb = &ep_ring->enqueue->generic;
3047 start_cycle = ep_ring->cycle_state;
3049 /* Queue setup TRB - see section 6.4.1.2.1 */
3050 /* FIXME better way to translate setup_packet into two u32 fields? */
3051 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3052 field = 0;
3053 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3054 if (start_cycle == 0)
3055 field |= 0x1;
3057 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3058 if (xhci->hci_version == 0x100) {
3059 if (urb->transfer_buffer_length > 0) {
3060 if (setup->bRequestType & USB_DIR_IN)
3061 field |= TRB_TX_TYPE(TRB_DATA_IN);
3062 else
3063 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3067 queue_trb(xhci, ep_ring, false, true,
3068 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3069 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3070 TRB_LEN(8) | TRB_INTR_TARGET(0),
3071 /* Immediate data in pointer */
3072 field);
3074 /* If there's data, queue data TRBs */
3075 /* Only set interrupt on short packet for IN endpoints */
3076 if (usb_urb_dir_in(urb))
3077 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3078 else
3079 field = TRB_TYPE(TRB_DATA);
3081 length_field = TRB_LEN(urb->transfer_buffer_length) |
3082 xhci_td_remainder(urb->transfer_buffer_length) |
3083 TRB_INTR_TARGET(0);
3084 if (urb->transfer_buffer_length > 0) {
3085 if (setup->bRequestType & USB_DIR_IN)
3086 field |= TRB_DIR_IN;
3087 queue_trb(xhci, ep_ring, false, true,
3088 lower_32_bits(urb->transfer_dma),
3089 upper_32_bits(urb->transfer_dma),
3090 length_field,
3091 field | ep_ring->cycle_state);
3094 /* Save the DMA address of the last TRB in the TD */
3095 td->last_trb = ep_ring->enqueue;
3097 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3098 /* If the device sent data, the status stage is an OUT transfer */
3099 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3100 field = 0;
3101 else
3102 field = TRB_DIR_IN;
3103 queue_trb(xhci, ep_ring, false, false,
3106 TRB_INTR_TARGET(0),
3107 /* Event on completion */
3108 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3110 giveback_first_trb(xhci, slot_id, ep_index, 0,
3111 start_cycle, start_trb);
3112 return 0;
3115 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3116 struct urb *urb, int i)
3118 int num_trbs = 0;
3119 u64 addr, td_len, running_total;
3121 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3122 td_len = urb->iso_frame_desc[i].length;
3124 running_total = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
3125 running_total &= TRB_MAX_BUFF_SIZE - 1;
3126 if (running_total != 0)
3127 num_trbs++;
3129 while (running_total < td_len) {
3130 num_trbs++;
3131 running_total += TRB_MAX_BUFF_SIZE;
3134 return num_trbs;
3138 * The transfer burst count field of the isochronous TRB defines the number of
3139 * bursts that are required to move all packets in this TD. Only SuperSpeed
3140 * devices can burst up to bMaxBurst number of packets per service interval.
3141 * This field is zero based, meaning a value of zero in the field means one
3142 * burst. Basically, for everything but SuperSpeed devices, this field will be
3143 * zero. Only xHCI 1.0 host controllers support this field.
3145 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3146 struct usb_device *udev,
3147 struct urb *urb, unsigned int total_packet_count)
3149 unsigned int max_burst;
3151 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3152 return 0;
3154 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3155 return roundup(total_packet_count, max_burst + 1) - 1;
3159 * Returns the number of packets in the last "burst" of packets. This field is
3160 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3161 * the last burst packet count is equal to the total number of packets in the
3162 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3163 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3164 * contain 1 to (bMaxBurst + 1) packets.
3166 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3167 struct usb_device *udev,
3168 struct urb *urb, unsigned int total_packet_count)
3170 unsigned int max_burst;
3171 unsigned int residue;
3173 if (xhci->hci_version < 0x100)
3174 return 0;
3176 switch (udev->speed) {
3177 case USB_SPEED_SUPER:
3178 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3179 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3180 residue = total_packet_count % (max_burst + 1);
3181 /* If residue is zero, the last burst contains (max_burst + 1)
3182 * number of packets, but the TLBPC field is zero-based.
3184 if (residue == 0)
3185 return max_burst;
3186 return residue - 1;
3187 default:
3188 if (total_packet_count == 0)
3189 return 0;
3190 return total_packet_count - 1;
3194 /* This is for isoc transfer */
3195 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3196 struct urb *urb, int slot_id, unsigned int ep_index)
3198 struct xhci_ring *ep_ring;
3199 struct urb_priv *urb_priv;
3200 struct xhci_td *td;
3201 int num_tds, trbs_per_td;
3202 struct xhci_generic_trb *start_trb;
3203 bool first_trb;
3204 int start_cycle;
3205 u32 field, length_field;
3206 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3207 u64 start_addr, addr;
3208 int i, j;
3209 bool more_trbs_coming;
3211 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3213 num_tds = urb->number_of_packets;
3214 if (num_tds < 1) {
3215 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3216 return -EINVAL;
3219 if (!in_interrupt())
3220 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d),"
3221 " addr = %#llx, num_tds = %d\n",
3222 urb->ep->desc.bEndpointAddress,
3223 urb->transfer_buffer_length,
3224 urb->transfer_buffer_length,
3225 (unsigned long long)urb->transfer_dma,
3226 num_tds);
3228 start_addr = (u64) urb->transfer_dma;
3229 start_trb = &ep_ring->enqueue->generic;
3230 start_cycle = ep_ring->cycle_state;
3232 /* Queue the first TRB, even if it's zero-length */
3233 for (i = 0; i < num_tds; i++) {
3234 unsigned int total_packet_count;
3235 unsigned int burst_count;
3236 unsigned int residue;
3238 first_trb = true;
3239 running_total = 0;
3240 addr = start_addr + urb->iso_frame_desc[i].offset;
3241 td_len = urb->iso_frame_desc[i].length;
3242 td_remain_len = td_len;
3243 /* FIXME: Ignoring zero-length packets, can those happen? */
3244 total_packet_count = roundup(td_len,
3245 le16_to_cpu(urb->ep->desc.wMaxPacketSize));
3246 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3247 total_packet_count);
3248 residue = xhci_get_last_burst_packet_count(xhci,
3249 urb->dev, urb, total_packet_count);
3251 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3253 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3254 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3255 if (ret < 0)
3256 return ret;
3258 urb_priv = urb->hcpriv;
3259 td = urb_priv->td[i];
3261 for (j = 0; j < trbs_per_td; j++) {
3262 u32 remainder = 0;
3263 field = TRB_TBC(burst_count) | TRB_TLBPC(residue);
3265 if (first_trb) {
3266 /* Queue the isoc TRB */
3267 field |= TRB_TYPE(TRB_ISOC);
3268 /* Assume URB_ISO_ASAP is set */
3269 field |= TRB_SIA;
3270 if (i == 0) {
3271 if (start_cycle == 0)
3272 field |= 0x1;
3273 } else
3274 field |= ep_ring->cycle_state;
3275 first_trb = false;
3276 } else {
3277 /* Queue other normal TRBs */
3278 field |= TRB_TYPE(TRB_NORMAL);
3279 field |= ep_ring->cycle_state;
3282 /* Only set interrupt on short packet for IN EPs */
3283 if (usb_urb_dir_in(urb))
3284 field |= TRB_ISP;
3286 /* Chain all the TRBs together; clear the chain bit in
3287 * the last TRB to indicate it's the last TRB in the
3288 * chain.
3290 if (j < trbs_per_td - 1) {
3291 field |= TRB_CHAIN;
3292 more_trbs_coming = true;
3293 } else {
3294 td->last_trb = ep_ring->enqueue;
3295 field |= TRB_IOC;
3296 if (xhci->hci_version == 0x100) {
3297 /* Set BEI bit except for the last td */
3298 if (i < num_tds - 1)
3299 field |= TRB_BEI;
3301 more_trbs_coming = false;
3304 /* Calculate TRB length */
3305 trb_buff_len = TRB_MAX_BUFF_SIZE -
3306 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3307 if (trb_buff_len > td_remain_len)
3308 trb_buff_len = td_remain_len;
3310 /* Set the TRB length, TD size, & interrupter fields. */
3311 if (xhci->hci_version < 0x100) {
3312 remainder = xhci_td_remainder(
3313 td_len - running_total);
3314 } else {
3315 remainder = xhci_v1_0_td_remainder(
3316 running_total, trb_buff_len,
3317 total_packet_count, urb);
3319 length_field = TRB_LEN(trb_buff_len) |
3320 remainder |
3321 TRB_INTR_TARGET(0);
3323 queue_trb(xhci, ep_ring, false, more_trbs_coming,
3324 lower_32_bits(addr),
3325 upper_32_bits(addr),
3326 length_field,
3327 field);
3328 running_total += trb_buff_len;
3330 addr += trb_buff_len;
3331 td_remain_len -= trb_buff_len;
3334 /* Check TD length */
3335 if (running_total != td_len) {
3336 xhci_err(xhci, "ISOC TD length unmatch\n");
3337 return -EINVAL;
3341 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3342 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3343 usb_amd_quirk_pll_disable();
3345 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3347 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3348 start_cycle, start_trb);
3349 return 0;
3353 * Check transfer ring to guarantee there is enough room for the urb.
3354 * Update ISO URB start_frame and interval.
3355 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3356 * update the urb->start_frame by now.
3357 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3359 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3360 struct urb *urb, int slot_id, unsigned int ep_index)
3362 struct xhci_virt_device *xdev;
3363 struct xhci_ring *ep_ring;
3364 struct xhci_ep_ctx *ep_ctx;
3365 int start_frame;
3366 int xhci_interval;
3367 int ep_interval;
3368 int num_tds, num_trbs, i;
3369 int ret;
3371 xdev = xhci->devs[slot_id];
3372 ep_ring = xdev->eps[ep_index].ring;
3373 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3375 num_trbs = 0;
3376 num_tds = urb->number_of_packets;
3377 for (i = 0; i < num_tds; i++)
3378 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3380 /* Check the ring to guarantee there is enough room for the whole urb.
3381 * Do not insert any td of the urb to the ring if the check failed.
3383 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3384 num_trbs, mem_flags);
3385 if (ret)
3386 return ret;
3388 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3389 start_frame &= 0x3fff;
3391 urb->start_frame = start_frame;
3392 if (urb->dev->speed == USB_SPEED_LOW ||
3393 urb->dev->speed == USB_SPEED_FULL)
3394 urb->start_frame >>= 3;
3396 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3397 ep_interval = urb->interval;
3398 /* Convert to microframes */
3399 if (urb->dev->speed == USB_SPEED_LOW ||
3400 urb->dev->speed == USB_SPEED_FULL)
3401 ep_interval *= 8;
3402 /* FIXME change this to a warning and a suggestion to use the new API
3403 * to set the polling interval (once the API is added).
3405 if (xhci_interval != ep_interval) {
3406 if (printk_ratelimit())
3407 dev_dbg(&urb->dev->dev, "Driver uses different interval"
3408 " (%d microframe%s) than xHCI "
3409 "(%d microframe%s)\n",
3410 ep_interval,
3411 ep_interval == 1 ? "" : "s",
3412 xhci_interval,
3413 xhci_interval == 1 ? "" : "s");
3414 urb->interval = xhci_interval;
3415 /* Convert back to frames for LS/FS devices */
3416 if (urb->dev->speed == USB_SPEED_LOW ||
3417 urb->dev->speed == USB_SPEED_FULL)
3418 urb->interval /= 8;
3420 return xhci_queue_isoc_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
3423 /**** Command Ring Operations ****/
3425 /* Generic function for queueing a command TRB on the command ring.
3426 * Check to make sure there's room on the command ring for one command TRB.
3427 * Also check that there's room reserved for commands that must not fail.
3428 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3429 * then only check for the number of reserved spots.
3430 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3431 * because the command event handler may want to resubmit a failed command.
3433 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3434 u32 field3, u32 field4, bool command_must_succeed)
3436 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3437 int ret;
3439 if (!command_must_succeed)
3440 reserved_trbs++;
3442 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3443 reserved_trbs, GFP_ATOMIC);
3444 if (ret < 0) {
3445 xhci_err(xhci, "ERR: No room for command on command ring\n");
3446 if (command_must_succeed)
3447 xhci_err(xhci, "ERR: Reserved TRB counting for "
3448 "unfailable commands failed.\n");
3449 return ret;
3451 queue_trb(xhci, xhci->cmd_ring, false, false, field1, field2, field3,
3452 field4 | xhci->cmd_ring->cycle_state);
3453 return 0;
3456 /* Queue a slot enable or disable request on the command ring */
3457 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3459 return queue_command(xhci, 0, 0, 0,
3460 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3463 /* Queue an address device command TRB */
3464 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3465 u32 slot_id)
3467 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3468 upper_32_bits(in_ctx_ptr), 0,
3469 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3470 false);
3473 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3474 u32 field1, u32 field2, u32 field3, u32 field4)
3476 return queue_command(xhci, field1, field2, field3, field4, false);
3479 /* Queue a reset device command TRB */
3480 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
3482 return queue_command(xhci, 0, 0, 0,
3483 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3484 false);
3487 /* Queue a configure endpoint command TRB */
3488 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3489 u32 slot_id, bool command_must_succeed)
3491 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3492 upper_32_bits(in_ctx_ptr), 0,
3493 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3494 command_must_succeed);
3497 /* Queue an evaluate context command TRB */
3498 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3499 u32 slot_id)
3501 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3502 upper_32_bits(in_ctx_ptr), 0,
3503 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3504 false);
3508 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3509 * activity on an endpoint that is about to be suspended.
3511 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3512 unsigned int ep_index, int suspend)
3514 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3515 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3516 u32 type = TRB_TYPE(TRB_STOP_RING);
3517 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3519 return queue_command(xhci, 0, 0, 0,
3520 trb_slot_id | trb_ep_index | type | trb_suspend, false);
3523 /* Set Transfer Ring Dequeue Pointer command.
3524 * This should not be used for endpoints that have streams enabled.
3526 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
3527 unsigned int ep_index, unsigned int stream_id,
3528 struct xhci_segment *deq_seg,
3529 union xhci_trb *deq_ptr, u32 cycle_state)
3531 dma_addr_t addr;
3532 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3533 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3534 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3535 u32 type = TRB_TYPE(TRB_SET_DEQ);
3536 struct xhci_virt_ep *ep;
3538 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
3539 if (addr == 0) {
3540 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3541 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3542 deq_seg, deq_ptr);
3543 return 0;
3545 ep = &xhci->devs[slot_id]->eps[ep_index];
3546 if ((ep->ep_state & SET_DEQ_PENDING)) {
3547 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3548 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3549 return 0;
3551 ep->queued_deq_seg = deq_seg;
3552 ep->queued_deq_ptr = deq_ptr;
3553 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
3554 upper_32_bits(addr), trb_stream_id,
3555 trb_slot_id | trb_ep_index | type, false);
3558 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
3559 unsigned int ep_index)
3561 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3562 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3563 u32 type = TRB_TYPE(TRB_RESET_EP);
3565 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
3566 false);