1 /* Common capabilities, needed by capability.o.
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/syslog.h>
33 * If a non-root user executes a setuid-root binary in
34 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
35 * However if fE is also set, then the intent is for only
36 * the file capabilities to be applied, and the setuid-root
37 * bit is left on either to change the uid (plausible) or
38 * to get full privilege on a kernel without file capabilities
39 * support. So in that case we do not raise capabilities.
41 * Warn if that happens, once per boot.
43 static void warn_setuid_and_fcaps_mixed(const char *fname
)
47 printk(KERN_INFO
"warning: `%s' has both setuid-root and"
48 " effective capabilities. Therefore not raising all"
49 " capabilities.\n", fname
);
54 int cap_netlink_send(struct sock
*sk
, struct sk_buff
*skb
)
56 NETLINK_CB(skb
).eff_cap
= current_cap();
60 int cap_netlink_recv(struct sk_buff
*skb
, int cap
)
62 if (!cap_raised(NETLINK_CB(skb
).eff_cap
, cap
))
66 EXPORT_SYMBOL(cap_netlink_recv
);
69 * cap_capable - Determine whether a task has a particular effective capability
70 * @tsk: The task to query
71 * @cred: The credentials to use
72 * @cap: The capability to check for
73 * @audit: Whether to write an audit message or not
75 * Determine whether the nominated task has the specified capability amongst
76 * its effective set, returning 0 if it does, -ve if it does not.
78 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
79 * and has_capability() functions. That is, it has the reverse semantics:
80 * cap_has_capability() returns 0 when a task has a capability, but the
81 * kernel's capable() and has_capability() returns 1 for this case.
83 int cap_capable(struct task_struct
*tsk
, const struct cred
*cred
, int cap
,
86 return cap_raised(cred
->cap_effective
, cap
) ? 0 : -EPERM
;
90 * cap_settime - Determine whether the current process may set the system clock
91 * @ts: The time to set
92 * @tz: The timezone to set
94 * Determine whether the current process may set the system clock and timezone
95 * information, returning 0 if permission granted, -ve if denied.
97 int cap_settime(struct timespec
*ts
, struct timezone
*tz
)
99 if (!capable(CAP_SYS_TIME
))
105 * cap_ptrace_access_check - Determine whether the current process may access
107 * @child: The process to be accessed
108 * @mode: The mode of attachment.
110 * Determine whether a process may access another, returning 0 if permission
111 * granted, -ve if denied.
113 int cap_ptrace_access_check(struct task_struct
*child
, unsigned int mode
)
118 if (!cap_issubset(__task_cred(child
)->cap_permitted
,
119 current_cred()->cap_permitted
) &&
120 !capable(CAP_SYS_PTRACE
))
127 * cap_ptrace_traceme - Determine whether another process may trace the current
128 * @parent: The task proposed to be the tracer
130 * Determine whether the nominated task is permitted to trace the current
131 * process, returning 0 if permission is granted, -ve if denied.
133 int cap_ptrace_traceme(struct task_struct
*parent
)
138 if (!cap_issubset(current_cred()->cap_permitted
,
139 __task_cred(parent
)->cap_permitted
) &&
140 !has_capability(parent
, CAP_SYS_PTRACE
))
147 * cap_capget - Retrieve a task's capability sets
148 * @target: The task from which to retrieve the capability sets
149 * @effective: The place to record the effective set
150 * @inheritable: The place to record the inheritable set
151 * @permitted: The place to record the permitted set
153 * This function retrieves the capabilities of the nominated task and returns
154 * them to the caller.
156 int cap_capget(struct task_struct
*target
, kernel_cap_t
*effective
,
157 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
159 const struct cred
*cred
;
161 /* Derived from kernel/capability.c:sys_capget. */
163 cred
= __task_cred(target
);
164 *effective
= cred
->cap_effective
;
165 *inheritable
= cred
->cap_inheritable
;
166 *permitted
= cred
->cap_permitted
;
172 * Determine whether the inheritable capabilities are limited to the old
173 * permitted set. Returns 1 if they are limited, 0 if they are not.
175 static inline int cap_inh_is_capped(void)
178 /* they are so limited unless the current task has the CAP_SETPCAP
181 if (cap_capable(current
, current_cred(), CAP_SETPCAP
,
182 SECURITY_CAP_AUDIT
) == 0)
188 * cap_capset - Validate and apply proposed changes to current's capabilities
189 * @new: The proposed new credentials; alterations should be made here
190 * @old: The current task's current credentials
191 * @effective: A pointer to the proposed new effective capabilities set
192 * @inheritable: A pointer to the proposed new inheritable capabilities set
193 * @permitted: A pointer to the proposed new permitted capabilities set
195 * This function validates and applies a proposed mass change to the current
196 * process's capability sets. The changes are made to the proposed new
197 * credentials, and assuming no error, will be committed by the caller of LSM.
199 int cap_capset(struct cred
*new,
200 const struct cred
*old
,
201 const kernel_cap_t
*effective
,
202 const kernel_cap_t
*inheritable
,
203 const kernel_cap_t
*permitted
)
205 if (cap_inh_is_capped() &&
206 !cap_issubset(*inheritable
,
207 cap_combine(old
->cap_inheritable
,
208 old
->cap_permitted
)))
209 /* incapable of using this inheritable set */
212 if (!cap_issubset(*inheritable
,
213 cap_combine(old
->cap_inheritable
,
215 /* no new pI capabilities outside bounding set */
218 /* verify restrictions on target's new Permitted set */
219 if (!cap_issubset(*permitted
, old
->cap_permitted
))
222 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
223 if (!cap_issubset(*effective
, *permitted
))
226 new->cap_effective
= *effective
;
227 new->cap_inheritable
= *inheritable
;
228 new->cap_permitted
= *permitted
;
233 * Clear proposed capability sets for execve().
235 static inline void bprm_clear_caps(struct linux_binprm
*bprm
)
237 cap_clear(bprm
->cred
->cap_permitted
);
238 bprm
->cap_effective
= false;
242 * cap_inode_need_killpriv - Determine if inode change affects privileges
243 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
245 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
246 * affects the security markings on that inode, and if it is, should
247 * inode_killpriv() be invoked or the change rejected?
249 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
250 * -ve to deny the change.
252 int cap_inode_need_killpriv(struct dentry
*dentry
)
254 struct inode
*inode
= dentry
->d_inode
;
257 if (!inode
->i_op
->getxattr
)
260 error
= inode
->i_op
->getxattr(dentry
, XATTR_NAME_CAPS
, NULL
, 0);
267 * cap_inode_killpriv - Erase the security markings on an inode
268 * @dentry: The inode/dentry to alter
270 * Erase the privilege-enhancing security markings on an inode.
272 * Returns 0 if successful, -ve on error.
274 int cap_inode_killpriv(struct dentry
*dentry
)
276 struct inode
*inode
= dentry
->d_inode
;
278 if (!inode
->i_op
->removexattr
)
281 return inode
->i_op
->removexattr(dentry
, XATTR_NAME_CAPS
);
285 * Calculate the new process capability sets from the capability sets attached
288 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data
*caps
,
289 struct linux_binprm
*bprm
,
292 struct cred
*new = bprm
->cred
;
296 if (caps
->magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
)
299 CAP_FOR_EACH_U32(i
) {
300 __u32 permitted
= caps
->permitted
.cap
[i
];
301 __u32 inheritable
= caps
->inheritable
.cap
[i
];
304 * pP' = (X & fP) | (pI & fI)
306 new->cap_permitted
.cap
[i
] =
307 (new->cap_bset
.cap
[i
] & permitted
) |
308 (new->cap_inheritable
.cap
[i
] & inheritable
);
310 if (permitted
& ~new->cap_permitted
.cap
[i
])
311 /* insufficient to execute correctly */
316 * For legacy apps, with no internal support for recognizing they
317 * do not have enough capabilities, we return an error if they are
318 * missing some "forced" (aka file-permitted) capabilities.
320 return *effective
? ret
: 0;
324 * Extract the on-exec-apply capability sets for an executable file.
326 int get_vfs_caps_from_disk(const struct dentry
*dentry
, struct cpu_vfs_cap_data
*cpu_caps
)
328 struct inode
*inode
= dentry
->d_inode
;
332 struct vfs_cap_data caps
;
334 memset(cpu_caps
, 0, sizeof(struct cpu_vfs_cap_data
));
336 if (!inode
|| !inode
->i_op
->getxattr
)
339 size
= inode
->i_op
->getxattr((struct dentry
*)dentry
, XATTR_NAME_CAPS
, &caps
,
341 if (size
== -ENODATA
|| size
== -EOPNOTSUPP
)
342 /* no data, that's ok */
347 if (size
< sizeof(magic_etc
))
350 cpu_caps
->magic_etc
= magic_etc
= le32_to_cpu(caps
.magic_etc
);
352 switch (magic_etc
& VFS_CAP_REVISION_MASK
) {
353 case VFS_CAP_REVISION_1
:
354 if (size
!= XATTR_CAPS_SZ_1
)
356 tocopy
= VFS_CAP_U32_1
;
358 case VFS_CAP_REVISION_2
:
359 if (size
!= XATTR_CAPS_SZ_2
)
361 tocopy
= VFS_CAP_U32_2
;
367 CAP_FOR_EACH_U32(i
) {
370 cpu_caps
->permitted
.cap
[i
] = le32_to_cpu(caps
.data
[i
].permitted
);
371 cpu_caps
->inheritable
.cap
[i
] = le32_to_cpu(caps
.data
[i
].inheritable
);
378 * Attempt to get the on-exec apply capability sets for an executable file from
379 * its xattrs and, if present, apply them to the proposed credentials being
380 * constructed by execve().
382 static int get_file_caps(struct linux_binprm
*bprm
, bool *effective
)
384 struct dentry
*dentry
;
386 struct cpu_vfs_cap_data vcaps
;
388 bprm_clear_caps(bprm
);
390 if (!file_caps_enabled
)
393 if (bprm
->file
->f_vfsmnt
->mnt_flags
& MNT_NOSUID
)
396 dentry
= dget(bprm
->file
->f_dentry
);
398 rc
= get_vfs_caps_from_disk(dentry
, &vcaps
);
401 printk(KERN_NOTICE
"%s: get_vfs_caps_from_disk returned %d for %s\n",
402 __func__
, rc
, bprm
->filename
);
403 else if (rc
== -ENODATA
)
408 rc
= bprm_caps_from_vfs_caps(&vcaps
, bprm
, effective
);
410 printk(KERN_NOTICE
"%s: cap_from_disk returned %d for %s\n",
411 __func__
, rc
, bprm
->filename
);
416 bprm_clear_caps(bprm
);
422 * cap_bprm_set_creds - Set up the proposed credentials for execve().
423 * @bprm: The execution parameters, including the proposed creds
425 * Set up the proposed credentials for a new execution context being
426 * constructed by execve(). The proposed creds in @bprm->cred is altered,
427 * which won't take effect immediately. Returns 0 if successful, -ve on error.
429 int cap_bprm_set_creds(struct linux_binprm
*bprm
)
431 const struct cred
*old
= current_cred();
432 struct cred
*new = bprm
->cred
;
437 ret
= get_file_caps(bprm
, &effective
);
441 if (!issecure(SECURE_NOROOT
)) {
443 * If the legacy file capability is set, then don't set privs
444 * for a setuid root binary run by a non-root user. Do set it
445 * for a root user just to cause least surprise to an admin.
447 if (effective
&& new->uid
!= 0 && new->euid
== 0) {
448 warn_setuid_and_fcaps_mixed(bprm
->filename
);
452 * To support inheritance of root-permissions and suid-root
453 * executables under compatibility mode, we override the
454 * capability sets for the file.
456 * If only the real uid is 0, we do not set the effective bit.
458 if (new->euid
== 0 || new->uid
== 0) {
459 /* pP' = (cap_bset & ~0) | (pI & ~0) */
460 new->cap_permitted
= cap_combine(old
->cap_bset
,
461 old
->cap_inheritable
);
468 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
469 * credentials unless they have the appropriate permit
471 if ((new->euid
!= old
->uid
||
472 new->egid
!= old
->gid
||
473 !cap_issubset(new->cap_permitted
, old
->cap_permitted
)) &&
474 bprm
->unsafe
& ~LSM_UNSAFE_PTRACE_CAP
) {
475 /* downgrade; they get no more than they had, and maybe less */
476 if (!capable(CAP_SETUID
)) {
477 new->euid
= new->uid
;
478 new->egid
= new->gid
;
480 new->cap_permitted
= cap_intersect(new->cap_permitted
,
484 new->suid
= new->fsuid
= new->euid
;
485 new->sgid
= new->fsgid
= new->egid
;
487 /* For init, we want to retain the capabilities set in the initial
488 * task. Thus we skip the usual capability rules
490 if (!is_global_init(current
)) {
492 new->cap_effective
= new->cap_permitted
;
494 cap_clear(new->cap_effective
);
496 bprm
->cap_effective
= effective
;
499 * Audit candidate if current->cap_effective is set
501 * We do not bother to audit if 3 things are true:
502 * 1) cap_effective has all caps
504 * 3) root is supposed to have all caps (SECURE_NOROOT)
505 * Since this is just a normal root execing a process.
507 * Number 1 above might fail if you don't have a full bset, but I think
508 * that is interesting information to audit.
510 if (!cap_isclear(new->cap_effective
)) {
511 if (!cap_issubset(CAP_FULL_SET
, new->cap_effective
) ||
512 new->euid
!= 0 || new->uid
!= 0 ||
513 issecure(SECURE_NOROOT
)) {
514 ret
= audit_log_bprm_fcaps(bprm
, new, old
);
520 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
525 * cap_bprm_secureexec - Determine whether a secure execution is required
526 * @bprm: The execution parameters
528 * Determine whether a secure execution is required, return 1 if it is, and 0
531 * The credentials have been committed by this point, and so are no longer
532 * available through @bprm->cred.
534 int cap_bprm_secureexec(struct linux_binprm
*bprm
)
536 const struct cred
*cred
= current_cred();
538 if (cred
->uid
!= 0) {
539 if (bprm
->cap_effective
)
541 if (!cap_isclear(cred
->cap_permitted
))
545 return (cred
->euid
!= cred
->uid
||
546 cred
->egid
!= cred
->gid
);
550 * cap_inode_setxattr - Determine whether an xattr may be altered
551 * @dentry: The inode/dentry being altered
552 * @name: The name of the xattr to be changed
553 * @value: The value that the xattr will be changed to
554 * @size: The size of value
555 * @flags: The replacement flag
557 * Determine whether an xattr may be altered or set on an inode, returning 0 if
558 * permission is granted, -ve if denied.
560 * This is used to make sure security xattrs don't get updated or set by those
561 * who aren't privileged to do so.
563 int cap_inode_setxattr(struct dentry
*dentry
, const char *name
,
564 const void *value
, size_t size
, int flags
)
566 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
567 if (!capable(CAP_SETFCAP
))
572 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
573 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
574 !capable(CAP_SYS_ADMIN
))
580 * cap_inode_removexattr - Determine whether an xattr may be removed
581 * @dentry: The inode/dentry being altered
582 * @name: The name of the xattr to be changed
584 * Determine whether an xattr may be removed from an inode, returning 0 if
585 * permission is granted, -ve if denied.
587 * This is used to make sure security xattrs don't get removed by those who
588 * aren't privileged to remove them.
590 int cap_inode_removexattr(struct dentry
*dentry
, const char *name
)
592 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
593 if (!capable(CAP_SETFCAP
))
598 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
599 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
600 !capable(CAP_SYS_ADMIN
))
606 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
607 * a process after a call to setuid, setreuid, or setresuid.
609 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
610 * {r,e,s}uid != 0, the permitted and effective capabilities are
613 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
614 * capabilities of the process are cleared.
616 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
617 * capabilities are set to the permitted capabilities.
619 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
624 * cevans - New behaviour, Oct '99
625 * A process may, via prctl(), elect to keep its capabilities when it
626 * calls setuid() and switches away from uid==0. Both permitted and
627 * effective sets will be retained.
628 * Without this change, it was impossible for a daemon to drop only some
629 * of its privilege. The call to setuid(!=0) would drop all privileges!
630 * Keeping uid 0 is not an option because uid 0 owns too many vital
632 * Thanks to Olaf Kirch and Peter Benie for spotting this.
634 static inline void cap_emulate_setxuid(struct cred
*new, const struct cred
*old
)
636 if ((old
->uid
== 0 || old
->euid
== 0 || old
->suid
== 0) &&
637 (new->uid
!= 0 && new->euid
!= 0 && new->suid
!= 0) &&
638 !issecure(SECURE_KEEP_CAPS
)) {
639 cap_clear(new->cap_permitted
);
640 cap_clear(new->cap_effective
);
642 if (old
->euid
== 0 && new->euid
!= 0)
643 cap_clear(new->cap_effective
);
644 if (old
->euid
!= 0 && new->euid
== 0)
645 new->cap_effective
= new->cap_permitted
;
649 * cap_task_fix_setuid - Fix up the results of setuid() call
650 * @new: The proposed credentials
651 * @old: The current task's current credentials
652 * @flags: Indications of what has changed
654 * Fix up the results of setuid() call before the credential changes are
655 * actually applied, returning 0 to grant the changes, -ve to deny them.
657 int cap_task_fix_setuid(struct cred
*new, const struct cred
*old
, int flags
)
663 /* juggle the capabilities to follow [RES]UID changes unless
664 * otherwise suppressed */
665 if (!issecure(SECURE_NO_SETUID_FIXUP
))
666 cap_emulate_setxuid(new, old
);
670 /* juggle the capabilties to follow FSUID changes, unless
671 * otherwise suppressed
673 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
674 * if not, we might be a bit too harsh here.
676 if (!issecure(SECURE_NO_SETUID_FIXUP
)) {
677 if (old
->fsuid
== 0 && new->fsuid
!= 0)
679 cap_drop_fs_set(new->cap_effective
);
681 if (old
->fsuid
!= 0 && new->fsuid
== 0)
683 cap_raise_fs_set(new->cap_effective
,
696 * Rationale: code calling task_setscheduler, task_setioprio, and
697 * task_setnice, assumes that
698 * . if capable(cap_sys_nice), then those actions should be allowed
699 * . if not capable(cap_sys_nice), but acting on your own processes,
700 * then those actions should be allowed
701 * This is insufficient now since you can call code without suid, but
702 * yet with increased caps.
703 * So we check for increased caps on the target process.
705 static int cap_safe_nice(struct task_struct
*p
)
710 is_subset
= cap_issubset(__task_cred(p
)->cap_permitted
,
711 current_cred()->cap_permitted
);
714 if (!is_subset
&& !capable(CAP_SYS_NICE
))
720 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
721 * @p: The task to affect
722 * @policy: The policy to effect
723 * @lp: The parameters to the scheduling policy
725 * Detemine if the requested scheduler policy change is permitted for the
726 * specified task, returning 0 if permission is granted, -ve if denied.
728 int cap_task_setscheduler(struct task_struct
*p
, int policy
,
729 struct sched_param
*lp
)
731 return cap_safe_nice(p
);
735 * cap_task_ioprio - Detemine if I/O priority change is permitted
736 * @p: The task to affect
737 * @ioprio: The I/O priority to set
739 * Detemine if the requested I/O priority change is permitted for the specified
740 * task, returning 0 if permission is granted, -ve if denied.
742 int cap_task_setioprio(struct task_struct
*p
, int ioprio
)
744 return cap_safe_nice(p
);
748 * cap_task_ioprio - Detemine if task priority change is permitted
749 * @p: The task to affect
750 * @nice: The nice value to set
752 * Detemine if the requested task priority change is permitted for the
753 * specified task, returning 0 if permission is granted, -ve if denied.
755 int cap_task_setnice(struct task_struct
*p
, int nice
)
757 return cap_safe_nice(p
);
761 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
762 * the current task's bounding set. Returns 0 on success, -ve on error.
764 static long cap_prctl_drop(struct cred
*new, unsigned long cap
)
766 if (!capable(CAP_SETPCAP
))
771 cap_lower(new->cap_bset
, cap
);
776 * cap_task_prctl - Implement process control functions for this security module
777 * @option: The process control function requested
778 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
780 * Allow process control functions (sys_prctl()) to alter capabilities; may
781 * also deny access to other functions not otherwise implemented here.
783 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
784 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
785 * modules will consider performing the function.
787 int cap_task_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
788 unsigned long arg4
, unsigned long arg5
)
793 new = prepare_creds();
798 case PR_CAPBSET_READ
:
800 if (!cap_valid(arg2
))
802 error
= !!cap_raised(new->cap_bset
, arg2
);
805 case PR_CAPBSET_DROP
:
806 error
= cap_prctl_drop(new, arg2
);
812 * The next four prctl's remain to assist with transitioning a
813 * system from legacy UID=0 based privilege (when filesystem
814 * capabilities are not in use) to a system using filesystem
815 * capabilities only - as the POSIX.1e draft intended.
819 * PR_SET_SECUREBITS =
820 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
821 * | issecure_mask(SECURE_NOROOT)
822 * | issecure_mask(SECURE_NOROOT_LOCKED)
823 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
824 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
826 * will ensure that the current process and all of its
827 * children will be locked into a pure
828 * capability-based-privilege environment.
830 case PR_SET_SECUREBITS
:
832 if ((((new->securebits
& SECURE_ALL_LOCKS
) >> 1)
833 & (new->securebits
^ arg2
)) /*[1]*/
834 || ((new->securebits
& SECURE_ALL_LOCKS
& ~arg2
)) /*[2]*/
835 || (arg2
& ~(SECURE_ALL_LOCKS
| SECURE_ALL_BITS
)) /*[3]*/
836 || (cap_capable(current
, current_cred(), CAP_SETPCAP
,
837 SECURITY_CAP_AUDIT
) != 0) /*[4]*/
839 * [1] no changing of bits that are locked
840 * [2] no unlocking of locks
841 * [3] no setting of unsupported bits
842 * [4] doing anything requires privilege (go read about
843 * the "sendmail capabilities bug")
846 /* cannot change a locked bit */
848 new->securebits
= arg2
;
851 case PR_GET_SECUREBITS
:
852 error
= new->securebits
;
855 case PR_GET_KEEPCAPS
:
856 if (issecure(SECURE_KEEP_CAPS
))
860 case PR_SET_KEEPCAPS
:
862 if (arg2
> 1) /* Note, we rely on arg2 being unsigned here */
865 if (issecure(SECURE_KEEP_CAPS_LOCKED
))
868 new->securebits
|= issecure_mask(SECURE_KEEP_CAPS
);
870 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
874 /* No functionality available - continue with default */
879 /* Functionality provided */
881 return commit_creds(new);
890 * cap_syslog - Determine whether syslog function is permitted
891 * @type: Function requested
892 * @from_file: Whether this request came from an open file (i.e. /proc)
894 * Determine whether the current process is permitted to use a particular
895 * syslog function, returning 0 if permission is granted, -ve if not.
897 int cap_syslog(int type
, bool from_file
)
899 if (type
!= SYSLOG_ACTION_OPEN
&& from_file
)
901 if ((type
!= SYSLOG_ACTION_READ_ALL
&&
902 type
!= SYSLOG_ACTION_SIZE_BUFFER
) && !capable(CAP_SYS_ADMIN
))
908 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
909 * @mm: The VM space in which the new mapping is to be made
910 * @pages: The size of the mapping
912 * Determine whether the allocation of a new virtual mapping by the current
913 * task is permitted, returning 0 if permission is granted, -ve if not.
915 int cap_vm_enough_memory(struct mm_struct
*mm
, long pages
)
917 int cap_sys_admin
= 0;
919 if (cap_capable(current
, current_cred(), CAP_SYS_ADMIN
,
920 SECURITY_CAP_NOAUDIT
) == 0)
922 return __vm_enough_memory(mm
, pages
, cap_sys_admin
);
926 * cap_file_mmap - check if able to map given addr
931 * @addr: address attempting to be mapped
934 * If the process is attempting to map memory below dac_mmap_min_addr they need
935 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
936 * capability security module. Returns 0 if this mapping should be allowed
939 int cap_file_mmap(struct file
*file
, unsigned long reqprot
,
940 unsigned long prot
, unsigned long flags
,
941 unsigned long addr
, unsigned long addr_only
)
945 if (addr
< dac_mmap_min_addr
) {
946 ret
= cap_capable(current
, current_cred(), CAP_SYS_RAWIO
,
948 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
950 current
->flags
|= PF_SUPERPRIV
;