2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
31 #include <trace/events/kmem.h>
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has no one operating on it and thus there is
68 * no danger of cacheline contention.
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
88 * Overloading of page flags that are otherwise used for LRU management.
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
114 static inline int kmem_cache_debug(struct kmem_cache
*s
)
116 #ifdef CONFIG_SLUB_DEBUG
117 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
124 * Issues still to be resolved:
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 * - Variable sizing of the per node arrays
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
138 #define MIN_PARTIAL 5
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
145 #define MAX_PARTIAL 10
147 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148 SLAB_POISON | SLAB_STORE_USER)
151 * Debugging flags that require metadata to be stored in the slab. These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
155 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
158 * Set of flags that will prevent slab merging
160 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
161 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
164 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
165 SLAB_CACHE_DMA | SLAB_NOTRACK)
168 #define OO_MASK ((1 << OO_SHIFT) - 1)
169 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
171 /* Internal SLUB flags */
172 #define __OBJECT_POISON 0x80000000UL /* Poison object */
174 static int kmem_size
= sizeof(struct kmem_cache
);
177 static struct notifier_block slab_notifier
;
181 DOWN
, /* No slab functionality available */
182 PARTIAL
, /* Kmem_cache_node works */
183 UP
, /* Everything works but does not show up in sysfs */
187 /* A list of all slab caches on the system */
188 static DECLARE_RWSEM(slub_lock
);
189 static LIST_HEAD(slab_caches
);
192 * Tracking user of a slab.
195 unsigned long addr
; /* Called from address */
196 int cpu
; /* Was running on cpu */
197 int pid
; /* Pid context */
198 unsigned long when
; /* When did the operation occur */
201 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
204 static int sysfs_slab_add(struct kmem_cache
*);
205 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
206 static void sysfs_slab_remove(struct kmem_cache
*);
209 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
210 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
212 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
220 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
222 #ifdef CONFIG_SLUB_STATS
223 __this_cpu_inc(s
->cpu_slab
->stat
[si
]);
227 /********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
231 int slab_is_available(void)
233 return slab_state
>= UP
;
236 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
238 return s
->node
[node
];
241 /* Verify that a pointer has an address that is valid within a slab page */
242 static inline int check_valid_pointer(struct kmem_cache
*s
,
243 struct page
*page
, const void *object
)
250 base
= page_address(page
);
251 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
252 (object
- base
) % s
->size
) {
259 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
261 return *(void **)(object
+ s
->offset
);
264 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
268 #ifdef CONFIG_DEBUG_PAGEALLOC
269 probe_kernel_read(&p
, (void **)(object
+ s
->offset
), sizeof(p
));
271 p
= get_freepointer(s
, object
);
276 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
278 *(void **)(object
+ s
->offset
) = fp
;
281 /* Loop over all objects in a slab */
282 #define for_each_object(__p, __s, __addr, __objects) \
283 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
286 /* Determine object index from a given position */
287 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
289 return (p
- addr
) / s
->size
;
292 static inline size_t slab_ksize(const struct kmem_cache
*s
)
294 #ifdef CONFIG_SLUB_DEBUG
296 * Debugging requires use of the padding between object
297 * and whatever may come after it.
299 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
304 * If we have the need to store the freelist pointer
305 * back there or track user information then we can
306 * only use the space before that information.
308 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
311 * Else we can use all the padding etc for the allocation
316 static inline int order_objects(int order
, unsigned long size
, int reserved
)
318 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
321 static inline struct kmem_cache_order_objects
oo_make(int order
,
322 unsigned long size
, int reserved
)
324 struct kmem_cache_order_objects x
= {
325 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
331 static inline int oo_order(struct kmem_cache_order_objects x
)
333 return x
.x
>> OO_SHIFT
;
336 static inline int oo_objects(struct kmem_cache_order_objects x
)
338 return x
.x
& OO_MASK
;
341 #ifdef CONFIG_SLUB_DEBUG
343 * Determine a map of object in use on a page.
345 * Slab lock or node listlock must be held to guarantee that the page does
346 * not vanish from under us.
348 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
351 void *addr
= page_address(page
);
353 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
354 set_bit(slab_index(p
, s
, addr
), map
);
360 #ifdef CONFIG_SLUB_DEBUG_ON
361 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
363 static int slub_debug
;
366 static char *slub_debug_slabs
;
367 static int disable_higher_order_debug
;
372 static void print_section(char *text
, u8
*addr
, unsigned int length
)
380 for (i
= 0; i
< length
; i
++) {
382 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
385 printk(KERN_CONT
" %02x", addr
[i
]);
387 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
389 printk(KERN_CONT
" %s\n", ascii
);
396 printk(KERN_CONT
" ");
400 printk(KERN_CONT
" %s\n", ascii
);
404 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
405 enum track_item alloc
)
410 p
= object
+ s
->offset
+ sizeof(void *);
412 p
= object
+ s
->inuse
;
417 static void set_track(struct kmem_cache
*s
, void *object
,
418 enum track_item alloc
, unsigned long addr
)
420 struct track
*p
= get_track(s
, object
, alloc
);
424 p
->cpu
= smp_processor_id();
425 p
->pid
= current
->pid
;
428 memset(p
, 0, sizeof(struct track
));
431 static void init_tracking(struct kmem_cache
*s
, void *object
)
433 if (!(s
->flags
& SLAB_STORE_USER
))
436 set_track(s
, object
, TRACK_FREE
, 0UL);
437 set_track(s
, object
, TRACK_ALLOC
, 0UL);
440 static void print_track(const char *s
, struct track
*t
)
445 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
446 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
449 static void print_tracking(struct kmem_cache
*s
, void *object
)
451 if (!(s
->flags
& SLAB_STORE_USER
))
454 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
455 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
458 static void print_page_info(struct page
*page
)
460 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
461 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
465 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
471 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
473 printk(KERN_ERR
"========================================"
474 "=====================================\n");
475 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
476 printk(KERN_ERR
"----------------------------------------"
477 "-------------------------------------\n\n");
480 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
486 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
488 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
491 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
493 unsigned int off
; /* Offset of last byte */
494 u8
*addr
= page_address(page
);
496 print_tracking(s
, p
);
498 print_page_info(page
);
500 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
501 p
, p
- addr
, get_freepointer(s
, p
));
504 print_section("Bytes b4", p
- 16, 16);
506 print_section("Object", p
, min_t(unsigned long, s
->objsize
, PAGE_SIZE
));
508 if (s
->flags
& SLAB_RED_ZONE
)
509 print_section("Redzone", p
+ s
->objsize
,
510 s
->inuse
- s
->objsize
);
513 off
= s
->offset
+ sizeof(void *);
517 if (s
->flags
& SLAB_STORE_USER
)
518 off
+= 2 * sizeof(struct track
);
521 /* Beginning of the filler is the free pointer */
522 print_section("Padding", p
+ off
, s
->size
- off
);
527 static void object_err(struct kmem_cache
*s
, struct page
*page
,
528 u8
*object
, char *reason
)
530 slab_bug(s
, "%s", reason
);
531 print_trailer(s
, page
, object
);
534 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
540 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
542 slab_bug(s
, "%s", buf
);
543 print_page_info(page
);
547 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
551 if (s
->flags
& __OBJECT_POISON
) {
552 memset(p
, POISON_FREE
, s
->objsize
- 1);
553 p
[s
->objsize
- 1] = POISON_END
;
556 if (s
->flags
& SLAB_RED_ZONE
)
557 memset(p
+ s
->objsize
, val
, s
->inuse
- s
->objsize
);
560 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
563 if (*start
!= (u8
)value
)
571 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
572 void *from
, void *to
)
574 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
575 memset(from
, data
, to
- from
);
578 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
579 u8
*object
, char *what
,
580 u8
*start
, unsigned int value
, unsigned int bytes
)
585 fault
= check_bytes(start
, value
, bytes
);
590 while (end
> fault
&& end
[-1] == value
)
593 slab_bug(s
, "%s overwritten", what
);
594 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
595 fault
, end
- 1, fault
[0], value
);
596 print_trailer(s
, page
, object
);
598 restore_bytes(s
, what
, value
, fault
, end
);
606 * Bytes of the object to be managed.
607 * If the freepointer may overlay the object then the free
608 * pointer is the first word of the object.
610 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
613 * object + s->objsize
614 * Padding to reach word boundary. This is also used for Redzoning.
615 * Padding is extended by another word if Redzoning is enabled and
618 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
619 * 0xcc (RED_ACTIVE) for objects in use.
622 * Meta data starts here.
624 * A. Free pointer (if we cannot overwrite object on free)
625 * B. Tracking data for SLAB_STORE_USER
626 * C. Padding to reach required alignment boundary or at mininum
627 * one word if debugging is on to be able to detect writes
628 * before the word boundary.
630 * Padding is done using 0x5a (POISON_INUSE)
633 * Nothing is used beyond s->size.
635 * If slabcaches are merged then the objsize and inuse boundaries are mostly
636 * ignored. And therefore no slab options that rely on these boundaries
637 * may be used with merged slabcaches.
640 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
642 unsigned long off
= s
->inuse
; /* The end of info */
645 /* Freepointer is placed after the object. */
646 off
+= sizeof(void *);
648 if (s
->flags
& SLAB_STORE_USER
)
649 /* We also have user information there */
650 off
+= 2 * sizeof(struct track
);
655 return check_bytes_and_report(s
, page
, p
, "Object padding",
656 p
+ off
, POISON_INUSE
, s
->size
- off
);
659 /* Check the pad bytes at the end of a slab page */
660 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
668 if (!(s
->flags
& SLAB_POISON
))
671 start
= page_address(page
);
672 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
673 end
= start
+ length
;
674 remainder
= length
% s
->size
;
678 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
681 while (end
> fault
&& end
[-1] == POISON_INUSE
)
684 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
685 print_section("Padding", end
- remainder
, remainder
);
687 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
691 static int check_object(struct kmem_cache
*s
, struct page
*page
,
692 void *object
, u8 val
)
695 u8
*endobject
= object
+ s
->objsize
;
697 if (s
->flags
& SLAB_RED_ZONE
) {
698 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
699 endobject
, val
, s
->inuse
- s
->objsize
))
702 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
703 check_bytes_and_report(s
, page
, p
, "Alignment padding",
704 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
708 if (s
->flags
& SLAB_POISON
) {
709 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
710 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
711 POISON_FREE
, s
->objsize
- 1) ||
712 !check_bytes_and_report(s
, page
, p
, "Poison",
713 p
+ s
->objsize
- 1, POISON_END
, 1)))
716 * check_pad_bytes cleans up on its own.
718 check_pad_bytes(s
, page
, p
);
721 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
723 * Object and freepointer overlap. Cannot check
724 * freepointer while object is allocated.
728 /* Check free pointer validity */
729 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
730 object_err(s
, page
, p
, "Freepointer corrupt");
732 * No choice but to zap it and thus lose the remainder
733 * of the free objects in this slab. May cause
734 * another error because the object count is now wrong.
736 set_freepointer(s
, p
, NULL
);
742 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
746 VM_BUG_ON(!irqs_disabled());
748 if (!PageSlab(page
)) {
749 slab_err(s
, page
, "Not a valid slab page");
753 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
754 if (page
->objects
> maxobj
) {
755 slab_err(s
, page
, "objects %u > max %u",
756 s
->name
, page
->objects
, maxobj
);
759 if (page
->inuse
> page
->objects
) {
760 slab_err(s
, page
, "inuse %u > max %u",
761 s
->name
, page
->inuse
, page
->objects
);
764 /* Slab_pad_check fixes things up after itself */
765 slab_pad_check(s
, page
);
770 * Determine if a certain object on a page is on the freelist. Must hold the
771 * slab lock to guarantee that the chains are in a consistent state.
773 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
776 void *fp
= page
->freelist
;
778 unsigned long max_objects
;
780 while (fp
&& nr
<= page
->objects
) {
783 if (!check_valid_pointer(s
, page
, fp
)) {
785 object_err(s
, page
, object
,
786 "Freechain corrupt");
787 set_freepointer(s
, object
, NULL
);
790 slab_err(s
, page
, "Freepointer corrupt");
791 page
->freelist
= NULL
;
792 page
->inuse
= page
->objects
;
793 slab_fix(s
, "Freelist cleared");
799 fp
= get_freepointer(s
, object
);
803 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
804 if (max_objects
> MAX_OBJS_PER_PAGE
)
805 max_objects
= MAX_OBJS_PER_PAGE
;
807 if (page
->objects
!= max_objects
) {
808 slab_err(s
, page
, "Wrong number of objects. Found %d but "
809 "should be %d", page
->objects
, max_objects
);
810 page
->objects
= max_objects
;
811 slab_fix(s
, "Number of objects adjusted.");
813 if (page
->inuse
!= page
->objects
- nr
) {
814 slab_err(s
, page
, "Wrong object count. Counter is %d but "
815 "counted were %d", page
->inuse
, page
->objects
- nr
);
816 page
->inuse
= page
->objects
- nr
;
817 slab_fix(s
, "Object count adjusted.");
819 return search
== NULL
;
822 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
825 if (s
->flags
& SLAB_TRACE
) {
826 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
828 alloc
? "alloc" : "free",
833 print_section("Object", (void *)object
, s
->objsize
);
840 * Hooks for other subsystems that check memory allocations. In a typical
841 * production configuration these hooks all should produce no code at all.
843 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
845 flags
&= gfp_allowed_mask
;
846 lockdep_trace_alloc(flags
);
847 might_sleep_if(flags
& __GFP_WAIT
);
849 return should_failslab(s
->objsize
, flags
, s
->flags
);
852 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
, void *object
)
854 flags
&= gfp_allowed_mask
;
855 kmemcheck_slab_alloc(s
, flags
, object
, slab_ksize(s
));
856 kmemleak_alloc_recursive(object
, s
->objsize
, 1, s
->flags
, flags
);
859 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
)
861 kmemleak_free_recursive(x
, s
->flags
);
864 * Trouble is that we may no longer disable interupts in the fast path
865 * So in order to make the debug calls that expect irqs to be
866 * disabled we need to disable interrupts temporarily.
868 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
872 local_irq_save(flags
);
873 kmemcheck_slab_free(s
, x
, s
->objsize
);
874 debug_check_no_locks_freed(x
, s
->objsize
);
875 local_irq_restore(flags
);
878 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
879 debug_check_no_obj_freed(x
, s
->objsize
);
883 * Tracking of fully allocated slabs for debugging purposes.
885 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
887 spin_lock(&n
->list_lock
);
888 list_add(&page
->lru
, &n
->full
);
889 spin_unlock(&n
->list_lock
);
892 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
894 struct kmem_cache_node
*n
;
896 if (!(s
->flags
& SLAB_STORE_USER
))
899 n
= get_node(s
, page_to_nid(page
));
901 spin_lock(&n
->list_lock
);
902 list_del(&page
->lru
);
903 spin_unlock(&n
->list_lock
);
906 /* Tracking of the number of slabs for debugging purposes */
907 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
909 struct kmem_cache_node
*n
= get_node(s
, node
);
911 return atomic_long_read(&n
->nr_slabs
);
914 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
916 return atomic_long_read(&n
->nr_slabs
);
919 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
921 struct kmem_cache_node
*n
= get_node(s
, node
);
924 * May be called early in order to allocate a slab for the
925 * kmem_cache_node structure. Solve the chicken-egg
926 * dilemma by deferring the increment of the count during
927 * bootstrap (see early_kmem_cache_node_alloc).
930 atomic_long_inc(&n
->nr_slabs
);
931 atomic_long_add(objects
, &n
->total_objects
);
934 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
936 struct kmem_cache_node
*n
= get_node(s
, node
);
938 atomic_long_dec(&n
->nr_slabs
);
939 atomic_long_sub(objects
, &n
->total_objects
);
942 /* Object debug checks for alloc/free paths */
943 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
946 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
949 init_object(s
, object
, SLUB_RED_INACTIVE
);
950 init_tracking(s
, object
);
953 static noinline
int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
954 void *object
, unsigned long addr
)
956 if (!check_slab(s
, page
))
959 if (!on_freelist(s
, page
, object
)) {
960 object_err(s
, page
, object
, "Object already allocated");
964 if (!check_valid_pointer(s
, page
, object
)) {
965 object_err(s
, page
, object
, "Freelist Pointer check fails");
969 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
972 /* Success perform special debug activities for allocs */
973 if (s
->flags
& SLAB_STORE_USER
)
974 set_track(s
, object
, TRACK_ALLOC
, addr
);
975 trace(s
, page
, object
, 1);
976 init_object(s
, object
, SLUB_RED_ACTIVE
);
980 if (PageSlab(page
)) {
982 * If this is a slab page then lets do the best we can
983 * to avoid issues in the future. Marking all objects
984 * as used avoids touching the remaining objects.
986 slab_fix(s
, "Marking all objects used");
987 page
->inuse
= page
->objects
;
988 page
->freelist
= NULL
;
993 static noinline
int free_debug_processing(struct kmem_cache
*s
,
994 struct page
*page
, void *object
, unsigned long addr
)
996 if (!check_slab(s
, page
))
999 if (!check_valid_pointer(s
, page
, object
)) {
1000 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1004 if (on_freelist(s
, page
, object
)) {
1005 object_err(s
, page
, object
, "Object already free");
1009 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1012 if (unlikely(s
!= page
->slab
)) {
1013 if (!PageSlab(page
)) {
1014 slab_err(s
, page
, "Attempt to free object(0x%p) "
1015 "outside of slab", object
);
1016 } else if (!page
->slab
) {
1018 "SLUB <none>: no slab for object 0x%p.\n",
1022 object_err(s
, page
, object
,
1023 "page slab pointer corrupt.");
1027 /* Special debug activities for freeing objects */
1028 if (!PageSlubFrozen(page
) && !page
->freelist
)
1029 remove_full(s
, page
);
1030 if (s
->flags
& SLAB_STORE_USER
)
1031 set_track(s
, object
, TRACK_FREE
, addr
);
1032 trace(s
, page
, object
, 0);
1033 init_object(s
, object
, SLUB_RED_INACTIVE
);
1037 slab_fix(s
, "Object at 0x%p not freed", object
);
1041 static int __init
setup_slub_debug(char *str
)
1043 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1044 if (*str
++ != '=' || !*str
)
1046 * No options specified. Switch on full debugging.
1052 * No options but restriction on slabs. This means full
1053 * debugging for slabs matching a pattern.
1057 if (tolower(*str
) == 'o') {
1059 * Avoid enabling debugging on caches if its minimum order
1060 * would increase as a result.
1062 disable_higher_order_debug
= 1;
1069 * Switch off all debugging measures.
1074 * Determine which debug features should be switched on
1076 for (; *str
&& *str
!= ','; str
++) {
1077 switch (tolower(*str
)) {
1079 slub_debug
|= SLAB_DEBUG_FREE
;
1082 slub_debug
|= SLAB_RED_ZONE
;
1085 slub_debug
|= SLAB_POISON
;
1088 slub_debug
|= SLAB_STORE_USER
;
1091 slub_debug
|= SLAB_TRACE
;
1094 slub_debug
|= SLAB_FAILSLAB
;
1097 printk(KERN_ERR
"slub_debug option '%c' "
1098 "unknown. skipped\n", *str
);
1104 slub_debug_slabs
= str
+ 1;
1109 __setup("slub_debug", setup_slub_debug
);
1111 static unsigned long kmem_cache_flags(unsigned long objsize
,
1112 unsigned long flags
, const char *name
,
1113 void (*ctor
)(void *))
1116 * Enable debugging if selected on the kernel commandline.
1118 if (slub_debug
&& (!slub_debug_slabs
||
1119 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
))))
1120 flags
|= slub_debug
;
1125 static inline void setup_object_debug(struct kmem_cache
*s
,
1126 struct page
*page
, void *object
) {}
1128 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1129 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1131 static inline int free_debug_processing(struct kmem_cache
*s
,
1132 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1134 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1136 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1137 void *object
, u8 val
) { return 1; }
1138 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1139 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1140 unsigned long flags
, const char *name
,
1141 void (*ctor
)(void *))
1145 #define slub_debug 0
1147 #define disable_higher_order_debug 0
1149 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1151 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1153 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1155 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1158 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
1161 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
,
1164 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
) {}
1166 #endif /* CONFIG_SLUB_DEBUG */
1169 * Slab allocation and freeing
1171 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1172 struct kmem_cache_order_objects oo
)
1174 int order
= oo_order(oo
);
1176 flags
|= __GFP_NOTRACK
;
1178 if (node
== NUMA_NO_NODE
)
1179 return alloc_pages(flags
, order
);
1181 return alloc_pages_exact_node(node
, flags
, order
);
1184 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1187 struct kmem_cache_order_objects oo
= s
->oo
;
1190 flags
|= s
->allocflags
;
1193 * Let the initial higher-order allocation fail under memory pressure
1194 * so we fall-back to the minimum order allocation.
1196 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1198 page
= alloc_slab_page(alloc_gfp
, node
, oo
);
1199 if (unlikely(!page
)) {
1202 * Allocation may have failed due to fragmentation.
1203 * Try a lower order alloc if possible
1205 page
= alloc_slab_page(flags
, node
, oo
);
1209 stat(s
, ORDER_FALLBACK
);
1212 if (kmemcheck_enabled
1213 && !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1214 int pages
= 1 << oo_order(oo
);
1216 kmemcheck_alloc_shadow(page
, oo_order(oo
), flags
, node
);
1219 * Objects from caches that have a constructor don't get
1220 * cleared when they're allocated, so we need to do it here.
1223 kmemcheck_mark_uninitialized_pages(page
, pages
);
1225 kmemcheck_mark_unallocated_pages(page
, pages
);
1228 page
->objects
= oo_objects(oo
);
1229 mod_zone_page_state(page_zone(page
),
1230 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1231 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1237 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1240 setup_object_debug(s
, page
, object
);
1241 if (unlikely(s
->ctor
))
1245 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1252 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1254 page
= allocate_slab(s
,
1255 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1259 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1261 page
->flags
|= 1 << PG_slab
;
1263 start
= page_address(page
);
1265 if (unlikely(s
->flags
& SLAB_POISON
))
1266 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1269 for_each_object(p
, s
, start
, page
->objects
) {
1270 setup_object(s
, page
, last
);
1271 set_freepointer(s
, last
, p
);
1274 setup_object(s
, page
, last
);
1275 set_freepointer(s
, last
, NULL
);
1277 page
->freelist
= start
;
1283 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1285 int order
= compound_order(page
);
1286 int pages
= 1 << order
;
1288 if (kmem_cache_debug(s
)) {
1291 slab_pad_check(s
, page
);
1292 for_each_object(p
, s
, page_address(page
),
1294 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1297 kmemcheck_free_shadow(page
, compound_order(page
));
1299 mod_zone_page_state(page_zone(page
),
1300 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1301 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1304 __ClearPageSlab(page
);
1305 reset_page_mapcount(page
);
1306 if (current
->reclaim_state
)
1307 current
->reclaim_state
->reclaimed_slab
+= pages
;
1308 __free_pages(page
, order
);
1311 #define need_reserve_slab_rcu \
1312 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1314 static void rcu_free_slab(struct rcu_head
*h
)
1318 if (need_reserve_slab_rcu
)
1319 page
= virt_to_head_page(h
);
1321 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1323 __free_slab(page
->slab
, page
);
1326 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1328 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1329 struct rcu_head
*head
;
1331 if (need_reserve_slab_rcu
) {
1332 int order
= compound_order(page
);
1333 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1335 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1336 head
= page_address(page
) + offset
;
1339 * RCU free overloads the RCU head over the LRU
1341 head
= (void *)&page
->lru
;
1344 call_rcu(head
, rcu_free_slab
);
1346 __free_slab(s
, page
);
1349 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1351 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1356 * Per slab locking using the pagelock
1358 static __always_inline
void slab_lock(struct page
*page
)
1360 bit_spin_lock(PG_locked
, &page
->flags
);
1363 static __always_inline
void slab_unlock(struct page
*page
)
1365 __bit_spin_unlock(PG_locked
, &page
->flags
);
1368 static __always_inline
int slab_trylock(struct page
*page
)
1372 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1377 * Management of partially allocated slabs
1379 static void add_partial(struct kmem_cache_node
*n
,
1380 struct page
*page
, int tail
)
1382 spin_lock(&n
->list_lock
);
1385 list_add_tail(&page
->lru
, &n
->partial
);
1387 list_add(&page
->lru
, &n
->partial
);
1388 spin_unlock(&n
->list_lock
);
1391 static inline void __remove_partial(struct kmem_cache_node
*n
,
1394 list_del(&page
->lru
);
1398 static void remove_partial(struct kmem_cache
*s
, struct page
*page
)
1400 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1402 spin_lock(&n
->list_lock
);
1403 __remove_partial(n
, page
);
1404 spin_unlock(&n
->list_lock
);
1408 * Lock slab and remove from the partial list.
1410 * Must hold list_lock.
1412 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
,
1415 if (slab_trylock(page
)) {
1416 __remove_partial(n
, page
);
1417 __SetPageSlubFrozen(page
);
1424 * Try to allocate a partial slab from a specific node.
1426 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1431 * Racy check. If we mistakenly see no partial slabs then we
1432 * just allocate an empty slab. If we mistakenly try to get a
1433 * partial slab and there is none available then get_partials()
1436 if (!n
|| !n
->nr_partial
)
1439 spin_lock(&n
->list_lock
);
1440 list_for_each_entry(page
, &n
->partial
, lru
)
1441 if (lock_and_freeze_slab(n
, page
))
1445 spin_unlock(&n
->list_lock
);
1450 * Get a page from somewhere. Search in increasing NUMA distances.
1452 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1455 struct zonelist
*zonelist
;
1458 enum zone_type high_zoneidx
= gfp_zone(flags
);
1462 * The defrag ratio allows a configuration of the tradeoffs between
1463 * inter node defragmentation and node local allocations. A lower
1464 * defrag_ratio increases the tendency to do local allocations
1465 * instead of attempting to obtain partial slabs from other nodes.
1467 * If the defrag_ratio is set to 0 then kmalloc() always
1468 * returns node local objects. If the ratio is higher then kmalloc()
1469 * may return off node objects because partial slabs are obtained
1470 * from other nodes and filled up.
1472 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1473 * defrag_ratio = 1000) then every (well almost) allocation will
1474 * first attempt to defrag slab caches on other nodes. This means
1475 * scanning over all nodes to look for partial slabs which may be
1476 * expensive if we do it every time we are trying to find a slab
1477 * with available objects.
1479 if (!s
->remote_node_defrag_ratio
||
1480 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1484 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1485 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1486 struct kmem_cache_node
*n
;
1488 n
= get_node(s
, zone_to_nid(zone
));
1490 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1491 n
->nr_partial
> s
->min_partial
) {
1492 page
= get_partial_node(n
);
1505 * Get a partial page, lock it and return it.
1507 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1510 int searchnode
= (node
== NUMA_NO_NODE
) ? numa_node_id() : node
;
1512 page
= get_partial_node(get_node(s
, searchnode
));
1513 if (page
|| node
!= NUMA_NO_NODE
)
1516 return get_any_partial(s
, flags
);
1520 * Move a page back to the lists.
1522 * Must be called with the slab lock held.
1524 * On exit the slab lock will have been dropped.
1526 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1529 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1531 __ClearPageSlubFrozen(page
);
1534 if (page
->freelist
) {
1535 add_partial(n
, page
, tail
);
1536 stat(s
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1538 stat(s
, DEACTIVATE_FULL
);
1539 if (kmem_cache_debug(s
) && (s
->flags
& SLAB_STORE_USER
))
1544 stat(s
, DEACTIVATE_EMPTY
);
1545 if (n
->nr_partial
< s
->min_partial
) {
1547 * Adding an empty slab to the partial slabs in order
1548 * to avoid page allocator overhead. This slab needs
1549 * to come after the other slabs with objects in
1550 * so that the others get filled first. That way the
1551 * size of the partial list stays small.
1553 * kmem_cache_shrink can reclaim any empty slabs from
1556 add_partial(n
, page
, 1);
1561 discard_slab(s
, page
);
1566 #ifdef CONFIG_PREEMPT
1568 * Calculate the next globally unique transaction for disambiguiation
1569 * during cmpxchg. The transactions start with the cpu number and are then
1570 * incremented by CONFIG_NR_CPUS.
1572 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1575 * No preemption supported therefore also no need to check for
1581 static inline unsigned long next_tid(unsigned long tid
)
1583 return tid
+ TID_STEP
;
1586 static inline unsigned int tid_to_cpu(unsigned long tid
)
1588 return tid
% TID_STEP
;
1591 static inline unsigned long tid_to_event(unsigned long tid
)
1593 return tid
/ TID_STEP
;
1596 static inline unsigned int init_tid(int cpu
)
1601 static inline void note_cmpxchg_failure(const char *n
,
1602 const struct kmem_cache
*s
, unsigned long tid
)
1604 #ifdef SLUB_DEBUG_CMPXCHG
1605 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1607 printk(KERN_INFO
"%s %s: cmpxchg redo ", n
, s
->name
);
1609 #ifdef CONFIG_PREEMPT
1610 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1611 printk("due to cpu change %d -> %d\n",
1612 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1615 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1616 printk("due to cpu running other code. Event %ld->%ld\n",
1617 tid_to_event(tid
), tid_to_event(actual_tid
));
1619 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1620 actual_tid
, tid
, next_tid(tid
));
1622 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1625 void init_kmem_cache_cpus(struct kmem_cache
*s
)
1629 for_each_possible_cpu(cpu
)
1630 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1633 * Remove the cpu slab
1635 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1638 struct page
*page
= c
->page
;
1642 stat(s
, DEACTIVATE_REMOTE_FREES
);
1644 * Merge cpu freelist into slab freelist. Typically we get here
1645 * because both freelists are empty. So this is unlikely
1648 while (unlikely(c
->freelist
)) {
1651 tail
= 0; /* Hot objects. Put the slab first */
1653 /* Retrieve object from cpu_freelist */
1654 object
= c
->freelist
;
1655 c
->freelist
= get_freepointer(s
, c
->freelist
);
1657 /* And put onto the regular freelist */
1658 set_freepointer(s
, object
, page
->freelist
);
1659 page
->freelist
= object
;
1663 c
->tid
= next_tid(c
->tid
);
1664 unfreeze_slab(s
, page
, tail
);
1667 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1669 stat(s
, CPUSLAB_FLUSH
);
1671 deactivate_slab(s
, c
);
1677 * Called from IPI handler with interrupts disabled.
1679 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1681 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
1683 if (likely(c
&& c
->page
))
1687 static void flush_cpu_slab(void *d
)
1689 struct kmem_cache
*s
= d
;
1691 __flush_cpu_slab(s
, smp_processor_id());
1694 static void flush_all(struct kmem_cache
*s
)
1696 on_each_cpu(flush_cpu_slab
, s
, 1);
1700 * Check if the objects in a per cpu structure fit numa
1701 * locality expectations.
1703 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1706 if (node
!= NUMA_NO_NODE
&& c
->node
!= node
)
1712 static int count_free(struct page
*page
)
1714 return page
->objects
- page
->inuse
;
1717 static unsigned long count_partial(struct kmem_cache_node
*n
,
1718 int (*get_count
)(struct page
*))
1720 unsigned long flags
;
1721 unsigned long x
= 0;
1724 spin_lock_irqsave(&n
->list_lock
, flags
);
1725 list_for_each_entry(page
, &n
->partial
, lru
)
1726 x
+= get_count(page
);
1727 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1731 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
1733 #ifdef CONFIG_SLUB_DEBUG
1734 return atomic_long_read(&n
->total_objects
);
1740 static noinline
void
1741 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
1746 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1748 printk(KERN_WARNING
" cache: %s, object size: %d, buffer size: %d, "
1749 "default order: %d, min order: %d\n", s
->name
, s
->objsize
,
1750 s
->size
, oo_order(s
->oo
), oo_order(s
->min
));
1752 if (oo_order(s
->min
) > get_order(s
->objsize
))
1753 printk(KERN_WARNING
" %s debugging increased min order, use "
1754 "slub_debug=O to disable.\n", s
->name
);
1756 for_each_online_node(node
) {
1757 struct kmem_cache_node
*n
= get_node(s
, node
);
1758 unsigned long nr_slabs
;
1759 unsigned long nr_objs
;
1760 unsigned long nr_free
;
1765 nr_free
= count_partial(n
, count_free
);
1766 nr_slabs
= node_nr_slabs(n
);
1767 nr_objs
= node_nr_objs(n
);
1770 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1771 node
, nr_slabs
, nr_objs
, nr_free
);
1776 * Slow path. The lockless freelist is empty or we need to perform
1779 * Interrupts are disabled.
1781 * Processing is still very fast if new objects have been freed to the
1782 * regular freelist. In that case we simply take over the regular freelist
1783 * as the lockless freelist and zap the regular freelist.
1785 * If that is not working then we fall back to the partial lists. We take the
1786 * first element of the freelist as the object to allocate now and move the
1787 * rest of the freelist to the lockless freelist.
1789 * And if we were unable to get a new slab from the partial slab lists then
1790 * we need to allocate a new slab. This is the slowest path since it involves
1791 * a call to the page allocator and the setup of a new slab.
1793 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
1794 unsigned long addr
, struct kmem_cache_cpu
*c
)
1798 unsigned long flags
;
1800 local_irq_save(flags
);
1801 #ifdef CONFIG_PREEMPT
1803 * We may have been preempted and rescheduled on a different
1804 * cpu before disabling interrupts. Need to reload cpu area
1807 c
= this_cpu_ptr(s
->cpu_slab
);
1810 /* We handle __GFP_ZERO in the caller */
1811 gfpflags
&= ~__GFP_ZERO
;
1818 if (unlikely(!node_match(c
, node
)))
1821 stat(s
, ALLOC_REFILL
);
1824 object
= page
->freelist
;
1825 if (unlikely(!object
))
1827 if (kmem_cache_debug(s
))
1830 c
->freelist
= get_freepointer(s
, object
);
1831 page
->inuse
= page
->objects
;
1832 page
->freelist
= NULL
;
1835 c
->tid
= next_tid(c
->tid
);
1836 local_irq_restore(flags
);
1837 stat(s
, ALLOC_SLOWPATH
);
1841 deactivate_slab(s
, c
);
1844 page
= get_partial(s
, gfpflags
, node
);
1846 stat(s
, ALLOC_FROM_PARTIAL
);
1847 c
->node
= page_to_nid(page
);
1852 gfpflags
&= gfp_allowed_mask
;
1853 if (gfpflags
& __GFP_WAIT
)
1856 page
= new_slab(s
, gfpflags
, node
);
1858 if (gfpflags
& __GFP_WAIT
)
1859 local_irq_disable();
1862 c
= __this_cpu_ptr(s
->cpu_slab
);
1863 stat(s
, ALLOC_SLAB
);
1868 __SetPageSlubFrozen(page
);
1869 c
->node
= page_to_nid(page
);
1873 if (!(gfpflags
& __GFP_NOWARN
) && printk_ratelimit())
1874 slab_out_of_memory(s
, gfpflags
, node
);
1875 local_irq_restore(flags
);
1878 if (!alloc_debug_processing(s
, page
, object
, addr
))
1882 page
->freelist
= get_freepointer(s
, object
);
1883 deactivate_slab(s
, c
);
1885 c
->node
= NUMA_NO_NODE
;
1886 local_irq_restore(flags
);
1891 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1892 * have the fastpath folded into their functions. So no function call
1893 * overhead for requests that can be satisfied on the fastpath.
1895 * The fastpath works by first checking if the lockless freelist can be used.
1896 * If not then __slab_alloc is called for slow processing.
1898 * Otherwise we can simply pick the next object from the lockless free list.
1900 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1901 gfp_t gfpflags
, int node
, unsigned long addr
)
1904 struct kmem_cache_cpu
*c
;
1907 if (slab_pre_alloc_hook(s
, gfpflags
))
1913 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
1914 * enabled. We may switch back and forth between cpus while
1915 * reading from one cpu area. That does not matter as long
1916 * as we end up on the original cpu again when doing the cmpxchg.
1918 c
= __this_cpu_ptr(s
->cpu_slab
);
1921 * The transaction ids are globally unique per cpu and per operation on
1922 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
1923 * occurs on the right processor and that there was no operation on the
1924 * linked list in between.
1929 object
= c
->freelist
;
1930 if (unlikely(!object
|| !node_match(c
, node
)))
1932 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1936 * The cmpxchg will only match if there was no additional
1937 * operation and if we are on the right processor.
1939 * The cmpxchg does the following atomically (without lock semantics!)
1940 * 1. Relocate first pointer to the current per cpu area.
1941 * 2. Verify that tid and freelist have not been changed
1942 * 3. If they were not changed replace tid and freelist
1944 * Since this is without lock semantics the protection is only against
1945 * code executing on this cpu *not* from access by other cpus.
1947 if (unlikely(!irqsafe_cpu_cmpxchg_double(
1948 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
1950 get_freepointer_safe(s
, object
), next_tid(tid
)))) {
1952 note_cmpxchg_failure("slab_alloc", s
, tid
);
1955 stat(s
, ALLOC_FASTPATH
);
1958 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
1959 memset(object
, 0, s
->objsize
);
1961 slab_post_alloc_hook(s
, gfpflags
, object
);
1966 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1968 void *ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, _RET_IP_
);
1970 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->objsize
, s
->size
, gfpflags
);
1974 EXPORT_SYMBOL(kmem_cache_alloc
);
1976 #ifdef CONFIG_TRACING
1977 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
1979 void *ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, _RET_IP_
);
1980 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
1983 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
1985 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
1987 void *ret
= kmalloc_order(size
, flags
, order
);
1988 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
1991 EXPORT_SYMBOL(kmalloc_order_trace
);
1995 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1997 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1999 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2000 s
->objsize
, s
->size
, gfpflags
, node
);
2004 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2006 #ifdef CONFIG_TRACING
2007 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2009 int node
, size_t size
)
2011 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
2013 trace_kmalloc_node(_RET_IP_
, ret
,
2014 size
, s
->size
, gfpflags
, node
);
2017 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2022 * Slow patch handling. This may still be called frequently since objects
2023 * have a longer lifetime than the cpu slabs in most processing loads.
2025 * So we still attempt to reduce cache line usage. Just take the slab
2026 * lock and free the item. If there is no additional partial page
2027 * handling required then we can return immediately.
2029 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2030 void *x
, unsigned long addr
)
2033 void **object
= (void *)x
;
2034 unsigned long flags
;
2036 local_irq_save(flags
);
2038 stat(s
, FREE_SLOWPATH
);
2040 if (kmem_cache_debug(s
) && !free_debug_processing(s
, page
, x
, addr
))
2043 prior
= page
->freelist
;
2044 set_freepointer(s
, object
, prior
);
2045 page
->freelist
= object
;
2048 if (unlikely(PageSlubFrozen(page
))) {
2049 stat(s
, FREE_FROZEN
);
2053 if (unlikely(!page
->inuse
))
2057 * Objects left in the slab. If it was not on the partial list before
2060 if (unlikely(!prior
)) {
2061 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
2062 stat(s
, FREE_ADD_PARTIAL
);
2067 local_irq_restore(flags
);
2073 * Slab still on the partial list.
2075 remove_partial(s
, page
);
2076 stat(s
, FREE_REMOVE_PARTIAL
);
2079 local_irq_restore(flags
);
2081 discard_slab(s
, page
);
2085 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2086 * can perform fastpath freeing without additional function calls.
2088 * The fastpath is only possible if we are freeing to the current cpu slab
2089 * of this processor. This typically the case if we have just allocated
2092 * If fastpath is not possible then fall back to __slab_free where we deal
2093 * with all sorts of special processing.
2095 static __always_inline
void slab_free(struct kmem_cache
*s
,
2096 struct page
*page
, void *x
, unsigned long addr
)
2098 void **object
= (void *)x
;
2099 struct kmem_cache_cpu
*c
;
2102 slab_free_hook(s
, x
);
2107 * Determine the currently cpus per cpu slab.
2108 * The cpu may change afterward. However that does not matter since
2109 * data is retrieved via this pointer. If we are on the same cpu
2110 * during the cmpxchg then the free will succedd.
2112 c
= __this_cpu_ptr(s
->cpu_slab
);
2117 if (likely(page
== c
->page
)) {
2118 set_freepointer(s
, object
, c
->freelist
);
2120 if (unlikely(!irqsafe_cpu_cmpxchg_double(
2121 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2123 object
, next_tid(tid
)))) {
2125 note_cmpxchg_failure("slab_free", s
, tid
);
2128 stat(s
, FREE_FASTPATH
);
2130 __slab_free(s
, page
, x
, addr
);
2134 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2138 page
= virt_to_head_page(x
);
2140 slab_free(s
, page
, x
, _RET_IP_
);
2142 trace_kmem_cache_free(_RET_IP_
, x
);
2144 EXPORT_SYMBOL(kmem_cache_free
);
2147 * Object placement in a slab is made very easy because we always start at
2148 * offset 0. If we tune the size of the object to the alignment then we can
2149 * get the required alignment by putting one properly sized object after
2152 * Notice that the allocation order determines the sizes of the per cpu
2153 * caches. Each processor has always one slab available for allocations.
2154 * Increasing the allocation order reduces the number of times that slabs
2155 * must be moved on and off the partial lists and is therefore a factor in
2160 * Mininum / Maximum order of slab pages. This influences locking overhead
2161 * and slab fragmentation. A higher order reduces the number of partial slabs
2162 * and increases the number of allocations possible without having to
2163 * take the list_lock.
2165 static int slub_min_order
;
2166 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
2167 static int slub_min_objects
;
2170 * Merge control. If this is set then no merging of slab caches will occur.
2171 * (Could be removed. This was introduced to pacify the merge skeptics.)
2173 static int slub_nomerge
;
2176 * Calculate the order of allocation given an slab object size.
2178 * The order of allocation has significant impact on performance and other
2179 * system components. Generally order 0 allocations should be preferred since
2180 * order 0 does not cause fragmentation in the page allocator. Larger objects
2181 * be problematic to put into order 0 slabs because there may be too much
2182 * unused space left. We go to a higher order if more than 1/16th of the slab
2185 * In order to reach satisfactory performance we must ensure that a minimum
2186 * number of objects is in one slab. Otherwise we may generate too much
2187 * activity on the partial lists which requires taking the list_lock. This is
2188 * less a concern for large slabs though which are rarely used.
2190 * slub_max_order specifies the order where we begin to stop considering the
2191 * number of objects in a slab as critical. If we reach slub_max_order then
2192 * we try to keep the page order as low as possible. So we accept more waste
2193 * of space in favor of a small page order.
2195 * Higher order allocations also allow the placement of more objects in a
2196 * slab and thereby reduce object handling overhead. If the user has
2197 * requested a higher mininum order then we start with that one instead of
2198 * the smallest order which will fit the object.
2200 static inline int slab_order(int size
, int min_objects
,
2201 int max_order
, int fract_leftover
, int reserved
)
2205 int min_order
= slub_min_order
;
2207 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
2208 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
2210 for (order
= max(min_order
,
2211 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
2212 order
<= max_order
; order
++) {
2214 unsigned long slab_size
= PAGE_SIZE
<< order
;
2216 if (slab_size
< min_objects
* size
+ reserved
)
2219 rem
= (slab_size
- reserved
) % size
;
2221 if (rem
<= slab_size
/ fract_leftover
)
2229 static inline int calculate_order(int size
, int reserved
)
2237 * Attempt to find best configuration for a slab. This
2238 * works by first attempting to generate a layout with
2239 * the best configuration and backing off gradually.
2241 * First we reduce the acceptable waste in a slab. Then
2242 * we reduce the minimum objects required in a slab.
2244 min_objects
= slub_min_objects
;
2246 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
2247 max_objects
= order_objects(slub_max_order
, size
, reserved
);
2248 min_objects
= min(min_objects
, max_objects
);
2250 while (min_objects
> 1) {
2252 while (fraction
>= 4) {
2253 order
= slab_order(size
, min_objects
,
2254 slub_max_order
, fraction
, reserved
);
2255 if (order
<= slub_max_order
)
2263 * We were unable to place multiple objects in a slab. Now
2264 * lets see if we can place a single object there.
2266 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
2267 if (order
<= slub_max_order
)
2271 * Doh this slab cannot be placed using slub_max_order.
2273 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
2274 if (order
< MAX_ORDER
)
2280 * Figure out what the alignment of the objects will be.
2282 static unsigned long calculate_alignment(unsigned long flags
,
2283 unsigned long align
, unsigned long size
)
2286 * If the user wants hardware cache aligned objects then follow that
2287 * suggestion if the object is sufficiently large.
2289 * The hardware cache alignment cannot override the specified
2290 * alignment though. If that is greater then use it.
2292 if (flags
& SLAB_HWCACHE_ALIGN
) {
2293 unsigned long ralign
= cache_line_size();
2294 while (size
<= ralign
/ 2)
2296 align
= max(align
, ralign
);
2299 if (align
< ARCH_SLAB_MINALIGN
)
2300 align
= ARCH_SLAB_MINALIGN
;
2302 return ALIGN(align
, sizeof(void *));
2306 init_kmem_cache_node(struct kmem_cache_node
*n
, struct kmem_cache
*s
)
2309 spin_lock_init(&n
->list_lock
);
2310 INIT_LIST_HEAD(&n
->partial
);
2311 #ifdef CONFIG_SLUB_DEBUG
2312 atomic_long_set(&n
->nr_slabs
, 0);
2313 atomic_long_set(&n
->total_objects
, 0);
2314 INIT_LIST_HEAD(&n
->full
);
2318 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
2320 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
2321 SLUB_PAGE_SHIFT
* sizeof(struct kmem_cache_cpu
));
2324 * Must align to double word boundary for the double cmpxchg
2325 * instructions to work; see __pcpu_double_call_return_bool().
2327 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
2328 2 * sizeof(void *));
2333 init_kmem_cache_cpus(s
);
2338 static struct kmem_cache
*kmem_cache_node
;
2341 * No kmalloc_node yet so do it by hand. We know that this is the first
2342 * slab on the node for this slabcache. There are no concurrent accesses
2345 * Note that this function only works on the kmalloc_node_cache
2346 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2347 * memory on a fresh node that has no slab structures yet.
2349 static void early_kmem_cache_node_alloc(int node
)
2352 struct kmem_cache_node
*n
;
2353 unsigned long flags
;
2355 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
2357 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
2360 if (page_to_nid(page
) != node
) {
2361 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2363 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2364 "in order to be able to continue\n");
2369 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
2371 kmem_cache_node
->node
[node
] = n
;
2372 #ifdef CONFIG_SLUB_DEBUG
2373 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
2374 init_tracking(kmem_cache_node
, n
);
2376 init_kmem_cache_node(n
, kmem_cache_node
);
2377 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
2380 * lockdep requires consistent irq usage for each lock
2381 * so even though there cannot be a race this early in
2382 * the boot sequence, we still disable irqs.
2384 local_irq_save(flags
);
2385 add_partial(n
, page
, 0);
2386 local_irq_restore(flags
);
2389 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2393 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2394 struct kmem_cache_node
*n
= s
->node
[node
];
2397 kmem_cache_free(kmem_cache_node
, n
);
2399 s
->node
[node
] = NULL
;
2403 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
2407 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2408 struct kmem_cache_node
*n
;
2410 if (slab_state
== DOWN
) {
2411 early_kmem_cache_node_alloc(node
);
2414 n
= kmem_cache_alloc_node(kmem_cache_node
,
2418 free_kmem_cache_nodes(s
);
2423 init_kmem_cache_node(n
, s
);
2428 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2430 if (min
< MIN_PARTIAL
)
2432 else if (min
> MAX_PARTIAL
)
2434 s
->min_partial
= min
;
2438 * calculate_sizes() determines the order and the distribution of data within
2441 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2443 unsigned long flags
= s
->flags
;
2444 unsigned long size
= s
->objsize
;
2445 unsigned long align
= s
->align
;
2449 * Round up object size to the next word boundary. We can only
2450 * place the free pointer at word boundaries and this determines
2451 * the possible location of the free pointer.
2453 size
= ALIGN(size
, sizeof(void *));
2455 #ifdef CONFIG_SLUB_DEBUG
2457 * Determine if we can poison the object itself. If the user of
2458 * the slab may touch the object after free or before allocation
2459 * then we should never poison the object itself.
2461 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2463 s
->flags
|= __OBJECT_POISON
;
2465 s
->flags
&= ~__OBJECT_POISON
;
2469 * If we are Redzoning then check if there is some space between the
2470 * end of the object and the free pointer. If not then add an
2471 * additional word to have some bytes to store Redzone information.
2473 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2474 size
+= sizeof(void *);
2478 * With that we have determined the number of bytes in actual use
2479 * by the object. This is the potential offset to the free pointer.
2483 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2486 * Relocate free pointer after the object if it is not
2487 * permitted to overwrite the first word of the object on
2490 * This is the case if we do RCU, have a constructor or
2491 * destructor or are poisoning the objects.
2494 size
+= sizeof(void *);
2497 #ifdef CONFIG_SLUB_DEBUG
2498 if (flags
& SLAB_STORE_USER
)
2500 * Need to store information about allocs and frees after
2503 size
+= 2 * sizeof(struct track
);
2505 if (flags
& SLAB_RED_ZONE
)
2507 * Add some empty padding so that we can catch
2508 * overwrites from earlier objects rather than let
2509 * tracking information or the free pointer be
2510 * corrupted if a user writes before the start
2513 size
+= sizeof(void *);
2517 * Determine the alignment based on various parameters that the
2518 * user specified and the dynamic determination of cache line size
2521 align
= calculate_alignment(flags
, align
, s
->objsize
);
2525 * SLUB stores one object immediately after another beginning from
2526 * offset 0. In order to align the objects we have to simply size
2527 * each object to conform to the alignment.
2529 size
= ALIGN(size
, align
);
2531 if (forced_order
>= 0)
2532 order
= forced_order
;
2534 order
= calculate_order(size
, s
->reserved
);
2541 s
->allocflags
|= __GFP_COMP
;
2543 if (s
->flags
& SLAB_CACHE_DMA
)
2544 s
->allocflags
|= SLUB_DMA
;
2546 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2547 s
->allocflags
|= __GFP_RECLAIMABLE
;
2550 * Determine the number of objects per slab
2552 s
->oo
= oo_make(order
, size
, s
->reserved
);
2553 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
2554 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2557 return !!oo_objects(s
->oo
);
2561 static int kmem_cache_open(struct kmem_cache
*s
,
2562 const char *name
, size_t size
,
2563 size_t align
, unsigned long flags
,
2564 void (*ctor
)(void *))
2566 memset(s
, 0, kmem_size
);
2571 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2574 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_DESTROY_BY_RCU
))
2575 s
->reserved
= sizeof(struct rcu_head
);
2577 if (!calculate_sizes(s
, -1))
2579 if (disable_higher_order_debug
) {
2581 * Disable debugging flags that store metadata if the min slab
2584 if (get_order(s
->size
) > get_order(s
->objsize
)) {
2585 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
2587 if (!calculate_sizes(s
, -1))
2593 * The larger the object size is, the more pages we want on the partial
2594 * list to avoid pounding the page allocator excessively.
2596 set_min_partial(s
, ilog2(s
->size
));
2599 s
->remote_node_defrag_ratio
= 1000;
2601 if (!init_kmem_cache_nodes(s
))
2604 if (alloc_kmem_cache_cpus(s
))
2607 free_kmem_cache_nodes(s
);
2609 if (flags
& SLAB_PANIC
)
2610 panic("Cannot create slab %s size=%lu realsize=%u "
2611 "order=%u offset=%u flags=%lx\n",
2612 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2618 * Determine the size of a slab object
2620 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2624 EXPORT_SYMBOL(kmem_cache_size
);
2626 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2629 #ifdef CONFIG_SLUB_DEBUG
2630 void *addr
= page_address(page
);
2632 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
2633 sizeof(long), GFP_ATOMIC
);
2636 slab_err(s
, page
, "%s", text
);
2639 get_map(s
, page
, map
);
2640 for_each_object(p
, s
, addr
, page
->objects
) {
2642 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2643 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2645 print_tracking(s
, p
);
2654 * Attempt to free all partial slabs on a node.
2656 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2658 unsigned long flags
;
2659 struct page
*page
, *h
;
2661 spin_lock_irqsave(&n
->list_lock
, flags
);
2662 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2664 __remove_partial(n
, page
);
2665 discard_slab(s
, page
);
2667 list_slab_objects(s
, page
,
2668 "Objects remaining on kmem_cache_close()");
2671 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2675 * Release all resources used by a slab cache.
2677 static inline int kmem_cache_close(struct kmem_cache
*s
)
2682 free_percpu(s
->cpu_slab
);
2683 /* Attempt to free all objects */
2684 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2685 struct kmem_cache_node
*n
= get_node(s
, node
);
2688 if (n
->nr_partial
|| slabs_node(s
, node
))
2691 free_kmem_cache_nodes(s
);
2696 * Close a cache and release the kmem_cache structure
2697 * (must be used for caches created using kmem_cache_create)
2699 void kmem_cache_destroy(struct kmem_cache
*s
)
2701 down_write(&slub_lock
);
2705 if (kmem_cache_close(s
)) {
2706 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2707 "still has objects.\n", s
->name
, __func__
);
2710 if (s
->flags
& SLAB_DESTROY_BY_RCU
)
2712 sysfs_slab_remove(s
);
2714 up_write(&slub_lock
);
2716 EXPORT_SYMBOL(kmem_cache_destroy
);
2718 /********************************************************************
2720 *******************************************************************/
2722 struct kmem_cache
*kmalloc_caches
[SLUB_PAGE_SHIFT
];
2723 EXPORT_SYMBOL(kmalloc_caches
);
2725 static struct kmem_cache
*kmem_cache
;
2727 #ifdef CONFIG_ZONE_DMA
2728 static struct kmem_cache
*kmalloc_dma_caches
[SLUB_PAGE_SHIFT
];
2731 static int __init
setup_slub_min_order(char *str
)
2733 get_option(&str
, &slub_min_order
);
2738 __setup("slub_min_order=", setup_slub_min_order
);
2740 static int __init
setup_slub_max_order(char *str
)
2742 get_option(&str
, &slub_max_order
);
2743 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
2748 __setup("slub_max_order=", setup_slub_max_order
);
2750 static int __init
setup_slub_min_objects(char *str
)
2752 get_option(&str
, &slub_min_objects
);
2757 __setup("slub_min_objects=", setup_slub_min_objects
);
2759 static int __init
setup_slub_nomerge(char *str
)
2765 __setup("slub_nomerge", setup_slub_nomerge
);
2767 static struct kmem_cache
*__init
create_kmalloc_cache(const char *name
,
2768 int size
, unsigned int flags
)
2770 struct kmem_cache
*s
;
2772 s
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
2775 * This function is called with IRQs disabled during early-boot on
2776 * single CPU so there's no need to take slub_lock here.
2778 if (!kmem_cache_open(s
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2782 list_add(&s
->list
, &slab_caches
);
2786 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2791 * Conversion table for small slabs sizes / 8 to the index in the
2792 * kmalloc array. This is necessary for slabs < 192 since we have non power
2793 * of two cache sizes there. The size of larger slabs can be determined using
2796 static s8 size_index
[24] = {
2823 static inline int size_index_elem(size_t bytes
)
2825 return (bytes
- 1) / 8;
2828 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2834 return ZERO_SIZE_PTR
;
2836 index
= size_index
[size_index_elem(size
)];
2838 index
= fls(size
- 1);
2840 #ifdef CONFIG_ZONE_DMA
2841 if (unlikely((flags
& SLUB_DMA
)))
2842 return kmalloc_dma_caches
[index
];
2845 return kmalloc_caches
[index
];
2848 void *__kmalloc(size_t size
, gfp_t flags
)
2850 struct kmem_cache
*s
;
2853 if (unlikely(size
> SLUB_MAX_SIZE
))
2854 return kmalloc_large(size
, flags
);
2856 s
= get_slab(size
, flags
);
2858 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2861 ret
= slab_alloc(s
, flags
, NUMA_NO_NODE
, _RET_IP_
);
2863 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
2867 EXPORT_SYMBOL(__kmalloc
);
2870 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2875 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
2876 page
= alloc_pages_node(node
, flags
, get_order(size
));
2878 ptr
= page_address(page
);
2880 kmemleak_alloc(ptr
, size
, 1, flags
);
2884 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2886 struct kmem_cache
*s
;
2889 if (unlikely(size
> SLUB_MAX_SIZE
)) {
2890 ret
= kmalloc_large_node(size
, flags
, node
);
2892 trace_kmalloc_node(_RET_IP_
, ret
,
2893 size
, PAGE_SIZE
<< get_order(size
),
2899 s
= get_slab(size
, flags
);
2901 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2904 ret
= slab_alloc(s
, flags
, node
, _RET_IP_
);
2906 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
2910 EXPORT_SYMBOL(__kmalloc_node
);
2913 size_t ksize(const void *object
)
2917 if (unlikely(object
== ZERO_SIZE_PTR
))
2920 page
= virt_to_head_page(object
);
2922 if (unlikely(!PageSlab(page
))) {
2923 WARN_ON(!PageCompound(page
));
2924 return PAGE_SIZE
<< compound_order(page
);
2927 return slab_ksize(page
->slab
);
2929 EXPORT_SYMBOL(ksize
);
2931 void kfree(const void *x
)
2934 void *object
= (void *)x
;
2936 trace_kfree(_RET_IP_
, x
);
2938 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2941 page
= virt_to_head_page(x
);
2942 if (unlikely(!PageSlab(page
))) {
2943 BUG_ON(!PageCompound(page
));
2948 slab_free(page
->slab
, page
, object
, _RET_IP_
);
2950 EXPORT_SYMBOL(kfree
);
2953 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2954 * the remaining slabs by the number of items in use. The slabs with the
2955 * most items in use come first. New allocations will then fill those up
2956 * and thus they can be removed from the partial lists.
2958 * The slabs with the least items are placed last. This results in them
2959 * being allocated from last increasing the chance that the last objects
2960 * are freed in them.
2962 int kmem_cache_shrink(struct kmem_cache
*s
)
2966 struct kmem_cache_node
*n
;
2969 int objects
= oo_objects(s
->max
);
2970 struct list_head
*slabs_by_inuse
=
2971 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
2972 unsigned long flags
;
2974 if (!slabs_by_inuse
)
2978 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2979 n
= get_node(s
, node
);
2984 for (i
= 0; i
< objects
; i
++)
2985 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2987 spin_lock_irqsave(&n
->list_lock
, flags
);
2990 * Build lists indexed by the items in use in each slab.
2992 * Note that concurrent frees may occur while we hold the
2993 * list_lock. page->inuse here is the upper limit.
2995 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2996 if (!page
->inuse
&& slab_trylock(page
)) {
2998 * Must hold slab lock here because slab_free
2999 * may have freed the last object and be
3000 * waiting to release the slab.
3002 __remove_partial(n
, page
);
3004 discard_slab(s
, page
);
3006 list_move(&page
->lru
,
3007 slabs_by_inuse
+ page
->inuse
);
3012 * Rebuild the partial list with the slabs filled up most
3013 * first and the least used slabs at the end.
3015 for (i
= objects
- 1; i
>= 0; i
--)
3016 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
3018 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3021 kfree(slabs_by_inuse
);
3024 EXPORT_SYMBOL(kmem_cache_shrink
);
3026 #if defined(CONFIG_MEMORY_HOTPLUG)
3027 static int slab_mem_going_offline_callback(void *arg
)
3029 struct kmem_cache
*s
;
3031 down_read(&slub_lock
);
3032 list_for_each_entry(s
, &slab_caches
, list
)
3033 kmem_cache_shrink(s
);
3034 up_read(&slub_lock
);
3039 static void slab_mem_offline_callback(void *arg
)
3041 struct kmem_cache_node
*n
;
3042 struct kmem_cache
*s
;
3043 struct memory_notify
*marg
= arg
;
3046 offline_node
= marg
->status_change_nid
;
3049 * If the node still has available memory. we need kmem_cache_node
3052 if (offline_node
< 0)
3055 down_read(&slub_lock
);
3056 list_for_each_entry(s
, &slab_caches
, list
) {
3057 n
= get_node(s
, offline_node
);
3060 * if n->nr_slabs > 0, slabs still exist on the node
3061 * that is going down. We were unable to free them,
3062 * and offline_pages() function shouldn't call this
3063 * callback. So, we must fail.
3065 BUG_ON(slabs_node(s
, offline_node
));
3067 s
->node
[offline_node
] = NULL
;
3068 kmem_cache_free(kmem_cache_node
, n
);
3071 up_read(&slub_lock
);
3074 static int slab_mem_going_online_callback(void *arg
)
3076 struct kmem_cache_node
*n
;
3077 struct kmem_cache
*s
;
3078 struct memory_notify
*marg
= arg
;
3079 int nid
= marg
->status_change_nid
;
3083 * If the node's memory is already available, then kmem_cache_node is
3084 * already created. Nothing to do.
3090 * We are bringing a node online. No memory is available yet. We must
3091 * allocate a kmem_cache_node structure in order to bring the node
3094 down_read(&slub_lock
);
3095 list_for_each_entry(s
, &slab_caches
, list
) {
3097 * XXX: kmem_cache_alloc_node will fallback to other nodes
3098 * since memory is not yet available from the node that
3101 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
3106 init_kmem_cache_node(n
, s
);
3110 up_read(&slub_lock
);
3114 static int slab_memory_callback(struct notifier_block
*self
,
3115 unsigned long action
, void *arg
)
3120 case MEM_GOING_ONLINE
:
3121 ret
= slab_mem_going_online_callback(arg
);
3123 case MEM_GOING_OFFLINE
:
3124 ret
= slab_mem_going_offline_callback(arg
);
3127 case MEM_CANCEL_ONLINE
:
3128 slab_mem_offline_callback(arg
);
3131 case MEM_CANCEL_OFFLINE
:
3135 ret
= notifier_from_errno(ret
);
3141 #endif /* CONFIG_MEMORY_HOTPLUG */
3143 /********************************************************************
3144 * Basic setup of slabs
3145 *******************************************************************/
3148 * Used for early kmem_cache structures that were allocated using
3149 * the page allocator
3152 static void __init
kmem_cache_bootstrap_fixup(struct kmem_cache
*s
)
3156 list_add(&s
->list
, &slab_caches
);
3159 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3160 struct kmem_cache_node
*n
= get_node(s
, node
);
3164 list_for_each_entry(p
, &n
->partial
, lru
)
3167 #ifdef CONFIG_SLUB_DEBUG
3168 list_for_each_entry(p
, &n
->full
, lru
)
3175 void __init
kmem_cache_init(void)
3179 struct kmem_cache
*temp_kmem_cache
;
3181 struct kmem_cache
*temp_kmem_cache_node
;
3182 unsigned long kmalloc_size
;
3184 kmem_size
= offsetof(struct kmem_cache
, node
) +
3185 nr_node_ids
* sizeof(struct kmem_cache_node
*);
3187 /* Allocate two kmem_caches from the page allocator */
3188 kmalloc_size
= ALIGN(kmem_size
, cache_line_size());
3189 order
= get_order(2 * kmalloc_size
);
3190 kmem_cache
= (void *)__get_free_pages(GFP_NOWAIT
, order
);
3193 * Must first have the slab cache available for the allocations of the
3194 * struct kmem_cache_node's. There is special bootstrap code in
3195 * kmem_cache_open for slab_state == DOWN.
3197 kmem_cache_node
= (void *)kmem_cache
+ kmalloc_size
;
3199 kmem_cache_open(kmem_cache_node
, "kmem_cache_node",
3200 sizeof(struct kmem_cache_node
),
3201 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3203 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
3205 /* Able to allocate the per node structures */
3206 slab_state
= PARTIAL
;
3208 temp_kmem_cache
= kmem_cache
;
3209 kmem_cache_open(kmem_cache
, "kmem_cache", kmem_size
,
3210 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3211 kmem_cache
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3212 memcpy(kmem_cache
, temp_kmem_cache
, kmem_size
);
3215 * Allocate kmem_cache_node properly from the kmem_cache slab.
3216 * kmem_cache_node is separately allocated so no need to
3217 * update any list pointers.
3219 temp_kmem_cache_node
= kmem_cache_node
;
3221 kmem_cache_node
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3222 memcpy(kmem_cache_node
, temp_kmem_cache_node
, kmem_size
);
3224 kmem_cache_bootstrap_fixup(kmem_cache_node
);
3227 kmem_cache_bootstrap_fixup(kmem_cache
);
3229 /* Free temporary boot structure */
3230 free_pages((unsigned long)temp_kmem_cache
, order
);
3232 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3235 * Patch up the size_index table if we have strange large alignment
3236 * requirements for the kmalloc array. This is only the case for
3237 * MIPS it seems. The standard arches will not generate any code here.
3239 * Largest permitted alignment is 256 bytes due to the way we
3240 * handle the index determination for the smaller caches.
3242 * Make sure that nothing crazy happens if someone starts tinkering
3243 * around with ARCH_KMALLOC_MINALIGN
3245 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3246 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3248 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
3249 int elem
= size_index_elem(i
);
3250 if (elem
>= ARRAY_SIZE(size_index
))
3252 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
3255 if (KMALLOC_MIN_SIZE
== 64) {
3257 * The 96 byte size cache is not used if the alignment
3260 for (i
= 64 + 8; i
<= 96; i
+= 8)
3261 size_index
[size_index_elem(i
)] = 7;
3262 } else if (KMALLOC_MIN_SIZE
== 128) {
3264 * The 192 byte sized cache is not used if the alignment
3265 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3268 for (i
= 128 + 8; i
<= 192; i
+= 8)
3269 size_index
[size_index_elem(i
)] = 8;
3272 /* Caches that are not of the two-to-the-power-of size */
3273 if (KMALLOC_MIN_SIZE
<= 32) {
3274 kmalloc_caches
[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3278 if (KMALLOC_MIN_SIZE
<= 64) {
3279 kmalloc_caches
[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3283 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3284 kmalloc_caches
[i
] = create_kmalloc_cache("kmalloc", 1 << i
, 0);
3290 /* Provide the correct kmalloc names now that the caches are up */
3291 if (KMALLOC_MIN_SIZE
<= 32) {
3292 kmalloc_caches
[1]->name
= kstrdup(kmalloc_caches
[1]->name
, GFP_NOWAIT
);
3293 BUG_ON(!kmalloc_caches
[1]->name
);
3296 if (KMALLOC_MIN_SIZE
<= 64) {
3297 kmalloc_caches
[2]->name
= kstrdup(kmalloc_caches
[2]->name
, GFP_NOWAIT
);
3298 BUG_ON(!kmalloc_caches
[2]->name
);
3301 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3302 char *s
= kasprintf(GFP_NOWAIT
, "kmalloc-%d", 1 << i
);
3305 kmalloc_caches
[i
]->name
= s
;
3309 register_cpu_notifier(&slab_notifier
);
3312 #ifdef CONFIG_ZONE_DMA
3313 for (i
= 0; i
< SLUB_PAGE_SHIFT
; i
++) {
3314 struct kmem_cache
*s
= kmalloc_caches
[i
];
3317 char *name
= kasprintf(GFP_NOWAIT
,
3318 "dma-kmalloc-%d", s
->objsize
);
3321 kmalloc_dma_caches
[i
] = create_kmalloc_cache(name
,
3322 s
->objsize
, SLAB_CACHE_DMA
);
3327 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3328 " CPUs=%d, Nodes=%d\n",
3329 caches
, cache_line_size(),
3330 slub_min_order
, slub_max_order
, slub_min_objects
,
3331 nr_cpu_ids
, nr_node_ids
);
3334 void __init
kmem_cache_init_late(void)
3339 * Find a mergeable slab cache
3341 static int slab_unmergeable(struct kmem_cache
*s
)
3343 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3350 * We may have set a slab to be unmergeable during bootstrap.
3352 if (s
->refcount
< 0)
3358 static struct kmem_cache
*find_mergeable(size_t size
,
3359 size_t align
, unsigned long flags
, const char *name
,
3360 void (*ctor
)(void *))
3362 struct kmem_cache
*s
;
3364 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3370 size
= ALIGN(size
, sizeof(void *));
3371 align
= calculate_alignment(flags
, align
, size
);
3372 size
= ALIGN(size
, align
);
3373 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3375 list_for_each_entry(s
, &slab_caches
, list
) {
3376 if (slab_unmergeable(s
))
3382 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3385 * Check if alignment is compatible.
3386 * Courtesy of Adrian Drzewiecki
3388 if ((s
->size
& ~(align
- 1)) != s
->size
)
3391 if (s
->size
- size
>= sizeof(void *))
3399 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3400 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3402 struct kmem_cache
*s
;
3408 down_write(&slub_lock
);
3409 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3413 * Adjust the object sizes so that we clear
3414 * the complete object on kzalloc.
3416 s
->objsize
= max(s
->objsize
, (int)size
);
3417 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3419 if (sysfs_slab_alias(s
, name
)) {
3423 up_write(&slub_lock
);
3427 n
= kstrdup(name
, GFP_KERNEL
);
3431 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3433 if (kmem_cache_open(s
, n
,
3434 size
, align
, flags
, ctor
)) {
3435 list_add(&s
->list
, &slab_caches
);
3436 if (sysfs_slab_add(s
)) {
3442 up_write(&slub_lock
);
3449 up_write(&slub_lock
);
3451 if (flags
& SLAB_PANIC
)
3452 panic("Cannot create slabcache %s\n", name
);
3457 EXPORT_SYMBOL(kmem_cache_create
);
3461 * Use the cpu notifier to insure that the cpu slabs are flushed when
3464 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3465 unsigned long action
, void *hcpu
)
3467 long cpu
= (long)hcpu
;
3468 struct kmem_cache
*s
;
3469 unsigned long flags
;
3472 case CPU_UP_CANCELED
:
3473 case CPU_UP_CANCELED_FROZEN
:
3475 case CPU_DEAD_FROZEN
:
3476 down_read(&slub_lock
);
3477 list_for_each_entry(s
, &slab_caches
, list
) {
3478 local_irq_save(flags
);
3479 __flush_cpu_slab(s
, cpu
);
3480 local_irq_restore(flags
);
3482 up_read(&slub_lock
);
3490 static struct notifier_block __cpuinitdata slab_notifier
= {
3491 .notifier_call
= slab_cpuup_callback
3496 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3498 struct kmem_cache
*s
;
3501 if (unlikely(size
> SLUB_MAX_SIZE
))
3502 return kmalloc_large(size
, gfpflags
);
3504 s
= get_slab(size
, gfpflags
);
3506 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3509 ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, caller
);
3511 /* Honor the call site pointer we received. */
3512 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
3518 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3519 int node
, unsigned long caller
)
3521 struct kmem_cache
*s
;
3524 if (unlikely(size
> SLUB_MAX_SIZE
)) {
3525 ret
= kmalloc_large_node(size
, gfpflags
, node
);
3527 trace_kmalloc_node(caller
, ret
,
3528 size
, PAGE_SIZE
<< get_order(size
),
3534 s
= get_slab(size
, gfpflags
);
3536 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3539 ret
= slab_alloc(s
, gfpflags
, node
, caller
);
3541 /* Honor the call site pointer we received. */
3542 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
3549 static int count_inuse(struct page
*page
)
3554 static int count_total(struct page
*page
)
3556 return page
->objects
;
3560 #ifdef CONFIG_SLUB_DEBUG
3561 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3565 void *addr
= page_address(page
);
3567 if (!check_slab(s
, page
) ||
3568 !on_freelist(s
, page
, NULL
))
3571 /* Now we know that a valid freelist exists */
3572 bitmap_zero(map
, page
->objects
);
3574 get_map(s
, page
, map
);
3575 for_each_object(p
, s
, addr
, page
->objects
) {
3576 if (test_bit(slab_index(p
, s
, addr
), map
))
3577 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
3581 for_each_object(p
, s
, addr
, page
->objects
)
3582 if (!test_bit(slab_index(p
, s
, addr
), map
))
3583 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
3588 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3591 if (slab_trylock(page
)) {
3592 validate_slab(s
, page
, map
);
3595 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3599 static int validate_slab_node(struct kmem_cache
*s
,
3600 struct kmem_cache_node
*n
, unsigned long *map
)
3602 unsigned long count
= 0;
3604 unsigned long flags
;
3606 spin_lock_irqsave(&n
->list_lock
, flags
);
3608 list_for_each_entry(page
, &n
->partial
, lru
) {
3609 validate_slab_slab(s
, page
, map
);
3612 if (count
!= n
->nr_partial
)
3613 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3614 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3616 if (!(s
->flags
& SLAB_STORE_USER
))
3619 list_for_each_entry(page
, &n
->full
, lru
) {
3620 validate_slab_slab(s
, page
, map
);
3623 if (count
!= atomic_long_read(&n
->nr_slabs
))
3624 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3625 "counter=%ld\n", s
->name
, count
,
3626 atomic_long_read(&n
->nr_slabs
));
3629 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3633 static long validate_slab_cache(struct kmem_cache
*s
)
3636 unsigned long count
= 0;
3637 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3638 sizeof(unsigned long), GFP_KERNEL
);
3644 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3645 struct kmem_cache_node
*n
= get_node(s
, node
);
3647 count
+= validate_slab_node(s
, n
, map
);
3653 * Generate lists of code addresses where slabcache objects are allocated
3658 unsigned long count
;
3665 DECLARE_BITMAP(cpus
, NR_CPUS
);
3671 unsigned long count
;
3672 struct location
*loc
;
3675 static void free_loc_track(struct loc_track
*t
)
3678 free_pages((unsigned long)t
->loc
,
3679 get_order(sizeof(struct location
) * t
->max
));
3682 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3687 order
= get_order(sizeof(struct location
) * max
);
3689 l
= (void *)__get_free_pages(flags
, order
);
3694 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3702 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3703 const struct track
*track
)
3705 long start
, end
, pos
;
3707 unsigned long caddr
;
3708 unsigned long age
= jiffies
- track
->when
;
3714 pos
= start
+ (end
- start
+ 1) / 2;
3717 * There is nothing at "end". If we end up there
3718 * we need to add something to before end.
3723 caddr
= t
->loc
[pos
].addr
;
3724 if (track
->addr
== caddr
) {
3730 if (age
< l
->min_time
)
3732 if (age
> l
->max_time
)
3735 if (track
->pid
< l
->min_pid
)
3736 l
->min_pid
= track
->pid
;
3737 if (track
->pid
> l
->max_pid
)
3738 l
->max_pid
= track
->pid
;
3740 cpumask_set_cpu(track
->cpu
,
3741 to_cpumask(l
->cpus
));
3743 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3747 if (track
->addr
< caddr
)
3754 * Not found. Insert new tracking element.
3756 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3762 (t
->count
- pos
) * sizeof(struct location
));
3765 l
->addr
= track
->addr
;
3769 l
->min_pid
= track
->pid
;
3770 l
->max_pid
= track
->pid
;
3771 cpumask_clear(to_cpumask(l
->cpus
));
3772 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
3773 nodes_clear(l
->nodes
);
3774 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3778 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3779 struct page
*page
, enum track_item alloc
,
3782 void *addr
= page_address(page
);
3785 bitmap_zero(map
, page
->objects
);
3786 get_map(s
, page
, map
);
3788 for_each_object(p
, s
, addr
, page
->objects
)
3789 if (!test_bit(slab_index(p
, s
, addr
), map
))
3790 add_location(t
, s
, get_track(s
, p
, alloc
));
3793 static int list_locations(struct kmem_cache
*s
, char *buf
,
3794 enum track_item alloc
)
3798 struct loc_track t
= { 0, 0, NULL
};
3800 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3801 sizeof(unsigned long), GFP_KERNEL
);
3803 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3806 return sprintf(buf
, "Out of memory\n");
3808 /* Push back cpu slabs */
3811 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3812 struct kmem_cache_node
*n
= get_node(s
, node
);
3813 unsigned long flags
;
3816 if (!atomic_long_read(&n
->nr_slabs
))
3819 spin_lock_irqsave(&n
->list_lock
, flags
);
3820 list_for_each_entry(page
, &n
->partial
, lru
)
3821 process_slab(&t
, s
, page
, alloc
, map
);
3822 list_for_each_entry(page
, &n
->full
, lru
)
3823 process_slab(&t
, s
, page
, alloc
, map
);
3824 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3827 for (i
= 0; i
< t
.count
; i
++) {
3828 struct location
*l
= &t
.loc
[i
];
3830 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
3832 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3835 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
3837 len
+= sprintf(buf
+ len
, "<not-available>");
3839 if (l
->sum_time
!= l
->min_time
) {
3840 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3842 (long)div_u64(l
->sum_time
, l
->count
),
3845 len
+= sprintf(buf
+ len
, " age=%ld",
3848 if (l
->min_pid
!= l
->max_pid
)
3849 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3850 l
->min_pid
, l
->max_pid
);
3852 len
+= sprintf(buf
+ len
, " pid=%ld",
3855 if (num_online_cpus() > 1 &&
3856 !cpumask_empty(to_cpumask(l
->cpus
)) &&
3857 len
< PAGE_SIZE
- 60) {
3858 len
+= sprintf(buf
+ len
, " cpus=");
3859 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3860 to_cpumask(l
->cpus
));
3863 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
3864 len
< PAGE_SIZE
- 60) {
3865 len
+= sprintf(buf
+ len
, " nodes=");
3866 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3870 len
+= sprintf(buf
+ len
, "\n");
3876 len
+= sprintf(buf
, "No data\n");
3881 #ifdef SLUB_RESILIENCY_TEST
3882 static void resiliency_test(void)
3886 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || SLUB_PAGE_SHIFT
< 10);
3888 printk(KERN_ERR
"SLUB resiliency testing\n");
3889 printk(KERN_ERR
"-----------------------\n");
3890 printk(KERN_ERR
"A. Corruption after allocation\n");
3892 p
= kzalloc(16, GFP_KERNEL
);
3894 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3895 " 0x12->0x%p\n\n", p
+ 16);
3897 validate_slab_cache(kmalloc_caches
[4]);
3899 /* Hmmm... The next two are dangerous */
3900 p
= kzalloc(32, GFP_KERNEL
);
3901 p
[32 + sizeof(void *)] = 0x34;
3902 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3903 " 0x34 -> -0x%p\n", p
);
3905 "If allocated object is overwritten then not detectable\n\n");
3907 validate_slab_cache(kmalloc_caches
[5]);
3908 p
= kzalloc(64, GFP_KERNEL
);
3909 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3911 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3914 "If allocated object is overwritten then not detectable\n\n");
3915 validate_slab_cache(kmalloc_caches
[6]);
3917 printk(KERN_ERR
"\nB. Corruption after free\n");
3918 p
= kzalloc(128, GFP_KERNEL
);
3921 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3922 validate_slab_cache(kmalloc_caches
[7]);
3924 p
= kzalloc(256, GFP_KERNEL
);
3927 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3929 validate_slab_cache(kmalloc_caches
[8]);
3931 p
= kzalloc(512, GFP_KERNEL
);
3934 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3935 validate_slab_cache(kmalloc_caches
[9]);
3939 static void resiliency_test(void) {};
3944 enum slab_stat_type
{
3945 SL_ALL
, /* All slabs */
3946 SL_PARTIAL
, /* Only partially allocated slabs */
3947 SL_CPU
, /* Only slabs used for cpu caches */
3948 SL_OBJECTS
, /* Determine allocated objects not slabs */
3949 SL_TOTAL
/* Determine object capacity not slabs */
3952 #define SO_ALL (1 << SL_ALL)
3953 #define SO_PARTIAL (1 << SL_PARTIAL)
3954 #define SO_CPU (1 << SL_CPU)
3955 #define SO_OBJECTS (1 << SL_OBJECTS)
3956 #define SO_TOTAL (1 << SL_TOTAL)
3958 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
3959 char *buf
, unsigned long flags
)
3961 unsigned long total
= 0;
3964 unsigned long *nodes
;
3965 unsigned long *per_cpu
;
3967 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3970 per_cpu
= nodes
+ nr_node_ids
;
3972 if (flags
& SO_CPU
) {
3975 for_each_possible_cpu(cpu
) {
3976 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
3978 if (!c
|| c
->node
< 0)
3982 if (flags
& SO_TOTAL
)
3983 x
= c
->page
->objects
;
3984 else if (flags
& SO_OBJECTS
)
3990 nodes
[c
->node
] += x
;
3996 lock_memory_hotplug();
3997 #ifdef CONFIG_SLUB_DEBUG
3998 if (flags
& SO_ALL
) {
3999 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4000 struct kmem_cache_node
*n
= get_node(s
, node
);
4002 if (flags
& SO_TOTAL
)
4003 x
= atomic_long_read(&n
->total_objects
);
4004 else if (flags
& SO_OBJECTS
)
4005 x
= atomic_long_read(&n
->total_objects
) -
4006 count_partial(n
, count_free
);
4009 x
= atomic_long_read(&n
->nr_slabs
);
4016 if (flags
& SO_PARTIAL
) {
4017 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4018 struct kmem_cache_node
*n
= get_node(s
, node
);
4020 if (flags
& SO_TOTAL
)
4021 x
= count_partial(n
, count_total
);
4022 else if (flags
& SO_OBJECTS
)
4023 x
= count_partial(n
, count_inuse
);
4030 x
= sprintf(buf
, "%lu", total
);
4032 for_each_node_state(node
, N_NORMAL_MEMORY
)
4034 x
+= sprintf(buf
+ x
, " N%d=%lu",
4037 unlock_memory_hotplug();
4039 return x
+ sprintf(buf
+ x
, "\n");
4042 #ifdef CONFIG_SLUB_DEBUG
4043 static int any_slab_objects(struct kmem_cache
*s
)
4047 for_each_online_node(node
) {
4048 struct kmem_cache_node
*n
= get_node(s
, node
);
4053 if (atomic_long_read(&n
->total_objects
))
4060 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4061 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
4063 struct slab_attribute
{
4064 struct attribute attr
;
4065 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4066 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4069 #define SLAB_ATTR_RO(_name) \
4070 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4072 #define SLAB_ATTR(_name) \
4073 static struct slab_attribute _name##_attr = \
4074 __ATTR(_name, 0644, _name##_show, _name##_store)
4076 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4078 return sprintf(buf
, "%d\n", s
->size
);
4080 SLAB_ATTR_RO(slab_size
);
4082 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4084 return sprintf(buf
, "%d\n", s
->align
);
4086 SLAB_ATTR_RO(align
);
4088 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4090 return sprintf(buf
, "%d\n", s
->objsize
);
4092 SLAB_ATTR_RO(object_size
);
4094 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4096 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4098 SLAB_ATTR_RO(objs_per_slab
);
4100 static ssize_t
order_store(struct kmem_cache
*s
,
4101 const char *buf
, size_t length
)
4103 unsigned long order
;
4106 err
= strict_strtoul(buf
, 10, &order
);
4110 if (order
> slub_max_order
|| order
< slub_min_order
)
4113 calculate_sizes(s
, order
);
4117 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4119 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4123 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4125 return sprintf(buf
, "%lu\n", s
->min_partial
);
4128 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4134 err
= strict_strtoul(buf
, 10, &min
);
4138 set_min_partial(s
, min
);
4141 SLAB_ATTR(min_partial
);
4143 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4147 return sprintf(buf
, "%pS\n", s
->ctor
);
4151 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4153 return sprintf(buf
, "%d\n", s
->refcount
- 1);
4155 SLAB_ATTR_RO(aliases
);
4157 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4159 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4161 SLAB_ATTR_RO(partial
);
4163 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4165 return show_slab_objects(s
, buf
, SO_CPU
);
4167 SLAB_ATTR_RO(cpu_slabs
);
4169 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4171 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4173 SLAB_ATTR_RO(objects
);
4175 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4177 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4179 SLAB_ATTR_RO(objects_partial
);
4181 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4183 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4186 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4187 const char *buf
, size_t length
)
4189 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4191 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4194 SLAB_ATTR(reclaim_account
);
4196 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4198 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4200 SLAB_ATTR_RO(hwcache_align
);
4202 #ifdef CONFIG_ZONE_DMA
4203 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4205 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4207 SLAB_ATTR_RO(cache_dma
);
4210 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4212 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4214 SLAB_ATTR_RO(destroy_by_rcu
);
4216 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
4218 return sprintf(buf
, "%d\n", s
->reserved
);
4220 SLAB_ATTR_RO(reserved
);
4222 #ifdef CONFIG_SLUB_DEBUG
4223 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4225 return show_slab_objects(s
, buf
, SO_ALL
);
4227 SLAB_ATTR_RO(slabs
);
4229 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4231 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4233 SLAB_ATTR_RO(total_objects
);
4235 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4237 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4240 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4241 const char *buf
, size_t length
)
4243 s
->flags
&= ~SLAB_DEBUG_FREE
;
4245 s
->flags
|= SLAB_DEBUG_FREE
;
4248 SLAB_ATTR(sanity_checks
);
4250 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4252 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4255 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4258 s
->flags
&= ~SLAB_TRACE
;
4260 s
->flags
|= SLAB_TRACE
;
4265 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4267 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4270 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4271 const char *buf
, size_t length
)
4273 if (any_slab_objects(s
))
4276 s
->flags
&= ~SLAB_RED_ZONE
;
4278 s
->flags
|= SLAB_RED_ZONE
;
4279 calculate_sizes(s
, -1);
4282 SLAB_ATTR(red_zone
);
4284 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4286 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4289 static ssize_t
poison_store(struct kmem_cache
*s
,
4290 const char *buf
, size_t length
)
4292 if (any_slab_objects(s
))
4295 s
->flags
&= ~SLAB_POISON
;
4297 s
->flags
|= SLAB_POISON
;
4298 calculate_sizes(s
, -1);
4303 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4305 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4308 static ssize_t
store_user_store(struct kmem_cache
*s
,
4309 const char *buf
, size_t length
)
4311 if (any_slab_objects(s
))
4314 s
->flags
&= ~SLAB_STORE_USER
;
4316 s
->flags
|= SLAB_STORE_USER
;
4317 calculate_sizes(s
, -1);
4320 SLAB_ATTR(store_user
);
4322 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4327 static ssize_t
validate_store(struct kmem_cache
*s
,
4328 const char *buf
, size_t length
)
4332 if (buf
[0] == '1') {
4333 ret
= validate_slab_cache(s
);
4339 SLAB_ATTR(validate
);
4341 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4343 if (!(s
->flags
& SLAB_STORE_USER
))
4345 return list_locations(s
, buf
, TRACK_ALLOC
);
4347 SLAB_ATTR_RO(alloc_calls
);
4349 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4351 if (!(s
->flags
& SLAB_STORE_USER
))
4353 return list_locations(s
, buf
, TRACK_FREE
);
4355 SLAB_ATTR_RO(free_calls
);
4356 #endif /* CONFIG_SLUB_DEBUG */
4358 #ifdef CONFIG_FAILSLAB
4359 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
4361 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
4364 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
4367 s
->flags
&= ~SLAB_FAILSLAB
;
4369 s
->flags
|= SLAB_FAILSLAB
;
4372 SLAB_ATTR(failslab
);
4375 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4380 static ssize_t
shrink_store(struct kmem_cache
*s
,
4381 const char *buf
, size_t length
)
4383 if (buf
[0] == '1') {
4384 int rc
= kmem_cache_shrink(s
);
4395 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4397 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4400 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4401 const char *buf
, size_t length
)
4403 unsigned long ratio
;
4406 err
= strict_strtoul(buf
, 10, &ratio
);
4411 s
->remote_node_defrag_ratio
= ratio
* 10;
4415 SLAB_ATTR(remote_node_defrag_ratio
);
4418 #ifdef CONFIG_SLUB_STATS
4419 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4421 unsigned long sum
= 0;
4424 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4429 for_each_online_cpu(cpu
) {
4430 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
4436 len
= sprintf(buf
, "%lu", sum
);
4439 for_each_online_cpu(cpu
) {
4440 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4441 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4445 return len
+ sprintf(buf
+ len
, "\n");
4448 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
4452 for_each_online_cpu(cpu
)
4453 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
4456 #define STAT_ATTR(si, text) \
4457 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4459 return show_stat(s, buf, si); \
4461 static ssize_t text##_store(struct kmem_cache *s, \
4462 const char *buf, size_t length) \
4464 if (buf[0] != '0') \
4466 clear_stat(s, si); \
4471 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4472 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4473 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4474 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4475 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4476 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4477 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4478 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4479 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4480 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4481 STAT_ATTR(FREE_SLAB
, free_slab
);
4482 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4483 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4484 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4485 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4486 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4487 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4488 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4491 static struct attribute
*slab_attrs
[] = {
4492 &slab_size_attr
.attr
,
4493 &object_size_attr
.attr
,
4494 &objs_per_slab_attr
.attr
,
4496 &min_partial_attr
.attr
,
4498 &objects_partial_attr
.attr
,
4500 &cpu_slabs_attr
.attr
,
4504 &hwcache_align_attr
.attr
,
4505 &reclaim_account_attr
.attr
,
4506 &destroy_by_rcu_attr
.attr
,
4508 &reserved_attr
.attr
,
4509 #ifdef CONFIG_SLUB_DEBUG
4510 &total_objects_attr
.attr
,
4512 &sanity_checks_attr
.attr
,
4514 &red_zone_attr
.attr
,
4516 &store_user_attr
.attr
,
4517 &validate_attr
.attr
,
4518 &alloc_calls_attr
.attr
,
4519 &free_calls_attr
.attr
,
4521 #ifdef CONFIG_ZONE_DMA
4522 &cache_dma_attr
.attr
,
4525 &remote_node_defrag_ratio_attr
.attr
,
4527 #ifdef CONFIG_SLUB_STATS
4528 &alloc_fastpath_attr
.attr
,
4529 &alloc_slowpath_attr
.attr
,
4530 &free_fastpath_attr
.attr
,
4531 &free_slowpath_attr
.attr
,
4532 &free_frozen_attr
.attr
,
4533 &free_add_partial_attr
.attr
,
4534 &free_remove_partial_attr
.attr
,
4535 &alloc_from_partial_attr
.attr
,
4536 &alloc_slab_attr
.attr
,
4537 &alloc_refill_attr
.attr
,
4538 &free_slab_attr
.attr
,
4539 &cpuslab_flush_attr
.attr
,
4540 &deactivate_full_attr
.attr
,
4541 &deactivate_empty_attr
.attr
,
4542 &deactivate_to_head_attr
.attr
,
4543 &deactivate_to_tail_attr
.attr
,
4544 &deactivate_remote_frees_attr
.attr
,
4545 &order_fallback_attr
.attr
,
4547 #ifdef CONFIG_FAILSLAB
4548 &failslab_attr
.attr
,
4554 static struct attribute_group slab_attr_group
= {
4555 .attrs
= slab_attrs
,
4558 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4559 struct attribute
*attr
,
4562 struct slab_attribute
*attribute
;
4563 struct kmem_cache
*s
;
4566 attribute
= to_slab_attr(attr
);
4569 if (!attribute
->show
)
4572 err
= attribute
->show(s
, buf
);
4577 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4578 struct attribute
*attr
,
4579 const char *buf
, size_t len
)
4581 struct slab_attribute
*attribute
;
4582 struct kmem_cache
*s
;
4585 attribute
= to_slab_attr(attr
);
4588 if (!attribute
->store
)
4591 err
= attribute
->store(s
, buf
, len
);
4596 static void kmem_cache_release(struct kobject
*kobj
)
4598 struct kmem_cache
*s
= to_slab(kobj
);
4604 static const struct sysfs_ops slab_sysfs_ops
= {
4605 .show
= slab_attr_show
,
4606 .store
= slab_attr_store
,
4609 static struct kobj_type slab_ktype
= {
4610 .sysfs_ops
= &slab_sysfs_ops
,
4611 .release
= kmem_cache_release
4614 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4616 struct kobj_type
*ktype
= get_ktype(kobj
);
4618 if (ktype
== &slab_ktype
)
4623 static const struct kset_uevent_ops slab_uevent_ops
= {
4624 .filter
= uevent_filter
,
4627 static struct kset
*slab_kset
;
4629 #define ID_STR_LENGTH 64
4631 /* Create a unique string id for a slab cache:
4633 * Format :[flags-]size
4635 static char *create_unique_id(struct kmem_cache
*s
)
4637 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4644 * First flags affecting slabcache operations. We will only
4645 * get here for aliasable slabs so we do not need to support
4646 * too many flags. The flags here must cover all flags that
4647 * are matched during merging to guarantee that the id is
4650 if (s
->flags
& SLAB_CACHE_DMA
)
4652 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4654 if (s
->flags
& SLAB_DEBUG_FREE
)
4656 if (!(s
->flags
& SLAB_NOTRACK
))
4660 p
+= sprintf(p
, "%07d", s
->size
);
4661 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4665 static int sysfs_slab_add(struct kmem_cache
*s
)
4671 if (slab_state
< SYSFS
)
4672 /* Defer until later */
4675 unmergeable
= slab_unmergeable(s
);
4678 * Slabcache can never be merged so we can use the name proper.
4679 * This is typically the case for debug situations. In that
4680 * case we can catch duplicate names easily.
4682 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4686 * Create a unique name for the slab as a target
4689 name
= create_unique_id(s
);
4692 s
->kobj
.kset
= slab_kset
;
4693 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4695 kobject_put(&s
->kobj
);
4699 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4701 kobject_del(&s
->kobj
);
4702 kobject_put(&s
->kobj
);
4705 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4707 /* Setup first alias */
4708 sysfs_slab_alias(s
, s
->name
);
4714 static void sysfs_slab_remove(struct kmem_cache
*s
)
4716 if (slab_state
< SYSFS
)
4718 * Sysfs has not been setup yet so no need to remove the
4723 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4724 kobject_del(&s
->kobj
);
4725 kobject_put(&s
->kobj
);
4729 * Need to buffer aliases during bootup until sysfs becomes
4730 * available lest we lose that information.
4732 struct saved_alias
{
4733 struct kmem_cache
*s
;
4735 struct saved_alias
*next
;
4738 static struct saved_alias
*alias_list
;
4740 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4742 struct saved_alias
*al
;
4744 if (slab_state
== SYSFS
) {
4746 * If we have a leftover link then remove it.
4748 sysfs_remove_link(&slab_kset
->kobj
, name
);
4749 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4752 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4758 al
->next
= alias_list
;
4763 static int __init
slab_sysfs_init(void)
4765 struct kmem_cache
*s
;
4768 down_write(&slub_lock
);
4770 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4772 up_write(&slub_lock
);
4773 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4779 list_for_each_entry(s
, &slab_caches
, list
) {
4780 err
= sysfs_slab_add(s
);
4782 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4783 " to sysfs\n", s
->name
);
4786 while (alias_list
) {
4787 struct saved_alias
*al
= alias_list
;
4789 alias_list
= alias_list
->next
;
4790 err
= sysfs_slab_alias(al
->s
, al
->name
);
4792 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4793 " %s to sysfs\n", s
->name
);
4797 up_write(&slub_lock
);
4802 __initcall(slab_sysfs_init
);
4803 #endif /* CONFIG_SYSFS */
4806 * The /proc/slabinfo ABI
4808 #ifdef CONFIG_SLABINFO
4809 static void print_slabinfo_header(struct seq_file
*m
)
4811 seq_puts(m
, "slabinfo - version: 2.1\n");
4812 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4813 "<objperslab> <pagesperslab>");
4814 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4815 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4819 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4823 down_read(&slub_lock
);
4825 print_slabinfo_header(m
);
4827 return seq_list_start(&slab_caches
, *pos
);
4830 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4832 return seq_list_next(p
, &slab_caches
, pos
);
4835 static void s_stop(struct seq_file
*m
, void *p
)
4837 up_read(&slub_lock
);
4840 static int s_show(struct seq_file
*m
, void *p
)
4842 unsigned long nr_partials
= 0;
4843 unsigned long nr_slabs
= 0;
4844 unsigned long nr_inuse
= 0;
4845 unsigned long nr_objs
= 0;
4846 unsigned long nr_free
= 0;
4847 struct kmem_cache
*s
;
4850 s
= list_entry(p
, struct kmem_cache
, list
);
4852 for_each_online_node(node
) {
4853 struct kmem_cache_node
*n
= get_node(s
, node
);
4858 nr_partials
+= n
->nr_partial
;
4859 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4860 nr_objs
+= atomic_long_read(&n
->total_objects
);
4861 nr_free
+= count_partial(n
, count_free
);
4864 nr_inuse
= nr_objs
- nr_free
;
4866 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4867 nr_objs
, s
->size
, oo_objects(s
->oo
),
4868 (1 << oo_order(s
->oo
)));
4869 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4870 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4876 static const struct seq_operations slabinfo_op
= {
4883 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4885 return seq_open(file
, &slabinfo_op
);
4888 static const struct file_operations proc_slabinfo_operations
= {
4889 .open
= slabinfo_open
,
4891 .llseek
= seq_lseek
,
4892 .release
= seq_release
,
4895 static int __init
slab_proc_init(void)
4897 proc_create("slabinfo", S_IRUGO
, NULL
, &proc_slabinfo_operations
);
4900 module_init(slab_proc_init
);
4901 #endif /* CONFIG_SLABINFO */