staging: rtl8192e: Convert typedef WIRELESS_MODE to enum wireless_mode
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / crypto / aesni-intel_glue.c
blobfeee8ff1d05ea4cc87e4c5be965b08d00e89731f
1 /*
2 * Support for Intel AES-NI instructions. This file contains glue
3 * code, the real AES implementation is in intel-aes_asm.S.
5 * Copyright (C) 2008, Intel Corp.
6 * Author: Huang Ying <ying.huang@intel.com>
8 * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
9 * interface for 64-bit kernels.
10 * Authors: Adrian Hoban <adrian.hoban@intel.com>
11 * Gabriele Paoloni <gabriele.paoloni@intel.com>
12 * Tadeusz Struk (tadeusz.struk@intel.com)
13 * Aidan O'Mahony (aidan.o.mahony@intel.com)
14 * Copyright (c) 2010, Intel Corporation.
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
22 #include <linux/hardirq.h>
23 #include <linux/types.h>
24 #include <linux/crypto.h>
25 #include <linux/err.h>
26 #include <crypto/algapi.h>
27 #include <crypto/aes.h>
28 #include <crypto/cryptd.h>
29 #include <crypto/ctr.h>
30 #include <asm/i387.h>
31 #include <asm/aes.h>
32 #include <crypto/scatterwalk.h>
33 #include <crypto/internal/aead.h>
34 #include <linux/workqueue.h>
35 #include <linux/spinlock.h>
37 #if defined(CONFIG_CRYPTO_CTR) || defined(CONFIG_CRYPTO_CTR_MODULE)
38 #define HAS_CTR
39 #endif
41 #if defined(CONFIG_CRYPTO_LRW) || defined(CONFIG_CRYPTO_LRW_MODULE)
42 #define HAS_LRW
43 #endif
45 #if defined(CONFIG_CRYPTO_PCBC) || defined(CONFIG_CRYPTO_PCBC_MODULE)
46 #define HAS_PCBC
47 #endif
49 #if defined(CONFIG_CRYPTO_XTS) || defined(CONFIG_CRYPTO_XTS_MODULE)
50 #define HAS_XTS
51 #endif
53 struct async_aes_ctx {
54 struct cryptd_ablkcipher *cryptd_tfm;
57 /* This data is stored at the end of the crypto_tfm struct.
58 * It's a type of per "session" data storage location.
59 * This needs to be 16 byte aligned.
61 struct aesni_rfc4106_gcm_ctx {
62 u8 hash_subkey[16];
63 struct crypto_aes_ctx aes_key_expanded;
64 u8 nonce[4];
65 struct cryptd_aead *cryptd_tfm;
68 struct aesni_gcm_set_hash_subkey_result {
69 int err;
70 struct completion completion;
73 struct aesni_hash_subkey_req_data {
74 u8 iv[16];
75 struct aesni_gcm_set_hash_subkey_result result;
76 struct scatterlist sg;
79 #define AESNI_ALIGN (16)
80 #define AES_BLOCK_MASK (~(AES_BLOCK_SIZE-1))
81 #define RFC4106_HASH_SUBKEY_SIZE 16
83 asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
84 unsigned int key_len);
85 asmlinkage void aesni_enc(struct crypto_aes_ctx *ctx, u8 *out,
86 const u8 *in);
87 asmlinkage void aesni_dec(struct crypto_aes_ctx *ctx, u8 *out,
88 const u8 *in);
89 asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
90 const u8 *in, unsigned int len);
91 asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
92 const u8 *in, unsigned int len);
93 asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
94 const u8 *in, unsigned int len, u8 *iv);
95 asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
96 const u8 *in, unsigned int len, u8 *iv);
98 int crypto_fpu_init(void);
99 void crypto_fpu_exit(void);
101 #ifdef CONFIG_X86_64
102 asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
103 const u8 *in, unsigned int len, u8 *iv);
105 /* asmlinkage void aesni_gcm_enc()
106 * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
107 * u8 *out, Ciphertext output. Encrypt in-place is allowed.
108 * const u8 *in, Plaintext input
109 * unsigned long plaintext_len, Length of data in bytes for encryption.
110 * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
111 * concatenated with 8 byte Initialisation Vector (from IPSec ESP
112 * Payload) concatenated with 0x00000001. 16-byte aligned pointer.
113 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
114 * const u8 *aad, Additional Authentication Data (AAD)
115 * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this
116 * is going to be 8 or 12 bytes
117 * u8 *auth_tag, Authenticated Tag output.
118 * unsigned long auth_tag_len), Authenticated Tag Length in bytes.
119 * Valid values are 16 (most likely), 12 or 8.
121 asmlinkage void aesni_gcm_enc(void *ctx, u8 *out,
122 const u8 *in, unsigned long plaintext_len, u8 *iv,
123 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
124 u8 *auth_tag, unsigned long auth_tag_len);
126 /* asmlinkage void aesni_gcm_dec()
127 * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
128 * u8 *out, Plaintext output. Decrypt in-place is allowed.
129 * const u8 *in, Ciphertext input
130 * unsigned long ciphertext_len, Length of data in bytes for decryption.
131 * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
132 * concatenated with 8 byte Initialisation Vector (from IPSec ESP
133 * Payload) concatenated with 0x00000001. 16-byte aligned pointer.
134 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
135 * const u8 *aad, Additional Authentication Data (AAD)
136 * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
137 * to be 8 or 12 bytes
138 * u8 *auth_tag, Authenticated Tag output.
139 * unsigned long auth_tag_len) Authenticated Tag Length in bytes.
140 * Valid values are 16 (most likely), 12 or 8.
142 asmlinkage void aesni_gcm_dec(void *ctx, u8 *out,
143 const u8 *in, unsigned long ciphertext_len, u8 *iv,
144 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
145 u8 *auth_tag, unsigned long auth_tag_len);
147 static inline struct
148 aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
150 return
151 (struct aesni_rfc4106_gcm_ctx *)
152 PTR_ALIGN((u8 *)
153 crypto_tfm_ctx(crypto_aead_tfm(tfm)), AESNI_ALIGN);
155 #endif
157 static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
159 unsigned long addr = (unsigned long)raw_ctx;
160 unsigned long align = AESNI_ALIGN;
162 if (align <= crypto_tfm_ctx_alignment())
163 align = 1;
164 return (struct crypto_aes_ctx *)ALIGN(addr, align);
167 static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
168 const u8 *in_key, unsigned int key_len)
170 struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
171 u32 *flags = &tfm->crt_flags;
172 int err;
174 if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
175 key_len != AES_KEYSIZE_256) {
176 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
177 return -EINVAL;
180 if (!irq_fpu_usable())
181 err = crypto_aes_expand_key(ctx, in_key, key_len);
182 else {
183 kernel_fpu_begin();
184 err = aesni_set_key(ctx, in_key, key_len);
185 kernel_fpu_end();
188 return err;
191 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
192 unsigned int key_len)
194 return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
197 static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
199 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
201 if (!irq_fpu_usable())
202 crypto_aes_encrypt_x86(ctx, dst, src);
203 else {
204 kernel_fpu_begin();
205 aesni_enc(ctx, dst, src);
206 kernel_fpu_end();
210 static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
212 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
214 if (!irq_fpu_usable())
215 crypto_aes_decrypt_x86(ctx, dst, src);
216 else {
217 kernel_fpu_begin();
218 aesni_dec(ctx, dst, src);
219 kernel_fpu_end();
223 static struct crypto_alg aesni_alg = {
224 .cra_name = "aes",
225 .cra_driver_name = "aes-aesni",
226 .cra_priority = 300,
227 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
228 .cra_blocksize = AES_BLOCK_SIZE,
229 .cra_ctxsize = sizeof(struct crypto_aes_ctx)+AESNI_ALIGN-1,
230 .cra_alignmask = 0,
231 .cra_module = THIS_MODULE,
232 .cra_list = LIST_HEAD_INIT(aesni_alg.cra_list),
233 .cra_u = {
234 .cipher = {
235 .cia_min_keysize = AES_MIN_KEY_SIZE,
236 .cia_max_keysize = AES_MAX_KEY_SIZE,
237 .cia_setkey = aes_set_key,
238 .cia_encrypt = aes_encrypt,
239 .cia_decrypt = aes_decrypt
244 static void __aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
246 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
248 aesni_enc(ctx, dst, src);
251 static void __aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
253 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
255 aesni_dec(ctx, dst, src);
258 static struct crypto_alg __aesni_alg = {
259 .cra_name = "__aes-aesni",
260 .cra_driver_name = "__driver-aes-aesni",
261 .cra_priority = 0,
262 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
263 .cra_blocksize = AES_BLOCK_SIZE,
264 .cra_ctxsize = sizeof(struct crypto_aes_ctx)+AESNI_ALIGN-1,
265 .cra_alignmask = 0,
266 .cra_module = THIS_MODULE,
267 .cra_list = LIST_HEAD_INIT(__aesni_alg.cra_list),
268 .cra_u = {
269 .cipher = {
270 .cia_min_keysize = AES_MIN_KEY_SIZE,
271 .cia_max_keysize = AES_MAX_KEY_SIZE,
272 .cia_setkey = aes_set_key,
273 .cia_encrypt = __aes_encrypt,
274 .cia_decrypt = __aes_decrypt
279 static int ecb_encrypt(struct blkcipher_desc *desc,
280 struct scatterlist *dst, struct scatterlist *src,
281 unsigned int nbytes)
283 struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
284 struct blkcipher_walk walk;
285 int err;
287 blkcipher_walk_init(&walk, dst, src, nbytes);
288 err = blkcipher_walk_virt(desc, &walk);
289 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
291 kernel_fpu_begin();
292 while ((nbytes = walk.nbytes)) {
293 aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
294 nbytes & AES_BLOCK_MASK);
295 nbytes &= AES_BLOCK_SIZE - 1;
296 err = blkcipher_walk_done(desc, &walk, nbytes);
298 kernel_fpu_end();
300 return err;
303 static int ecb_decrypt(struct blkcipher_desc *desc,
304 struct scatterlist *dst, struct scatterlist *src,
305 unsigned int nbytes)
307 struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
308 struct blkcipher_walk walk;
309 int err;
311 blkcipher_walk_init(&walk, dst, src, nbytes);
312 err = blkcipher_walk_virt(desc, &walk);
313 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
315 kernel_fpu_begin();
316 while ((nbytes = walk.nbytes)) {
317 aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
318 nbytes & AES_BLOCK_MASK);
319 nbytes &= AES_BLOCK_SIZE - 1;
320 err = blkcipher_walk_done(desc, &walk, nbytes);
322 kernel_fpu_end();
324 return err;
327 static struct crypto_alg blk_ecb_alg = {
328 .cra_name = "__ecb-aes-aesni",
329 .cra_driver_name = "__driver-ecb-aes-aesni",
330 .cra_priority = 0,
331 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
332 .cra_blocksize = AES_BLOCK_SIZE,
333 .cra_ctxsize = sizeof(struct crypto_aes_ctx)+AESNI_ALIGN-1,
334 .cra_alignmask = 0,
335 .cra_type = &crypto_blkcipher_type,
336 .cra_module = THIS_MODULE,
337 .cra_list = LIST_HEAD_INIT(blk_ecb_alg.cra_list),
338 .cra_u = {
339 .blkcipher = {
340 .min_keysize = AES_MIN_KEY_SIZE,
341 .max_keysize = AES_MAX_KEY_SIZE,
342 .setkey = aes_set_key,
343 .encrypt = ecb_encrypt,
344 .decrypt = ecb_decrypt,
349 static int cbc_encrypt(struct blkcipher_desc *desc,
350 struct scatterlist *dst, struct scatterlist *src,
351 unsigned int nbytes)
353 struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
354 struct blkcipher_walk walk;
355 int err;
357 blkcipher_walk_init(&walk, dst, src, nbytes);
358 err = blkcipher_walk_virt(desc, &walk);
359 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
361 kernel_fpu_begin();
362 while ((nbytes = walk.nbytes)) {
363 aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
364 nbytes & AES_BLOCK_MASK, walk.iv);
365 nbytes &= AES_BLOCK_SIZE - 1;
366 err = blkcipher_walk_done(desc, &walk, nbytes);
368 kernel_fpu_end();
370 return err;
373 static int cbc_decrypt(struct blkcipher_desc *desc,
374 struct scatterlist *dst, struct scatterlist *src,
375 unsigned int nbytes)
377 struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
378 struct blkcipher_walk walk;
379 int err;
381 blkcipher_walk_init(&walk, dst, src, nbytes);
382 err = blkcipher_walk_virt(desc, &walk);
383 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
385 kernel_fpu_begin();
386 while ((nbytes = walk.nbytes)) {
387 aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
388 nbytes & AES_BLOCK_MASK, walk.iv);
389 nbytes &= AES_BLOCK_SIZE - 1;
390 err = blkcipher_walk_done(desc, &walk, nbytes);
392 kernel_fpu_end();
394 return err;
397 static struct crypto_alg blk_cbc_alg = {
398 .cra_name = "__cbc-aes-aesni",
399 .cra_driver_name = "__driver-cbc-aes-aesni",
400 .cra_priority = 0,
401 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
402 .cra_blocksize = AES_BLOCK_SIZE,
403 .cra_ctxsize = sizeof(struct crypto_aes_ctx)+AESNI_ALIGN-1,
404 .cra_alignmask = 0,
405 .cra_type = &crypto_blkcipher_type,
406 .cra_module = THIS_MODULE,
407 .cra_list = LIST_HEAD_INIT(blk_cbc_alg.cra_list),
408 .cra_u = {
409 .blkcipher = {
410 .min_keysize = AES_MIN_KEY_SIZE,
411 .max_keysize = AES_MAX_KEY_SIZE,
412 .setkey = aes_set_key,
413 .encrypt = cbc_encrypt,
414 .decrypt = cbc_decrypt,
419 #ifdef CONFIG_X86_64
420 static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
421 struct blkcipher_walk *walk)
423 u8 *ctrblk = walk->iv;
424 u8 keystream[AES_BLOCK_SIZE];
425 u8 *src = walk->src.virt.addr;
426 u8 *dst = walk->dst.virt.addr;
427 unsigned int nbytes = walk->nbytes;
429 aesni_enc(ctx, keystream, ctrblk);
430 crypto_xor(keystream, src, nbytes);
431 memcpy(dst, keystream, nbytes);
432 crypto_inc(ctrblk, AES_BLOCK_SIZE);
435 static int ctr_crypt(struct blkcipher_desc *desc,
436 struct scatterlist *dst, struct scatterlist *src,
437 unsigned int nbytes)
439 struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
440 struct blkcipher_walk walk;
441 int err;
443 blkcipher_walk_init(&walk, dst, src, nbytes);
444 err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
445 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
447 kernel_fpu_begin();
448 while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
449 aesni_ctr_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
450 nbytes & AES_BLOCK_MASK, walk.iv);
451 nbytes &= AES_BLOCK_SIZE - 1;
452 err = blkcipher_walk_done(desc, &walk, nbytes);
454 if (walk.nbytes) {
455 ctr_crypt_final(ctx, &walk);
456 err = blkcipher_walk_done(desc, &walk, 0);
458 kernel_fpu_end();
460 return err;
463 static struct crypto_alg blk_ctr_alg = {
464 .cra_name = "__ctr-aes-aesni",
465 .cra_driver_name = "__driver-ctr-aes-aesni",
466 .cra_priority = 0,
467 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
468 .cra_blocksize = 1,
469 .cra_ctxsize = sizeof(struct crypto_aes_ctx)+AESNI_ALIGN-1,
470 .cra_alignmask = 0,
471 .cra_type = &crypto_blkcipher_type,
472 .cra_module = THIS_MODULE,
473 .cra_list = LIST_HEAD_INIT(blk_ctr_alg.cra_list),
474 .cra_u = {
475 .blkcipher = {
476 .min_keysize = AES_MIN_KEY_SIZE,
477 .max_keysize = AES_MAX_KEY_SIZE,
478 .ivsize = AES_BLOCK_SIZE,
479 .setkey = aes_set_key,
480 .encrypt = ctr_crypt,
481 .decrypt = ctr_crypt,
485 #endif
487 static int ablk_set_key(struct crypto_ablkcipher *tfm, const u8 *key,
488 unsigned int key_len)
490 struct async_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
491 struct crypto_ablkcipher *child = &ctx->cryptd_tfm->base;
492 int err;
494 crypto_ablkcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
495 crypto_ablkcipher_set_flags(child, crypto_ablkcipher_get_flags(tfm)
496 & CRYPTO_TFM_REQ_MASK);
497 err = crypto_ablkcipher_setkey(child, key, key_len);
498 crypto_ablkcipher_set_flags(tfm, crypto_ablkcipher_get_flags(child)
499 & CRYPTO_TFM_RES_MASK);
500 return err;
503 static int ablk_encrypt(struct ablkcipher_request *req)
505 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
506 struct async_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
508 if (!irq_fpu_usable()) {
509 struct ablkcipher_request *cryptd_req =
510 ablkcipher_request_ctx(req);
511 memcpy(cryptd_req, req, sizeof(*req));
512 ablkcipher_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
513 return crypto_ablkcipher_encrypt(cryptd_req);
514 } else {
515 struct blkcipher_desc desc;
516 desc.tfm = cryptd_ablkcipher_child(ctx->cryptd_tfm);
517 desc.info = req->info;
518 desc.flags = 0;
519 return crypto_blkcipher_crt(desc.tfm)->encrypt(
520 &desc, req->dst, req->src, req->nbytes);
524 static int ablk_decrypt(struct ablkcipher_request *req)
526 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
527 struct async_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
529 if (!irq_fpu_usable()) {
530 struct ablkcipher_request *cryptd_req =
531 ablkcipher_request_ctx(req);
532 memcpy(cryptd_req, req, sizeof(*req));
533 ablkcipher_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
534 return crypto_ablkcipher_decrypt(cryptd_req);
535 } else {
536 struct blkcipher_desc desc;
537 desc.tfm = cryptd_ablkcipher_child(ctx->cryptd_tfm);
538 desc.info = req->info;
539 desc.flags = 0;
540 return crypto_blkcipher_crt(desc.tfm)->decrypt(
541 &desc, req->dst, req->src, req->nbytes);
545 static void ablk_exit(struct crypto_tfm *tfm)
547 struct async_aes_ctx *ctx = crypto_tfm_ctx(tfm);
549 cryptd_free_ablkcipher(ctx->cryptd_tfm);
552 static void ablk_init_common(struct crypto_tfm *tfm,
553 struct cryptd_ablkcipher *cryptd_tfm)
555 struct async_aes_ctx *ctx = crypto_tfm_ctx(tfm);
557 ctx->cryptd_tfm = cryptd_tfm;
558 tfm->crt_ablkcipher.reqsize = sizeof(struct ablkcipher_request) +
559 crypto_ablkcipher_reqsize(&cryptd_tfm->base);
562 static int ablk_ecb_init(struct crypto_tfm *tfm)
564 struct cryptd_ablkcipher *cryptd_tfm;
566 cryptd_tfm = cryptd_alloc_ablkcipher("__driver-ecb-aes-aesni", 0, 0);
567 if (IS_ERR(cryptd_tfm))
568 return PTR_ERR(cryptd_tfm);
569 ablk_init_common(tfm, cryptd_tfm);
570 return 0;
573 static struct crypto_alg ablk_ecb_alg = {
574 .cra_name = "ecb(aes)",
575 .cra_driver_name = "ecb-aes-aesni",
576 .cra_priority = 400,
577 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
578 .cra_blocksize = AES_BLOCK_SIZE,
579 .cra_ctxsize = sizeof(struct async_aes_ctx),
580 .cra_alignmask = 0,
581 .cra_type = &crypto_ablkcipher_type,
582 .cra_module = THIS_MODULE,
583 .cra_list = LIST_HEAD_INIT(ablk_ecb_alg.cra_list),
584 .cra_init = ablk_ecb_init,
585 .cra_exit = ablk_exit,
586 .cra_u = {
587 .ablkcipher = {
588 .min_keysize = AES_MIN_KEY_SIZE,
589 .max_keysize = AES_MAX_KEY_SIZE,
590 .setkey = ablk_set_key,
591 .encrypt = ablk_encrypt,
592 .decrypt = ablk_decrypt,
597 static int ablk_cbc_init(struct crypto_tfm *tfm)
599 struct cryptd_ablkcipher *cryptd_tfm;
601 cryptd_tfm = cryptd_alloc_ablkcipher("__driver-cbc-aes-aesni", 0, 0);
602 if (IS_ERR(cryptd_tfm))
603 return PTR_ERR(cryptd_tfm);
604 ablk_init_common(tfm, cryptd_tfm);
605 return 0;
608 static struct crypto_alg ablk_cbc_alg = {
609 .cra_name = "cbc(aes)",
610 .cra_driver_name = "cbc-aes-aesni",
611 .cra_priority = 400,
612 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
613 .cra_blocksize = AES_BLOCK_SIZE,
614 .cra_ctxsize = sizeof(struct async_aes_ctx),
615 .cra_alignmask = 0,
616 .cra_type = &crypto_ablkcipher_type,
617 .cra_module = THIS_MODULE,
618 .cra_list = LIST_HEAD_INIT(ablk_cbc_alg.cra_list),
619 .cra_init = ablk_cbc_init,
620 .cra_exit = ablk_exit,
621 .cra_u = {
622 .ablkcipher = {
623 .min_keysize = AES_MIN_KEY_SIZE,
624 .max_keysize = AES_MAX_KEY_SIZE,
625 .ivsize = AES_BLOCK_SIZE,
626 .setkey = ablk_set_key,
627 .encrypt = ablk_encrypt,
628 .decrypt = ablk_decrypt,
633 #ifdef CONFIG_X86_64
634 static int ablk_ctr_init(struct crypto_tfm *tfm)
636 struct cryptd_ablkcipher *cryptd_tfm;
638 cryptd_tfm = cryptd_alloc_ablkcipher("__driver-ctr-aes-aesni", 0, 0);
639 if (IS_ERR(cryptd_tfm))
640 return PTR_ERR(cryptd_tfm);
641 ablk_init_common(tfm, cryptd_tfm);
642 return 0;
645 static struct crypto_alg ablk_ctr_alg = {
646 .cra_name = "ctr(aes)",
647 .cra_driver_name = "ctr-aes-aesni",
648 .cra_priority = 400,
649 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
650 .cra_blocksize = 1,
651 .cra_ctxsize = sizeof(struct async_aes_ctx),
652 .cra_alignmask = 0,
653 .cra_type = &crypto_ablkcipher_type,
654 .cra_module = THIS_MODULE,
655 .cra_list = LIST_HEAD_INIT(ablk_ctr_alg.cra_list),
656 .cra_init = ablk_ctr_init,
657 .cra_exit = ablk_exit,
658 .cra_u = {
659 .ablkcipher = {
660 .min_keysize = AES_MIN_KEY_SIZE,
661 .max_keysize = AES_MAX_KEY_SIZE,
662 .ivsize = AES_BLOCK_SIZE,
663 .setkey = ablk_set_key,
664 .encrypt = ablk_encrypt,
665 .decrypt = ablk_encrypt,
666 .geniv = "chainiv",
671 #ifdef HAS_CTR
672 static int ablk_rfc3686_ctr_init(struct crypto_tfm *tfm)
674 struct cryptd_ablkcipher *cryptd_tfm;
676 cryptd_tfm = cryptd_alloc_ablkcipher(
677 "rfc3686(__driver-ctr-aes-aesni)", 0, 0);
678 if (IS_ERR(cryptd_tfm))
679 return PTR_ERR(cryptd_tfm);
680 ablk_init_common(tfm, cryptd_tfm);
681 return 0;
684 static struct crypto_alg ablk_rfc3686_ctr_alg = {
685 .cra_name = "rfc3686(ctr(aes))",
686 .cra_driver_name = "rfc3686-ctr-aes-aesni",
687 .cra_priority = 400,
688 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
689 .cra_blocksize = 1,
690 .cra_ctxsize = sizeof(struct async_aes_ctx),
691 .cra_alignmask = 0,
692 .cra_type = &crypto_ablkcipher_type,
693 .cra_module = THIS_MODULE,
694 .cra_list = LIST_HEAD_INIT(ablk_rfc3686_ctr_alg.cra_list),
695 .cra_init = ablk_rfc3686_ctr_init,
696 .cra_exit = ablk_exit,
697 .cra_u = {
698 .ablkcipher = {
699 .min_keysize = AES_MIN_KEY_SIZE+CTR_RFC3686_NONCE_SIZE,
700 .max_keysize = AES_MAX_KEY_SIZE+CTR_RFC3686_NONCE_SIZE,
701 .ivsize = CTR_RFC3686_IV_SIZE,
702 .setkey = ablk_set_key,
703 .encrypt = ablk_encrypt,
704 .decrypt = ablk_decrypt,
705 .geniv = "seqiv",
709 #endif
710 #endif
712 #ifdef HAS_LRW
713 static int ablk_lrw_init(struct crypto_tfm *tfm)
715 struct cryptd_ablkcipher *cryptd_tfm;
717 cryptd_tfm = cryptd_alloc_ablkcipher("fpu(lrw(__driver-aes-aesni))",
718 0, 0);
719 if (IS_ERR(cryptd_tfm))
720 return PTR_ERR(cryptd_tfm);
721 ablk_init_common(tfm, cryptd_tfm);
722 return 0;
725 static struct crypto_alg ablk_lrw_alg = {
726 .cra_name = "lrw(aes)",
727 .cra_driver_name = "lrw-aes-aesni",
728 .cra_priority = 400,
729 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
730 .cra_blocksize = AES_BLOCK_SIZE,
731 .cra_ctxsize = sizeof(struct async_aes_ctx),
732 .cra_alignmask = 0,
733 .cra_type = &crypto_ablkcipher_type,
734 .cra_module = THIS_MODULE,
735 .cra_list = LIST_HEAD_INIT(ablk_lrw_alg.cra_list),
736 .cra_init = ablk_lrw_init,
737 .cra_exit = ablk_exit,
738 .cra_u = {
739 .ablkcipher = {
740 .min_keysize = AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
741 .max_keysize = AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
742 .ivsize = AES_BLOCK_SIZE,
743 .setkey = ablk_set_key,
744 .encrypt = ablk_encrypt,
745 .decrypt = ablk_decrypt,
749 #endif
751 #ifdef HAS_PCBC
752 static int ablk_pcbc_init(struct crypto_tfm *tfm)
754 struct cryptd_ablkcipher *cryptd_tfm;
756 cryptd_tfm = cryptd_alloc_ablkcipher("fpu(pcbc(__driver-aes-aesni))",
757 0, 0);
758 if (IS_ERR(cryptd_tfm))
759 return PTR_ERR(cryptd_tfm);
760 ablk_init_common(tfm, cryptd_tfm);
761 return 0;
764 static struct crypto_alg ablk_pcbc_alg = {
765 .cra_name = "pcbc(aes)",
766 .cra_driver_name = "pcbc-aes-aesni",
767 .cra_priority = 400,
768 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
769 .cra_blocksize = AES_BLOCK_SIZE,
770 .cra_ctxsize = sizeof(struct async_aes_ctx),
771 .cra_alignmask = 0,
772 .cra_type = &crypto_ablkcipher_type,
773 .cra_module = THIS_MODULE,
774 .cra_list = LIST_HEAD_INIT(ablk_pcbc_alg.cra_list),
775 .cra_init = ablk_pcbc_init,
776 .cra_exit = ablk_exit,
777 .cra_u = {
778 .ablkcipher = {
779 .min_keysize = AES_MIN_KEY_SIZE,
780 .max_keysize = AES_MAX_KEY_SIZE,
781 .ivsize = AES_BLOCK_SIZE,
782 .setkey = ablk_set_key,
783 .encrypt = ablk_encrypt,
784 .decrypt = ablk_decrypt,
788 #endif
790 #ifdef HAS_XTS
791 static int ablk_xts_init(struct crypto_tfm *tfm)
793 struct cryptd_ablkcipher *cryptd_tfm;
795 cryptd_tfm = cryptd_alloc_ablkcipher("fpu(xts(__driver-aes-aesni))",
796 0, 0);
797 if (IS_ERR(cryptd_tfm))
798 return PTR_ERR(cryptd_tfm);
799 ablk_init_common(tfm, cryptd_tfm);
800 return 0;
803 static struct crypto_alg ablk_xts_alg = {
804 .cra_name = "xts(aes)",
805 .cra_driver_name = "xts-aes-aesni",
806 .cra_priority = 400,
807 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
808 .cra_blocksize = AES_BLOCK_SIZE,
809 .cra_ctxsize = sizeof(struct async_aes_ctx),
810 .cra_alignmask = 0,
811 .cra_type = &crypto_ablkcipher_type,
812 .cra_module = THIS_MODULE,
813 .cra_list = LIST_HEAD_INIT(ablk_xts_alg.cra_list),
814 .cra_init = ablk_xts_init,
815 .cra_exit = ablk_exit,
816 .cra_u = {
817 .ablkcipher = {
818 .min_keysize = 2 * AES_MIN_KEY_SIZE,
819 .max_keysize = 2 * AES_MAX_KEY_SIZE,
820 .ivsize = AES_BLOCK_SIZE,
821 .setkey = ablk_set_key,
822 .encrypt = ablk_encrypt,
823 .decrypt = ablk_decrypt,
827 #endif
829 #ifdef CONFIG_X86_64
830 static int rfc4106_init(struct crypto_tfm *tfm)
832 struct cryptd_aead *cryptd_tfm;
833 struct aesni_rfc4106_gcm_ctx *ctx = (struct aesni_rfc4106_gcm_ctx *)
834 PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN);
835 struct crypto_aead *cryptd_child;
836 struct aesni_rfc4106_gcm_ctx *child_ctx;
837 cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni", 0, 0);
838 if (IS_ERR(cryptd_tfm))
839 return PTR_ERR(cryptd_tfm);
841 cryptd_child = cryptd_aead_child(cryptd_tfm);
842 child_ctx = aesni_rfc4106_gcm_ctx_get(cryptd_child);
843 memcpy(child_ctx, ctx, sizeof(*ctx));
844 ctx->cryptd_tfm = cryptd_tfm;
845 tfm->crt_aead.reqsize = sizeof(struct aead_request)
846 + crypto_aead_reqsize(&cryptd_tfm->base);
847 return 0;
850 static void rfc4106_exit(struct crypto_tfm *tfm)
852 struct aesni_rfc4106_gcm_ctx *ctx =
853 (struct aesni_rfc4106_gcm_ctx *)
854 PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN);
855 if (!IS_ERR(ctx->cryptd_tfm))
856 cryptd_free_aead(ctx->cryptd_tfm);
857 return;
860 static void
861 rfc4106_set_hash_subkey_done(struct crypto_async_request *req, int err)
863 struct aesni_gcm_set_hash_subkey_result *result = req->data;
865 if (err == -EINPROGRESS)
866 return;
867 result->err = err;
868 complete(&result->completion);
871 static int
872 rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
874 struct crypto_ablkcipher *ctr_tfm;
875 struct ablkcipher_request *req;
876 int ret = -EINVAL;
877 struct aesni_hash_subkey_req_data *req_data;
879 ctr_tfm = crypto_alloc_ablkcipher("ctr(aes)", 0, 0);
880 if (IS_ERR(ctr_tfm))
881 return PTR_ERR(ctr_tfm);
883 crypto_ablkcipher_clear_flags(ctr_tfm, ~0);
885 ret = crypto_ablkcipher_setkey(ctr_tfm, key, key_len);
886 if (ret)
887 goto out_free_ablkcipher;
889 ret = -ENOMEM;
890 req = ablkcipher_request_alloc(ctr_tfm, GFP_KERNEL);
891 if (!req)
892 goto out_free_ablkcipher;
894 req_data = kmalloc(sizeof(*req_data), GFP_KERNEL);
895 if (!req_data)
896 goto out_free_request;
898 memset(req_data->iv, 0, sizeof(req_data->iv));
900 /* Clear the data in the hash sub key container to zero.*/
901 /* We want to cipher all zeros to create the hash sub key. */
902 memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
904 init_completion(&req_data->result.completion);
905 sg_init_one(&req_data->sg, hash_subkey, RFC4106_HASH_SUBKEY_SIZE);
906 ablkcipher_request_set_tfm(req, ctr_tfm);
907 ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
908 CRYPTO_TFM_REQ_MAY_BACKLOG,
909 rfc4106_set_hash_subkey_done,
910 &req_data->result);
912 ablkcipher_request_set_crypt(req, &req_data->sg,
913 &req_data->sg, RFC4106_HASH_SUBKEY_SIZE, req_data->iv);
915 ret = crypto_ablkcipher_encrypt(req);
916 if (ret == -EINPROGRESS || ret == -EBUSY) {
917 ret = wait_for_completion_interruptible
918 (&req_data->result.completion);
919 if (!ret)
920 ret = req_data->result.err;
922 kfree(req_data);
923 out_free_request:
924 ablkcipher_request_free(req);
925 out_free_ablkcipher:
926 crypto_free_ablkcipher(ctr_tfm);
927 return ret;
930 static int rfc4106_set_key(struct crypto_aead *parent, const u8 *key,
931 unsigned int key_len)
933 int ret = 0;
934 struct crypto_tfm *tfm = crypto_aead_tfm(parent);
935 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(parent);
936 struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
937 struct aesni_rfc4106_gcm_ctx *child_ctx =
938 aesni_rfc4106_gcm_ctx_get(cryptd_child);
939 u8 *new_key_mem = NULL;
941 if (key_len < 4) {
942 crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
943 return -EINVAL;
945 /*Account for 4 byte nonce at the end.*/
946 key_len -= 4;
947 if (key_len != AES_KEYSIZE_128) {
948 crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
949 return -EINVAL;
952 memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
953 /*This must be on a 16 byte boundary!*/
954 if ((unsigned long)(&(ctx->aes_key_expanded.key_enc[0])) % AESNI_ALIGN)
955 return -EINVAL;
957 if ((unsigned long)key % AESNI_ALIGN) {
958 /*key is not aligned: use an auxuliar aligned pointer*/
959 new_key_mem = kmalloc(key_len+AESNI_ALIGN, GFP_KERNEL);
960 if (!new_key_mem)
961 return -ENOMEM;
963 new_key_mem = PTR_ALIGN(new_key_mem, AESNI_ALIGN);
964 memcpy(new_key_mem, key, key_len);
965 key = new_key_mem;
968 if (!irq_fpu_usable())
969 ret = crypto_aes_expand_key(&(ctx->aes_key_expanded),
970 key, key_len);
971 else {
972 kernel_fpu_begin();
973 ret = aesni_set_key(&(ctx->aes_key_expanded), key, key_len);
974 kernel_fpu_end();
976 /*This must be on a 16 byte boundary!*/
977 if ((unsigned long)(&(ctx->hash_subkey[0])) % AESNI_ALIGN) {
978 ret = -EINVAL;
979 goto exit;
981 ret = rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
982 memcpy(child_ctx, ctx, sizeof(*ctx));
983 exit:
984 kfree(new_key_mem);
985 return ret;
988 /* This is the Integrity Check Value (aka the authentication tag length and can
989 * be 8, 12 or 16 bytes long. */
990 static int rfc4106_set_authsize(struct crypto_aead *parent,
991 unsigned int authsize)
993 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(parent);
994 struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
996 switch (authsize) {
997 case 8:
998 case 12:
999 case 16:
1000 break;
1001 default:
1002 return -EINVAL;
1004 crypto_aead_crt(parent)->authsize = authsize;
1005 crypto_aead_crt(cryptd_child)->authsize = authsize;
1006 return 0;
1009 static int rfc4106_encrypt(struct aead_request *req)
1011 int ret;
1012 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1013 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
1015 if (!irq_fpu_usable()) {
1016 struct aead_request *cryptd_req =
1017 (struct aead_request *) aead_request_ctx(req);
1018 memcpy(cryptd_req, req, sizeof(*req));
1019 aead_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
1020 return crypto_aead_encrypt(cryptd_req);
1021 } else {
1022 struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
1023 kernel_fpu_begin();
1024 ret = cryptd_child->base.crt_aead.encrypt(req);
1025 kernel_fpu_end();
1026 return ret;
1030 static int rfc4106_decrypt(struct aead_request *req)
1032 int ret;
1033 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1034 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
1036 if (!irq_fpu_usable()) {
1037 struct aead_request *cryptd_req =
1038 (struct aead_request *) aead_request_ctx(req);
1039 memcpy(cryptd_req, req, sizeof(*req));
1040 aead_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
1041 return crypto_aead_decrypt(cryptd_req);
1042 } else {
1043 struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
1044 kernel_fpu_begin();
1045 ret = cryptd_child->base.crt_aead.decrypt(req);
1046 kernel_fpu_end();
1047 return ret;
1051 static struct crypto_alg rfc4106_alg = {
1052 .cra_name = "rfc4106(gcm(aes))",
1053 .cra_driver_name = "rfc4106-gcm-aesni",
1054 .cra_priority = 400,
1055 .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1056 .cra_blocksize = 1,
1057 .cra_ctxsize = sizeof(struct aesni_rfc4106_gcm_ctx) + AESNI_ALIGN,
1058 .cra_alignmask = 0,
1059 .cra_type = &crypto_nivaead_type,
1060 .cra_module = THIS_MODULE,
1061 .cra_list = LIST_HEAD_INIT(rfc4106_alg.cra_list),
1062 .cra_init = rfc4106_init,
1063 .cra_exit = rfc4106_exit,
1064 .cra_u = {
1065 .aead = {
1066 .setkey = rfc4106_set_key,
1067 .setauthsize = rfc4106_set_authsize,
1068 .encrypt = rfc4106_encrypt,
1069 .decrypt = rfc4106_decrypt,
1070 .geniv = "seqiv",
1071 .ivsize = 8,
1072 .maxauthsize = 16,
1077 static int __driver_rfc4106_encrypt(struct aead_request *req)
1079 u8 one_entry_in_sg = 0;
1080 u8 *src, *dst, *assoc;
1081 __be32 counter = cpu_to_be32(1);
1082 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1083 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
1084 void *aes_ctx = &(ctx->aes_key_expanded);
1085 unsigned long auth_tag_len = crypto_aead_authsize(tfm);
1086 u8 iv_tab[16+AESNI_ALIGN];
1087 u8* iv = (u8 *) PTR_ALIGN((u8 *)iv_tab, AESNI_ALIGN);
1088 struct scatter_walk src_sg_walk;
1089 struct scatter_walk assoc_sg_walk;
1090 struct scatter_walk dst_sg_walk;
1091 unsigned int i;
1093 /* Assuming we are supporting rfc4106 64-bit extended */
1094 /* sequence numbers We need to have the AAD length equal */
1095 /* to 8 or 12 bytes */
1096 if (unlikely(req->assoclen != 8 && req->assoclen != 12))
1097 return -EINVAL;
1098 /* IV below built */
1099 for (i = 0; i < 4; i++)
1100 *(iv+i) = ctx->nonce[i];
1101 for (i = 0; i < 8; i++)
1102 *(iv+4+i) = req->iv[i];
1103 *((__be32 *)(iv+12)) = counter;
1105 if ((sg_is_last(req->src)) && (sg_is_last(req->assoc))) {
1106 one_entry_in_sg = 1;
1107 scatterwalk_start(&src_sg_walk, req->src);
1108 scatterwalk_start(&assoc_sg_walk, req->assoc);
1109 src = scatterwalk_map(&src_sg_walk, 0);
1110 assoc = scatterwalk_map(&assoc_sg_walk, 0);
1111 dst = src;
1112 if (unlikely(req->src != req->dst)) {
1113 scatterwalk_start(&dst_sg_walk, req->dst);
1114 dst = scatterwalk_map(&dst_sg_walk, 0);
1117 } else {
1118 /* Allocate memory for src, dst, assoc */
1119 src = kmalloc(req->cryptlen + auth_tag_len + req->assoclen,
1120 GFP_ATOMIC);
1121 if (unlikely(!src))
1122 return -ENOMEM;
1123 assoc = (src + req->cryptlen + auth_tag_len);
1124 scatterwalk_map_and_copy(src, req->src, 0, req->cryptlen, 0);
1125 scatterwalk_map_and_copy(assoc, req->assoc, 0,
1126 req->assoclen, 0);
1127 dst = src;
1130 aesni_gcm_enc(aes_ctx, dst, src, (unsigned long)req->cryptlen, iv,
1131 ctx->hash_subkey, assoc, (unsigned long)req->assoclen, dst
1132 + ((unsigned long)req->cryptlen), auth_tag_len);
1134 /* The authTag (aka the Integrity Check Value) needs to be written
1135 * back to the packet. */
1136 if (one_entry_in_sg) {
1137 if (unlikely(req->src != req->dst)) {
1138 scatterwalk_unmap(dst, 0);
1139 scatterwalk_done(&dst_sg_walk, 0, 0);
1141 scatterwalk_unmap(src, 0);
1142 scatterwalk_unmap(assoc, 0);
1143 scatterwalk_done(&src_sg_walk, 0, 0);
1144 scatterwalk_done(&assoc_sg_walk, 0, 0);
1145 } else {
1146 scatterwalk_map_and_copy(dst, req->dst, 0,
1147 req->cryptlen + auth_tag_len, 1);
1148 kfree(src);
1150 return 0;
1153 static int __driver_rfc4106_decrypt(struct aead_request *req)
1155 u8 one_entry_in_sg = 0;
1156 u8 *src, *dst, *assoc;
1157 unsigned long tempCipherLen = 0;
1158 __be32 counter = cpu_to_be32(1);
1159 int retval = 0;
1160 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1161 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
1162 void *aes_ctx = &(ctx->aes_key_expanded);
1163 unsigned long auth_tag_len = crypto_aead_authsize(tfm);
1164 u8 iv_and_authTag[32+AESNI_ALIGN];
1165 u8 *iv = (u8 *) PTR_ALIGN((u8 *)iv_and_authTag, AESNI_ALIGN);
1166 u8 *authTag = iv + 16;
1167 struct scatter_walk src_sg_walk;
1168 struct scatter_walk assoc_sg_walk;
1169 struct scatter_walk dst_sg_walk;
1170 unsigned int i;
1172 if (unlikely((req->cryptlen < auth_tag_len) ||
1173 (req->assoclen != 8 && req->assoclen != 12)))
1174 return -EINVAL;
1175 /* Assuming we are supporting rfc4106 64-bit extended */
1176 /* sequence numbers We need to have the AAD length */
1177 /* equal to 8 or 12 bytes */
1179 tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len);
1180 /* IV below built */
1181 for (i = 0; i < 4; i++)
1182 *(iv+i) = ctx->nonce[i];
1183 for (i = 0; i < 8; i++)
1184 *(iv+4+i) = req->iv[i];
1185 *((__be32 *)(iv+12)) = counter;
1187 if ((sg_is_last(req->src)) && (sg_is_last(req->assoc))) {
1188 one_entry_in_sg = 1;
1189 scatterwalk_start(&src_sg_walk, req->src);
1190 scatterwalk_start(&assoc_sg_walk, req->assoc);
1191 src = scatterwalk_map(&src_sg_walk, 0);
1192 assoc = scatterwalk_map(&assoc_sg_walk, 0);
1193 dst = src;
1194 if (unlikely(req->src != req->dst)) {
1195 scatterwalk_start(&dst_sg_walk, req->dst);
1196 dst = scatterwalk_map(&dst_sg_walk, 0);
1199 } else {
1200 /* Allocate memory for src, dst, assoc */
1201 src = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC);
1202 if (!src)
1203 return -ENOMEM;
1204 assoc = (src + req->cryptlen + auth_tag_len);
1205 scatterwalk_map_and_copy(src, req->src, 0, req->cryptlen, 0);
1206 scatterwalk_map_and_copy(assoc, req->assoc, 0,
1207 req->assoclen, 0);
1208 dst = src;
1211 aesni_gcm_dec(aes_ctx, dst, src, tempCipherLen, iv,
1212 ctx->hash_subkey, assoc, (unsigned long)req->assoclen,
1213 authTag, auth_tag_len);
1215 /* Compare generated tag with passed in tag. */
1216 retval = memcmp(src + tempCipherLen, authTag, auth_tag_len) ?
1217 -EBADMSG : 0;
1219 if (one_entry_in_sg) {
1220 if (unlikely(req->src != req->dst)) {
1221 scatterwalk_unmap(dst, 0);
1222 scatterwalk_done(&dst_sg_walk, 0, 0);
1224 scatterwalk_unmap(src, 0);
1225 scatterwalk_unmap(assoc, 0);
1226 scatterwalk_done(&src_sg_walk, 0, 0);
1227 scatterwalk_done(&assoc_sg_walk, 0, 0);
1228 } else {
1229 scatterwalk_map_and_copy(dst, req->dst, 0, req->cryptlen, 1);
1230 kfree(src);
1232 return retval;
1235 static struct crypto_alg __rfc4106_alg = {
1236 .cra_name = "__gcm-aes-aesni",
1237 .cra_driver_name = "__driver-gcm-aes-aesni",
1238 .cra_priority = 0,
1239 .cra_flags = CRYPTO_ALG_TYPE_AEAD,
1240 .cra_blocksize = 1,
1241 .cra_ctxsize = sizeof(struct aesni_rfc4106_gcm_ctx) + AESNI_ALIGN,
1242 .cra_alignmask = 0,
1243 .cra_type = &crypto_aead_type,
1244 .cra_module = THIS_MODULE,
1245 .cra_list = LIST_HEAD_INIT(__rfc4106_alg.cra_list),
1246 .cra_u = {
1247 .aead = {
1248 .encrypt = __driver_rfc4106_encrypt,
1249 .decrypt = __driver_rfc4106_decrypt,
1253 #endif
1255 static int __init aesni_init(void)
1257 int err;
1259 if (!cpu_has_aes) {
1260 printk(KERN_INFO "Intel AES-NI instructions are not detected.\n");
1261 return -ENODEV;
1264 if ((err = crypto_fpu_init()))
1265 goto fpu_err;
1266 if ((err = crypto_register_alg(&aesni_alg)))
1267 goto aes_err;
1268 if ((err = crypto_register_alg(&__aesni_alg)))
1269 goto __aes_err;
1270 if ((err = crypto_register_alg(&blk_ecb_alg)))
1271 goto blk_ecb_err;
1272 if ((err = crypto_register_alg(&blk_cbc_alg)))
1273 goto blk_cbc_err;
1274 if ((err = crypto_register_alg(&ablk_ecb_alg)))
1275 goto ablk_ecb_err;
1276 if ((err = crypto_register_alg(&ablk_cbc_alg)))
1277 goto ablk_cbc_err;
1278 #ifdef CONFIG_X86_64
1279 if ((err = crypto_register_alg(&blk_ctr_alg)))
1280 goto blk_ctr_err;
1281 if ((err = crypto_register_alg(&ablk_ctr_alg)))
1282 goto ablk_ctr_err;
1283 if ((err = crypto_register_alg(&__rfc4106_alg)))
1284 goto __aead_gcm_err;
1285 if ((err = crypto_register_alg(&rfc4106_alg)))
1286 goto aead_gcm_err;
1287 #ifdef HAS_CTR
1288 if ((err = crypto_register_alg(&ablk_rfc3686_ctr_alg)))
1289 goto ablk_rfc3686_ctr_err;
1290 #endif
1291 #endif
1292 #ifdef HAS_LRW
1293 if ((err = crypto_register_alg(&ablk_lrw_alg)))
1294 goto ablk_lrw_err;
1295 #endif
1296 #ifdef HAS_PCBC
1297 if ((err = crypto_register_alg(&ablk_pcbc_alg)))
1298 goto ablk_pcbc_err;
1299 #endif
1300 #ifdef HAS_XTS
1301 if ((err = crypto_register_alg(&ablk_xts_alg)))
1302 goto ablk_xts_err;
1303 #endif
1304 return err;
1306 #ifdef HAS_XTS
1307 ablk_xts_err:
1308 #endif
1309 #ifdef HAS_PCBC
1310 crypto_unregister_alg(&ablk_pcbc_alg);
1311 ablk_pcbc_err:
1312 #endif
1313 #ifdef HAS_LRW
1314 crypto_unregister_alg(&ablk_lrw_alg);
1315 ablk_lrw_err:
1316 #endif
1317 #ifdef CONFIG_X86_64
1318 #ifdef HAS_CTR
1319 crypto_unregister_alg(&ablk_rfc3686_ctr_alg);
1320 ablk_rfc3686_ctr_err:
1321 #endif
1322 crypto_unregister_alg(&rfc4106_alg);
1323 aead_gcm_err:
1324 crypto_unregister_alg(&__rfc4106_alg);
1325 __aead_gcm_err:
1326 crypto_unregister_alg(&ablk_ctr_alg);
1327 ablk_ctr_err:
1328 crypto_unregister_alg(&blk_ctr_alg);
1329 blk_ctr_err:
1330 #endif
1331 crypto_unregister_alg(&ablk_cbc_alg);
1332 ablk_cbc_err:
1333 crypto_unregister_alg(&ablk_ecb_alg);
1334 ablk_ecb_err:
1335 crypto_unregister_alg(&blk_cbc_alg);
1336 blk_cbc_err:
1337 crypto_unregister_alg(&blk_ecb_alg);
1338 blk_ecb_err:
1339 crypto_unregister_alg(&__aesni_alg);
1340 __aes_err:
1341 crypto_unregister_alg(&aesni_alg);
1342 aes_err:
1343 fpu_err:
1344 return err;
1347 static void __exit aesni_exit(void)
1349 #ifdef HAS_XTS
1350 crypto_unregister_alg(&ablk_xts_alg);
1351 #endif
1352 #ifdef HAS_PCBC
1353 crypto_unregister_alg(&ablk_pcbc_alg);
1354 #endif
1355 #ifdef HAS_LRW
1356 crypto_unregister_alg(&ablk_lrw_alg);
1357 #endif
1358 #ifdef CONFIG_X86_64
1359 #ifdef HAS_CTR
1360 crypto_unregister_alg(&ablk_rfc3686_ctr_alg);
1361 #endif
1362 crypto_unregister_alg(&rfc4106_alg);
1363 crypto_unregister_alg(&__rfc4106_alg);
1364 crypto_unregister_alg(&ablk_ctr_alg);
1365 crypto_unregister_alg(&blk_ctr_alg);
1366 #endif
1367 crypto_unregister_alg(&ablk_cbc_alg);
1368 crypto_unregister_alg(&ablk_ecb_alg);
1369 crypto_unregister_alg(&blk_cbc_alg);
1370 crypto_unregister_alg(&blk_ecb_alg);
1371 crypto_unregister_alg(&__aesni_alg);
1372 crypto_unregister_alg(&aesni_alg);
1374 crypto_fpu_exit();
1377 module_init(aesni_init);
1378 module_exit(aesni_exit);
1380 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
1381 MODULE_LICENSE("GPL");
1382 MODULE_ALIAS("aes");