2 * Modified to interface to the Linux kernel
3 * Copyright (c) 2009, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
19 /* --------------------------------------------------------------------------
20 * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
21 * This implementation is herby placed in the public domain.
22 * The authors offers no warranty. Use at your own risk.
23 * Please send bug reports to the authors.
24 * Last modified: 17 APR 08, 1700 PDT
25 * ----------------------------------------------------------------------- */
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/crypto.h>
30 #include <linux/scatterlist.h>
31 #include <asm/byteorder.h>
32 #include <crypto/scatterwalk.h>
33 #include <crypto/vmac.h>
34 #include <crypto/internal/hash.h>
39 #define UINT64_C(x) x##ULL
40 const u64 p64
= UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */
41 const u64 m62
= UINT64_C(0x3fffffffffffffff); /* 62-bit mask */
42 const u64 m63
= UINT64_C(0x7fffffffffffffff); /* 63-bit mask */
43 const u64 m64
= UINT64_C(0xffffffffffffffff); /* 64-bit mask */
44 const u64 mpoly
= UINT64_C(0x1fffffff1fffffff); /* Poly key mask */
46 #define pe64_to_cpup le64_to_cpup /* Prefer little endian */
48 #ifdef __LITTLE_ENDIAN
57 * The following routines are used in this implementation. They are
58 * written via macros to simulate zero-overhead call-by-reference.
60 * MUL64: 64x64->128-bit multiplication
61 * PMUL64: assumes top bits cleared on inputs
62 * ADD128: 128x128->128-bit addition
65 #define ADD128(rh, rl, ih, il) \
74 #define MUL32(i1, i2) ((u64)(u32)(i1)*(u32)(i2))
76 #define PMUL64(rh, rl, i1, i2) /* Assumes m doesn't overflow */ \
78 u64 _i1 = (i1), _i2 = (i2); \
79 u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2); \
80 rh = MUL32(_i1>>32, _i2>>32); \
81 rl = MUL32(_i1, _i2); \
82 ADD128(rh, rl, (m >> 32), (m << 32)); \
85 #define MUL64(rh, rl, i1, i2) \
87 u64 _i1 = (i1), _i2 = (i2); \
88 u64 m1 = MUL32(_i1, _i2>>32); \
89 u64 m2 = MUL32(_i1>>32, _i2); \
90 rh = MUL32(_i1>>32, _i2>>32); \
91 rl = MUL32(_i1, _i2); \
92 ADD128(rh, rl, (m1 >> 32), (m1 << 32)); \
93 ADD128(rh, rl, (m2 >> 32), (m2 << 32)); \
97 * For highest performance the L1 NH and L2 polynomial hashes should be
98 * carefully implemented to take advantage of one's target architechture.
99 * Here these two hash functions are defined multiple time; once for
100 * 64-bit architectures, once for 32-bit SSE2 architectures, and once
101 * for the rest (32-bit) architectures.
102 * For each, nh_16 *must* be defined (works on multiples of 16 bytes).
103 * Optionally, nh_vmac_nhbytes can be defined (for multiples of
104 * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two
105 * NH computations at once).
110 #define nh_16(mp, kp, nw, rh, rl) \
114 for (i = 0; i < nw; i += 2) { \
115 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
116 pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
117 ADD128(rh, rl, th, tl); \
121 #define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \
124 rh1 = rl1 = rh = rl = 0; \
125 for (i = 0; i < nw; i += 2) { \
126 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
127 pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
128 ADD128(rh, rl, th, tl); \
129 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \
130 pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \
131 ADD128(rh1, rl1, th, tl); \
135 #if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */
136 #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
140 for (i = 0; i < nw; i += 8) { \
141 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
142 pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
143 ADD128(rh, rl, th, tl); \
144 MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
145 pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \
146 ADD128(rh, rl, th, tl); \
147 MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
148 pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \
149 ADD128(rh, rl, th, tl); \
150 MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
151 pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \
152 ADD128(rh, rl, th, tl); \
156 #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \
159 rh1 = rl1 = rh = rl = 0; \
160 for (i = 0; i < nw; i += 8) { \
161 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
162 pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
163 ADD128(rh, rl, th, tl); \
164 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \
165 pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \
166 ADD128(rh1, rl1, th, tl); \
167 MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
168 pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \
169 ADD128(rh, rl, th, tl); \
170 MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4], \
171 pe64_to_cpup((mp)+i+3)+(kp)[i+5]); \
172 ADD128(rh1, rl1, th, tl); \
173 MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
174 pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \
175 ADD128(rh, rl, th, tl); \
176 MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6], \
177 pe64_to_cpup((mp)+i+5)+(kp)[i+7]); \
178 ADD128(rh1, rl1, th, tl); \
179 MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
180 pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \
181 ADD128(rh, rl, th, tl); \
182 MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8], \
183 pe64_to_cpup((mp)+i+7)+(kp)[i+9]); \
184 ADD128(rh1, rl1, th, tl); \
189 #define poly_step(ah, al, kh, kl, mh, ml) \
191 u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0; \
192 /* compute ab*cd, put bd into result registers */ \
193 PMUL64(t3h, t3l, al, kh); \
194 PMUL64(t2h, t2l, ah, kl); \
195 PMUL64(t1h, t1l, ah, 2*kh); \
196 PMUL64(ah, al, al, kl); \
197 /* add 2 * ac to result */ \
198 ADD128(ah, al, t1h, t1l); \
199 /* add together ad + bc */ \
200 ADD128(t2h, t2l, t3h, t3l); \
201 /* now (ah,al), (t2l,2*t2h) need summing */ \
202 /* first add the high registers, carrying into t2h */ \
203 ADD128(t2h, ah, z, t2l); \
204 /* double t2h and add top bit of ah */ \
205 t2h = 2 * t2h + (ah >> 63); \
207 /* now add the low registers */ \
208 ADD128(ah, al, mh, ml); \
209 ADD128(ah, al, z, t2h); \
212 #else /* ! CONFIG_64BIT */
215 #define nh_16(mp, kp, nw, rh, rl) \
217 u64 t1, t2, m1, m2, t; \
220 for (i = 0; i < nw; i += 2) { \
221 t1 = pe64_to_cpup(mp+i) + kp[i]; \
222 t2 = pe64_to_cpup(mp+i+1) + kp[i+1]; \
223 m2 = MUL32(t1 >> 32, t2); \
224 m1 = MUL32(t1, t2 >> 32); \
225 ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32), \
227 rh += (u64)(u32)(m1 >> 32) \
229 t += (u64)(u32)m1 + (u32)m2; \
231 ADD128(rh, rl, (t >> 32), (t << 32)); \
235 static void poly_step_func(u64
*ahi
, u64
*alo
,
236 const u64
*kh
, const u64
*kl
,
237 const u64
*mh
, const u64
*ml
)
239 #define a0 (*(((u32 *)alo)+INDEX_LOW))
240 #define a1 (*(((u32 *)alo)+INDEX_HIGH))
241 #define a2 (*(((u32 *)ahi)+INDEX_LOW))
242 #define a3 (*(((u32 *)ahi)+INDEX_HIGH))
243 #define k0 (*(((u32 *)kl)+INDEX_LOW))
244 #define k1 (*(((u32 *)kl)+INDEX_HIGH))
245 #define k2 (*(((u32 *)kh)+INDEX_LOW))
246 #define k3 (*(((u32 *)kh)+INDEX_HIGH))
263 t
|= ((u64
)((u32
)p
& 0x7fffffff)) << 32;
265 p
+= (u64
)(((u32
*)ml
)[INDEX_LOW
]);
274 p
+= (u64
)(((u32
*)ml
)[INDEX_HIGH
]);
281 *(u64
*)(alo
) = (p
<< 32) | t2
;
283 *(u64
*)(ahi
) = p
+ t
;
295 #define poly_step(ah, al, kh, kl, mh, ml) \
296 poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml))
298 #endif /* end of specialized NH and poly definitions */
300 /* At least nh_16 is defined. Defined others as needed here */
302 #define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \
304 nh_16(mp, kp, nw, rh, rl); \
305 nh_16(mp, ((kp)+2), nw, rh2, rl2); \
308 #ifndef nh_vmac_nhbytes
309 #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
310 nh_16(mp, kp, nw, rh, rl)
312 #ifndef nh_vmac_nhbytes_2
313 #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \
315 nh_vmac_nhbytes(mp, kp, nw, rh, rl); \
316 nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \
320 static void vhash_abort(struct vmac_ctx
*ctx
)
322 ctx
->polytmp
[0] = ctx
->polykey
[0] ;
323 ctx
->polytmp
[1] = ctx
->polykey
[1] ;
324 ctx
->first_block_processed
= 0;
327 static u64
l3hash(u64 p1
, u64 p2
, u64 k1
, u64 k2
, u64 len
)
329 u64 rh
, rl
, t
, z
= 0;
331 /* fully reduce (p1,p2)+(len,0) mod p127 */
334 ADD128(p1
, p2
, len
, t
);
335 /* At this point, (p1,p2) is at most 2^127+(len<<64) */
336 t
= (p1
> m63
) + ((p1
== m63
) && (p2
== m64
));
337 ADD128(p1
, p2
, z
, t
);
340 /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
343 t
+= (u32
)t
> 0xfffffffeu
;
347 /* compute (p1+k1)%p64 and (p2+k2)%p64 */
349 p1
+= (0 - (p1
< k1
)) & 257;
351 p2
+= (0 - (p2
< k2
)) & 257;
353 /* compute (p1+k1)*(p2+k2)%p64 */
354 MUL64(rh
, rl
, p1
, p2
);
356 ADD128(t
, rl
, z
, rh
);
358 ADD128(t
, rl
, z
, rh
);
361 rl
+= (0 - (rl
< t
)) & 257;
362 rl
+= (0 - (rl
> p64
-1)) & 257;
366 static void vhash_update(const unsigned char *m
,
367 unsigned int mbytes
, /* Pos multiple of VMAC_NHBYTES */
368 struct vmac_ctx
*ctx
)
371 const u64
*kptr
= (u64
*)ctx
->nhkey
;
374 u64 pkh
= ctx
->polykey
[0];
375 u64 pkl
= ctx
->polykey
[1];
378 i
= mbytes
/ VMAC_NHBYTES
; /* Must be non-zero */
380 ch
= ctx
->polytmp
[0];
381 cl
= ctx
->polytmp
[1];
383 if (!ctx
->first_block_processed
) {
384 ctx
->first_block_processed
= 1;
385 nh_vmac_nhbytes(mptr
, kptr
, VMAC_NHBYTES
/8, rh
, rl
);
387 ADD128(ch
, cl
, rh
, rl
);
388 mptr
+= (VMAC_NHBYTES
/sizeof(u64
));
393 nh_vmac_nhbytes(mptr
, kptr
, VMAC_NHBYTES
/8, rh
, rl
);
395 poly_step(ch
, cl
, pkh
, pkl
, rh
, rl
);
396 mptr
+= (VMAC_NHBYTES
/sizeof(u64
));
399 ctx
->polytmp
[0] = ch
;
400 ctx
->polytmp
[1] = cl
;
403 static u64
vhash(unsigned char m
[], unsigned int mbytes
,
404 u64
*tagl
, struct vmac_ctx
*ctx
)
407 const u64
*kptr
= (u64
*)ctx
->nhkey
;
410 u64 pkh
= ctx
->polykey
[0];
411 u64 pkl
= ctx
->polykey
[1];
414 i
= mbytes
/ VMAC_NHBYTES
;
415 remaining
= mbytes
% VMAC_NHBYTES
;
417 if (ctx
->first_block_processed
) {
418 ch
= ctx
->polytmp
[0];
419 cl
= ctx
->polytmp
[1];
421 nh_vmac_nhbytes(mptr
, kptr
, VMAC_NHBYTES
/8, ch
, cl
);
423 ADD128(ch
, cl
, pkh
, pkl
);
424 mptr
+= (VMAC_NHBYTES
/sizeof(u64
));
426 } else if (remaining
) {
427 nh_16(mptr
, kptr
, 2*((remaining
+15)/16), ch
, cl
);
429 ADD128(ch
, cl
, pkh
, pkl
);
430 mptr
+= (VMAC_NHBYTES
/sizeof(u64
));
432 } else {/* Empty String */
438 nh_vmac_nhbytes(mptr
, kptr
, VMAC_NHBYTES
/8, rh
, rl
);
440 poly_step(ch
, cl
, pkh
, pkl
, rh
, rl
);
441 mptr
+= (VMAC_NHBYTES
/sizeof(u64
));
444 nh_16(mptr
, kptr
, 2*((remaining
+15)/16), rh
, rl
);
446 poly_step(ch
, cl
, pkh
, pkl
, rh
, rl
);
452 return l3hash(ch
, cl
, ctx
->l3key
[0], ctx
->l3key
[1], remaining
);
455 static u64
vmac(unsigned char m
[], unsigned int mbytes
,
456 unsigned char n
[16], u64
*tagl
,
457 struct vmac_ctx_t
*ctx
)
463 in_n
= ctx
->__vmac_ctx
.cached_nonce
;
464 out_p
= ctx
->__vmac_ctx
.cached_aes
;
467 if ((*(u64
*)(n
+8) != in_n
[1]) || (*(u64
*)(n
) != in_n
[0])) {
468 in_n
[0] = *(u64
*)(n
);
469 in_n
[1] = *(u64
*)(n
+8);
470 ((unsigned char *)in_n
)[15] &= 0xFE;
471 crypto_cipher_encrypt_one(ctx
->child
,
472 (unsigned char *)out_p
, (unsigned char *)in_n
);
474 ((unsigned char *)in_n
)[15] |= (unsigned char)(1-i
);
476 p
= be64_to_cpup(out_p
+ i
);
477 h
= vhash(m
, mbytes
, (u64
*)0, &ctx
->__vmac_ctx
);
478 return le64_to_cpu(p
+ h
);
481 static int vmac_set_key(unsigned char user_key
[], struct vmac_ctx_t
*ctx
)
483 u64 in
[2] = {0}, out
[2];
487 err
= crypto_cipher_setkey(ctx
->child
, user_key
, VMAC_KEY_LEN
);
492 ((unsigned char *)in
)[0] = 0x80;
493 for (i
= 0; i
< sizeof(ctx
->__vmac_ctx
.nhkey
)/8; i
+= 2) {
494 crypto_cipher_encrypt_one(ctx
->child
,
495 (unsigned char *)out
, (unsigned char *)in
);
496 ctx
->__vmac_ctx
.nhkey
[i
] = be64_to_cpup(out
);
497 ctx
->__vmac_ctx
.nhkey
[i
+1] = be64_to_cpup(out
+1);
498 ((unsigned char *)in
)[15] += 1;
502 ((unsigned char *)in
)[0] = 0xC0;
504 for (i
= 0; i
< sizeof(ctx
->__vmac_ctx
.polykey
)/8; i
+= 2) {
505 crypto_cipher_encrypt_one(ctx
->child
,
506 (unsigned char *)out
, (unsigned char *)in
);
507 ctx
->__vmac_ctx
.polytmp
[i
] =
508 ctx
->__vmac_ctx
.polykey
[i
] =
509 be64_to_cpup(out
) & mpoly
;
510 ctx
->__vmac_ctx
.polytmp
[i
+1] =
511 ctx
->__vmac_ctx
.polykey
[i
+1] =
512 be64_to_cpup(out
+1) & mpoly
;
513 ((unsigned char *)in
)[15] += 1;
517 ((unsigned char *)in
)[0] = 0xE0;
519 for (i
= 0; i
< sizeof(ctx
->__vmac_ctx
.l3key
)/8; i
+= 2) {
521 crypto_cipher_encrypt_one(ctx
->child
,
522 (unsigned char *)out
, (unsigned char *)in
);
523 ctx
->__vmac_ctx
.l3key
[i
] = be64_to_cpup(out
);
524 ctx
->__vmac_ctx
.l3key
[i
+1] = be64_to_cpup(out
+1);
525 ((unsigned char *)in
)[15] += 1;
526 } while (ctx
->__vmac_ctx
.l3key
[i
] >= p64
527 || ctx
->__vmac_ctx
.l3key
[i
+1] >= p64
);
530 /* Invalidate nonce/aes cache and reset other elements */
531 ctx
->__vmac_ctx
.cached_nonce
[0] = (u64
)-1; /* Ensure illegal nonce */
532 ctx
->__vmac_ctx
.cached_nonce
[1] = (u64
)0; /* Ensure illegal nonce */
533 ctx
->__vmac_ctx
.first_block_processed
= 0;
538 static int vmac_setkey(struct crypto_shash
*parent
,
539 const u8
*key
, unsigned int keylen
)
541 struct vmac_ctx_t
*ctx
= crypto_shash_ctx(parent
);
543 if (keylen
!= VMAC_KEY_LEN
) {
544 crypto_shash_set_flags(parent
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
548 return vmac_set_key((u8
*)key
, ctx
);
551 static int vmac_init(struct shash_desc
*pdesc
)
556 static int vmac_update(struct shash_desc
*pdesc
, const u8
*p
,
559 struct crypto_shash
*parent
= pdesc
->tfm
;
560 struct vmac_ctx_t
*ctx
= crypto_shash_ctx(parent
);
562 vhash_update(p
, len
, &ctx
->__vmac_ctx
);
567 static int vmac_final(struct shash_desc
*pdesc
, u8
*out
)
569 struct crypto_shash
*parent
= pdesc
->tfm
;
570 struct vmac_ctx_t
*ctx
= crypto_shash_ctx(parent
);
574 mac
= vmac(NULL
, 0, nonce
, NULL
, ctx
);
575 memcpy(out
, &mac
, sizeof(vmac_t
));
576 memset(&mac
, 0, sizeof(vmac_t
));
577 memset(&ctx
->__vmac_ctx
, 0, sizeof(struct vmac_ctx
));
581 static int vmac_init_tfm(struct crypto_tfm
*tfm
)
583 struct crypto_cipher
*cipher
;
584 struct crypto_instance
*inst
= (void *)tfm
->__crt_alg
;
585 struct crypto_spawn
*spawn
= crypto_instance_ctx(inst
);
586 struct vmac_ctx_t
*ctx
= crypto_tfm_ctx(tfm
);
588 cipher
= crypto_spawn_cipher(spawn
);
590 return PTR_ERR(cipher
);
596 static void vmac_exit_tfm(struct crypto_tfm
*tfm
)
598 struct vmac_ctx_t
*ctx
= crypto_tfm_ctx(tfm
);
599 crypto_free_cipher(ctx
->child
);
602 static int vmac_create(struct crypto_template
*tmpl
, struct rtattr
**tb
)
604 struct shash_instance
*inst
;
605 struct crypto_alg
*alg
;
608 err
= crypto_check_attr_type(tb
, CRYPTO_ALG_TYPE_SHASH
);
612 alg
= crypto_get_attr_alg(tb
, CRYPTO_ALG_TYPE_CIPHER
,
613 CRYPTO_ALG_TYPE_MASK
);
617 inst
= shash_alloc_instance("vmac", alg
);
622 err
= crypto_init_spawn(shash_instance_ctx(inst
), alg
,
623 shash_crypto_instance(inst
),
624 CRYPTO_ALG_TYPE_MASK
);
628 inst
->alg
.base
.cra_priority
= alg
->cra_priority
;
629 inst
->alg
.base
.cra_blocksize
= alg
->cra_blocksize
;
630 inst
->alg
.base
.cra_alignmask
= alg
->cra_alignmask
;
632 inst
->alg
.digestsize
= sizeof(vmac_t
);
633 inst
->alg
.base
.cra_ctxsize
= sizeof(struct vmac_ctx_t
);
634 inst
->alg
.base
.cra_init
= vmac_init_tfm
;
635 inst
->alg
.base
.cra_exit
= vmac_exit_tfm
;
637 inst
->alg
.init
= vmac_init
;
638 inst
->alg
.update
= vmac_update
;
639 inst
->alg
.final
= vmac_final
;
640 inst
->alg
.setkey
= vmac_setkey
;
642 err
= shash_register_instance(tmpl
, inst
);
645 shash_free_instance(shash_crypto_instance(inst
));
653 static struct crypto_template vmac_tmpl
= {
655 .create
= vmac_create
,
656 .free
= shash_free_instance
,
657 .module
= THIS_MODULE
,
660 static int __init
vmac_module_init(void)
662 return crypto_register_template(&vmac_tmpl
);
665 static void __exit
vmac_module_exit(void)
667 crypto_unregister_template(&vmac_tmpl
);
670 module_init(vmac_module_init
);
671 module_exit(vmac_module_exit
);
673 MODULE_LICENSE("GPL");
674 MODULE_DESCRIPTION("VMAC hash algorithm");