ASoC: Tegra: Rename harmony.c to tegra_wm8903.c
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / shmem.c
blob58da7c150ba6d7b4132f423663ff920345038d7c
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 * This file is released under the GPL.
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/percpu_counter.h>
32 #include <linux/swap.h>
34 static struct vfsmount *shm_mnt;
36 #ifdef CONFIG_SHMEM
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum
74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
77 * We use / and * instead of shifts in the definitions below, so that the swap
78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
86 #define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87 #define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
89 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93 #define SHMEM_PAGEIN VM_READ
94 #define SHMEM_TRUNCATE VM_WRITE
96 /* Definition to limit shmem_truncate's steps between cond_rescheds */
97 #define LATENCY_LIMIT 64
99 /* Pretend that each entry is of this size in directory's i_size */
100 #define BOGO_DIRENT_SIZE 20
102 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
103 enum sgp_type {
104 SGP_READ, /* don't exceed i_size, don't allocate page */
105 SGP_CACHE, /* don't exceed i_size, may allocate page */
106 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
107 SGP_WRITE, /* may exceed i_size, may allocate page */
110 #ifdef CONFIG_TMPFS
111 static unsigned long shmem_default_max_blocks(void)
113 return totalram_pages / 2;
116 static unsigned long shmem_default_max_inodes(void)
118 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
120 #endif
122 static int shmem_getpage(struct inode *inode, unsigned long idx,
123 struct page **pagep, enum sgp_type sgp, int *type);
125 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
128 * The above definition of ENTRIES_PER_PAGE, and the use of
129 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
130 * might be reconsidered if it ever diverges from PAGE_SIZE.
132 * Mobility flags are masked out as swap vectors cannot move
134 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
135 PAGE_CACHE_SHIFT-PAGE_SHIFT);
138 static inline void shmem_dir_free(struct page *page)
140 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
143 static struct page **shmem_dir_map(struct page *page)
145 return (struct page **)kmap_atomic(page, KM_USER0);
148 static inline void shmem_dir_unmap(struct page **dir)
150 kunmap_atomic(dir, KM_USER0);
153 static swp_entry_t *shmem_swp_map(struct page *page)
155 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
158 static inline void shmem_swp_balance_unmap(void)
161 * When passing a pointer to an i_direct entry, to code which
162 * also handles indirect entries and so will shmem_swp_unmap,
163 * we must arrange for the preempt count to remain in balance.
164 * What kmap_atomic of a lowmem page does depends on config
165 * and architecture, so pretend to kmap_atomic some lowmem page.
167 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
170 static inline void shmem_swp_unmap(swp_entry_t *entry)
172 kunmap_atomic(entry, KM_USER1);
175 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
177 return sb->s_fs_info;
181 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
182 * for shared memory and for shared anonymous (/dev/zero) mappings
183 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
184 * consistent with the pre-accounting of private mappings ...
186 static inline int shmem_acct_size(unsigned long flags, loff_t size)
188 return (flags & VM_NORESERVE) ?
189 0 : security_vm_enough_memory_kern(VM_ACCT(size));
192 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
194 if (!(flags & VM_NORESERVE))
195 vm_unacct_memory(VM_ACCT(size));
199 * ... whereas tmpfs objects are accounted incrementally as
200 * pages are allocated, in order to allow huge sparse files.
201 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
202 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
204 static inline int shmem_acct_block(unsigned long flags)
206 return (flags & VM_NORESERVE) ?
207 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
212 if (flags & VM_NORESERVE)
213 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
216 static const struct super_operations shmem_ops;
217 static const struct address_space_operations shmem_aops;
218 static const struct file_operations shmem_file_operations;
219 static const struct inode_operations shmem_inode_operations;
220 static const struct inode_operations shmem_dir_inode_operations;
221 static const struct inode_operations shmem_special_inode_operations;
222 static const struct vm_operations_struct shmem_vm_ops;
224 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
225 .ra_pages = 0, /* No readahead */
226 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
229 static LIST_HEAD(shmem_swaplist);
230 static DEFINE_MUTEX(shmem_swaplist_mutex);
232 static void shmem_free_blocks(struct inode *inode, long pages)
234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235 if (sbinfo->max_blocks) {
236 percpu_counter_add(&sbinfo->used_blocks, -pages);
237 spin_lock(&inode->i_lock);
238 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
239 spin_unlock(&inode->i_lock);
243 static int shmem_reserve_inode(struct super_block *sb)
245 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
246 if (sbinfo->max_inodes) {
247 spin_lock(&sbinfo->stat_lock);
248 if (!sbinfo->free_inodes) {
249 spin_unlock(&sbinfo->stat_lock);
250 return -ENOSPC;
252 sbinfo->free_inodes--;
253 spin_unlock(&sbinfo->stat_lock);
255 return 0;
258 static void shmem_free_inode(struct super_block *sb)
260 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
261 if (sbinfo->max_inodes) {
262 spin_lock(&sbinfo->stat_lock);
263 sbinfo->free_inodes++;
264 spin_unlock(&sbinfo->stat_lock);
269 * shmem_recalc_inode - recalculate the size of an inode
270 * @inode: inode to recalc
272 * We have to calculate the free blocks since the mm can drop
273 * undirtied hole pages behind our back.
275 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
276 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
278 * It has to be called with the spinlock held.
280 static void shmem_recalc_inode(struct inode *inode)
282 struct shmem_inode_info *info = SHMEM_I(inode);
283 long freed;
285 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
286 if (freed > 0) {
287 info->alloced -= freed;
288 shmem_unacct_blocks(info->flags, freed);
289 shmem_free_blocks(inode, freed);
294 * shmem_swp_entry - find the swap vector position in the info structure
295 * @info: info structure for the inode
296 * @index: index of the page to find
297 * @page: optional page to add to the structure. Has to be preset to
298 * all zeros
300 * If there is no space allocated yet it will return NULL when
301 * page is NULL, else it will use the page for the needed block,
302 * setting it to NULL on return to indicate that it has been used.
304 * The swap vector is organized the following way:
306 * There are SHMEM_NR_DIRECT entries directly stored in the
307 * shmem_inode_info structure. So small files do not need an addional
308 * allocation.
310 * For pages with index > SHMEM_NR_DIRECT there is the pointer
311 * i_indirect which points to a page which holds in the first half
312 * doubly indirect blocks, in the second half triple indirect blocks:
314 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
315 * following layout (for SHMEM_NR_DIRECT == 16):
317 * i_indirect -> dir --> 16-19
318 * | +-> 20-23
320 * +-->dir2 --> 24-27
321 * | +-> 28-31
322 * | +-> 32-35
323 * | +-> 36-39
325 * +-->dir3 --> 40-43
326 * +-> 44-47
327 * +-> 48-51
328 * +-> 52-55
330 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
332 unsigned long offset;
333 struct page **dir;
334 struct page *subdir;
336 if (index < SHMEM_NR_DIRECT) {
337 shmem_swp_balance_unmap();
338 return info->i_direct+index;
340 if (!info->i_indirect) {
341 if (page) {
342 info->i_indirect = *page;
343 *page = NULL;
345 return NULL; /* need another page */
348 index -= SHMEM_NR_DIRECT;
349 offset = index % ENTRIES_PER_PAGE;
350 index /= ENTRIES_PER_PAGE;
351 dir = shmem_dir_map(info->i_indirect);
353 if (index >= ENTRIES_PER_PAGE/2) {
354 index -= ENTRIES_PER_PAGE/2;
355 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
356 index %= ENTRIES_PER_PAGE;
357 subdir = *dir;
358 if (!subdir) {
359 if (page) {
360 *dir = *page;
361 *page = NULL;
363 shmem_dir_unmap(dir);
364 return NULL; /* need another page */
366 shmem_dir_unmap(dir);
367 dir = shmem_dir_map(subdir);
370 dir += index;
371 subdir = *dir;
372 if (!subdir) {
373 if (!page || !(subdir = *page)) {
374 shmem_dir_unmap(dir);
375 return NULL; /* need a page */
377 *dir = subdir;
378 *page = NULL;
380 shmem_dir_unmap(dir);
381 return shmem_swp_map(subdir) + offset;
384 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
386 long incdec = value? 1: -1;
388 entry->val = value;
389 info->swapped += incdec;
390 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
391 struct page *page = kmap_atomic_to_page(entry);
392 set_page_private(page, page_private(page) + incdec);
397 * shmem_swp_alloc - get the position of the swap entry for the page.
398 * @info: info structure for the inode
399 * @index: index of the page to find
400 * @sgp: check and recheck i_size? skip allocation?
402 * If the entry does not exist, allocate it.
404 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
406 struct inode *inode = &info->vfs_inode;
407 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
408 struct page *page = NULL;
409 swp_entry_t *entry;
411 if (sgp != SGP_WRITE &&
412 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
413 return ERR_PTR(-EINVAL);
415 while (!(entry = shmem_swp_entry(info, index, &page))) {
416 if (sgp == SGP_READ)
417 return shmem_swp_map(ZERO_PAGE(0));
419 * Test used_blocks against 1 less max_blocks, since we have 1 data
420 * page (and perhaps indirect index pages) yet to allocate:
421 * a waste to allocate index if we cannot allocate data.
423 if (sbinfo->max_blocks) {
424 if (percpu_counter_compare(&sbinfo->used_blocks, (sbinfo->max_blocks - 1)) > 0)
425 return ERR_PTR(-ENOSPC);
426 percpu_counter_inc(&sbinfo->used_blocks);
427 spin_lock(&inode->i_lock);
428 inode->i_blocks += BLOCKS_PER_PAGE;
429 spin_unlock(&inode->i_lock);
432 spin_unlock(&info->lock);
433 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
434 spin_lock(&info->lock);
436 if (!page) {
437 shmem_free_blocks(inode, 1);
438 return ERR_PTR(-ENOMEM);
440 if (sgp != SGP_WRITE &&
441 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
442 entry = ERR_PTR(-EINVAL);
443 break;
445 if (info->next_index <= index)
446 info->next_index = index + 1;
448 if (page) {
449 /* another task gave its page, or truncated the file */
450 shmem_free_blocks(inode, 1);
451 shmem_dir_free(page);
453 if (info->next_index <= index && !IS_ERR(entry))
454 info->next_index = index + 1;
455 return entry;
459 * shmem_free_swp - free some swap entries in a directory
460 * @dir: pointer to the directory
461 * @edir: pointer after last entry of the directory
462 * @punch_lock: pointer to spinlock when needed for the holepunch case
464 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
465 spinlock_t *punch_lock)
467 spinlock_t *punch_unlock = NULL;
468 swp_entry_t *ptr;
469 int freed = 0;
471 for (ptr = dir; ptr < edir; ptr++) {
472 if (ptr->val) {
473 if (unlikely(punch_lock)) {
474 punch_unlock = punch_lock;
475 punch_lock = NULL;
476 spin_lock(punch_unlock);
477 if (!ptr->val)
478 continue;
480 free_swap_and_cache(*ptr);
481 *ptr = (swp_entry_t){0};
482 freed++;
485 if (punch_unlock)
486 spin_unlock(punch_unlock);
487 return freed;
490 static int shmem_map_and_free_swp(struct page *subdir, int offset,
491 int limit, struct page ***dir, spinlock_t *punch_lock)
493 swp_entry_t *ptr;
494 int freed = 0;
496 ptr = shmem_swp_map(subdir);
497 for (; offset < limit; offset += LATENCY_LIMIT) {
498 int size = limit - offset;
499 if (size > LATENCY_LIMIT)
500 size = LATENCY_LIMIT;
501 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
502 punch_lock);
503 if (need_resched()) {
504 shmem_swp_unmap(ptr);
505 if (*dir) {
506 shmem_dir_unmap(*dir);
507 *dir = NULL;
509 cond_resched();
510 ptr = shmem_swp_map(subdir);
513 shmem_swp_unmap(ptr);
514 return freed;
517 static void shmem_free_pages(struct list_head *next)
519 struct page *page;
520 int freed = 0;
522 do {
523 page = container_of(next, struct page, lru);
524 next = next->next;
525 shmem_dir_free(page);
526 freed++;
527 if (freed >= LATENCY_LIMIT) {
528 cond_resched();
529 freed = 0;
531 } while (next);
534 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
536 struct shmem_inode_info *info = SHMEM_I(inode);
537 unsigned long idx;
538 unsigned long size;
539 unsigned long limit;
540 unsigned long stage;
541 unsigned long diroff;
542 struct page **dir;
543 struct page *topdir;
544 struct page *middir;
545 struct page *subdir;
546 swp_entry_t *ptr;
547 LIST_HEAD(pages_to_free);
548 long nr_pages_to_free = 0;
549 long nr_swaps_freed = 0;
550 int offset;
551 int freed;
552 int punch_hole;
553 spinlock_t *needs_lock;
554 spinlock_t *punch_lock;
555 unsigned long upper_limit;
557 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
558 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
559 if (idx >= info->next_index)
560 return;
562 spin_lock(&info->lock);
563 info->flags |= SHMEM_TRUNCATE;
564 if (likely(end == (loff_t) -1)) {
565 limit = info->next_index;
566 upper_limit = SHMEM_MAX_INDEX;
567 info->next_index = idx;
568 needs_lock = NULL;
569 punch_hole = 0;
570 } else {
571 if (end + 1 >= inode->i_size) { /* we may free a little more */
572 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
573 PAGE_CACHE_SHIFT;
574 upper_limit = SHMEM_MAX_INDEX;
575 } else {
576 limit = (end + 1) >> PAGE_CACHE_SHIFT;
577 upper_limit = limit;
579 needs_lock = &info->lock;
580 punch_hole = 1;
583 topdir = info->i_indirect;
584 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
585 info->i_indirect = NULL;
586 nr_pages_to_free++;
587 list_add(&topdir->lru, &pages_to_free);
589 spin_unlock(&info->lock);
591 if (info->swapped && idx < SHMEM_NR_DIRECT) {
592 ptr = info->i_direct;
593 size = limit;
594 if (size > SHMEM_NR_DIRECT)
595 size = SHMEM_NR_DIRECT;
596 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
600 * If there are no indirect blocks or we are punching a hole
601 * below indirect blocks, nothing to be done.
603 if (!topdir || limit <= SHMEM_NR_DIRECT)
604 goto done2;
607 * The truncation case has already dropped info->lock, and we're safe
608 * because i_size and next_index have already been lowered, preventing
609 * access beyond. But in the punch_hole case, we still need to take
610 * the lock when updating the swap directory, because there might be
611 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
612 * shmem_writepage. However, whenever we find we can remove a whole
613 * directory page (not at the misaligned start or end of the range),
614 * we first NULLify its pointer in the level above, and then have no
615 * need to take the lock when updating its contents: needs_lock and
616 * punch_lock (either pointing to info->lock or NULL) manage this.
619 upper_limit -= SHMEM_NR_DIRECT;
620 limit -= SHMEM_NR_DIRECT;
621 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
622 offset = idx % ENTRIES_PER_PAGE;
623 idx -= offset;
625 dir = shmem_dir_map(topdir);
626 stage = ENTRIES_PER_PAGEPAGE/2;
627 if (idx < ENTRIES_PER_PAGEPAGE/2) {
628 middir = topdir;
629 diroff = idx/ENTRIES_PER_PAGE;
630 } else {
631 dir += ENTRIES_PER_PAGE/2;
632 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
633 while (stage <= idx)
634 stage += ENTRIES_PER_PAGEPAGE;
635 middir = *dir;
636 if (*dir) {
637 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
638 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
639 if (!diroff && !offset && upper_limit >= stage) {
640 if (needs_lock) {
641 spin_lock(needs_lock);
642 *dir = NULL;
643 spin_unlock(needs_lock);
644 needs_lock = NULL;
645 } else
646 *dir = NULL;
647 nr_pages_to_free++;
648 list_add(&middir->lru, &pages_to_free);
650 shmem_dir_unmap(dir);
651 dir = shmem_dir_map(middir);
652 } else {
653 diroff = 0;
654 offset = 0;
655 idx = stage;
659 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
660 if (unlikely(idx == stage)) {
661 shmem_dir_unmap(dir);
662 dir = shmem_dir_map(topdir) +
663 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
664 while (!*dir) {
665 dir++;
666 idx += ENTRIES_PER_PAGEPAGE;
667 if (idx >= limit)
668 goto done1;
670 stage = idx + ENTRIES_PER_PAGEPAGE;
671 middir = *dir;
672 if (punch_hole)
673 needs_lock = &info->lock;
674 if (upper_limit >= stage) {
675 if (needs_lock) {
676 spin_lock(needs_lock);
677 *dir = NULL;
678 spin_unlock(needs_lock);
679 needs_lock = NULL;
680 } else
681 *dir = NULL;
682 nr_pages_to_free++;
683 list_add(&middir->lru, &pages_to_free);
685 shmem_dir_unmap(dir);
686 cond_resched();
687 dir = shmem_dir_map(middir);
688 diroff = 0;
690 punch_lock = needs_lock;
691 subdir = dir[diroff];
692 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
693 if (needs_lock) {
694 spin_lock(needs_lock);
695 dir[diroff] = NULL;
696 spin_unlock(needs_lock);
697 punch_lock = NULL;
698 } else
699 dir[diroff] = NULL;
700 nr_pages_to_free++;
701 list_add(&subdir->lru, &pages_to_free);
703 if (subdir && page_private(subdir) /* has swap entries */) {
704 size = limit - idx;
705 if (size > ENTRIES_PER_PAGE)
706 size = ENTRIES_PER_PAGE;
707 freed = shmem_map_and_free_swp(subdir,
708 offset, size, &dir, punch_lock);
709 if (!dir)
710 dir = shmem_dir_map(middir);
711 nr_swaps_freed += freed;
712 if (offset || punch_lock) {
713 spin_lock(&info->lock);
714 set_page_private(subdir,
715 page_private(subdir) - freed);
716 spin_unlock(&info->lock);
717 } else
718 BUG_ON(page_private(subdir) != freed);
720 offset = 0;
722 done1:
723 shmem_dir_unmap(dir);
724 done2:
725 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
727 * Call truncate_inode_pages again: racing shmem_unuse_inode
728 * may have swizzled a page in from swap since
729 * truncate_pagecache or generic_delete_inode did it, before we
730 * lowered next_index. Also, though shmem_getpage checks
731 * i_size before adding to cache, no recheck after: so fix the
732 * narrow window there too.
734 * Recalling truncate_inode_pages_range and unmap_mapping_range
735 * every time for punch_hole (which never got a chance to clear
736 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
737 * yet hardly ever necessary: try to optimize them out later.
739 truncate_inode_pages_range(inode->i_mapping, start, end);
740 if (punch_hole)
741 unmap_mapping_range(inode->i_mapping, start,
742 end - start, 1);
745 spin_lock(&info->lock);
746 info->flags &= ~SHMEM_TRUNCATE;
747 info->swapped -= nr_swaps_freed;
748 if (nr_pages_to_free)
749 shmem_free_blocks(inode, nr_pages_to_free);
750 shmem_recalc_inode(inode);
751 spin_unlock(&info->lock);
754 * Empty swap vector directory pages to be freed?
756 if (!list_empty(&pages_to_free)) {
757 pages_to_free.prev->next = NULL;
758 shmem_free_pages(pages_to_free.next);
762 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
764 struct inode *inode = dentry->d_inode;
765 loff_t newsize = attr->ia_size;
766 int error;
768 error = inode_change_ok(inode, attr);
769 if (error)
770 return error;
772 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)
773 && newsize != inode->i_size) {
774 struct page *page = NULL;
776 if (newsize < inode->i_size) {
778 * If truncating down to a partial page, then
779 * if that page is already allocated, hold it
780 * in memory until the truncation is over, so
781 * truncate_partial_page cannot miss it were
782 * it assigned to swap.
784 if (newsize & (PAGE_CACHE_SIZE-1)) {
785 (void) shmem_getpage(inode,
786 newsize >> PAGE_CACHE_SHIFT,
787 &page, SGP_READ, NULL);
788 if (page)
789 unlock_page(page);
792 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
793 * detect if any pages might have been added to cache
794 * after truncate_inode_pages. But we needn't bother
795 * if it's being fully truncated to zero-length: the
796 * nrpages check is efficient enough in that case.
798 if (newsize) {
799 struct shmem_inode_info *info = SHMEM_I(inode);
800 spin_lock(&info->lock);
801 info->flags &= ~SHMEM_PAGEIN;
802 spin_unlock(&info->lock);
806 /* XXX(truncate): truncate_setsize should be called last */
807 truncate_setsize(inode, newsize);
808 if (page)
809 page_cache_release(page);
810 shmem_truncate_range(inode, newsize, (loff_t)-1);
813 setattr_copy(inode, attr);
814 #ifdef CONFIG_TMPFS_POSIX_ACL
815 if (attr->ia_valid & ATTR_MODE)
816 error = generic_acl_chmod(inode);
817 #endif
818 return error;
821 static void shmem_evict_inode(struct inode *inode)
823 struct shmem_inode_info *info = SHMEM_I(inode);
825 if (inode->i_mapping->a_ops == &shmem_aops) {
826 truncate_inode_pages(inode->i_mapping, 0);
827 shmem_unacct_size(info->flags, inode->i_size);
828 inode->i_size = 0;
829 shmem_truncate_range(inode, 0, (loff_t)-1);
830 if (!list_empty(&info->swaplist)) {
831 mutex_lock(&shmem_swaplist_mutex);
832 list_del_init(&info->swaplist);
833 mutex_unlock(&shmem_swaplist_mutex);
836 BUG_ON(inode->i_blocks);
837 shmem_free_inode(inode->i_sb);
838 end_writeback(inode);
841 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
843 swp_entry_t *ptr;
845 for (ptr = dir; ptr < edir; ptr++) {
846 if (ptr->val == entry.val)
847 return ptr - dir;
849 return -1;
852 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
854 struct inode *inode;
855 unsigned long idx;
856 unsigned long size;
857 unsigned long limit;
858 unsigned long stage;
859 struct page **dir;
860 struct page *subdir;
861 swp_entry_t *ptr;
862 int offset;
863 int error;
865 idx = 0;
866 ptr = info->i_direct;
867 spin_lock(&info->lock);
868 if (!info->swapped) {
869 list_del_init(&info->swaplist);
870 goto lost2;
872 limit = info->next_index;
873 size = limit;
874 if (size > SHMEM_NR_DIRECT)
875 size = SHMEM_NR_DIRECT;
876 offset = shmem_find_swp(entry, ptr, ptr+size);
877 if (offset >= 0)
878 goto found;
879 if (!info->i_indirect)
880 goto lost2;
882 dir = shmem_dir_map(info->i_indirect);
883 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
885 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
886 if (unlikely(idx == stage)) {
887 shmem_dir_unmap(dir-1);
888 if (cond_resched_lock(&info->lock)) {
889 /* check it has not been truncated */
890 if (limit > info->next_index) {
891 limit = info->next_index;
892 if (idx >= limit)
893 goto lost2;
896 dir = shmem_dir_map(info->i_indirect) +
897 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
898 while (!*dir) {
899 dir++;
900 idx += ENTRIES_PER_PAGEPAGE;
901 if (idx >= limit)
902 goto lost1;
904 stage = idx + ENTRIES_PER_PAGEPAGE;
905 subdir = *dir;
906 shmem_dir_unmap(dir);
907 dir = shmem_dir_map(subdir);
909 subdir = *dir;
910 if (subdir && page_private(subdir)) {
911 ptr = shmem_swp_map(subdir);
912 size = limit - idx;
913 if (size > ENTRIES_PER_PAGE)
914 size = ENTRIES_PER_PAGE;
915 offset = shmem_find_swp(entry, ptr, ptr+size);
916 shmem_swp_unmap(ptr);
917 if (offset >= 0) {
918 shmem_dir_unmap(dir);
919 goto found;
923 lost1:
924 shmem_dir_unmap(dir-1);
925 lost2:
926 spin_unlock(&info->lock);
927 return 0;
928 found:
929 idx += offset;
930 inode = igrab(&info->vfs_inode);
931 spin_unlock(&info->lock);
934 * Move _head_ to start search for next from here.
935 * But be careful: shmem_evict_inode checks list_empty without taking
936 * mutex, and there's an instant in list_move_tail when info->swaplist
937 * would appear empty, if it were the only one on shmem_swaplist. We
938 * could avoid doing it if inode NULL; or use this minor optimization.
940 if (shmem_swaplist.next != &info->swaplist)
941 list_move_tail(&shmem_swaplist, &info->swaplist);
942 mutex_unlock(&shmem_swaplist_mutex);
944 error = 1;
945 if (!inode)
946 goto out;
948 * Charge page using GFP_KERNEL while we can wait.
949 * Charged back to the user(not to caller) when swap account is used.
950 * add_to_page_cache() will be called with GFP_NOWAIT.
952 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
953 if (error)
954 goto out;
955 error = radix_tree_preload(GFP_KERNEL);
956 if (error) {
957 mem_cgroup_uncharge_cache_page(page);
958 goto out;
960 error = 1;
962 spin_lock(&info->lock);
963 ptr = shmem_swp_entry(info, idx, NULL);
964 if (ptr && ptr->val == entry.val) {
965 error = add_to_page_cache_locked(page, inode->i_mapping,
966 idx, GFP_NOWAIT);
967 /* does mem_cgroup_uncharge_cache_page on error */
968 } else /* we must compensate for our precharge above */
969 mem_cgroup_uncharge_cache_page(page);
971 if (error == -EEXIST) {
972 struct page *filepage = find_get_page(inode->i_mapping, idx);
973 error = 1;
974 if (filepage) {
976 * There might be a more uptodate page coming down
977 * from a stacked writepage: forget our swappage if so.
979 if (PageUptodate(filepage))
980 error = 0;
981 page_cache_release(filepage);
984 if (!error) {
985 delete_from_swap_cache(page);
986 set_page_dirty(page);
987 info->flags |= SHMEM_PAGEIN;
988 shmem_swp_set(info, ptr, 0);
989 swap_free(entry);
990 error = 1; /* not an error, but entry was found */
992 if (ptr)
993 shmem_swp_unmap(ptr);
994 spin_unlock(&info->lock);
995 radix_tree_preload_end();
996 out:
997 unlock_page(page);
998 page_cache_release(page);
999 iput(inode); /* allows for NULL */
1000 return error;
1004 * shmem_unuse() search for an eventually swapped out shmem page.
1006 int shmem_unuse(swp_entry_t entry, struct page *page)
1008 struct list_head *p, *next;
1009 struct shmem_inode_info *info;
1010 int found = 0;
1012 mutex_lock(&shmem_swaplist_mutex);
1013 list_for_each_safe(p, next, &shmem_swaplist) {
1014 info = list_entry(p, struct shmem_inode_info, swaplist);
1015 found = shmem_unuse_inode(info, entry, page);
1016 cond_resched();
1017 if (found)
1018 goto out;
1020 mutex_unlock(&shmem_swaplist_mutex);
1022 * Can some race bring us here? We've been holding page lock,
1023 * so I think not; but would rather try again later than BUG()
1025 unlock_page(page);
1026 page_cache_release(page);
1027 out:
1028 return (found < 0) ? found : 0;
1032 * Move the page from the page cache to the swap cache.
1034 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1036 struct shmem_inode_info *info;
1037 swp_entry_t *entry, swap;
1038 struct address_space *mapping;
1039 unsigned long index;
1040 struct inode *inode;
1042 BUG_ON(!PageLocked(page));
1043 mapping = page->mapping;
1044 index = page->index;
1045 inode = mapping->host;
1046 info = SHMEM_I(inode);
1047 if (info->flags & VM_LOCKED)
1048 goto redirty;
1049 if (!total_swap_pages)
1050 goto redirty;
1053 * shmem_backing_dev_info's capabilities prevent regular writeback or
1054 * sync from ever calling shmem_writepage; but a stacking filesystem
1055 * may use the ->writepage of its underlying filesystem, in which case
1056 * tmpfs should write out to swap only in response to memory pressure,
1057 * and not for the writeback threads or sync. However, in those cases,
1058 * we do still want to check if there's a redundant swappage to be
1059 * discarded.
1061 if (wbc->for_reclaim)
1062 swap = get_swap_page();
1063 else
1064 swap.val = 0;
1066 spin_lock(&info->lock);
1067 if (index >= info->next_index) {
1068 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1069 goto unlock;
1071 entry = shmem_swp_entry(info, index, NULL);
1072 if (entry->val) {
1074 * The more uptodate page coming down from a stacked
1075 * writepage should replace our old swappage.
1077 free_swap_and_cache(*entry);
1078 shmem_swp_set(info, entry, 0);
1080 shmem_recalc_inode(inode);
1082 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1083 delete_from_page_cache(page);
1084 shmem_swp_set(info, entry, swap.val);
1085 shmem_swp_unmap(entry);
1086 if (list_empty(&info->swaplist))
1087 inode = igrab(inode);
1088 else
1089 inode = NULL;
1090 spin_unlock(&info->lock);
1091 swap_shmem_alloc(swap);
1092 BUG_ON(page_mapped(page));
1093 swap_writepage(page, wbc);
1094 if (inode) {
1095 mutex_lock(&shmem_swaplist_mutex);
1096 /* move instead of add in case we're racing */
1097 list_move_tail(&info->swaplist, &shmem_swaplist);
1098 mutex_unlock(&shmem_swaplist_mutex);
1099 iput(inode);
1101 return 0;
1104 shmem_swp_unmap(entry);
1105 unlock:
1106 spin_unlock(&info->lock);
1108 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1109 * clear SWAP_HAS_CACHE flag.
1111 swapcache_free(swap, NULL);
1112 redirty:
1113 set_page_dirty(page);
1114 if (wbc->for_reclaim)
1115 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1116 unlock_page(page);
1117 return 0;
1120 #ifdef CONFIG_NUMA
1121 #ifdef CONFIG_TMPFS
1122 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1124 char buffer[64];
1126 if (!mpol || mpol->mode == MPOL_DEFAULT)
1127 return; /* show nothing */
1129 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1131 seq_printf(seq, ",mpol=%s", buffer);
1134 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1136 struct mempolicy *mpol = NULL;
1137 if (sbinfo->mpol) {
1138 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1139 mpol = sbinfo->mpol;
1140 mpol_get(mpol);
1141 spin_unlock(&sbinfo->stat_lock);
1143 return mpol;
1145 #endif /* CONFIG_TMPFS */
1147 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1148 struct shmem_inode_info *info, unsigned long idx)
1150 struct mempolicy mpol, *spol;
1151 struct vm_area_struct pvma;
1152 struct page *page;
1154 spol = mpol_cond_copy(&mpol,
1155 mpol_shared_policy_lookup(&info->policy, idx));
1157 /* Create a pseudo vma that just contains the policy */
1158 pvma.vm_start = 0;
1159 pvma.vm_pgoff = idx;
1160 pvma.vm_ops = NULL;
1161 pvma.vm_policy = spol;
1162 page = swapin_readahead(entry, gfp, &pvma, 0);
1163 return page;
1166 static struct page *shmem_alloc_page(gfp_t gfp,
1167 struct shmem_inode_info *info, unsigned long idx)
1169 struct vm_area_struct pvma;
1171 /* Create a pseudo vma that just contains the policy */
1172 pvma.vm_start = 0;
1173 pvma.vm_pgoff = idx;
1174 pvma.vm_ops = NULL;
1175 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1178 * alloc_page_vma() will drop the shared policy reference
1180 return alloc_page_vma(gfp, &pvma, 0);
1182 #else /* !CONFIG_NUMA */
1183 #ifdef CONFIG_TMPFS
1184 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1187 #endif /* CONFIG_TMPFS */
1189 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1190 struct shmem_inode_info *info, unsigned long idx)
1192 return swapin_readahead(entry, gfp, NULL, 0);
1195 static inline struct page *shmem_alloc_page(gfp_t gfp,
1196 struct shmem_inode_info *info, unsigned long idx)
1198 return alloc_page(gfp);
1200 #endif /* CONFIG_NUMA */
1202 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1203 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1205 return NULL;
1207 #endif
1210 * shmem_getpage - either get the page from swap or allocate a new one
1212 * If we allocate a new one we do not mark it dirty. That's up to the
1213 * vm. If we swap it in we mark it dirty since we also free the swap
1214 * entry since a page cannot live in both the swap and page cache
1216 static int shmem_getpage(struct inode *inode, unsigned long idx,
1217 struct page **pagep, enum sgp_type sgp, int *type)
1219 struct address_space *mapping = inode->i_mapping;
1220 struct shmem_inode_info *info = SHMEM_I(inode);
1221 struct shmem_sb_info *sbinfo;
1222 struct page *filepage = *pagep;
1223 struct page *swappage;
1224 struct page *prealloc_page = NULL;
1225 swp_entry_t *entry;
1226 swp_entry_t swap;
1227 gfp_t gfp;
1228 int error;
1230 if (idx >= SHMEM_MAX_INDEX)
1231 return -EFBIG;
1233 if (type)
1234 *type = 0;
1237 * Normally, filepage is NULL on entry, and either found
1238 * uptodate immediately, or allocated and zeroed, or read
1239 * in under swappage, which is then assigned to filepage.
1240 * But shmem_readpage (required for splice) passes in a locked
1241 * filepage, which may be found not uptodate by other callers
1242 * too, and may need to be copied from the swappage read in.
1244 repeat:
1245 if (!filepage)
1246 filepage = find_lock_page(mapping, idx);
1247 if (filepage && PageUptodate(filepage))
1248 goto done;
1249 gfp = mapping_gfp_mask(mapping);
1250 if (!filepage) {
1252 * Try to preload while we can wait, to not make a habit of
1253 * draining atomic reserves; but don't latch on to this cpu.
1255 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1256 if (error)
1257 goto failed;
1258 radix_tree_preload_end();
1259 if (sgp != SGP_READ && !prealloc_page) {
1260 /* We don't care if this fails */
1261 prealloc_page = shmem_alloc_page(gfp, info, idx);
1262 if (prealloc_page) {
1263 if (mem_cgroup_cache_charge(prealloc_page,
1264 current->mm, GFP_KERNEL)) {
1265 page_cache_release(prealloc_page);
1266 prealloc_page = NULL;
1271 error = 0;
1273 spin_lock(&info->lock);
1274 shmem_recalc_inode(inode);
1275 entry = shmem_swp_alloc(info, idx, sgp);
1276 if (IS_ERR(entry)) {
1277 spin_unlock(&info->lock);
1278 error = PTR_ERR(entry);
1279 goto failed;
1281 swap = *entry;
1283 if (swap.val) {
1284 /* Look it up and read it in.. */
1285 swappage = lookup_swap_cache(swap);
1286 if (!swappage) {
1287 shmem_swp_unmap(entry);
1288 /* here we actually do the io */
1289 if (type && !(*type & VM_FAULT_MAJOR)) {
1290 __count_vm_event(PGMAJFAULT);
1291 *type |= VM_FAULT_MAJOR;
1293 spin_unlock(&info->lock);
1294 swappage = shmem_swapin(swap, gfp, info, idx);
1295 if (!swappage) {
1296 spin_lock(&info->lock);
1297 entry = shmem_swp_alloc(info, idx, sgp);
1298 if (IS_ERR(entry))
1299 error = PTR_ERR(entry);
1300 else {
1301 if (entry->val == swap.val)
1302 error = -ENOMEM;
1303 shmem_swp_unmap(entry);
1305 spin_unlock(&info->lock);
1306 if (error)
1307 goto failed;
1308 goto repeat;
1310 wait_on_page_locked(swappage);
1311 page_cache_release(swappage);
1312 goto repeat;
1315 /* We have to do this with page locked to prevent races */
1316 if (!trylock_page(swappage)) {
1317 shmem_swp_unmap(entry);
1318 spin_unlock(&info->lock);
1319 wait_on_page_locked(swappage);
1320 page_cache_release(swappage);
1321 goto repeat;
1323 if (PageWriteback(swappage)) {
1324 shmem_swp_unmap(entry);
1325 spin_unlock(&info->lock);
1326 wait_on_page_writeback(swappage);
1327 unlock_page(swappage);
1328 page_cache_release(swappage);
1329 goto repeat;
1331 if (!PageUptodate(swappage)) {
1332 shmem_swp_unmap(entry);
1333 spin_unlock(&info->lock);
1334 unlock_page(swappage);
1335 page_cache_release(swappage);
1336 error = -EIO;
1337 goto failed;
1340 if (filepage) {
1341 shmem_swp_set(info, entry, 0);
1342 shmem_swp_unmap(entry);
1343 delete_from_swap_cache(swappage);
1344 spin_unlock(&info->lock);
1345 copy_highpage(filepage, swappage);
1346 unlock_page(swappage);
1347 page_cache_release(swappage);
1348 flush_dcache_page(filepage);
1349 SetPageUptodate(filepage);
1350 set_page_dirty(filepage);
1351 swap_free(swap);
1352 } else if (!(error = add_to_page_cache_locked(swappage, mapping,
1353 idx, GFP_NOWAIT))) {
1354 info->flags |= SHMEM_PAGEIN;
1355 shmem_swp_set(info, entry, 0);
1356 shmem_swp_unmap(entry);
1357 delete_from_swap_cache(swappage);
1358 spin_unlock(&info->lock);
1359 filepage = swappage;
1360 set_page_dirty(filepage);
1361 swap_free(swap);
1362 } else {
1363 shmem_swp_unmap(entry);
1364 spin_unlock(&info->lock);
1365 if (error == -ENOMEM) {
1367 * reclaim from proper memory cgroup and
1368 * call memcg's OOM if needed.
1370 error = mem_cgroup_shmem_charge_fallback(
1371 swappage,
1372 current->mm,
1373 gfp);
1374 if (error) {
1375 unlock_page(swappage);
1376 page_cache_release(swappage);
1377 goto failed;
1380 unlock_page(swappage);
1381 page_cache_release(swappage);
1382 goto repeat;
1384 } else if (sgp == SGP_READ && !filepage) {
1385 shmem_swp_unmap(entry);
1386 filepage = find_get_page(mapping, idx);
1387 if (filepage &&
1388 (!PageUptodate(filepage) || !trylock_page(filepage))) {
1389 spin_unlock(&info->lock);
1390 wait_on_page_locked(filepage);
1391 page_cache_release(filepage);
1392 filepage = NULL;
1393 goto repeat;
1395 spin_unlock(&info->lock);
1396 } else {
1397 shmem_swp_unmap(entry);
1398 sbinfo = SHMEM_SB(inode->i_sb);
1399 if (sbinfo->max_blocks) {
1400 if ((percpu_counter_compare(&sbinfo->used_blocks, sbinfo->max_blocks) > 0) ||
1401 shmem_acct_block(info->flags)) {
1402 spin_unlock(&info->lock);
1403 error = -ENOSPC;
1404 goto failed;
1406 percpu_counter_inc(&sbinfo->used_blocks);
1407 spin_lock(&inode->i_lock);
1408 inode->i_blocks += BLOCKS_PER_PAGE;
1409 spin_unlock(&inode->i_lock);
1410 } else if (shmem_acct_block(info->flags)) {
1411 spin_unlock(&info->lock);
1412 error = -ENOSPC;
1413 goto failed;
1416 if (!filepage) {
1417 int ret;
1419 if (!prealloc_page) {
1420 spin_unlock(&info->lock);
1421 filepage = shmem_alloc_page(gfp, info, idx);
1422 if (!filepage) {
1423 shmem_unacct_blocks(info->flags, 1);
1424 shmem_free_blocks(inode, 1);
1425 error = -ENOMEM;
1426 goto failed;
1428 SetPageSwapBacked(filepage);
1431 * Precharge page while we can wait, compensate
1432 * after
1434 error = mem_cgroup_cache_charge(filepage,
1435 current->mm, GFP_KERNEL);
1436 if (error) {
1437 page_cache_release(filepage);
1438 shmem_unacct_blocks(info->flags, 1);
1439 shmem_free_blocks(inode, 1);
1440 filepage = NULL;
1441 goto failed;
1444 spin_lock(&info->lock);
1445 } else {
1446 filepage = prealloc_page;
1447 prealloc_page = NULL;
1448 SetPageSwapBacked(filepage);
1451 entry = shmem_swp_alloc(info, idx, sgp);
1452 if (IS_ERR(entry))
1453 error = PTR_ERR(entry);
1454 else {
1455 swap = *entry;
1456 shmem_swp_unmap(entry);
1458 ret = error || swap.val;
1459 if (ret)
1460 mem_cgroup_uncharge_cache_page(filepage);
1461 else
1462 ret = add_to_page_cache_lru(filepage, mapping,
1463 idx, GFP_NOWAIT);
1465 * At add_to_page_cache_lru() failure, uncharge will
1466 * be done automatically.
1468 if (ret) {
1469 spin_unlock(&info->lock);
1470 page_cache_release(filepage);
1471 shmem_unacct_blocks(info->flags, 1);
1472 shmem_free_blocks(inode, 1);
1473 filepage = NULL;
1474 if (error)
1475 goto failed;
1476 goto repeat;
1478 info->flags |= SHMEM_PAGEIN;
1481 info->alloced++;
1482 spin_unlock(&info->lock);
1483 clear_highpage(filepage);
1484 flush_dcache_page(filepage);
1485 SetPageUptodate(filepage);
1486 if (sgp == SGP_DIRTY)
1487 set_page_dirty(filepage);
1489 done:
1490 *pagep = filepage;
1491 error = 0;
1492 goto out;
1494 failed:
1495 if (*pagep != filepage) {
1496 unlock_page(filepage);
1497 page_cache_release(filepage);
1499 out:
1500 if (prealloc_page) {
1501 mem_cgroup_uncharge_cache_page(prealloc_page);
1502 page_cache_release(prealloc_page);
1504 return error;
1507 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1509 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1510 int error;
1511 int ret;
1513 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1514 return VM_FAULT_SIGBUS;
1516 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1517 if (error)
1518 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1520 return ret | VM_FAULT_LOCKED;
1523 #ifdef CONFIG_NUMA
1524 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1526 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1527 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1530 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1531 unsigned long addr)
1533 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1534 unsigned long idx;
1536 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1537 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1539 #endif
1541 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1543 struct inode *inode = file->f_path.dentry->d_inode;
1544 struct shmem_inode_info *info = SHMEM_I(inode);
1545 int retval = -ENOMEM;
1547 spin_lock(&info->lock);
1548 if (lock && !(info->flags & VM_LOCKED)) {
1549 if (!user_shm_lock(inode->i_size, user))
1550 goto out_nomem;
1551 info->flags |= VM_LOCKED;
1552 mapping_set_unevictable(file->f_mapping);
1554 if (!lock && (info->flags & VM_LOCKED) && user) {
1555 user_shm_unlock(inode->i_size, user);
1556 info->flags &= ~VM_LOCKED;
1557 mapping_clear_unevictable(file->f_mapping);
1558 scan_mapping_unevictable_pages(file->f_mapping);
1560 retval = 0;
1562 out_nomem:
1563 spin_unlock(&info->lock);
1564 return retval;
1567 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1569 file_accessed(file);
1570 vma->vm_ops = &shmem_vm_ops;
1571 vma->vm_flags |= VM_CAN_NONLINEAR;
1572 return 0;
1575 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1576 int mode, dev_t dev, unsigned long flags)
1578 struct inode *inode;
1579 struct shmem_inode_info *info;
1580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1582 if (shmem_reserve_inode(sb))
1583 return NULL;
1585 inode = new_inode(sb);
1586 if (inode) {
1587 inode->i_ino = get_next_ino();
1588 inode_init_owner(inode, dir, mode);
1589 inode->i_blocks = 0;
1590 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1591 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1592 inode->i_generation = get_seconds();
1593 info = SHMEM_I(inode);
1594 memset(info, 0, (char *)inode - (char *)info);
1595 spin_lock_init(&info->lock);
1596 info->flags = flags & VM_NORESERVE;
1597 INIT_LIST_HEAD(&info->swaplist);
1598 cache_no_acl(inode);
1600 switch (mode & S_IFMT) {
1601 default:
1602 inode->i_op = &shmem_special_inode_operations;
1603 init_special_inode(inode, mode, dev);
1604 break;
1605 case S_IFREG:
1606 inode->i_mapping->a_ops = &shmem_aops;
1607 inode->i_op = &shmem_inode_operations;
1608 inode->i_fop = &shmem_file_operations;
1609 mpol_shared_policy_init(&info->policy,
1610 shmem_get_sbmpol(sbinfo));
1611 break;
1612 case S_IFDIR:
1613 inc_nlink(inode);
1614 /* Some things misbehave if size == 0 on a directory */
1615 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1616 inode->i_op = &shmem_dir_inode_operations;
1617 inode->i_fop = &simple_dir_operations;
1618 break;
1619 case S_IFLNK:
1621 * Must not load anything in the rbtree,
1622 * mpol_free_shared_policy will not be called.
1624 mpol_shared_policy_init(&info->policy, NULL);
1625 break;
1627 } else
1628 shmem_free_inode(sb);
1629 return inode;
1632 #ifdef CONFIG_TMPFS
1633 static const struct inode_operations shmem_symlink_inode_operations;
1634 static const struct inode_operations shmem_symlink_inline_operations;
1637 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1638 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1639 * below the loop driver, in the generic fashion that many filesystems support.
1641 static int shmem_readpage(struct file *file, struct page *page)
1643 struct inode *inode = page->mapping->host;
1644 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1645 unlock_page(page);
1646 return error;
1649 static int
1650 shmem_write_begin(struct file *file, struct address_space *mapping,
1651 loff_t pos, unsigned len, unsigned flags,
1652 struct page **pagep, void **fsdata)
1654 struct inode *inode = mapping->host;
1655 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1656 *pagep = NULL;
1657 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1660 static int
1661 shmem_write_end(struct file *file, struct address_space *mapping,
1662 loff_t pos, unsigned len, unsigned copied,
1663 struct page *page, void *fsdata)
1665 struct inode *inode = mapping->host;
1667 if (pos + copied > inode->i_size)
1668 i_size_write(inode, pos + copied);
1670 set_page_dirty(page);
1671 unlock_page(page);
1672 page_cache_release(page);
1674 return copied;
1677 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1679 struct inode *inode = filp->f_path.dentry->d_inode;
1680 struct address_space *mapping = inode->i_mapping;
1681 unsigned long index, offset;
1682 enum sgp_type sgp = SGP_READ;
1685 * Might this read be for a stacking filesystem? Then when reading
1686 * holes of a sparse file, we actually need to allocate those pages,
1687 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1689 if (segment_eq(get_fs(), KERNEL_DS))
1690 sgp = SGP_DIRTY;
1692 index = *ppos >> PAGE_CACHE_SHIFT;
1693 offset = *ppos & ~PAGE_CACHE_MASK;
1695 for (;;) {
1696 struct page *page = NULL;
1697 unsigned long end_index, nr, ret;
1698 loff_t i_size = i_size_read(inode);
1700 end_index = i_size >> PAGE_CACHE_SHIFT;
1701 if (index > end_index)
1702 break;
1703 if (index == end_index) {
1704 nr = i_size & ~PAGE_CACHE_MASK;
1705 if (nr <= offset)
1706 break;
1709 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1710 if (desc->error) {
1711 if (desc->error == -EINVAL)
1712 desc->error = 0;
1713 break;
1715 if (page)
1716 unlock_page(page);
1719 * We must evaluate after, since reads (unlike writes)
1720 * are called without i_mutex protection against truncate
1722 nr = PAGE_CACHE_SIZE;
1723 i_size = i_size_read(inode);
1724 end_index = i_size >> PAGE_CACHE_SHIFT;
1725 if (index == end_index) {
1726 nr = i_size & ~PAGE_CACHE_MASK;
1727 if (nr <= offset) {
1728 if (page)
1729 page_cache_release(page);
1730 break;
1733 nr -= offset;
1735 if (page) {
1737 * If users can be writing to this page using arbitrary
1738 * virtual addresses, take care about potential aliasing
1739 * before reading the page on the kernel side.
1741 if (mapping_writably_mapped(mapping))
1742 flush_dcache_page(page);
1744 * Mark the page accessed if we read the beginning.
1746 if (!offset)
1747 mark_page_accessed(page);
1748 } else {
1749 page = ZERO_PAGE(0);
1750 page_cache_get(page);
1754 * Ok, we have the page, and it's up-to-date, so
1755 * now we can copy it to user space...
1757 * The actor routine returns how many bytes were actually used..
1758 * NOTE! This may not be the same as how much of a user buffer
1759 * we filled up (we may be padding etc), so we can only update
1760 * "pos" here (the actor routine has to update the user buffer
1761 * pointers and the remaining count).
1763 ret = actor(desc, page, offset, nr);
1764 offset += ret;
1765 index += offset >> PAGE_CACHE_SHIFT;
1766 offset &= ~PAGE_CACHE_MASK;
1768 page_cache_release(page);
1769 if (ret != nr || !desc->count)
1770 break;
1772 cond_resched();
1775 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1776 file_accessed(filp);
1779 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1780 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1782 struct file *filp = iocb->ki_filp;
1783 ssize_t retval;
1784 unsigned long seg;
1785 size_t count;
1786 loff_t *ppos = &iocb->ki_pos;
1788 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1789 if (retval)
1790 return retval;
1792 for (seg = 0; seg < nr_segs; seg++) {
1793 read_descriptor_t desc;
1795 desc.written = 0;
1796 desc.arg.buf = iov[seg].iov_base;
1797 desc.count = iov[seg].iov_len;
1798 if (desc.count == 0)
1799 continue;
1800 desc.error = 0;
1801 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1802 retval += desc.written;
1803 if (desc.error) {
1804 retval = retval ?: desc.error;
1805 break;
1807 if (desc.count > 0)
1808 break;
1810 return retval;
1813 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1815 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1817 buf->f_type = TMPFS_MAGIC;
1818 buf->f_bsize = PAGE_CACHE_SIZE;
1819 buf->f_namelen = NAME_MAX;
1820 if (sbinfo->max_blocks) {
1821 buf->f_blocks = sbinfo->max_blocks;
1822 buf->f_bavail = buf->f_bfree =
1823 sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
1825 if (sbinfo->max_inodes) {
1826 buf->f_files = sbinfo->max_inodes;
1827 buf->f_ffree = sbinfo->free_inodes;
1829 /* else leave those fields 0 like simple_statfs */
1830 return 0;
1834 * File creation. Allocate an inode, and we're done..
1836 static int
1837 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1839 struct inode *inode;
1840 int error = -ENOSPC;
1842 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1843 if (inode) {
1844 error = security_inode_init_security(inode, dir,
1845 &dentry->d_name, NULL,
1846 NULL, NULL);
1847 if (error) {
1848 if (error != -EOPNOTSUPP) {
1849 iput(inode);
1850 return error;
1853 #ifdef CONFIG_TMPFS_POSIX_ACL
1854 error = generic_acl_init(inode, dir);
1855 if (error) {
1856 iput(inode);
1857 return error;
1859 #else
1860 error = 0;
1861 #endif
1862 dir->i_size += BOGO_DIRENT_SIZE;
1863 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1864 d_instantiate(dentry, inode);
1865 dget(dentry); /* Extra count - pin the dentry in core */
1867 return error;
1870 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1872 int error;
1874 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1875 return error;
1876 inc_nlink(dir);
1877 return 0;
1880 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1881 struct nameidata *nd)
1883 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1887 * Link a file..
1889 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1891 struct inode *inode = old_dentry->d_inode;
1892 int ret;
1895 * No ordinary (disk based) filesystem counts links as inodes;
1896 * but each new link needs a new dentry, pinning lowmem, and
1897 * tmpfs dentries cannot be pruned until they are unlinked.
1899 ret = shmem_reserve_inode(inode->i_sb);
1900 if (ret)
1901 goto out;
1903 dir->i_size += BOGO_DIRENT_SIZE;
1904 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1905 inc_nlink(inode);
1906 ihold(inode); /* New dentry reference */
1907 dget(dentry); /* Extra pinning count for the created dentry */
1908 d_instantiate(dentry, inode);
1909 out:
1910 return ret;
1913 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1915 struct inode *inode = dentry->d_inode;
1917 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1918 shmem_free_inode(inode->i_sb);
1920 dir->i_size -= BOGO_DIRENT_SIZE;
1921 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1922 drop_nlink(inode);
1923 dput(dentry); /* Undo the count from "create" - this does all the work */
1924 return 0;
1927 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1929 if (!simple_empty(dentry))
1930 return -ENOTEMPTY;
1932 drop_nlink(dentry->d_inode);
1933 drop_nlink(dir);
1934 return shmem_unlink(dir, dentry);
1938 * The VFS layer already does all the dentry stuff for rename,
1939 * we just have to decrement the usage count for the target if
1940 * it exists so that the VFS layer correctly free's it when it
1941 * gets overwritten.
1943 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1945 struct inode *inode = old_dentry->d_inode;
1946 int they_are_dirs = S_ISDIR(inode->i_mode);
1948 if (!simple_empty(new_dentry))
1949 return -ENOTEMPTY;
1951 if (new_dentry->d_inode) {
1952 (void) shmem_unlink(new_dir, new_dentry);
1953 if (they_are_dirs)
1954 drop_nlink(old_dir);
1955 } else if (they_are_dirs) {
1956 drop_nlink(old_dir);
1957 inc_nlink(new_dir);
1960 old_dir->i_size -= BOGO_DIRENT_SIZE;
1961 new_dir->i_size += BOGO_DIRENT_SIZE;
1962 old_dir->i_ctime = old_dir->i_mtime =
1963 new_dir->i_ctime = new_dir->i_mtime =
1964 inode->i_ctime = CURRENT_TIME;
1965 return 0;
1968 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1970 int error;
1971 int len;
1972 struct inode *inode;
1973 struct page *page = NULL;
1974 char *kaddr;
1975 struct shmem_inode_info *info;
1977 len = strlen(symname) + 1;
1978 if (len > PAGE_CACHE_SIZE)
1979 return -ENAMETOOLONG;
1981 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1982 if (!inode)
1983 return -ENOSPC;
1985 error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
1986 NULL, NULL);
1987 if (error) {
1988 if (error != -EOPNOTSUPP) {
1989 iput(inode);
1990 return error;
1992 error = 0;
1995 info = SHMEM_I(inode);
1996 inode->i_size = len-1;
1997 if (len <= (char *)inode - (char *)info) {
1998 /* do it inline */
1999 memcpy(info, symname, len);
2000 inode->i_op = &shmem_symlink_inline_operations;
2001 } else {
2002 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2003 if (error) {
2004 iput(inode);
2005 return error;
2007 inode->i_mapping->a_ops = &shmem_aops;
2008 inode->i_op = &shmem_symlink_inode_operations;
2009 kaddr = kmap_atomic(page, KM_USER0);
2010 memcpy(kaddr, symname, len);
2011 kunmap_atomic(kaddr, KM_USER0);
2012 set_page_dirty(page);
2013 unlock_page(page);
2014 page_cache_release(page);
2016 dir->i_size += BOGO_DIRENT_SIZE;
2017 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2018 d_instantiate(dentry, inode);
2019 dget(dentry);
2020 return 0;
2023 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2025 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
2026 return NULL;
2029 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2031 struct page *page = NULL;
2032 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2033 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2034 if (page)
2035 unlock_page(page);
2036 return page;
2039 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2041 if (!IS_ERR(nd_get_link(nd))) {
2042 struct page *page = cookie;
2043 kunmap(page);
2044 mark_page_accessed(page);
2045 page_cache_release(page);
2049 static const struct inode_operations shmem_symlink_inline_operations = {
2050 .readlink = generic_readlink,
2051 .follow_link = shmem_follow_link_inline,
2054 static const struct inode_operations shmem_symlink_inode_operations = {
2055 .readlink = generic_readlink,
2056 .follow_link = shmem_follow_link,
2057 .put_link = shmem_put_link,
2060 #ifdef CONFIG_TMPFS_POSIX_ACL
2062 * Superblocks without xattr inode operations will get security.* xattr
2063 * support from the VFS "for free". As soon as we have any other xattrs
2064 * like ACLs, we also need to implement the security.* handlers at
2065 * filesystem level, though.
2068 static size_t shmem_xattr_security_list(struct dentry *dentry, char *list,
2069 size_t list_len, const char *name,
2070 size_t name_len, int handler_flags)
2072 return security_inode_listsecurity(dentry->d_inode, list, list_len);
2075 static int shmem_xattr_security_get(struct dentry *dentry, const char *name,
2076 void *buffer, size_t size, int handler_flags)
2078 if (strcmp(name, "") == 0)
2079 return -EINVAL;
2080 return xattr_getsecurity(dentry->d_inode, name, buffer, size);
2083 static int shmem_xattr_security_set(struct dentry *dentry, const char *name,
2084 const void *value, size_t size, int flags, int handler_flags)
2086 if (strcmp(name, "") == 0)
2087 return -EINVAL;
2088 return security_inode_setsecurity(dentry->d_inode, name, value,
2089 size, flags);
2092 static const struct xattr_handler shmem_xattr_security_handler = {
2093 .prefix = XATTR_SECURITY_PREFIX,
2094 .list = shmem_xattr_security_list,
2095 .get = shmem_xattr_security_get,
2096 .set = shmem_xattr_security_set,
2099 static const struct xattr_handler *shmem_xattr_handlers[] = {
2100 &generic_acl_access_handler,
2101 &generic_acl_default_handler,
2102 &shmem_xattr_security_handler,
2103 NULL
2105 #endif
2107 static struct dentry *shmem_get_parent(struct dentry *child)
2109 return ERR_PTR(-ESTALE);
2112 static int shmem_match(struct inode *ino, void *vfh)
2114 __u32 *fh = vfh;
2115 __u64 inum = fh[2];
2116 inum = (inum << 32) | fh[1];
2117 return ino->i_ino == inum && fh[0] == ino->i_generation;
2120 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2121 struct fid *fid, int fh_len, int fh_type)
2123 struct inode *inode;
2124 struct dentry *dentry = NULL;
2125 u64 inum = fid->raw[2];
2126 inum = (inum << 32) | fid->raw[1];
2128 if (fh_len < 3)
2129 return NULL;
2131 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2132 shmem_match, fid->raw);
2133 if (inode) {
2134 dentry = d_find_alias(inode);
2135 iput(inode);
2138 return dentry;
2141 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2142 int connectable)
2144 struct inode *inode = dentry->d_inode;
2146 if (*len < 3) {
2147 *len = 3;
2148 return 255;
2151 if (inode_unhashed(inode)) {
2152 /* Unfortunately insert_inode_hash is not idempotent,
2153 * so as we hash inodes here rather than at creation
2154 * time, we need a lock to ensure we only try
2155 * to do it once
2157 static DEFINE_SPINLOCK(lock);
2158 spin_lock(&lock);
2159 if (inode_unhashed(inode))
2160 __insert_inode_hash(inode,
2161 inode->i_ino + inode->i_generation);
2162 spin_unlock(&lock);
2165 fh[0] = inode->i_generation;
2166 fh[1] = inode->i_ino;
2167 fh[2] = ((__u64)inode->i_ino) >> 32;
2169 *len = 3;
2170 return 1;
2173 static const struct export_operations shmem_export_ops = {
2174 .get_parent = shmem_get_parent,
2175 .encode_fh = shmem_encode_fh,
2176 .fh_to_dentry = shmem_fh_to_dentry,
2179 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2180 bool remount)
2182 char *this_char, *value, *rest;
2184 while (options != NULL) {
2185 this_char = options;
2186 for (;;) {
2188 * NUL-terminate this option: unfortunately,
2189 * mount options form a comma-separated list,
2190 * but mpol's nodelist may also contain commas.
2192 options = strchr(options, ',');
2193 if (options == NULL)
2194 break;
2195 options++;
2196 if (!isdigit(*options)) {
2197 options[-1] = '\0';
2198 break;
2201 if (!*this_char)
2202 continue;
2203 if ((value = strchr(this_char,'=')) != NULL) {
2204 *value++ = 0;
2205 } else {
2206 printk(KERN_ERR
2207 "tmpfs: No value for mount option '%s'\n",
2208 this_char);
2209 return 1;
2212 if (!strcmp(this_char,"size")) {
2213 unsigned long long size;
2214 size = memparse(value,&rest);
2215 if (*rest == '%') {
2216 size <<= PAGE_SHIFT;
2217 size *= totalram_pages;
2218 do_div(size, 100);
2219 rest++;
2221 if (*rest)
2222 goto bad_val;
2223 sbinfo->max_blocks =
2224 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2225 } else if (!strcmp(this_char,"nr_blocks")) {
2226 sbinfo->max_blocks = memparse(value, &rest);
2227 if (*rest)
2228 goto bad_val;
2229 } else if (!strcmp(this_char,"nr_inodes")) {
2230 sbinfo->max_inodes = memparse(value, &rest);
2231 if (*rest)
2232 goto bad_val;
2233 } else if (!strcmp(this_char,"mode")) {
2234 if (remount)
2235 continue;
2236 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2237 if (*rest)
2238 goto bad_val;
2239 } else if (!strcmp(this_char,"uid")) {
2240 if (remount)
2241 continue;
2242 sbinfo->uid = simple_strtoul(value, &rest, 0);
2243 if (*rest)
2244 goto bad_val;
2245 } else if (!strcmp(this_char,"gid")) {
2246 if (remount)
2247 continue;
2248 sbinfo->gid = simple_strtoul(value, &rest, 0);
2249 if (*rest)
2250 goto bad_val;
2251 } else if (!strcmp(this_char,"mpol")) {
2252 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2253 goto bad_val;
2254 } else {
2255 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2256 this_char);
2257 return 1;
2260 return 0;
2262 bad_val:
2263 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2264 value, this_char);
2265 return 1;
2269 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2271 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2272 struct shmem_sb_info config = *sbinfo;
2273 unsigned long inodes;
2274 int error = -EINVAL;
2276 if (shmem_parse_options(data, &config, true))
2277 return error;
2279 spin_lock(&sbinfo->stat_lock);
2280 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2281 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2282 goto out;
2283 if (config.max_inodes < inodes)
2284 goto out;
2286 * Those tests also disallow limited->unlimited while any are in
2287 * use, so i_blocks will always be zero when max_blocks is zero;
2288 * but we must separately disallow unlimited->limited, because
2289 * in that case we have no record of how much is already in use.
2291 if (config.max_blocks && !sbinfo->max_blocks)
2292 goto out;
2293 if (config.max_inodes && !sbinfo->max_inodes)
2294 goto out;
2296 error = 0;
2297 sbinfo->max_blocks = config.max_blocks;
2298 sbinfo->max_inodes = config.max_inodes;
2299 sbinfo->free_inodes = config.max_inodes - inodes;
2301 mpol_put(sbinfo->mpol);
2302 sbinfo->mpol = config.mpol; /* transfers initial ref */
2303 out:
2304 spin_unlock(&sbinfo->stat_lock);
2305 return error;
2308 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2310 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2312 if (sbinfo->max_blocks != shmem_default_max_blocks())
2313 seq_printf(seq, ",size=%luk",
2314 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2315 if (sbinfo->max_inodes != shmem_default_max_inodes())
2316 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2317 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2318 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2319 if (sbinfo->uid != 0)
2320 seq_printf(seq, ",uid=%u", sbinfo->uid);
2321 if (sbinfo->gid != 0)
2322 seq_printf(seq, ",gid=%u", sbinfo->gid);
2323 shmem_show_mpol(seq, sbinfo->mpol);
2324 return 0;
2326 #endif /* CONFIG_TMPFS */
2328 static void shmem_put_super(struct super_block *sb)
2330 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2332 percpu_counter_destroy(&sbinfo->used_blocks);
2333 kfree(sbinfo);
2334 sb->s_fs_info = NULL;
2337 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2339 struct inode *inode;
2340 struct dentry *root;
2341 struct shmem_sb_info *sbinfo;
2342 int err = -ENOMEM;
2344 /* Round up to L1_CACHE_BYTES to resist false sharing */
2345 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2346 L1_CACHE_BYTES), GFP_KERNEL);
2347 if (!sbinfo)
2348 return -ENOMEM;
2350 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2351 sbinfo->uid = current_fsuid();
2352 sbinfo->gid = current_fsgid();
2353 sb->s_fs_info = sbinfo;
2355 #ifdef CONFIG_TMPFS
2357 * Per default we only allow half of the physical ram per
2358 * tmpfs instance, limiting inodes to one per page of lowmem;
2359 * but the internal instance is left unlimited.
2361 if (!(sb->s_flags & MS_NOUSER)) {
2362 sbinfo->max_blocks = shmem_default_max_blocks();
2363 sbinfo->max_inodes = shmem_default_max_inodes();
2364 if (shmem_parse_options(data, sbinfo, false)) {
2365 err = -EINVAL;
2366 goto failed;
2369 sb->s_export_op = &shmem_export_ops;
2370 #else
2371 sb->s_flags |= MS_NOUSER;
2372 #endif
2374 spin_lock_init(&sbinfo->stat_lock);
2375 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2376 goto failed;
2377 sbinfo->free_inodes = sbinfo->max_inodes;
2379 sb->s_maxbytes = SHMEM_MAX_BYTES;
2380 sb->s_blocksize = PAGE_CACHE_SIZE;
2381 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2382 sb->s_magic = TMPFS_MAGIC;
2383 sb->s_op = &shmem_ops;
2384 sb->s_time_gran = 1;
2385 #ifdef CONFIG_TMPFS_POSIX_ACL
2386 sb->s_xattr = shmem_xattr_handlers;
2387 sb->s_flags |= MS_POSIXACL;
2388 #endif
2390 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2391 if (!inode)
2392 goto failed;
2393 inode->i_uid = sbinfo->uid;
2394 inode->i_gid = sbinfo->gid;
2395 root = d_alloc_root(inode);
2396 if (!root)
2397 goto failed_iput;
2398 sb->s_root = root;
2399 return 0;
2401 failed_iput:
2402 iput(inode);
2403 failed:
2404 shmem_put_super(sb);
2405 return err;
2408 static struct kmem_cache *shmem_inode_cachep;
2410 static struct inode *shmem_alloc_inode(struct super_block *sb)
2412 struct shmem_inode_info *p;
2413 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2414 if (!p)
2415 return NULL;
2416 return &p->vfs_inode;
2419 static void shmem_i_callback(struct rcu_head *head)
2421 struct inode *inode = container_of(head, struct inode, i_rcu);
2422 INIT_LIST_HEAD(&inode->i_dentry);
2423 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2426 static void shmem_destroy_inode(struct inode *inode)
2428 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2429 /* only struct inode is valid if it's an inline symlink */
2430 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2432 call_rcu(&inode->i_rcu, shmem_i_callback);
2435 static void init_once(void *foo)
2437 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2439 inode_init_once(&p->vfs_inode);
2442 static int init_inodecache(void)
2444 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2445 sizeof(struct shmem_inode_info),
2446 0, SLAB_PANIC, init_once);
2447 return 0;
2450 static void destroy_inodecache(void)
2452 kmem_cache_destroy(shmem_inode_cachep);
2455 static const struct address_space_operations shmem_aops = {
2456 .writepage = shmem_writepage,
2457 .set_page_dirty = __set_page_dirty_no_writeback,
2458 #ifdef CONFIG_TMPFS
2459 .readpage = shmem_readpage,
2460 .write_begin = shmem_write_begin,
2461 .write_end = shmem_write_end,
2462 #endif
2463 .migratepage = migrate_page,
2464 .error_remove_page = generic_error_remove_page,
2467 static const struct file_operations shmem_file_operations = {
2468 .mmap = shmem_mmap,
2469 #ifdef CONFIG_TMPFS
2470 .llseek = generic_file_llseek,
2471 .read = do_sync_read,
2472 .write = do_sync_write,
2473 .aio_read = shmem_file_aio_read,
2474 .aio_write = generic_file_aio_write,
2475 .fsync = noop_fsync,
2476 .splice_read = generic_file_splice_read,
2477 .splice_write = generic_file_splice_write,
2478 #endif
2481 static const struct inode_operations shmem_inode_operations = {
2482 .setattr = shmem_notify_change,
2483 .truncate_range = shmem_truncate_range,
2484 #ifdef CONFIG_TMPFS_POSIX_ACL
2485 .setxattr = generic_setxattr,
2486 .getxattr = generic_getxattr,
2487 .listxattr = generic_listxattr,
2488 .removexattr = generic_removexattr,
2489 .check_acl = generic_check_acl,
2490 #endif
2494 static const struct inode_operations shmem_dir_inode_operations = {
2495 #ifdef CONFIG_TMPFS
2496 .create = shmem_create,
2497 .lookup = simple_lookup,
2498 .link = shmem_link,
2499 .unlink = shmem_unlink,
2500 .symlink = shmem_symlink,
2501 .mkdir = shmem_mkdir,
2502 .rmdir = shmem_rmdir,
2503 .mknod = shmem_mknod,
2504 .rename = shmem_rename,
2505 #endif
2506 #ifdef CONFIG_TMPFS_POSIX_ACL
2507 .setattr = shmem_notify_change,
2508 .setxattr = generic_setxattr,
2509 .getxattr = generic_getxattr,
2510 .listxattr = generic_listxattr,
2511 .removexattr = generic_removexattr,
2512 .check_acl = generic_check_acl,
2513 #endif
2516 static const struct inode_operations shmem_special_inode_operations = {
2517 #ifdef CONFIG_TMPFS_POSIX_ACL
2518 .setattr = shmem_notify_change,
2519 .setxattr = generic_setxattr,
2520 .getxattr = generic_getxattr,
2521 .listxattr = generic_listxattr,
2522 .removexattr = generic_removexattr,
2523 .check_acl = generic_check_acl,
2524 #endif
2527 static const struct super_operations shmem_ops = {
2528 .alloc_inode = shmem_alloc_inode,
2529 .destroy_inode = shmem_destroy_inode,
2530 #ifdef CONFIG_TMPFS
2531 .statfs = shmem_statfs,
2532 .remount_fs = shmem_remount_fs,
2533 .show_options = shmem_show_options,
2534 #endif
2535 .evict_inode = shmem_evict_inode,
2536 .drop_inode = generic_delete_inode,
2537 .put_super = shmem_put_super,
2540 static const struct vm_operations_struct shmem_vm_ops = {
2541 .fault = shmem_fault,
2542 #ifdef CONFIG_NUMA
2543 .set_policy = shmem_set_policy,
2544 .get_policy = shmem_get_policy,
2545 #endif
2549 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2550 int flags, const char *dev_name, void *data)
2552 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2555 static struct file_system_type tmpfs_fs_type = {
2556 .owner = THIS_MODULE,
2557 .name = "tmpfs",
2558 .mount = shmem_mount,
2559 .kill_sb = kill_litter_super,
2562 int __init init_tmpfs(void)
2564 int error;
2566 error = bdi_init(&shmem_backing_dev_info);
2567 if (error)
2568 goto out4;
2570 error = init_inodecache();
2571 if (error)
2572 goto out3;
2574 error = register_filesystem(&tmpfs_fs_type);
2575 if (error) {
2576 printk(KERN_ERR "Could not register tmpfs\n");
2577 goto out2;
2580 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2581 tmpfs_fs_type.name, NULL);
2582 if (IS_ERR(shm_mnt)) {
2583 error = PTR_ERR(shm_mnt);
2584 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2585 goto out1;
2587 return 0;
2589 out1:
2590 unregister_filesystem(&tmpfs_fs_type);
2591 out2:
2592 destroy_inodecache();
2593 out3:
2594 bdi_destroy(&shmem_backing_dev_info);
2595 out4:
2596 shm_mnt = ERR_PTR(error);
2597 return error;
2600 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2602 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2603 * @inode: the inode to be searched
2604 * @pgoff: the offset to be searched
2605 * @pagep: the pointer for the found page to be stored
2606 * @ent: the pointer for the found swap entry to be stored
2608 * If a page is found, refcount of it is incremented. Callers should handle
2609 * these refcount.
2611 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2612 struct page **pagep, swp_entry_t *ent)
2614 swp_entry_t entry = { .val = 0 }, *ptr;
2615 struct page *page = NULL;
2616 struct shmem_inode_info *info = SHMEM_I(inode);
2618 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2619 goto out;
2621 spin_lock(&info->lock);
2622 ptr = shmem_swp_entry(info, pgoff, NULL);
2623 #ifdef CONFIG_SWAP
2624 if (ptr && ptr->val) {
2625 entry.val = ptr->val;
2626 page = find_get_page(&swapper_space, entry.val);
2627 } else
2628 #endif
2629 page = find_get_page(inode->i_mapping, pgoff);
2630 if (ptr)
2631 shmem_swp_unmap(ptr);
2632 spin_unlock(&info->lock);
2633 out:
2634 *pagep = page;
2635 *ent = entry;
2637 #endif
2639 #else /* !CONFIG_SHMEM */
2642 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2644 * This is intended for small system where the benefits of the full
2645 * shmem code (swap-backed and resource-limited) are outweighed by
2646 * their complexity. On systems without swap this code should be
2647 * effectively equivalent, but much lighter weight.
2650 #include <linux/ramfs.h>
2652 static struct file_system_type tmpfs_fs_type = {
2653 .name = "tmpfs",
2654 .mount = ramfs_mount,
2655 .kill_sb = kill_litter_super,
2658 int __init init_tmpfs(void)
2660 BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2662 shm_mnt = kern_mount(&tmpfs_fs_type);
2663 BUG_ON(IS_ERR(shm_mnt));
2665 return 0;
2668 int shmem_unuse(swp_entry_t entry, struct page *page)
2670 return 0;
2673 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2675 return 0;
2678 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2680 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2681 * @inode: the inode to be searched
2682 * @pgoff: the offset to be searched
2683 * @pagep: the pointer for the found page to be stored
2684 * @ent: the pointer for the found swap entry to be stored
2686 * If a page is found, refcount of it is incremented. Callers should handle
2687 * these refcount.
2689 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2690 struct page **pagep, swp_entry_t *ent)
2692 struct page *page = NULL;
2694 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2695 goto out;
2696 page = find_get_page(inode->i_mapping, pgoff);
2697 out:
2698 *pagep = page;
2699 *ent = (swp_entry_t){ .val = 0 };
2701 #endif
2703 #define shmem_vm_ops generic_file_vm_ops
2704 #define shmem_file_operations ramfs_file_operations
2705 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2706 #define shmem_acct_size(flags, size) 0
2707 #define shmem_unacct_size(flags, size) do {} while (0)
2708 #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE
2710 #endif /* CONFIG_SHMEM */
2712 /* common code */
2715 * shmem_file_setup - get an unlinked file living in tmpfs
2716 * @name: name for dentry (to be seen in /proc/<pid>/maps
2717 * @size: size to be set for the file
2718 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2720 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2722 int error;
2723 struct file *file;
2724 struct inode *inode;
2725 struct path path;
2726 struct dentry *root;
2727 struct qstr this;
2729 if (IS_ERR(shm_mnt))
2730 return (void *)shm_mnt;
2732 if (size < 0 || size > SHMEM_MAX_BYTES)
2733 return ERR_PTR(-EINVAL);
2735 if (shmem_acct_size(flags, size))
2736 return ERR_PTR(-ENOMEM);
2738 error = -ENOMEM;
2739 this.name = name;
2740 this.len = strlen(name);
2741 this.hash = 0; /* will go */
2742 root = shm_mnt->mnt_root;
2743 path.dentry = d_alloc(root, &this);
2744 if (!path.dentry)
2745 goto put_memory;
2746 path.mnt = mntget(shm_mnt);
2748 error = -ENOSPC;
2749 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2750 if (!inode)
2751 goto put_dentry;
2753 d_instantiate(path.dentry, inode);
2754 inode->i_size = size;
2755 inode->i_nlink = 0; /* It is unlinked */
2756 #ifndef CONFIG_MMU
2757 error = ramfs_nommu_expand_for_mapping(inode, size);
2758 if (error)
2759 goto put_dentry;
2760 #endif
2762 error = -ENFILE;
2763 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2764 &shmem_file_operations);
2765 if (!file)
2766 goto put_dentry;
2768 return file;
2770 put_dentry:
2771 path_put(&path);
2772 put_memory:
2773 shmem_unacct_size(flags, size);
2774 return ERR_PTR(error);
2776 EXPORT_SYMBOL_GPL(shmem_file_setup);
2779 * shmem_zero_setup - setup a shared anonymous mapping
2780 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2782 int shmem_zero_setup(struct vm_area_struct *vma)
2784 struct file *file;
2785 loff_t size = vma->vm_end - vma->vm_start;
2787 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2788 if (IS_ERR(file))
2789 return PTR_ERR(file);
2791 if (vma->vm_file)
2792 fput(vma->vm_file);
2793 vma->vm_file = file;
2794 vma->vm_ops = &shmem_vm_ops;
2795 vma->vm_flags |= VM_CAN_NONLINEAR;
2796 return 0;