ACPI: thinkpad-acpi: register input device
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / rmap.c
blobc30781cfd618dfde05088a4a3362b98b3dfd4ab3
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
52 #include <asm/tlbflush.h>
54 struct kmem_cache *anon_vma_cachep;
56 /* This must be called under the mmap_sem. */
57 int anon_vma_prepare(struct vm_area_struct *vma)
59 struct anon_vma *anon_vma = vma->anon_vma;
61 might_sleep();
62 if (unlikely(!anon_vma)) {
63 struct mm_struct *mm = vma->vm_mm;
64 struct anon_vma *allocated, *locked;
66 anon_vma = find_mergeable_anon_vma(vma);
67 if (anon_vma) {
68 allocated = NULL;
69 locked = anon_vma;
70 spin_lock(&locked->lock);
71 } else {
72 anon_vma = anon_vma_alloc();
73 if (unlikely(!anon_vma))
74 return -ENOMEM;
75 allocated = anon_vma;
76 locked = NULL;
79 /* page_table_lock to protect against threads */
80 spin_lock(&mm->page_table_lock);
81 if (likely(!vma->anon_vma)) {
82 vma->anon_vma = anon_vma;
83 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
84 allocated = NULL;
86 spin_unlock(&mm->page_table_lock);
88 if (locked)
89 spin_unlock(&locked->lock);
90 if (unlikely(allocated))
91 anon_vma_free(allocated);
93 return 0;
96 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
98 BUG_ON(vma->anon_vma != next->anon_vma);
99 list_del(&next->anon_vma_node);
102 void __anon_vma_link(struct vm_area_struct *vma)
104 struct anon_vma *anon_vma = vma->anon_vma;
106 if (anon_vma)
107 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
110 void anon_vma_link(struct vm_area_struct *vma)
112 struct anon_vma *anon_vma = vma->anon_vma;
114 if (anon_vma) {
115 spin_lock(&anon_vma->lock);
116 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
117 spin_unlock(&anon_vma->lock);
121 void anon_vma_unlink(struct vm_area_struct *vma)
123 struct anon_vma *anon_vma = vma->anon_vma;
124 int empty;
126 if (!anon_vma)
127 return;
129 spin_lock(&anon_vma->lock);
130 list_del(&vma->anon_vma_node);
132 /* We must garbage collect the anon_vma if it's empty */
133 empty = list_empty(&anon_vma->head);
134 spin_unlock(&anon_vma->lock);
136 if (empty)
137 anon_vma_free(anon_vma);
140 static void anon_vma_ctor(void *data, struct kmem_cache *cachep,
141 unsigned long flags)
143 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
144 SLAB_CTOR_CONSTRUCTOR) {
145 struct anon_vma *anon_vma = data;
147 spin_lock_init(&anon_vma->lock);
148 INIT_LIST_HEAD(&anon_vma->head);
152 void __init anon_vma_init(void)
154 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
155 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
159 * Getting a lock on a stable anon_vma from a page off the LRU is
160 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
162 static struct anon_vma *page_lock_anon_vma(struct page *page)
164 struct anon_vma *anon_vma = NULL;
165 unsigned long anon_mapping;
167 rcu_read_lock();
168 anon_mapping = (unsigned long) page->mapping;
169 if (!(anon_mapping & PAGE_MAPPING_ANON))
170 goto out;
171 if (!page_mapped(page))
172 goto out;
174 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
175 spin_lock(&anon_vma->lock);
176 out:
177 rcu_read_unlock();
178 return anon_vma;
182 * At what user virtual address is page expected in vma?
184 static inline unsigned long
185 vma_address(struct page *page, struct vm_area_struct *vma)
187 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
188 unsigned long address;
190 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
191 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
192 /* page should be within any vma from prio_tree_next */
193 BUG_ON(!PageAnon(page));
194 return -EFAULT;
196 return address;
200 * At what user virtual address is page expected in vma? checking that the
201 * page matches the vma: currently only used on anon pages, by unuse_vma;
203 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
205 if (PageAnon(page)) {
206 if ((void *)vma->anon_vma !=
207 (void *)page->mapping - PAGE_MAPPING_ANON)
208 return -EFAULT;
209 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
210 if (!vma->vm_file ||
211 vma->vm_file->f_mapping != page->mapping)
212 return -EFAULT;
213 } else
214 return -EFAULT;
215 return vma_address(page, vma);
219 * Check that @page is mapped at @address into @mm.
221 * On success returns with pte mapped and locked.
223 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
224 unsigned long address, spinlock_t **ptlp)
226 pgd_t *pgd;
227 pud_t *pud;
228 pmd_t *pmd;
229 pte_t *pte;
230 spinlock_t *ptl;
232 pgd = pgd_offset(mm, address);
233 if (!pgd_present(*pgd))
234 return NULL;
236 pud = pud_offset(pgd, address);
237 if (!pud_present(*pud))
238 return NULL;
240 pmd = pmd_offset(pud, address);
241 if (!pmd_present(*pmd))
242 return NULL;
244 pte = pte_offset_map(pmd, address);
245 /* Make a quick check before getting the lock */
246 if (!pte_present(*pte)) {
247 pte_unmap(pte);
248 return NULL;
251 ptl = pte_lockptr(mm, pmd);
252 spin_lock(ptl);
253 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
254 *ptlp = ptl;
255 return pte;
257 pte_unmap_unlock(pte, ptl);
258 return NULL;
262 * Subfunctions of page_referenced: page_referenced_one called
263 * repeatedly from either page_referenced_anon or page_referenced_file.
265 static int page_referenced_one(struct page *page,
266 struct vm_area_struct *vma, unsigned int *mapcount)
268 struct mm_struct *mm = vma->vm_mm;
269 unsigned long address;
270 pte_t *pte;
271 spinlock_t *ptl;
272 int referenced = 0;
274 address = vma_address(page, vma);
275 if (address == -EFAULT)
276 goto out;
278 pte = page_check_address(page, mm, address, &ptl);
279 if (!pte)
280 goto out;
282 if (ptep_clear_flush_young(vma, address, pte))
283 referenced++;
285 /* Pretend the page is referenced if the task has the
286 swap token and is in the middle of a page fault. */
287 if (mm != current->mm && has_swap_token(mm) &&
288 rwsem_is_locked(&mm->mmap_sem))
289 referenced++;
291 (*mapcount)--;
292 pte_unmap_unlock(pte, ptl);
293 out:
294 return referenced;
297 static int page_referenced_anon(struct page *page)
299 unsigned int mapcount;
300 struct anon_vma *anon_vma;
301 struct vm_area_struct *vma;
302 int referenced = 0;
304 anon_vma = page_lock_anon_vma(page);
305 if (!anon_vma)
306 return referenced;
308 mapcount = page_mapcount(page);
309 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
310 referenced += page_referenced_one(page, vma, &mapcount);
311 if (!mapcount)
312 break;
314 spin_unlock(&anon_vma->lock);
315 return referenced;
319 * page_referenced_file - referenced check for object-based rmap
320 * @page: the page we're checking references on.
322 * For an object-based mapped page, find all the places it is mapped and
323 * check/clear the referenced flag. This is done by following the page->mapping
324 * pointer, then walking the chain of vmas it holds. It returns the number
325 * of references it found.
327 * This function is only called from page_referenced for object-based pages.
329 static int page_referenced_file(struct page *page)
331 unsigned int mapcount;
332 struct address_space *mapping = page->mapping;
333 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
334 struct vm_area_struct *vma;
335 struct prio_tree_iter iter;
336 int referenced = 0;
339 * The caller's checks on page->mapping and !PageAnon have made
340 * sure that this is a file page: the check for page->mapping
341 * excludes the case just before it gets set on an anon page.
343 BUG_ON(PageAnon(page));
346 * The page lock not only makes sure that page->mapping cannot
347 * suddenly be NULLified by truncation, it makes sure that the
348 * structure at mapping cannot be freed and reused yet,
349 * so we can safely take mapping->i_mmap_lock.
351 BUG_ON(!PageLocked(page));
353 spin_lock(&mapping->i_mmap_lock);
356 * i_mmap_lock does not stabilize mapcount at all, but mapcount
357 * is more likely to be accurate if we note it after spinning.
359 mapcount = page_mapcount(page);
361 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
362 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
363 == (VM_LOCKED|VM_MAYSHARE)) {
364 referenced++;
365 break;
367 referenced += page_referenced_one(page, vma, &mapcount);
368 if (!mapcount)
369 break;
372 spin_unlock(&mapping->i_mmap_lock);
373 return referenced;
377 * page_referenced - test if the page was referenced
378 * @page: the page to test
379 * @is_locked: caller holds lock on the page
381 * Quick test_and_clear_referenced for all mappings to a page,
382 * returns the number of ptes which referenced the page.
384 int page_referenced(struct page *page, int is_locked)
386 int referenced = 0;
388 if (page_test_and_clear_young(page))
389 referenced++;
391 if (TestClearPageReferenced(page))
392 referenced++;
394 if (page_mapped(page) && page->mapping) {
395 if (PageAnon(page))
396 referenced += page_referenced_anon(page);
397 else if (is_locked)
398 referenced += page_referenced_file(page);
399 else if (TestSetPageLocked(page))
400 referenced++;
401 else {
402 if (page->mapping)
403 referenced += page_referenced_file(page);
404 unlock_page(page);
407 return referenced;
410 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
412 struct mm_struct *mm = vma->vm_mm;
413 unsigned long address;
414 pte_t *pte;
415 spinlock_t *ptl;
416 int ret = 0;
418 address = vma_address(page, vma);
419 if (address == -EFAULT)
420 goto out;
422 pte = page_check_address(page, mm, address, &ptl);
423 if (!pte)
424 goto out;
426 if (pte_dirty(*pte) || pte_write(*pte)) {
427 pte_t entry;
429 flush_cache_page(vma, address, pte_pfn(*pte));
430 entry = ptep_clear_flush(vma, address, pte);
431 entry = pte_wrprotect(entry);
432 entry = pte_mkclean(entry);
433 set_pte_at(mm, address, pte, entry);
434 lazy_mmu_prot_update(entry);
435 ret = 1;
438 pte_unmap_unlock(pte, ptl);
439 out:
440 return ret;
443 static int page_mkclean_file(struct address_space *mapping, struct page *page)
445 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
446 struct vm_area_struct *vma;
447 struct prio_tree_iter iter;
448 int ret = 0;
450 BUG_ON(PageAnon(page));
452 spin_lock(&mapping->i_mmap_lock);
453 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
454 if (vma->vm_flags & VM_SHARED)
455 ret += page_mkclean_one(page, vma);
457 spin_unlock(&mapping->i_mmap_lock);
458 return ret;
461 int page_mkclean(struct page *page)
463 int ret = 0;
465 BUG_ON(!PageLocked(page));
467 if (page_mapped(page)) {
468 struct address_space *mapping = page_mapping(page);
469 if (mapping)
470 ret = page_mkclean_file(mapping, page);
471 if (page_test_and_clear_dirty(page))
472 ret = 1;
475 return ret;
479 * page_set_anon_rmap - setup new anonymous rmap
480 * @page: the page to add the mapping to
481 * @vma: the vm area in which the mapping is added
482 * @address: the user virtual address mapped
484 static void __page_set_anon_rmap(struct page *page,
485 struct vm_area_struct *vma, unsigned long address)
487 struct anon_vma *anon_vma = vma->anon_vma;
489 BUG_ON(!anon_vma);
490 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
491 page->mapping = (struct address_space *) anon_vma;
493 page->index = linear_page_index(vma, address);
496 * nr_mapped state can be updated without turning off
497 * interrupts because it is not modified via interrupt.
499 __inc_zone_page_state(page, NR_ANON_PAGES);
503 * page_add_anon_rmap - add pte mapping to an anonymous page
504 * @page: the page to add the mapping to
505 * @vma: the vm area in which the mapping is added
506 * @address: the user virtual address mapped
508 * The caller needs to hold the pte lock.
510 void page_add_anon_rmap(struct page *page,
511 struct vm_area_struct *vma, unsigned long address)
513 if (atomic_inc_and_test(&page->_mapcount))
514 __page_set_anon_rmap(page, vma, address);
515 /* else checking page index and mapping is racy */
519 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
520 * @page: the page to add the mapping to
521 * @vma: the vm area in which the mapping is added
522 * @address: the user virtual address mapped
524 * Same as page_add_anon_rmap but must only be called on *new* pages.
525 * This means the inc-and-test can be bypassed.
527 void page_add_new_anon_rmap(struct page *page,
528 struct vm_area_struct *vma, unsigned long address)
530 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
531 __page_set_anon_rmap(page, vma, address);
535 * page_add_file_rmap - add pte mapping to a file page
536 * @page: the page to add the mapping to
538 * The caller needs to hold the pte lock.
540 void page_add_file_rmap(struct page *page)
542 if (atomic_inc_and_test(&page->_mapcount))
543 __inc_zone_page_state(page, NR_FILE_MAPPED);
547 * page_remove_rmap - take down pte mapping from a page
548 * @page: page to remove mapping from
550 * The caller needs to hold the pte lock.
552 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
554 if (atomic_add_negative(-1, &page->_mapcount)) {
555 if (unlikely(page_mapcount(page) < 0)) {
556 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
557 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
558 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
559 printk (KERN_EMERG " page->count = %x\n", page_count(page));
560 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
561 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
562 if (vma->vm_ops)
563 print_symbol (KERN_EMERG " vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
564 if (vma->vm_file && vma->vm_file->f_op)
565 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
566 BUG();
570 * It would be tidy to reset the PageAnon mapping here,
571 * but that might overwrite a racing page_add_anon_rmap
572 * which increments mapcount after us but sets mapping
573 * before us: so leave the reset to free_hot_cold_page,
574 * and remember that it's only reliable while mapped.
575 * Leaving it set also helps swapoff to reinstate ptes
576 * faster for those pages still in swapcache.
578 if (page_test_and_clear_dirty(page))
579 set_page_dirty(page);
580 __dec_zone_page_state(page,
581 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
586 * Subfunctions of try_to_unmap: try_to_unmap_one called
587 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
589 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
590 int migration)
592 struct mm_struct *mm = vma->vm_mm;
593 unsigned long address;
594 pte_t *pte;
595 pte_t pteval;
596 spinlock_t *ptl;
597 int ret = SWAP_AGAIN;
599 address = vma_address(page, vma);
600 if (address == -EFAULT)
601 goto out;
603 pte = page_check_address(page, mm, address, &ptl);
604 if (!pte)
605 goto out;
608 * If the page is mlock()d, we cannot swap it out.
609 * If it's recently referenced (perhaps page_referenced
610 * skipped over this mm) then we should reactivate it.
612 if (!migration && ((vma->vm_flags & VM_LOCKED) ||
613 (ptep_clear_flush_young(vma, address, pte)))) {
614 ret = SWAP_FAIL;
615 goto out_unmap;
618 /* Nuke the page table entry. */
619 flush_cache_page(vma, address, page_to_pfn(page));
620 pteval = ptep_clear_flush(vma, address, pte);
622 /* Move the dirty bit to the physical page now the pte is gone. */
623 if (pte_dirty(pteval))
624 set_page_dirty(page);
626 /* Update high watermark before we lower rss */
627 update_hiwater_rss(mm);
629 if (PageAnon(page)) {
630 swp_entry_t entry = { .val = page_private(page) };
632 if (PageSwapCache(page)) {
634 * Store the swap location in the pte.
635 * See handle_pte_fault() ...
637 swap_duplicate(entry);
638 if (list_empty(&mm->mmlist)) {
639 spin_lock(&mmlist_lock);
640 if (list_empty(&mm->mmlist))
641 list_add(&mm->mmlist, &init_mm.mmlist);
642 spin_unlock(&mmlist_lock);
644 dec_mm_counter(mm, anon_rss);
645 #ifdef CONFIG_MIGRATION
646 } else {
648 * Store the pfn of the page in a special migration
649 * pte. do_swap_page() will wait until the migration
650 * pte is removed and then restart fault handling.
652 BUG_ON(!migration);
653 entry = make_migration_entry(page, pte_write(pteval));
654 #endif
656 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
657 BUG_ON(pte_file(*pte));
658 } else
659 #ifdef CONFIG_MIGRATION
660 if (migration) {
661 /* Establish migration entry for a file page */
662 swp_entry_t entry;
663 entry = make_migration_entry(page, pte_write(pteval));
664 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
665 } else
666 #endif
667 dec_mm_counter(mm, file_rss);
670 page_remove_rmap(page, vma);
671 page_cache_release(page);
673 out_unmap:
674 pte_unmap_unlock(pte, ptl);
675 out:
676 return ret;
680 * objrmap doesn't work for nonlinear VMAs because the assumption that
681 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
682 * Consequently, given a particular page and its ->index, we cannot locate the
683 * ptes which are mapping that page without an exhaustive linear search.
685 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
686 * maps the file to which the target page belongs. The ->vm_private_data field
687 * holds the current cursor into that scan. Successive searches will circulate
688 * around the vma's virtual address space.
690 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
691 * more scanning pressure is placed against them as well. Eventually pages
692 * will become fully unmapped and are eligible for eviction.
694 * For very sparsely populated VMAs this is a little inefficient - chances are
695 * there there won't be many ptes located within the scan cluster. In this case
696 * maybe we could scan further - to the end of the pte page, perhaps.
698 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
699 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
701 static void try_to_unmap_cluster(unsigned long cursor,
702 unsigned int *mapcount, struct vm_area_struct *vma)
704 struct mm_struct *mm = vma->vm_mm;
705 pgd_t *pgd;
706 pud_t *pud;
707 pmd_t *pmd;
708 pte_t *pte;
709 pte_t pteval;
710 spinlock_t *ptl;
711 struct page *page;
712 unsigned long address;
713 unsigned long end;
715 address = (vma->vm_start + cursor) & CLUSTER_MASK;
716 end = address + CLUSTER_SIZE;
717 if (address < vma->vm_start)
718 address = vma->vm_start;
719 if (end > vma->vm_end)
720 end = vma->vm_end;
722 pgd = pgd_offset(mm, address);
723 if (!pgd_present(*pgd))
724 return;
726 pud = pud_offset(pgd, address);
727 if (!pud_present(*pud))
728 return;
730 pmd = pmd_offset(pud, address);
731 if (!pmd_present(*pmd))
732 return;
734 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
736 /* Update high watermark before we lower rss */
737 update_hiwater_rss(mm);
739 for (; address < end; pte++, address += PAGE_SIZE) {
740 if (!pte_present(*pte))
741 continue;
742 page = vm_normal_page(vma, address, *pte);
743 BUG_ON(!page || PageAnon(page));
745 if (ptep_clear_flush_young(vma, address, pte))
746 continue;
748 /* Nuke the page table entry. */
749 flush_cache_page(vma, address, pte_pfn(*pte));
750 pteval = ptep_clear_flush(vma, address, pte);
752 /* If nonlinear, store the file page offset in the pte. */
753 if (page->index != linear_page_index(vma, address))
754 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
756 /* Move the dirty bit to the physical page now the pte is gone. */
757 if (pte_dirty(pteval))
758 set_page_dirty(page);
760 page_remove_rmap(page, vma);
761 page_cache_release(page);
762 dec_mm_counter(mm, file_rss);
763 (*mapcount)--;
765 pte_unmap_unlock(pte - 1, ptl);
768 static int try_to_unmap_anon(struct page *page, int migration)
770 struct anon_vma *anon_vma;
771 struct vm_area_struct *vma;
772 int ret = SWAP_AGAIN;
774 anon_vma = page_lock_anon_vma(page);
775 if (!anon_vma)
776 return ret;
778 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
779 ret = try_to_unmap_one(page, vma, migration);
780 if (ret == SWAP_FAIL || !page_mapped(page))
781 break;
783 spin_unlock(&anon_vma->lock);
784 return ret;
788 * try_to_unmap_file - unmap file page using the object-based rmap method
789 * @page: the page to unmap
791 * Find all the mappings of a page using the mapping pointer and the vma chains
792 * contained in the address_space struct it points to.
794 * This function is only called from try_to_unmap for object-based pages.
796 static int try_to_unmap_file(struct page *page, int migration)
798 struct address_space *mapping = page->mapping;
799 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
800 struct vm_area_struct *vma;
801 struct prio_tree_iter iter;
802 int ret = SWAP_AGAIN;
803 unsigned long cursor;
804 unsigned long max_nl_cursor = 0;
805 unsigned long max_nl_size = 0;
806 unsigned int mapcount;
808 spin_lock(&mapping->i_mmap_lock);
809 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
810 ret = try_to_unmap_one(page, vma, migration);
811 if (ret == SWAP_FAIL || !page_mapped(page))
812 goto out;
815 if (list_empty(&mapping->i_mmap_nonlinear))
816 goto out;
818 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
819 shared.vm_set.list) {
820 if ((vma->vm_flags & VM_LOCKED) && !migration)
821 continue;
822 cursor = (unsigned long) vma->vm_private_data;
823 if (cursor > max_nl_cursor)
824 max_nl_cursor = cursor;
825 cursor = vma->vm_end - vma->vm_start;
826 if (cursor > max_nl_size)
827 max_nl_size = cursor;
830 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
831 ret = SWAP_FAIL;
832 goto out;
836 * We don't try to search for this page in the nonlinear vmas,
837 * and page_referenced wouldn't have found it anyway. Instead
838 * just walk the nonlinear vmas trying to age and unmap some.
839 * The mapcount of the page we came in with is irrelevant,
840 * but even so use it as a guide to how hard we should try?
842 mapcount = page_mapcount(page);
843 if (!mapcount)
844 goto out;
845 cond_resched_lock(&mapping->i_mmap_lock);
847 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
848 if (max_nl_cursor == 0)
849 max_nl_cursor = CLUSTER_SIZE;
851 do {
852 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
853 shared.vm_set.list) {
854 if ((vma->vm_flags & VM_LOCKED) && !migration)
855 continue;
856 cursor = (unsigned long) vma->vm_private_data;
857 while ( cursor < max_nl_cursor &&
858 cursor < vma->vm_end - vma->vm_start) {
859 try_to_unmap_cluster(cursor, &mapcount, vma);
860 cursor += CLUSTER_SIZE;
861 vma->vm_private_data = (void *) cursor;
862 if ((int)mapcount <= 0)
863 goto out;
865 vma->vm_private_data = (void *) max_nl_cursor;
867 cond_resched_lock(&mapping->i_mmap_lock);
868 max_nl_cursor += CLUSTER_SIZE;
869 } while (max_nl_cursor <= max_nl_size);
872 * Don't loop forever (perhaps all the remaining pages are
873 * in locked vmas). Reset cursor on all unreserved nonlinear
874 * vmas, now forgetting on which ones it had fallen behind.
876 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
877 vma->vm_private_data = NULL;
878 out:
879 spin_unlock(&mapping->i_mmap_lock);
880 return ret;
884 * try_to_unmap - try to remove all page table mappings to a page
885 * @page: the page to get unmapped
887 * Tries to remove all the page table entries which are mapping this
888 * page, used in the pageout path. Caller must hold the page lock.
889 * Return values are:
891 * SWAP_SUCCESS - we succeeded in removing all mappings
892 * SWAP_AGAIN - we missed a mapping, try again later
893 * SWAP_FAIL - the page is unswappable
895 int try_to_unmap(struct page *page, int migration)
897 int ret;
899 BUG_ON(!PageLocked(page));
901 if (PageAnon(page))
902 ret = try_to_unmap_anon(page, migration);
903 else
904 ret = try_to_unmap_file(page, migration);
906 if (!page_mapped(page))
907 ret = SWAP_SUCCESS;
908 return ret;