packet: Add fanout support.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / pxa168_eth.c
blobc1bb05be7a7ce189f0a5dd0ecc8d64585c1516f2
1 /*
2 * PXA168 ethernet driver.
3 * Most of the code is derived from mv643xx ethernet driver.
5 * Copyright (C) 2010 Marvell International Ltd.
6 * Sachin Sanap <ssanap@marvell.com>
7 * Zhangfei Gao <zgao6@marvell.com>
8 * Philip Rakity <prakity@marvell.com>
9 * Mark Brown <markb@marvell.com>
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version 2
14 * of the License, or (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 #include <linux/init.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/in.h>
29 #include <linux/ip.h>
30 #include <linux/tcp.h>
31 #include <linux/udp.h>
32 #include <linux/etherdevice.h>
33 #include <linux/bitops.h>
34 #include <linux/delay.h>
35 #include <linux/ethtool.h>
36 #include <linux/platform_device.h>
37 #include <linux/module.h>
38 #include <linux/kernel.h>
39 #include <linux/workqueue.h>
40 #include <linux/clk.h>
41 #include <linux/phy.h>
42 #include <linux/io.h>
43 #include <linux/types.h>
44 #include <asm/pgtable.h>
45 #include <asm/system.h>
46 #include <asm/cacheflush.h>
47 #include <linux/pxa168_eth.h>
49 #define DRIVER_NAME "pxa168-eth"
50 #define DRIVER_VERSION "0.3"
53 * Registers
56 #define PHY_ADDRESS 0x0000
57 #define SMI 0x0010
58 #define PORT_CONFIG 0x0400
59 #define PORT_CONFIG_EXT 0x0408
60 #define PORT_COMMAND 0x0410
61 #define PORT_STATUS 0x0418
62 #define HTPR 0x0428
63 #define SDMA_CONFIG 0x0440
64 #define SDMA_CMD 0x0448
65 #define INT_CAUSE 0x0450
66 #define INT_W_CLEAR 0x0454
67 #define INT_MASK 0x0458
68 #define ETH_F_RX_DESC_0 0x0480
69 #define ETH_C_RX_DESC_0 0x04A0
70 #define ETH_C_TX_DESC_1 0x04E4
72 /* smi register */
73 #define SMI_BUSY (1 << 28) /* 0 - Write, 1 - Read */
74 #define SMI_R_VALID (1 << 27) /* 0 - Write, 1 - Read */
75 #define SMI_OP_W (0 << 26) /* Write operation */
76 #define SMI_OP_R (1 << 26) /* Read operation */
78 #define PHY_WAIT_ITERATIONS 10
80 #define PXA168_ETH_PHY_ADDR_DEFAULT 0
81 /* RX & TX descriptor command */
82 #define BUF_OWNED_BY_DMA (1 << 31)
84 /* RX descriptor status */
85 #define RX_EN_INT (1 << 23)
86 #define RX_FIRST_DESC (1 << 17)
87 #define RX_LAST_DESC (1 << 16)
88 #define RX_ERROR (1 << 15)
90 /* TX descriptor command */
91 #define TX_EN_INT (1 << 23)
92 #define TX_GEN_CRC (1 << 22)
93 #define TX_ZERO_PADDING (1 << 18)
94 #define TX_FIRST_DESC (1 << 17)
95 #define TX_LAST_DESC (1 << 16)
96 #define TX_ERROR (1 << 15)
98 /* SDMA_CMD */
99 #define SDMA_CMD_AT (1 << 31)
100 #define SDMA_CMD_TXDL (1 << 24)
101 #define SDMA_CMD_TXDH (1 << 23)
102 #define SDMA_CMD_AR (1 << 15)
103 #define SDMA_CMD_ERD (1 << 7)
105 /* Bit definitions of the Port Config Reg */
106 #define PCR_HS (1 << 12)
107 #define PCR_EN (1 << 7)
108 #define PCR_PM (1 << 0)
110 /* Bit definitions of the Port Config Extend Reg */
111 #define PCXR_2BSM (1 << 28)
112 #define PCXR_DSCP_EN (1 << 21)
113 #define PCXR_MFL_1518 (0 << 14)
114 #define PCXR_MFL_1536 (1 << 14)
115 #define PCXR_MFL_2048 (2 << 14)
116 #define PCXR_MFL_64K (3 << 14)
117 #define PCXR_FLP (1 << 11)
118 #define PCXR_PRIO_TX_OFF 3
119 #define PCXR_TX_HIGH_PRI (7 << PCXR_PRIO_TX_OFF)
121 /* Bit definitions of the SDMA Config Reg */
122 #define SDCR_BSZ_OFF 12
123 #define SDCR_BSZ8 (3 << SDCR_BSZ_OFF)
124 #define SDCR_BSZ4 (2 << SDCR_BSZ_OFF)
125 #define SDCR_BSZ2 (1 << SDCR_BSZ_OFF)
126 #define SDCR_BSZ1 (0 << SDCR_BSZ_OFF)
127 #define SDCR_BLMR (1 << 6)
128 #define SDCR_BLMT (1 << 7)
129 #define SDCR_RIFB (1 << 9)
130 #define SDCR_RC_OFF 2
131 #define SDCR_RC_MAX_RETRANS (0xf << SDCR_RC_OFF)
134 * Bit definitions of the Interrupt Cause Reg
135 * and Interrupt MASK Reg is the same
137 #define ICR_RXBUF (1 << 0)
138 #define ICR_TXBUF_H (1 << 2)
139 #define ICR_TXBUF_L (1 << 3)
140 #define ICR_TXEND_H (1 << 6)
141 #define ICR_TXEND_L (1 << 7)
142 #define ICR_RXERR (1 << 8)
143 #define ICR_TXERR_H (1 << 10)
144 #define ICR_TXERR_L (1 << 11)
145 #define ICR_TX_UDR (1 << 13)
146 #define ICR_MII_CH (1 << 28)
148 #define ALL_INTS (ICR_TXBUF_H | ICR_TXBUF_L | ICR_TX_UDR |\
149 ICR_TXERR_H | ICR_TXERR_L |\
150 ICR_TXEND_H | ICR_TXEND_L |\
151 ICR_RXBUF | ICR_RXERR | ICR_MII_CH)
153 #define ETH_HW_IP_ALIGN 2 /* hw aligns IP header */
155 #define NUM_RX_DESCS 64
156 #define NUM_TX_DESCS 64
158 #define HASH_ADD 0
159 #define HASH_DELETE 1
160 #define HASH_ADDR_TABLE_SIZE 0x4000 /* 16K (1/2K address - PCR_HS == 1) */
161 #define HOP_NUMBER 12
163 /* Bit definitions for Port status */
164 #define PORT_SPEED_100 (1 << 0)
165 #define FULL_DUPLEX (1 << 1)
166 #define FLOW_CONTROL_ENABLED (1 << 2)
167 #define LINK_UP (1 << 3)
169 /* Bit definitions for work to be done */
170 #define WORK_LINK (1 << 0)
171 #define WORK_TX_DONE (1 << 1)
174 * Misc definitions.
176 #define SKB_DMA_REALIGN ((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
178 struct rx_desc {
179 u32 cmd_sts; /* Descriptor command status */
180 u16 byte_cnt; /* Descriptor buffer byte count */
181 u16 buf_size; /* Buffer size */
182 u32 buf_ptr; /* Descriptor buffer pointer */
183 u32 next_desc_ptr; /* Next descriptor pointer */
186 struct tx_desc {
187 u32 cmd_sts; /* Command/status field */
188 u16 reserved;
189 u16 byte_cnt; /* buffer byte count */
190 u32 buf_ptr; /* pointer to buffer for this descriptor */
191 u32 next_desc_ptr; /* Pointer to next descriptor */
194 struct pxa168_eth_private {
195 int port_num; /* User Ethernet port number */
197 int rx_resource_err; /* Rx ring resource error flag */
199 /* Next available and first returning Rx resource */
200 int rx_curr_desc_q, rx_used_desc_q;
202 /* Next available and first returning Tx resource */
203 int tx_curr_desc_q, tx_used_desc_q;
205 struct rx_desc *p_rx_desc_area;
206 dma_addr_t rx_desc_dma;
207 int rx_desc_area_size;
208 struct sk_buff **rx_skb;
210 struct tx_desc *p_tx_desc_area;
211 dma_addr_t tx_desc_dma;
212 int tx_desc_area_size;
213 struct sk_buff **tx_skb;
215 struct work_struct tx_timeout_task;
217 struct net_device *dev;
218 struct napi_struct napi;
219 u8 work_todo;
220 int skb_size;
222 struct net_device_stats stats;
223 /* Size of Tx Ring per queue */
224 int tx_ring_size;
225 /* Number of tx descriptors in use */
226 int tx_desc_count;
227 /* Size of Rx Ring per queue */
228 int rx_ring_size;
229 /* Number of rx descriptors in use */
230 int rx_desc_count;
233 * Used in case RX Ring is empty, which can occur when
234 * system does not have resources (skb's)
236 struct timer_list timeout;
237 struct mii_bus *smi_bus;
238 struct phy_device *phy;
240 /* clock */
241 struct clk *clk;
242 struct pxa168_eth_platform_data *pd;
244 * Ethernet controller base address.
246 void __iomem *base;
248 /* Pointer to the hardware address filter table */
249 void *htpr;
250 dma_addr_t htpr_dma;
253 struct addr_table_entry {
254 __le32 lo;
255 __le32 hi;
258 /* Bit fields of a Hash Table Entry */
259 enum hash_table_entry {
260 HASH_ENTRY_VALID = 1,
261 SKIP = 2,
262 HASH_ENTRY_RECEIVE_DISCARD = 4,
263 HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
266 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd);
267 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd);
268 static int pxa168_init_hw(struct pxa168_eth_private *pep);
269 static void eth_port_reset(struct net_device *dev);
270 static void eth_port_start(struct net_device *dev);
271 static int pxa168_eth_open(struct net_device *dev);
272 static int pxa168_eth_stop(struct net_device *dev);
273 static int ethernet_phy_setup(struct net_device *dev);
275 static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
277 return readl(pep->base + offset);
280 static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
282 writel(data, pep->base + offset);
285 static void abort_dma(struct pxa168_eth_private *pep)
287 int delay;
288 int max_retries = 40;
290 do {
291 wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
292 udelay(100);
294 delay = 10;
295 while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
296 && delay-- > 0) {
297 udelay(10);
299 } while (max_retries-- > 0 && delay <= 0);
301 if (max_retries <= 0)
302 printk(KERN_ERR "%s : DMA Stuck\n", __func__);
305 static int ethernet_phy_get(struct pxa168_eth_private *pep)
307 unsigned int reg_data;
309 reg_data = rdl(pep, PHY_ADDRESS);
311 return (reg_data >> (5 * pep->port_num)) & 0x1f;
314 static void ethernet_phy_set_addr(struct pxa168_eth_private *pep, int phy_addr)
316 u32 reg_data;
317 int addr_shift = 5 * pep->port_num;
319 reg_data = rdl(pep, PHY_ADDRESS);
320 reg_data &= ~(0x1f << addr_shift);
321 reg_data |= (phy_addr & 0x1f) << addr_shift;
322 wrl(pep, PHY_ADDRESS, reg_data);
325 static void ethernet_phy_reset(struct pxa168_eth_private *pep)
327 int data;
329 data = phy_read(pep->phy, MII_BMCR);
330 if (data < 0)
331 return;
333 data |= BMCR_RESET;
334 if (phy_write(pep->phy, MII_BMCR, data) < 0)
335 return;
337 do {
338 data = phy_read(pep->phy, MII_BMCR);
339 } while (data >= 0 && data & BMCR_RESET);
342 static void rxq_refill(struct net_device *dev)
344 struct pxa168_eth_private *pep = netdev_priv(dev);
345 struct sk_buff *skb;
346 struct rx_desc *p_used_rx_desc;
347 int used_rx_desc;
349 while (pep->rx_desc_count < pep->rx_ring_size) {
350 int size;
352 skb = dev_alloc_skb(pep->skb_size);
353 if (!skb)
354 break;
355 if (SKB_DMA_REALIGN)
356 skb_reserve(skb, SKB_DMA_REALIGN);
357 pep->rx_desc_count++;
358 /* Get 'used' Rx descriptor */
359 used_rx_desc = pep->rx_used_desc_q;
360 p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
361 size = skb->end - skb->data;
362 p_used_rx_desc->buf_ptr = dma_map_single(NULL,
363 skb->data,
364 size,
365 DMA_FROM_DEVICE);
366 p_used_rx_desc->buf_size = size;
367 pep->rx_skb[used_rx_desc] = skb;
369 /* Return the descriptor to DMA ownership */
370 wmb();
371 p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
372 wmb();
374 /* Move the used descriptor pointer to the next descriptor */
375 pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
377 /* Any Rx return cancels the Rx resource error status */
378 pep->rx_resource_err = 0;
380 skb_reserve(skb, ETH_HW_IP_ALIGN);
384 * If RX ring is empty of SKB, set a timer to try allocating
385 * again at a later time.
387 if (pep->rx_desc_count == 0) {
388 pep->timeout.expires = jiffies + (HZ / 10);
389 add_timer(&pep->timeout);
393 static inline void rxq_refill_timer_wrapper(unsigned long data)
395 struct pxa168_eth_private *pep = (void *)data;
396 napi_schedule(&pep->napi);
399 static inline u8 flip_8_bits(u8 x)
401 return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
402 | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
403 | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
404 | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
407 static void nibble_swap_every_byte(unsigned char *mac_addr)
409 int i;
410 for (i = 0; i < ETH_ALEN; i++) {
411 mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
412 ((mac_addr[i] & 0xf0) >> 4);
416 static void inverse_every_nibble(unsigned char *mac_addr)
418 int i;
419 for (i = 0; i < ETH_ALEN; i++)
420 mac_addr[i] = flip_8_bits(mac_addr[i]);
424 * ----------------------------------------------------------------------------
425 * This function will calculate the hash function of the address.
426 * Inputs
427 * mac_addr_orig - MAC address.
428 * Outputs
429 * return the calculated entry.
431 static u32 hash_function(unsigned char *mac_addr_orig)
433 u32 hash_result;
434 u32 addr0;
435 u32 addr1;
436 u32 addr2;
437 u32 addr3;
438 unsigned char mac_addr[ETH_ALEN];
440 /* Make a copy of MAC address since we are going to performe bit
441 * operations on it
443 memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
445 nibble_swap_every_byte(mac_addr);
446 inverse_every_nibble(mac_addr);
448 addr0 = (mac_addr[5] >> 2) & 0x3f;
449 addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
450 addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
451 addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
453 hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
454 hash_result = hash_result & 0x07ff;
455 return hash_result;
459 * ----------------------------------------------------------------------------
460 * This function will add/del an entry to the address table.
461 * Inputs
462 * pep - ETHERNET .
463 * mac_addr - MAC address.
464 * skip - if 1, skip this address.Used in case of deleting an entry which is a
465 * part of chain in the hash table.We can't just delete the entry since
466 * that will break the chain.We need to defragment the tables time to
467 * time.
468 * rd - 0 Discard packet upon match.
469 * - 1 Receive packet upon match.
470 * Outputs
471 * address table entry is added/deleted.
472 * 0 if success.
473 * -ENOSPC if table full
475 static int add_del_hash_entry(struct pxa168_eth_private *pep,
476 unsigned char *mac_addr,
477 u32 rd, u32 skip, int del)
479 struct addr_table_entry *entry, *start;
480 u32 new_high;
481 u32 new_low;
482 u32 i;
484 new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
485 | (((mac_addr[1] >> 0) & 0xf) << 11)
486 | (((mac_addr[0] >> 4) & 0xf) << 7)
487 | (((mac_addr[0] >> 0) & 0xf) << 3)
488 | (((mac_addr[3] >> 4) & 0x1) << 31)
489 | (((mac_addr[3] >> 0) & 0xf) << 27)
490 | (((mac_addr[2] >> 4) & 0xf) << 23)
491 | (((mac_addr[2] >> 0) & 0xf) << 19)
492 | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
493 | HASH_ENTRY_VALID;
495 new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
496 | (((mac_addr[5] >> 0) & 0xf) << 11)
497 | (((mac_addr[4] >> 4) & 0xf) << 7)
498 | (((mac_addr[4] >> 0) & 0xf) << 3)
499 | (((mac_addr[3] >> 5) & 0x7) << 0);
502 * Pick the appropriate table, start scanning for free/reusable
503 * entries at the index obtained by hashing the specified MAC address
505 start = pep->htpr;
506 entry = start + hash_function(mac_addr);
507 for (i = 0; i < HOP_NUMBER; i++) {
508 if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
509 break;
510 } else {
511 /* if same address put in same position */
512 if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
513 (new_low & 0xfffffff8)) &&
514 (le32_to_cpu(entry->hi) == new_high)) {
515 break;
518 if (entry == start + 0x7ff)
519 entry = start;
520 else
521 entry++;
524 if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
525 (le32_to_cpu(entry->hi) != new_high) && del)
526 return 0;
528 if (i == HOP_NUMBER) {
529 if (!del) {
530 printk(KERN_INFO "%s: table section is full, need to "
531 "move to 16kB implementation?\n",
532 __FILE__);
533 return -ENOSPC;
534 } else
535 return 0;
539 * Update the selected entry
541 if (del) {
542 entry->hi = 0;
543 entry->lo = 0;
544 } else {
545 entry->hi = cpu_to_le32(new_high);
546 entry->lo = cpu_to_le32(new_low);
549 return 0;
553 * ----------------------------------------------------------------------------
554 * Create an addressTable entry from MAC address info
555 * found in the specifed net_device struct
557 * Input : pointer to ethernet interface network device structure
558 * Output : N/A
560 static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
561 unsigned char *oaddr,
562 unsigned char *addr)
564 /* Delete old entry */
565 if (oaddr)
566 add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
567 /* Add new entry */
568 add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
571 static int init_hash_table(struct pxa168_eth_private *pep)
574 * Hardware expects CPU to build a hash table based on a predefined
575 * hash function and populate it based on hardware address. The
576 * location of the hash table is identified by 32-bit pointer stored
577 * in HTPR internal register. Two possible sizes exists for the hash
578 * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
579 * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
580 * 1/2kB.
582 /* TODO: Add support for 8kB hash table and alternative hash
583 * function.Driver can dynamically switch to them if the 1/2kB hash
584 * table is full.
586 if (pep->htpr == NULL) {
587 pep->htpr = dma_alloc_coherent(pep->dev->dev.parent,
588 HASH_ADDR_TABLE_SIZE,
589 &pep->htpr_dma, GFP_KERNEL);
590 if (pep->htpr == NULL)
591 return -ENOMEM;
593 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
594 wrl(pep, HTPR, pep->htpr_dma);
595 return 0;
598 static void pxa168_eth_set_rx_mode(struct net_device *dev)
600 struct pxa168_eth_private *pep = netdev_priv(dev);
601 struct netdev_hw_addr *ha;
602 u32 val;
604 val = rdl(pep, PORT_CONFIG);
605 if (dev->flags & IFF_PROMISC)
606 val |= PCR_PM;
607 else
608 val &= ~PCR_PM;
609 wrl(pep, PORT_CONFIG, val);
612 * Remove the old list of MAC address and add dev->addr
613 * and multicast address.
615 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
616 update_hash_table_mac_address(pep, NULL, dev->dev_addr);
618 netdev_for_each_mc_addr(ha, dev)
619 update_hash_table_mac_address(pep, NULL, ha->addr);
622 static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
624 struct sockaddr *sa = addr;
625 struct pxa168_eth_private *pep = netdev_priv(dev);
626 unsigned char oldMac[ETH_ALEN];
628 if (!is_valid_ether_addr(sa->sa_data))
629 return -EINVAL;
630 memcpy(oldMac, dev->dev_addr, ETH_ALEN);
631 memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
632 netif_addr_lock_bh(dev);
633 update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
634 netif_addr_unlock_bh(dev);
635 return 0;
638 static void eth_port_start(struct net_device *dev)
640 unsigned int val = 0;
641 struct pxa168_eth_private *pep = netdev_priv(dev);
642 int tx_curr_desc, rx_curr_desc;
644 /* Perform PHY reset, if there is a PHY. */
645 if (pep->phy != NULL) {
646 struct ethtool_cmd cmd;
648 pxa168_get_settings(pep->dev, &cmd);
649 ethernet_phy_reset(pep);
650 pxa168_set_settings(pep->dev, &cmd);
653 /* Assignment of Tx CTRP of given queue */
654 tx_curr_desc = pep->tx_curr_desc_q;
655 wrl(pep, ETH_C_TX_DESC_1,
656 (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
658 /* Assignment of Rx CRDP of given queue */
659 rx_curr_desc = pep->rx_curr_desc_q;
660 wrl(pep, ETH_C_RX_DESC_0,
661 (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
663 wrl(pep, ETH_F_RX_DESC_0,
664 (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
666 /* Clear all interrupts */
667 wrl(pep, INT_CAUSE, 0);
669 /* Enable all interrupts for receive, transmit and error. */
670 wrl(pep, INT_MASK, ALL_INTS);
672 val = rdl(pep, PORT_CONFIG);
673 val |= PCR_EN;
674 wrl(pep, PORT_CONFIG, val);
676 /* Start RX DMA engine */
677 val = rdl(pep, SDMA_CMD);
678 val |= SDMA_CMD_ERD;
679 wrl(pep, SDMA_CMD, val);
682 static void eth_port_reset(struct net_device *dev)
684 struct pxa168_eth_private *pep = netdev_priv(dev);
685 unsigned int val = 0;
687 /* Stop all interrupts for receive, transmit and error. */
688 wrl(pep, INT_MASK, 0);
690 /* Clear all interrupts */
691 wrl(pep, INT_CAUSE, 0);
693 /* Stop RX DMA */
694 val = rdl(pep, SDMA_CMD);
695 val &= ~SDMA_CMD_ERD; /* abort dma command */
697 /* Abort any transmit and receive operations and put DMA
698 * in idle state.
700 abort_dma(pep);
702 /* Disable port */
703 val = rdl(pep, PORT_CONFIG);
704 val &= ~PCR_EN;
705 wrl(pep, PORT_CONFIG, val);
709 * txq_reclaim - Free the tx desc data for completed descriptors
710 * If force is non-zero, frees uncompleted descriptors as well
712 static int txq_reclaim(struct net_device *dev, int force)
714 struct pxa168_eth_private *pep = netdev_priv(dev);
715 struct tx_desc *desc;
716 u32 cmd_sts;
717 struct sk_buff *skb;
718 int tx_index;
719 dma_addr_t addr;
720 int count;
721 int released = 0;
723 netif_tx_lock(dev);
725 pep->work_todo &= ~WORK_TX_DONE;
726 while (pep->tx_desc_count > 0) {
727 tx_index = pep->tx_used_desc_q;
728 desc = &pep->p_tx_desc_area[tx_index];
729 cmd_sts = desc->cmd_sts;
730 if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
731 if (released > 0) {
732 goto txq_reclaim_end;
733 } else {
734 released = -1;
735 goto txq_reclaim_end;
738 pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
739 pep->tx_desc_count--;
740 addr = desc->buf_ptr;
741 count = desc->byte_cnt;
742 skb = pep->tx_skb[tx_index];
743 if (skb)
744 pep->tx_skb[tx_index] = NULL;
746 if (cmd_sts & TX_ERROR) {
747 if (net_ratelimit())
748 printk(KERN_ERR "%s: Error in TX\n", dev->name);
749 dev->stats.tx_errors++;
751 dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
752 if (skb)
753 dev_kfree_skb_irq(skb);
754 released++;
756 txq_reclaim_end:
757 netif_tx_unlock(dev);
758 return released;
761 static void pxa168_eth_tx_timeout(struct net_device *dev)
763 struct pxa168_eth_private *pep = netdev_priv(dev);
765 printk(KERN_INFO "%s: TX timeout desc_count %d\n",
766 dev->name, pep->tx_desc_count);
768 schedule_work(&pep->tx_timeout_task);
771 static void pxa168_eth_tx_timeout_task(struct work_struct *work)
773 struct pxa168_eth_private *pep = container_of(work,
774 struct pxa168_eth_private,
775 tx_timeout_task);
776 struct net_device *dev = pep->dev;
777 pxa168_eth_stop(dev);
778 pxa168_eth_open(dev);
781 static int rxq_process(struct net_device *dev, int budget)
783 struct pxa168_eth_private *pep = netdev_priv(dev);
784 struct net_device_stats *stats = &dev->stats;
785 unsigned int received_packets = 0;
786 struct sk_buff *skb;
788 while (budget-- > 0) {
789 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
790 struct rx_desc *rx_desc;
791 unsigned int cmd_sts;
793 /* Do not process Rx ring in case of Rx ring resource error */
794 if (pep->rx_resource_err)
795 break;
796 rx_curr_desc = pep->rx_curr_desc_q;
797 rx_used_desc = pep->rx_used_desc_q;
798 rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
799 cmd_sts = rx_desc->cmd_sts;
800 rmb();
801 if (cmd_sts & (BUF_OWNED_BY_DMA))
802 break;
803 skb = pep->rx_skb[rx_curr_desc];
804 pep->rx_skb[rx_curr_desc] = NULL;
806 rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
807 pep->rx_curr_desc_q = rx_next_curr_desc;
809 /* Rx descriptors exhausted. */
810 /* Set the Rx ring resource error flag */
811 if (rx_next_curr_desc == rx_used_desc)
812 pep->rx_resource_err = 1;
813 pep->rx_desc_count--;
814 dma_unmap_single(NULL, rx_desc->buf_ptr,
815 rx_desc->buf_size,
816 DMA_FROM_DEVICE);
817 received_packets++;
819 * Update statistics.
820 * Note byte count includes 4 byte CRC count
822 stats->rx_packets++;
823 stats->rx_bytes += rx_desc->byte_cnt;
825 * In case received a packet without first / last bits on OR
826 * the error summary bit is on, the packets needs to be droped.
828 if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
829 (RX_FIRST_DESC | RX_LAST_DESC))
830 || (cmd_sts & RX_ERROR)) {
832 stats->rx_dropped++;
833 if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
834 (RX_FIRST_DESC | RX_LAST_DESC)) {
835 if (net_ratelimit())
836 printk(KERN_ERR
837 "%s: Rx pkt on multiple desc\n",
838 dev->name);
840 if (cmd_sts & RX_ERROR)
841 stats->rx_errors++;
842 dev_kfree_skb_irq(skb);
843 } else {
845 * The -4 is for the CRC in the trailer of the
846 * received packet
848 skb_put(skb, rx_desc->byte_cnt - 4);
849 skb->protocol = eth_type_trans(skb, dev);
850 netif_receive_skb(skb);
853 /* Fill RX ring with skb's */
854 rxq_refill(dev);
855 return received_packets;
858 static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
859 struct net_device *dev)
861 u32 icr;
862 int ret = 0;
864 icr = rdl(pep, INT_CAUSE);
865 if (icr == 0)
866 return IRQ_NONE;
868 wrl(pep, INT_CAUSE, ~icr);
869 if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
870 pep->work_todo |= WORK_TX_DONE;
871 ret = 1;
873 if (icr & ICR_RXBUF)
874 ret = 1;
875 if (icr & ICR_MII_CH) {
876 pep->work_todo |= WORK_LINK;
877 ret = 1;
879 return ret;
882 static void handle_link_event(struct pxa168_eth_private *pep)
884 struct net_device *dev = pep->dev;
885 u32 port_status;
886 int speed;
887 int duplex;
888 int fc;
890 port_status = rdl(pep, PORT_STATUS);
891 if (!(port_status & LINK_UP)) {
892 if (netif_carrier_ok(dev)) {
893 printk(KERN_INFO "%s: link down\n", dev->name);
894 netif_carrier_off(dev);
895 txq_reclaim(dev, 1);
897 return;
899 if (port_status & PORT_SPEED_100)
900 speed = 100;
901 else
902 speed = 10;
904 duplex = (port_status & FULL_DUPLEX) ? 1 : 0;
905 fc = (port_status & FLOW_CONTROL_ENABLED) ? 1 : 0;
906 printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, "
907 "flow control %sabled\n", dev->name,
908 speed, duplex ? "full" : "half", fc ? "en" : "dis");
909 if (!netif_carrier_ok(dev))
910 netif_carrier_on(dev);
913 static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
915 struct net_device *dev = (struct net_device *)dev_id;
916 struct pxa168_eth_private *pep = netdev_priv(dev);
918 if (unlikely(!pxa168_eth_collect_events(pep, dev)))
919 return IRQ_NONE;
920 /* Disable interrupts */
921 wrl(pep, INT_MASK, 0);
922 napi_schedule(&pep->napi);
923 return IRQ_HANDLED;
926 static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
928 int skb_size;
931 * Reserve 2+14 bytes for an ethernet header (the hardware
932 * automatically prepends 2 bytes of dummy data to each
933 * received packet), 16 bytes for up to four VLAN tags, and
934 * 4 bytes for the trailing FCS -- 36 bytes total.
936 skb_size = pep->dev->mtu + 36;
939 * Make sure that the skb size is a multiple of 8 bytes, as
940 * the lower three bits of the receive descriptor's buffer
941 * size field are ignored by the hardware.
943 pep->skb_size = (skb_size + 7) & ~7;
946 * If NET_SKB_PAD is smaller than a cache line,
947 * netdev_alloc_skb() will cause skb->data to be misaligned
948 * to a cache line boundary. If this is the case, include
949 * some extra space to allow re-aligning the data area.
951 pep->skb_size += SKB_DMA_REALIGN;
955 static int set_port_config_ext(struct pxa168_eth_private *pep)
957 int skb_size;
959 pxa168_eth_recalc_skb_size(pep);
960 if (pep->skb_size <= 1518)
961 skb_size = PCXR_MFL_1518;
962 else if (pep->skb_size <= 1536)
963 skb_size = PCXR_MFL_1536;
964 else if (pep->skb_size <= 2048)
965 skb_size = PCXR_MFL_2048;
966 else
967 skb_size = PCXR_MFL_64K;
969 /* Extended Port Configuration */
970 wrl(pep,
971 PORT_CONFIG_EXT, PCXR_2BSM | /* Two byte prefix aligns IP hdr */
972 PCXR_DSCP_EN | /* Enable DSCP in IP */
973 skb_size | PCXR_FLP | /* do not force link pass */
974 PCXR_TX_HIGH_PRI); /* Transmit - high priority queue */
976 return 0;
979 static int pxa168_init_hw(struct pxa168_eth_private *pep)
981 int err = 0;
983 /* Disable interrupts */
984 wrl(pep, INT_MASK, 0);
985 wrl(pep, INT_CAUSE, 0);
986 /* Write to ICR to clear interrupts. */
987 wrl(pep, INT_W_CLEAR, 0);
988 /* Abort any transmit and receive operations and put DMA
989 * in idle state.
991 abort_dma(pep);
992 /* Initialize address hash table */
993 err = init_hash_table(pep);
994 if (err)
995 return err;
996 /* SDMA configuration */
997 wrl(pep, SDMA_CONFIG, SDCR_BSZ8 | /* Burst size = 32 bytes */
998 SDCR_RIFB | /* Rx interrupt on frame */
999 SDCR_BLMT | /* Little endian transmit */
1000 SDCR_BLMR | /* Little endian receive */
1001 SDCR_RC_MAX_RETRANS); /* Max retransmit count */
1002 /* Port Configuration */
1003 wrl(pep, PORT_CONFIG, PCR_HS); /* Hash size is 1/2kb */
1004 set_port_config_ext(pep);
1006 return err;
1009 static int rxq_init(struct net_device *dev)
1011 struct pxa168_eth_private *pep = netdev_priv(dev);
1012 struct rx_desc *p_rx_desc;
1013 int size = 0, i = 0;
1014 int rx_desc_num = pep->rx_ring_size;
1016 /* Allocate RX skb rings */
1017 pep->rx_skb = kmalloc(sizeof(*pep->rx_skb) * pep->rx_ring_size,
1018 GFP_KERNEL);
1019 if (!pep->rx_skb) {
1020 printk(KERN_ERR "%s: Cannot alloc RX skb ring\n", dev->name);
1021 return -ENOMEM;
1023 /* Allocate RX ring */
1024 pep->rx_desc_count = 0;
1025 size = pep->rx_ring_size * sizeof(struct rx_desc);
1026 pep->rx_desc_area_size = size;
1027 pep->p_rx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
1028 &pep->rx_desc_dma, GFP_KERNEL);
1029 if (!pep->p_rx_desc_area) {
1030 printk(KERN_ERR "%s: Cannot alloc RX ring (size %d bytes)\n",
1031 dev->name, size);
1032 goto out;
1034 memset((void *)pep->p_rx_desc_area, 0, size);
1035 /* initialize the next_desc_ptr links in the Rx descriptors ring */
1036 p_rx_desc = (struct rx_desc *)pep->p_rx_desc_area;
1037 for (i = 0; i < rx_desc_num; i++) {
1038 p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
1039 ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
1041 /* Save Rx desc pointer to driver struct. */
1042 pep->rx_curr_desc_q = 0;
1043 pep->rx_used_desc_q = 0;
1044 pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
1045 return 0;
1046 out:
1047 kfree(pep->rx_skb);
1048 return -ENOMEM;
1051 static void rxq_deinit(struct net_device *dev)
1053 struct pxa168_eth_private *pep = netdev_priv(dev);
1054 int curr;
1056 /* Free preallocated skb's on RX rings */
1057 for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
1058 if (pep->rx_skb[curr]) {
1059 dev_kfree_skb(pep->rx_skb[curr]);
1060 pep->rx_desc_count--;
1063 if (pep->rx_desc_count)
1064 printk(KERN_ERR
1065 "Error in freeing Rx Ring. %d skb's still\n",
1066 pep->rx_desc_count);
1067 /* Free RX ring */
1068 if (pep->p_rx_desc_area)
1069 dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
1070 pep->p_rx_desc_area, pep->rx_desc_dma);
1071 kfree(pep->rx_skb);
1074 static int txq_init(struct net_device *dev)
1076 struct pxa168_eth_private *pep = netdev_priv(dev);
1077 struct tx_desc *p_tx_desc;
1078 int size = 0, i = 0;
1079 int tx_desc_num = pep->tx_ring_size;
1081 pep->tx_skb = kmalloc(sizeof(*pep->tx_skb) * pep->tx_ring_size,
1082 GFP_KERNEL);
1083 if (!pep->tx_skb) {
1084 printk(KERN_ERR "%s: Cannot alloc TX skb ring\n", dev->name);
1085 return -ENOMEM;
1087 /* Allocate TX ring */
1088 pep->tx_desc_count = 0;
1089 size = pep->tx_ring_size * sizeof(struct tx_desc);
1090 pep->tx_desc_area_size = size;
1091 pep->p_tx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
1092 &pep->tx_desc_dma, GFP_KERNEL);
1093 if (!pep->p_tx_desc_area) {
1094 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
1095 dev->name, size);
1096 goto out;
1098 memset((void *)pep->p_tx_desc_area, 0, pep->tx_desc_area_size);
1099 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
1100 p_tx_desc = (struct tx_desc *)pep->p_tx_desc_area;
1101 for (i = 0; i < tx_desc_num; i++) {
1102 p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
1103 ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
1105 pep->tx_curr_desc_q = 0;
1106 pep->tx_used_desc_q = 0;
1107 pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
1108 return 0;
1109 out:
1110 kfree(pep->tx_skb);
1111 return -ENOMEM;
1114 static void txq_deinit(struct net_device *dev)
1116 struct pxa168_eth_private *pep = netdev_priv(dev);
1118 /* Free outstanding skb's on TX ring */
1119 txq_reclaim(dev, 1);
1120 BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
1121 /* Free TX ring */
1122 if (pep->p_tx_desc_area)
1123 dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
1124 pep->p_tx_desc_area, pep->tx_desc_dma);
1125 kfree(pep->tx_skb);
1128 static int pxa168_eth_open(struct net_device *dev)
1130 struct pxa168_eth_private *pep = netdev_priv(dev);
1131 int err;
1133 err = request_irq(dev->irq, pxa168_eth_int_handler,
1134 IRQF_DISABLED, dev->name, dev);
1135 if (err) {
1136 dev_printk(KERN_ERR, &dev->dev, "can't assign irq\n");
1137 return -EAGAIN;
1139 pep->rx_resource_err = 0;
1140 err = rxq_init(dev);
1141 if (err != 0)
1142 goto out_free_irq;
1143 err = txq_init(dev);
1144 if (err != 0)
1145 goto out_free_rx_skb;
1146 pep->rx_used_desc_q = 0;
1147 pep->rx_curr_desc_q = 0;
1149 /* Fill RX ring with skb's */
1150 rxq_refill(dev);
1151 pep->rx_used_desc_q = 0;
1152 pep->rx_curr_desc_q = 0;
1153 netif_carrier_off(dev);
1154 eth_port_start(dev);
1155 napi_enable(&pep->napi);
1156 return 0;
1157 out_free_rx_skb:
1158 rxq_deinit(dev);
1159 out_free_irq:
1160 free_irq(dev->irq, dev);
1161 return err;
1164 static int pxa168_eth_stop(struct net_device *dev)
1166 struct pxa168_eth_private *pep = netdev_priv(dev);
1167 eth_port_reset(dev);
1169 /* Disable interrupts */
1170 wrl(pep, INT_MASK, 0);
1171 wrl(pep, INT_CAUSE, 0);
1172 /* Write to ICR to clear interrupts. */
1173 wrl(pep, INT_W_CLEAR, 0);
1174 napi_disable(&pep->napi);
1175 del_timer_sync(&pep->timeout);
1176 netif_carrier_off(dev);
1177 free_irq(dev->irq, dev);
1178 rxq_deinit(dev);
1179 txq_deinit(dev);
1181 return 0;
1184 static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
1186 int retval;
1187 struct pxa168_eth_private *pep = netdev_priv(dev);
1189 if ((mtu > 9500) || (mtu < 68))
1190 return -EINVAL;
1192 dev->mtu = mtu;
1193 retval = set_port_config_ext(pep);
1195 if (!netif_running(dev))
1196 return 0;
1199 * Stop and then re-open the interface. This will allocate RX
1200 * skbs of the new MTU.
1201 * There is a possible danger that the open will not succeed,
1202 * due to memory being full.
1204 pxa168_eth_stop(dev);
1205 if (pxa168_eth_open(dev)) {
1206 dev_printk(KERN_ERR, &dev->dev,
1207 "fatal error on re-opening device after "
1208 "MTU change\n");
1211 return 0;
1214 static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
1216 int tx_desc_curr;
1218 tx_desc_curr = pep->tx_curr_desc_q;
1219 pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
1220 BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
1221 pep->tx_desc_count++;
1223 return tx_desc_curr;
1226 static int pxa168_rx_poll(struct napi_struct *napi, int budget)
1228 struct pxa168_eth_private *pep =
1229 container_of(napi, struct pxa168_eth_private, napi);
1230 struct net_device *dev = pep->dev;
1231 int work_done = 0;
1233 if (unlikely(pep->work_todo & WORK_LINK)) {
1234 pep->work_todo &= ~(WORK_LINK);
1235 handle_link_event(pep);
1238 * We call txq_reclaim every time since in NAPI interupts are disabled
1239 * and due to this we miss the TX_DONE interrupt,which is not updated in
1240 * interrupt status register.
1242 txq_reclaim(dev, 0);
1243 if (netif_queue_stopped(dev)
1244 && pep->tx_ring_size - pep->tx_desc_count > 1) {
1245 netif_wake_queue(dev);
1247 work_done = rxq_process(dev, budget);
1248 if (work_done < budget) {
1249 napi_complete(napi);
1250 wrl(pep, INT_MASK, ALL_INTS);
1253 return work_done;
1256 static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1258 struct pxa168_eth_private *pep = netdev_priv(dev);
1259 struct net_device_stats *stats = &dev->stats;
1260 struct tx_desc *desc;
1261 int tx_index;
1262 int length;
1264 tx_index = eth_alloc_tx_desc_index(pep);
1265 desc = &pep->p_tx_desc_area[tx_index];
1266 length = skb->len;
1267 pep->tx_skb[tx_index] = skb;
1268 desc->byte_cnt = length;
1269 desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1271 skb_tx_timestamp(skb);
1273 wmb();
1274 desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
1275 TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
1276 wmb();
1277 wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
1279 stats->tx_bytes += length;
1280 stats->tx_packets++;
1281 dev->trans_start = jiffies;
1282 if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
1283 /* We handled the current skb, but now we are out of space.*/
1284 netif_stop_queue(dev);
1287 return NETDEV_TX_OK;
1290 static int smi_wait_ready(struct pxa168_eth_private *pep)
1292 int i = 0;
1294 /* wait for the SMI register to become available */
1295 for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
1296 if (i == PHY_WAIT_ITERATIONS)
1297 return -ETIMEDOUT;
1298 msleep(10);
1301 return 0;
1304 static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
1306 struct pxa168_eth_private *pep = bus->priv;
1307 int i = 0;
1308 int val;
1310 if (smi_wait_ready(pep)) {
1311 printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
1312 return -ETIMEDOUT;
1314 wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
1315 /* now wait for the data to be valid */
1316 for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
1317 if (i == PHY_WAIT_ITERATIONS) {
1318 printk(KERN_WARNING
1319 "pxa168_eth: SMI bus read not valid\n");
1320 return -ENODEV;
1322 msleep(10);
1325 return val & 0xffff;
1328 static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
1329 u16 value)
1331 struct pxa168_eth_private *pep = bus->priv;
1333 if (smi_wait_ready(pep)) {
1334 printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
1335 return -ETIMEDOUT;
1338 wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
1339 SMI_OP_W | (value & 0xffff));
1341 if (smi_wait_ready(pep)) {
1342 printk(KERN_ERR "pxa168_eth: SMI bus busy timeout\n");
1343 return -ETIMEDOUT;
1346 return 0;
1349 static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr,
1350 int cmd)
1352 struct pxa168_eth_private *pep = netdev_priv(dev);
1353 if (pep->phy != NULL)
1354 return phy_mii_ioctl(pep->phy, ifr, cmd);
1356 return -EOPNOTSUPP;
1359 static struct phy_device *phy_scan(struct pxa168_eth_private *pep, int phy_addr)
1361 struct mii_bus *bus = pep->smi_bus;
1362 struct phy_device *phydev;
1363 int start;
1364 int num;
1365 int i;
1367 if (phy_addr == PXA168_ETH_PHY_ADDR_DEFAULT) {
1368 /* Scan entire range */
1369 start = ethernet_phy_get(pep);
1370 num = 32;
1371 } else {
1372 /* Use phy addr specific to platform */
1373 start = phy_addr & 0x1f;
1374 num = 1;
1376 phydev = NULL;
1377 for (i = 0; i < num; i++) {
1378 int addr = (start + i) & 0x1f;
1379 if (bus->phy_map[addr] == NULL)
1380 mdiobus_scan(bus, addr);
1382 if (phydev == NULL) {
1383 phydev = bus->phy_map[addr];
1384 if (phydev != NULL)
1385 ethernet_phy_set_addr(pep, addr);
1389 return phydev;
1392 static void phy_init(struct pxa168_eth_private *pep, int speed, int duplex)
1394 struct phy_device *phy = pep->phy;
1395 ethernet_phy_reset(pep);
1397 phy_attach(pep->dev, dev_name(&phy->dev), 0, PHY_INTERFACE_MODE_MII);
1399 if (speed == 0) {
1400 phy->autoneg = AUTONEG_ENABLE;
1401 phy->speed = 0;
1402 phy->duplex = 0;
1403 phy->supported &= PHY_BASIC_FEATURES;
1404 phy->advertising = phy->supported | ADVERTISED_Autoneg;
1405 } else {
1406 phy->autoneg = AUTONEG_DISABLE;
1407 phy->advertising = 0;
1408 phy->speed = speed;
1409 phy->duplex = duplex;
1411 phy_start_aneg(phy);
1414 static int ethernet_phy_setup(struct net_device *dev)
1416 struct pxa168_eth_private *pep = netdev_priv(dev);
1418 if (pep->pd->init)
1419 pep->pd->init();
1420 pep->phy = phy_scan(pep, pep->pd->phy_addr & 0x1f);
1421 if (pep->phy != NULL)
1422 phy_init(pep, pep->pd->speed, pep->pd->duplex);
1423 update_hash_table_mac_address(pep, NULL, dev->dev_addr);
1425 return 0;
1428 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1430 struct pxa168_eth_private *pep = netdev_priv(dev);
1431 int err;
1433 err = phy_read_status(pep->phy);
1434 if (err == 0)
1435 err = phy_ethtool_gset(pep->phy, cmd);
1437 return err;
1440 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1442 struct pxa168_eth_private *pep = netdev_priv(dev);
1444 return phy_ethtool_sset(pep->phy, cmd);
1447 static void pxa168_get_drvinfo(struct net_device *dev,
1448 struct ethtool_drvinfo *info)
1450 strncpy(info->driver, DRIVER_NAME, 32);
1451 strncpy(info->version, DRIVER_VERSION, 32);
1452 strncpy(info->fw_version, "N/A", 32);
1453 strncpy(info->bus_info, "N/A", 32);
1456 static const struct ethtool_ops pxa168_ethtool_ops = {
1457 .get_settings = pxa168_get_settings,
1458 .set_settings = pxa168_set_settings,
1459 .get_drvinfo = pxa168_get_drvinfo,
1460 .get_link = ethtool_op_get_link,
1463 static const struct net_device_ops pxa168_eth_netdev_ops = {
1464 .ndo_open = pxa168_eth_open,
1465 .ndo_stop = pxa168_eth_stop,
1466 .ndo_start_xmit = pxa168_eth_start_xmit,
1467 .ndo_set_rx_mode = pxa168_eth_set_rx_mode,
1468 .ndo_set_mac_address = pxa168_eth_set_mac_address,
1469 .ndo_validate_addr = eth_validate_addr,
1470 .ndo_do_ioctl = pxa168_eth_do_ioctl,
1471 .ndo_change_mtu = pxa168_eth_change_mtu,
1472 .ndo_tx_timeout = pxa168_eth_tx_timeout,
1475 static int pxa168_eth_probe(struct platform_device *pdev)
1477 struct pxa168_eth_private *pep = NULL;
1478 struct net_device *dev = NULL;
1479 struct resource *res;
1480 struct clk *clk;
1481 int err;
1483 printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
1485 clk = clk_get(&pdev->dev, "MFUCLK");
1486 if (IS_ERR(clk)) {
1487 printk(KERN_ERR "%s: Fast Ethernet failed to get clock\n",
1488 DRIVER_NAME);
1489 return -ENODEV;
1491 clk_enable(clk);
1493 dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
1494 if (!dev) {
1495 err = -ENOMEM;
1496 goto err_clk;
1499 platform_set_drvdata(pdev, dev);
1500 pep = netdev_priv(dev);
1501 pep->dev = dev;
1502 pep->clk = clk;
1503 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1504 if (res == NULL) {
1505 err = -ENODEV;
1506 goto err_netdev;
1508 pep->base = ioremap(res->start, res->end - res->start + 1);
1509 if (pep->base == NULL) {
1510 err = -ENOMEM;
1511 goto err_netdev;
1513 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1514 BUG_ON(!res);
1515 dev->irq = res->start;
1516 dev->netdev_ops = &pxa168_eth_netdev_ops;
1517 dev->watchdog_timeo = 2 * HZ;
1518 dev->base_addr = 0;
1519 SET_ETHTOOL_OPS(dev, &pxa168_ethtool_ops);
1521 INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
1523 printk(KERN_INFO "%s:Using random mac address\n", DRIVER_NAME);
1524 random_ether_addr(dev->dev_addr);
1526 pep->pd = pdev->dev.platform_data;
1527 pep->rx_ring_size = NUM_RX_DESCS;
1528 if (pep->pd->rx_queue_size)
1529 pep->rx_ring_size = pep->pd->rx_queue_size;
1531 pep->tx_ring_size = NUM_TX_DESCS;
1532 if (pep->pd->tx_queue_size)
1533 pep->tx_ring_size = pep->pd->tx_queue_size;
1535 pep->port_num = pep->pd->port_number;
1536 /* Hardware supports only 3 ports */
1537 BUG_ON(pep->port_num > 2);
1538 netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size);
1540 memset(&pep->timeout, 0, sizeof(struct timer_list));
1541 init_timer(&pep->timeout);
1542 pep->timeout.function = rxq_refill_timer_wrapper;
1543 pep->timeout.data = (unsigned long)pep;
1545 pep->smi_bus = mdiobus_alloc();
1546 if (pep->smi_bus == NULL) {
1547 err = -ENOMEM;
1548 goto err_base;
1550 pep->smi_bus->priv = pep;
1551 pep->smi_bus->name = "pxa168_eth smi";
1552 pep->smi_bus->read = pxa168_smi_read;
1553 pep->smi_bus->write = pxa168_smi_write;
1554 snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%d", pdev->id);
1555 pep->smi_bus->parent = &pdev->dev;
1556 pep->smi_bus->phy_mask = 0xffffffff;
1557 err = mdiobus_register(pep->smi_bus);
1558 if (err)
1559 goto err_free_mdio;
1561 pxa168_init_hw(pep);
1562 err = ethernet_phy_setup(dev);
1563 if (err)
1564 goto err_mdiobus;
1565 SET_NETDEV_DEV(dev, &pdev->dev);
1566 err = register_netdev(dev);
1567 if (err)
1568 goto err_mdiobus;
1569 return 0;
1571 err_mdiobus:
1572 mdiobus_unregister(pep->smi_bus);
1573 err_free_mdio:
1574 mdiobus_free(pep->smi_bus);
1575 err_base:
1576 iounmap(pep->base);
1577 err_netdev:
1578 free_netdev(dev);
1579 err_clk:
1580 clk_disable(clk);
1581 clk_put(clk);
1582 return err;
1585 static int pxa168_eth_remove(struct platform_device *pdev)
1587 struct net_device *dev = platform_get_drvdata(pdev);
1588 struct pxa168_eth_private *pep = netdev_priv(dev);
1590 if (pep->htpr) {
1591 dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
1592 pep->htpr, pep->htpr_dma);
1593 pep->htpr = NULL;
1595 if (pep->clk) {
1596 clk_disable(pep->clk);
1597 clk_put(pep->clk);
1598 pep->clk = NULL;
1600 if (pep->phy != NULL)
1601 phy_detach(pep->phy);
1603 iounmap(pep->base);
1604 pep->base = NULL;
1605 mdiobus_unregister(pep->smi_bus);
1606 mdiobus_free(pep->smi_bus);
1607 unregister_netdev(dev);
1608 cancel_work_sync(&pep->tx_timeout_task);
1609 free_netdev(dev);
1610 platform_set_drvdata(pdev, NULL);
1611 return 0;
1614 static void pxa168_eth_shutdown(struct platform_device *pdev)
1616 struct net_device *dev = platform_get_drvdata(pdev);
1617 eth_port_reset(dev);
1620 #ifdef CONFIG_PM
1621 static int pxa168_eth_resume(struct platform_device *pdev)
1623 return -ENOSYS;
1626 static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
1628 return -ENOSYS;
1631 #else
1632 #define pxa168_eth_resume NULL
1633 #define pxa168_eth_suspend NULL
1634 #endif
1636 static struct platform_driver pxa168_eth_driver = {
1637 .probe = pxa168_eth_probe,
1638 .remove = pxa168_eth_remove,
1639 .shutdown = pxa168_eth_shutdown,
1640 .resume = pxa168_eth_resume,
1641 .suspend = pxa168_eth_suspend,
1642 .driver = {
1643 .name = DRIVER_NAME,
1647 static int __init pxa168_init_module(void)
1649 return platform_driver_register(&pxa168_eth_driver);
1652 static void __exit pxa168_cleanup_module(void)
1654 platform_driver_unregister(&pxa168_eth_driver);
1657 module_init(pxa168_init_module);
1658 module_exit(pxa168_cleanup_module);
1660 MODULE_LICENSE("GPL");
1661 MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
1662 MODULE_ALIAS("platform:pxa168_eth");