2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 * This file is released under the GPL.
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/percpu_counter.h>
32 #include <linux/swap.h>
34 static struct vfsmount
*shm_mnt
;
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum
74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
77 * We use / and * instead of shifts in the definitions below, so that the swap
78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
86 #define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87 #define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
89 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93 #define SHMEM_PAGEIN VM_READ
94 #define SHMEM_TRUNCATE VM_WRITE
96 /* Definition to limit shmem_truncate's steps between cond_rescheds */
97 #define LATENCY_LIMIT 64
99 /* Pretend that each entry is of this size in directory's i_size */
100 #define BOGO_DIRENT_SIZE 20
102 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
104 SGP_READ
, /* don't exceed i_size, don't allocate page */
105 SGP_CACHE
, /* don't exceed i_size, may allocate page */
106 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
107 SGP_WRITE
, /* may exceed i_size, may allocate page */
111 static unsigned long shmem_default_max_blocks(void)
113 return totalram_pages
/ 2;
116 static unsigned long shmem_default_max_inodes(void)
118 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
122 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
123 struct page
**pagep
, enum sgp_type sgp
, int *type
);
125 static inline struct page
*shmem_dir_alloc(gfp_t gfp_mask
)
128 * The above definition of ENTRIES_PER_PAGE, and the use of
129 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
130 * might be reconsidered if it ever diverges from PAGE_SIZE.
132 * Mobility flags are masked out as swap vectors cannot move
134 return alloc_pages((gfp_mask
& ~GFP_MOVABLE_MASK
) | __GFP_ZERO
,
135 PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
138 static inline void shmem_dir_free(struct page
*page
)
140 __free_pages(page
, PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
143 static struct page
**shmem_dir_map(struct page
*page
)
145 return (struct page
**)kmap_atomic(page
, KM_USER0
);
148 static inline void shmem_dir_unmap(struct page
**dir
)
150 kunmap_atomic(dir
, KM_USER0
);
153 static swp_entry_t
*shmem_swp_map(struct page
*page
)
155 return (swp_entry_t
*)kmap_atomic(page
, KM_USER1
);
158 static inline void shmem_swp_balance_unmap(void)
161 * When passing a pointer to an i_direct entry, to code which
162 * also handles indirect entries and so will shmem_swp_unmap,
163 * we must arrange for the preempt count to remain in balance.
164 * What kmap_atomic of a lowmem page does depends on config
165 * and architecture, so pretend to kmap_atomic some lowmem page.
167 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1
);
170 static inline void shmem_swp_unmap(swp_entry_t
*entry
)
172 kunmap_atomic(entry
, KM_USER1
);
175 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
177 return sb
->s_fs_info
;
181 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
182 * for shared memory and for shared anonymous (/dev/zero) mappings
183 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
184 * consistent with the pre-accounting of private mappings ...
186 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
188 return (flags
& VM_NORESERVE
) ?
189 0 : security_vm_enough_memory_kern(VM_ACCT(size
));
192 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
194 if (!(flags
& VM_NORESERVE
))
195 vm_unacct_memory(VM_ACCT(size
));
199 * ... whereas tmpfs objects are accounted incrementally as
200 * pages are allocated, in order to allow huge sparse files.
201 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
202 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
204 static inline int shmem_acct_block(unsigned long flags
)
206 return (flags
& VM_NORESERVE
) ?
207 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE
)) : 0;
210 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
212 if (flags
& VM_NORESERVE
)
213 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
216 static const struct super_operations shmem_ops
;
217 static const struct address_space_operations shmem_aops
;
218 static const struct file_operations shmem_file_operations
;
219 static const struct inode_operations shmem_inode_operations
;
220 static const struct inode_operations shmem_dir_inode_operations
;
221 static const struct inode_operations shmem_special_inode_operations
;
222 static const struct vm_operations_struct shmem_vm_ops
;
224 static struct backing_dev_info shmem_backing_dev_info __read_mostly
= {
225 .ra_pages
= 0, /* No readahead */
226 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
| BDI_CAP_SWAP_BACKED
,
229 static LIST_HEAD(shmem_swaplist
);
230 static DEFINE_MUTEX(shmem_swaplist_mutex
);
232 static void shmem_free_blocks(struct inode
*inode
, long pages
)
234 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
235 if (sbinfo
->max_blocks
) {
236 percpu_counter_add(&sbinfo
->used_blocks
, -pages
);
237 spin_lock(&inode
->i_lock
);
238 inode
->i_blocks
-= pages
*BLOCKS_PER_PAGE
;
239 spin_unlock(&inode
->i_lock
);
243 static int shmem_reserve_inode(struct super_block
*sb
)
245 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
246 if (sbinfo
->max_inodes
) {
247 spin_lock(&sbinfo
->stat_lock
);
248 if (!sbinfo
->free_inodes
) {
249 spin_unlock(&sbinfo
->stat_lock
);
252 sbinfo
->free_inodes
--;
253 spin_unlock(&sbinfo
->stat_lock
);
258 static void shmem_free_inode(struct super_block
*sb
)
260 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
261 if (sbinfo
->max_inodes
) {
262 spin_lock(&sbinfo
->stat_lock
);
263 sbinfo
->free_inodes
++;
264 spin_unlock(&sbinfo
->stat_lock
);
269 * shmem_recalc_inode - recalculate the size of an inode
270 * @inode: inode to recalc
272 * We have to calculate the free blocks since the mm can drop
273 * undirtied hole pages behind our back.
275 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
276 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
278 * It has to be called with the spinlock held.
280 static void shmem_recalc_inode(struct inode
*inode
)
282 struct shmem_inode_info
*info
= SHMEM_I(inode
);
285 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
287 info
->alloced
-= freed
;
288 shmem_unacct_blocks(info
->flags
, freed
);
289 shmem_free_blocks(inode
, freed
);
294 * shmem_swp_entry - find the swap vector position in the info structure
295 * @info: info structure for the inode
296 * @index: index of the page to find
297 * @page: optional page to add to the structure. Has to be preset to
300 * If there is no space allocated yet it will return NULL when
301 * page is NULL, else it will use the page for the needed block,
302 * setting it to NULL on return to indicate that it has been used.
304 * The swap vector is organized the following way:
306 * There are SHMEM_NR_DIRECT entries directly stored in the
307 * shmem_inode_info structure. So small files do not need an addional
310 * For pages with index > SHMEM_NR_DIRECT there is the pointer
311 * i_indirect which points to a page which holds in the first half
312 * doubly indirect blocks, in the second half triple indirect blocks:
314 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
315 * following layout (for SHMEM_NR_DIRECT == 16):
317 * i_indirect -> dir --> 16-19
330 static swp_entry_t
*shmem_swp_entry(struct shmem_inode_info
*info
, unsigned long index
, struct page
**page
)
332 unsigned long offset
;
336 if (index
< SHMEM_NR_DIRECT
) {
337 shmem_swp_balance_unmap();
338 return info
->i_direct
+index
;
340 if (!info
->i_indirect
) {
342 info
->i_indirect
= *page
;
345 return NULL
; /* need another page */
348 index
-= SHMEM_NR_DIRECT
;
349 offset
= index
% ENTRIES_PER_PAGE
;
350 index
/= ENTRIES_PER_PAGE
;
351 dir
= shmem_dir_map(info
->i_indirect
);
353 if (index
>= ENTRIES_PER_PAGE
/2) {
354 index
-= ENTRIES_PER_PAGE
/2;
355 dir
+= ENTRIES_PER_PAGE
/2 + index
/ENTRIES_PER_PAGE
;
356 index
%= ENTRIES_PER_PAGE
;
363 shmem_dir_unmap(dir
);
364 return NULL
; /* need another page */
366 shmem_dir_unmap(dir
);
367 dir
= shmem_dir_map(subdir
);
373 if (!page
|| !(subdir
= *page
)) {
374 shmem_dir_unmap(dir
);
375 return NULL
; /* need a page */
380 shmem_dir_unmap(dir
);
381 return shmem_swp_map(subdir
) + offset
;
384 static void shmem_swp_set(struct shmem_inode_info
*info
, swp_entry_t
*entry
, unsigned long value
)
386 long incdec
= value
? 1: -1;
389 info
->swapped
+= incdec
;
390 if ((unsigned long)(entry
- info
->i_direct
) >= SHMEM_NR_DIRECT
) {
391 struct page
*page
= kmap_atomic_to_page(entry
);
392 set_page_private(page
, page_private(page
) + incdec
);
397 * shmem_swp_alloc - get the position of the swap entry for the page.
398 * @info: info structure for the inode
399 * @index: index of the page to find
400 * @sgp: check and recheck i_size? skip allocation?
402 * If the entry does not exist, allocate it.
404 static swp_entry_t
*shmem_swp_alloc(struct shmem_inode_info
*info
, unsigned long index
, enum sgp_type sgp
)
406 struct inode
*inode
= &info
->vfs_inode
;
407 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
408 struct page
*page
= NULL
;
411 if (sgp
!= SGP_WRITE
&&
412 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
413 return ERR_PTR(-EINVAL
);
415 while (!(entry
= shmem_swp_entry(info
, index
, &page
))) {
417 return shmem_swp_map(ZERO_PAGE(0));
419 * Test used_blocks against 1 less max_blocks, since we have 1 data
420 * page (and perhaps indirect index pages) yet to allocate:
421 * a waste to allocate index if we cannot allocate data.
423 if (sbinfo
->max_blocks
) {
424 if (percpu_counter_compare(&sbinfo
->used_blocks
, (sbinfo
->max_blocks
- 1)) > 0)
425 return ERR_PTR(-ENOSPC
);
426 percpu_counter_inc(&sbinfo
->used_blocks
);
427 spin_lock(&inode
->i_lock
);
428 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
429 spin_unlock(&inode
->i_lock
);
432 spin_unlock(&info
->lock
);
433 page
= shmem_dir_alloc(mapping_gfp_mask(inode
->i_mapping
));
434 spin_lock(&info
->lock
);
437 shmem_free_blocks(inode
, 1);
438 return ERR_PTR(-ENOMEM
);
440 if (sgp
!= SGP_WRITE
&&
441 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
442 entry
= ERR_PTR(-EINVAL
);
445 if (info
->next_index
<= index
)
446 info
->next_index
= index
+ 1;
449 /* another task gave its page, or truncated the file */
450 shmem_free_blocks(inode
, 1);
451 shmem_dir_free(page
);
453 if (info
->next_index
<= index
&& !IS_ERR(entry
))
454 info
->next_index
= index
+ 1;
459 * shmem_free_swp - free some swap entries in a directory
460 * @dir: pointer to the directory
461 * @edir: pointer after last entry of the directory
462 * @punch_lock: pointer to spinlock when needed for the holepunch case
464 static int shmem_free_swp(swp_entry_t
*dir
, swp_entry_t
*edir
,
465 spinlock_t
*punch_lock
)
467 spinlock_t
*punch_unlock
= NULL
;
471 for (ptr
= dir
; ptr
< edir
; ptr
++) {
473 if (unlikely(punch_lock
)) {
474 punch_unlock
= punch_lock
;
476 spin_lock(punch_unlock
);
480 free_swap_and_cache(*ptr
);
481 *ptr
= (swp_entry_t
){0};
486 spin_unlock(punch_unlock
);
490 static int shmem_map_and_free_swp(struct page
*subdir
, int offset
,
491 int limit
, struct page
***dir
, spinlock_t
*punch_lock
)
496 ptr
= shmem_swp_map(subdir
);
497 for (; offset
< limit
; offset
+= LATENCY_LIMIT
) {
498 int size
= limit
- offset
;
499 if (size
> LATENCY_LIMIT
)
500 size
= LATENCY_LIMIT
;
501 freed
+= shmem_free_swp(ptr
+offset
, ptr
+offset
+size
,
503 if (need_resched()) {
504 shmem_swp_unmap(ptr
);
506 shmem_dir_unmap(*dir
);
510 ptr
= shmem_swp_map(subdir
);
513 shmem_swp_unmap(ptr
);
517 static void shmem_free_pages(struct list_head
*next
)
523 page
= container_of(next
, struct page
, lru
);
525 shmem_dir_free(page
);
527 if (freed
>= LATENCY_LIMIT
) {
534 static void shmem_truncate_range(struct inode
*inode
, loff_t start
, loff_t end
)
536 struct shmem_inode_info
*info
= SHMEM_I(inode
);
541 unsigned long diroff
;
547 LIST_HEAD(pages_to_free
);
548 long nr_pages_to_free
= 0;
549 long nr_swaps_freed
= 0;
553 spinlock_t
*needs_lock
;
554 spinlock_t
*punch_lock
;
555 unsigned long upper_limit
;
557 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
558 idx
= (start
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
559 if (idx
>= info
->next_index
)
562 spin_lock(&info
->lock
);
563 info
->flags
|= SHMEM_TRUNCATE
;
564 if (likely(end
== (loff_t
) -1)) {
565 limit
= info
->next_index
;
566 upper_limit
= SHMEM_MAX_INDEX
;
567 info
->next_index
= idx
;
571 if (end
+ 1 >= inode
->i_size
) { /* we may free a little more */
572 limit
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >>
574 upper_limit
= SHMEM_MAX_INDEX
;
576 limit
= (end
+ 1) >> PAGE_CACHE_SHIFT
;
579 needs_lock
= &info
->lock
;
583 topdir
= info
->i_indirect
;
584 if (topdir
&& idx
<= SHMEM_NR_DIRECT
&& !punch_hole
) {
585 info
->i_indirect
= NULL
;
587 list_add(&topdir
->lru
, &pages_to_free
);
589 spin_unlock(&info
->lock
);
591 if (info
->swapped
&& idx
< SHMEM_NR_DIRECT
) {
592 ptr
= info
->i_direct
;
594 if (size
> SHMEM_NR_DIRECT
)
595 size
= SHMEM_NR_DIRECT
;
596 nr_swaps_freed
= shmem_free_swp(ptr
+idx
, ptr
+size
, needs_lock
);
600 * If there are no indirect blocks or we are punching a hole
601 * below indirect blocks, nothing to be done.
603 if (!topdir
|| limit
<= SHMEM_NR_DIRECT
)
607 * The truncation case has already dropped info->lock, and we're safe
608 * because i_size and next_index have already been lowered, preventing
609 * access beyond. But in the punch_hole case, we still need to take
610 * the lock when updating the swap directory, because there might be
611 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
612 * shmem_writepage. However, whenever we find we can remove a whole
613 * directory page (not at the misaligned start or end of the range),
614 * we first NULLify its pointer in the level above, and then have no
615 * need to take the lock when updating its contents: needs_lock and
616 * punch_lock (either pointing to info->lock or NULL) manage this.
619 upper_limit
-= SHMEM_NR_DIRECT
;
620 limit
-= SHMEM_NR_DIRECT
;
621 idx
= (idx
> SHMEM_NR_DIRECT
)? (idx
- SHMEM_NR_DIRECT
): 0;
622 offset
= idx
% ENTRIES_PER_PAGE
;
625 dir
= shmem_dir_map(topdir
);
626 stage
= ENTRIES_PER_PAGEPAGE
/2;
627 if (idx
< ENTRIES_PER_PAGEPAGE
/2) {
629 diroff
= idx
/ENTRIES_PER_PAGE
;
631 dir
+= ENTRIES_PER_PAGE
/2;
632 dir
+= (idx
- ENTRIES_PER_PAGEPAGE
/2)/ENTRIES_PER_PAGEPAGE
;
634 stage
+= ENTRIES_PER_PAGEPAGE
;
637 diroff
= ((idx
- ENTRIES_PER_PAGEPAGE
/2) %
638 ENTRIES_PER_PAGEPAGE
) / ENTRIES_PER_PAGE
;
639 if (!diroff
&& !offset
&& upper_limit
>= stage
) {
641 spin_lock(needs_lock
);
643 spin_unlock(needs_lock
);
648 list_add(&middir
->lru
, &pages_to_free
);
650 shmem_dir_unmap(dir
);
651 dir
= shmem_dir_map(middir
);
659 for (; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, diroff
++) {
660 if (unlikely(idx
== stage
)) {
661 shmem_dir_unmap(dir
);
662 dir
= shmem_dir_map(topdir
) +
663 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
666 idx
+= ENTRIES_PER_PAGEPAGE
;
670 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
673 needs_lock
= &info
->lock
;
674 if (upper_limit
>= stage
) {
676 spin_lock(needs_lock
);
678 spin_unlock(needs_lock
);
683 list_add(&middir
->lru
, &pages_to_free
);
685 shmem_dir_unmap(dir
);
687 dir
= shmem_dir_map(middir
);
690 punch_lock
= needs_lock
;
691 subdir
= dir
[diroff
];
692 if (subdir
&& !offset
&& upper_limit
-idx
>= ENTRIES_PER_PAGE
) {
694 spin_lock(needs_lock
);
696 spin_unlock(needs_lock
);
701 list_add(&subdir
->lru
, &pages_to_free
);
703 if (subdir
&& page_private(subdir
) /* has swap entries */) {
705 if (size
> ENTRIES_PER_PAGE
)
706 size
= ENTRIES_PER_PAGE
;
707 freed
= shmem_map_and_free_swp(subdir
,
708 offset
, size
, &dir
, punch_lock
);
710 dir
= shmem_dir_map(middir
);
711 nr_swaps_freed
+= freed
;
712 if (offset
|| punch_lock
) {
713 spin_lock(&info
->lock
);
714 set_page_private(subdir
,
715 page_private(subdir
) - freed
);
716 spin_unlock(&info
->lock
);
718 BUG_ON(page_private(subdir
) != freed
);
723 shmem_dir_unmap(dir
);
725 if (inode
->i_mapping
->nrpages
&& (info
->flags
& SHMEM_PAGEIN
)) {
727 * Call truncate_inode_pages again: racing shmem_unuse_inode
728 * may have swizzled a page in from swap since
729 * truncate_pagecache or generic_delete_inode did it, before we
730 * lowered next_index. Also, though shmem_getpage checks
731 * i_size before adding to cache, no recheck after: so fix the
732 * narrow window there too.
734 * Recalling truncate_inode_pages_range and unmap_mapping_range
735 * every time for punch_hole (which never got a chance to clear
736 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
737 * yet hardly ever necessary: try to optimize them out later.
739 truncate_inode_pages_range(inode
->i_mapping
, start
, end
);
741 unmap_mapping_range(inode
->i_mapping
, start
,
745 spin_lock(&info
->lock
);
746 info
->flags
&= ~SHMEM_TRUNCATE
;
747 info
->swapped
-= nr_swaps_freed
;
748 if (nr_pages_to_free
)
749 shmem_free_blocks(inode
, nr_pages_to_free
);
750 shmem_recalc_inode(inode
);
751 spin_unlock(&info
->lock
);
754 * Empty swap vector directory pages to be freed?
756 if (!list_empty(&pages_to_free
)) {
757 pages_to_free
.prev
->next
= NULL
;
758 shmem_free_pages(pages_to_free
.next
);
762 static int shmem_notify_change(struct dentry
*dentry
, struct iattr
*attr
)
764 struct inode
*inode
= dentry
->d_inode
;
765 loff_t newsize
= attr
->ia_size
;
768 error
= inode_change_ok(inode
, attr
);
772 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)
773 && newsize
!= inode
->i_size
) {
774 struct page
*page
= NULL
;
776 if (newsize
< inode
->i_size
) {
778 * If truncating down to a partial page, then
779 * if that page is already allocated, hold it
780 * in memory until the truncation is over, so
781 * truncate_partial_page cannot miss it were
782 * it assigned to swap.
784 if (newsize
& (PAGE_CACHE_SIZE
-1)) {
785 (void) shmem_getpage(inode
,
786 newsize
>> PAGE_CACHE_SHIFT
,
787 &page
, SGP_READ
, NULL
);
792 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
793 * detect if any pages might have been added to cache
794 * after truncate_inode_pages. But we needn't bother
795 * if it's being fully truncated to zero-length: the
796 * nrpages check is efficient enough in that case.
799 struct shmem_inode_info
*info
= SHMEM_I(inode
);
800 spin_lock(&info
->lock
);
801 info
->flags
&= ~SHMEM_PAGEIN
;
802 spin_unlock(&info
->lock
);
806 /* XXX(truncate): truncate_setsize should be called last */
807 truncate_setsize(inode
, newsize
);
809 page_cache_release(page
);
810 shmem_truncate_range(inode
, newsize
, (loff_t
)-1);
813 setattr_copy(inode
, attr
);
814 #ifdef CONFIG_TMPFS_POSIX_ACL
815 if (attr
->ia_valid
& ATTR_MODE
)
816 error
= generic_acl_chmod(inode
);
821 static void shmem_evict_inode(struct inode
*inode
)
823 struct shmem_inode_info
*info
= SHMEM_I(inode
);
825 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
826 truncate_inode_pages(inode
->i_mapping
, 0);
827 shmem_unacct_size(info
->flags
, inode
->i_size
);
829 shmem_truncate_range(inode
, 0, (loff_t
)-1);
830 if (!list_empty(&info
->swaplist
)) {
831 mutex_lock(&shmem_swaplist_mutex
);
832 list_del_init(&info
->swaplist
);
833 mutex_unlock(&shmem_swaplist_mutex
);
836 BUG_ON(inode
->i_blocks
);
837 shmem_free_inode(inode
->i_sb
);
838 end_writeback(inode
);
841 static inline int shmem_find_swp(swp_entry_t entry
, swp_entry_t
*dir
, swp_entry_t
*edir
)
845 for (ptr
= dir
; ptr
< edir
; ptr
++) {
846 if (ptr
->val
== entry
.val
)
852 static int shmem_unuse_inode(struct shmem_inode_info
*info
, swp_entry_t entry
, struct page
*page
)
866 ptr
= info
->i_direct
;
867 spin_lock(&info
->lock
);
868 if (!info
->swapped
) {
869 list_del_init(&info
->swaplist
);
872 limit
= info
->next_index
;
874 if (size
> SHMEM_NR_DIRECT
)
875 size
= SHMEM_NR_DIRECT
;
876 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
879 if (!info
->i_indirect
)
882 dir
= shmem_dir_map(info
->i_indirect
);
883 stage
= SHMEM_NR_DIRECT
+ ENTRIES_PER_PAGEPAGE
/2;
885 for (idx
= SHMEM_NR_DIRECT
; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, dir
++) {
886 if (unlikely(idx
== stage
)) {
887 shmem_dir_unmap(dir
-1);
888 if (cond_resched_lock(&info
->lock
)) {
889 /* check it has not been truncated */
890 if (limit
> info
->next_index
) {
891 limit
= info
->next_index
;
896 dir
= shmem_dir_map(info
->i_indirect
) +
897 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
900 idx
+= ENTRIES_PER_PAGEPAGE
;
904 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
906 shmem_dir_unmap(dir
);
907 dir
= shmem_dir_map(subdir
);
910 if (subdir
&& page_private(subdir
)) {
911 ptr
= shmem_swp_map(subdir
);
913 if (size
> ENTRIES_PER_PAGE
)
914 size
= ENTRIES_PER_PAGE
;
915 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
916 shmem_swp_unmap(ptr
);
918 shmem_dir_unmap(dir
);
924 shmem_dir_unmap(dir
-1);
926 spin_unlock(&info
->lock
);
930 inode
= igrab(&info
->vfs_inode
);
931 spin_unlock(&info
->lock
);
934 * Move _head_ to start search for next from here.
935 * But be careful: shmem_evict_inode checks list_empty without taking
936 * mutex, and there's an instant in list_move_tail when info->swaplist
937 * would appear empty, if it were the only one on shmem_swaplist. We
938 * could avoid doing it if inode NULL; or use this minor optimization.
940 if (shmem_swaplist
.next
!= &info
->swaplist
)
941 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
942 mutex_unlock(&shmem_swaplist_mutex
);
948 * Charge page using GFP_KERNEL while we can wait.
949 * Charged back to the user(not to caller) when swap account is used.
950 * add_to_page_cache() will be called with GFP_NOWAIT.
952 error
= mem_cgroup_cache_charge(page
, current
->mm
, GFP_KERNEL
);
955 error
= radix_tree_preload(GFP_KERNEL
);
957 mem_cgroup_uncharge_cache_page(page
);
962 spin_lock(&info
->lock
);
963 ptr
= shmem_swp_entry(info
, idx
, NULL
);
964 if (ptr
&& ptr
->val
== entry
.val
) {
965 error
= add_to_page_cache_locked(page
, inode
->i_mapping
,
967 /* does mem_cgroup_uncharge_cache_page on error */
968 } else /* we must compensate for our precharge above */
969 mem_cgroup_uncharge_cache_page(page
);
971 if (error
== -EEXIST
) {
972 struct page
*filepage
= find_get_page(inode
->i_mapping
, idx
);
976 * There might be a more uptodate page coming down
977 * from a stacked writepage: forget our swappage if so.
979 if (PageUptodate(filepage
))
981 page_cache_release(filepage
);
985 delete_from_swap_cache(page
);
986 set_page_dirty(page
);
987 info
->flags
|= SHMEM_PAGEIN
;
988 shmem_swp_set(info
, ptr
, 0);
990 error
= 1; /* not an error, but entry was found */
993 shmem_swp_unmap(ptr
);
994 spin_unlock(&info
->lock
);
995 radix_tree_preload_end();
998 page_cache_release(page
);
999 iput(inode
); /* allows for NULL */
1004 * shmem_unuse() search for an eventually swapped out shmem page.
1006 int shmem_unuse(swp_entry_t entry
, struct page
*page
)
1008 struct list_head
*p
, *next
;
1009 struct shmem_inode_info
*info
;
1012 mutex_lock(&shmem_swaplist_mutex
);
1013 list_for_each_safe(p
, next
, &shmem_swaplist
) {
1014 info
= list_entry(p
, struct shmem_inode_info
, swaplist
);
1015 found
= shmem_unuse_inode(info
, entry
, page
);
1020 mutex_unlock(&shmem_swaplist_mutex
);
1022 * Can some race bring us here? We've been holding page lock,
1023 * so I think not; but would rather try again later than BUG()
1026 page_cache_release(page
);
1028 return (found
< 0) ? found
: 0;
1032 * Move the page from the page cache to the swap cache.
1034 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1036 struct shmem_inode_info
*info
;
1037 swp_entry_t
*entry
, swap
;
1038 struct address_space
*mapping
;
1039 unsigned long index
;
1040 struct inode
*inode
;
1042 BUG_ON(!PageLocked(page
));
1043 mapping
= page
->mapping
;
1044 index
= page
->index
;
1045 inode
= mapping
->host
;
1046 info
= SHMEM_I(inode
);
1047 if (info
->flags
& VM_LOCKED
)
1049 if (!total_swap_pages
)
1053 * shmem_backing_dev_info's capabilities prevent regular writeback or
1054 * sync from ever calling shmem_writepage; but a stacking filesystem
1055 * may use the ->writepage of its underlying filesystem, in which case
1056 * tmpfs should write out to swap only in response to memory pressure,
1057 * and not for the writeback threads or sync. However, in those cases,
1058 * we do still want to check if there's a redundant swappage to be
1061 if (wbc
->for_reclaim
)
1062 swap
= get_swap_page();
1066 spin_lock(&info
->lock
);
1067 if (index
>= info
->next_index
) {
1068 BUG_ON(!(info
->flags
& SHMEM_TRUNCATE
));
1071 entry
= shmem_swp_entry(info
, index
, NULL
);
1074 * The more uptodate page coming down from a stacked
1075 * writepage should replace our old swappage.
1077 free_swap_and_cache(*entry
);
1078 shmem_swp_set(info
, entry
, 0);
1080 shmem_recalc_inode(inode
);
1082 if (swap
.val
&& add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1083 delete_from_page_cache(page
);
1084 shmem_swp_set(info
, entry
, swap
.val
);
1085 shmem_swp_unmap(entry
);
1086 if (list_empty(&info
->swaplist
))
1087 inode
= igrab(inode
);
1090 spin_unlock(&info
->lock
);
1091 swap_shmem_alloc(swap
);
1092 BUG_ON(page_mapped(page
));
1093 swap_writepage(page
, wbc
);
1095 mutex_lock(&shmem_swaplist_mutex
);
1096 /* move instead of add in case we're racing */
1097 list_move_tail(&info
->swaplist
, &shmem_swaplist
);
1098 mutex_unlock(&shmem_swaplist_mutex
);
1104 shmem_swp_unmap(entry
);
1106 spin_unlock(&info
->lock
);
1108 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1109 * clear SWAP_HAS_CACHE flag.
1111 swapcache_free(swap
, NULL
);
1113 set_page_dirty(page
);
1114 if (wbc
->for_reclaim
)
1115 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1122 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1126 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1127 return; /* show nothing */
1129 mpol_to_str(buffer
, sizeof(buffer
), mpol
, 1);
1131 seq_printf(seq
, ",mpol=%s", buffer
);
1134 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1136 struct mempolicy
*mpol
= NULL
;
1138 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1139 mpol
= sbinfo
->mpol
;
1141 spin_unlock(&sbinfo
->stat_lock
);
1145 #endif /* CONFIG_TMPFS */
1147 static struct page
*shmem_swapin(swp_entry_t entry
, gfp_t gfp
,
1148 struct shmem_inode_info
*info
, unsigned long idx
)
1150 struct mempolicy mpol
, *spol
;
1151 struct vm_area_struct pvma
;
1154 spol
= mpol_cond_copy(&mpol
,
1155 mpol_shared_policy_lookup(&info
->policy
, idx
));
1157 /* Create a pseudo vma that just contains the policy */
1159 pvma
.vm_pgoff
= idx
;
1161 pvma
.vm_policy
= spol
;
1162 page
= swapin_readahead(entry
, gfp
, &pvma
, 0);
1166 static struct page
*shmem_alloc_page(gfp_t gfp
,
1167 struct shmem_inode_info
*info
, unsigned long idx
)
1169 struct vm_area_struct pvma
;
1171 /* Create a pseudo vma that just contains the policy */
1173 pvma
.vm_pgoff
= idx
;
1175 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, idx
);
1178 * alloc_page_vma() will drop the shared policy reference
1180 return alloc_page_vma(gfp
, &pvma
, 0);
1182 #else /* !CONFIG_NUMA */
1184 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*p
)
1187 #endif /* CONFIG_TMPFS */
1189 static inline struct page
*shmem_swapin(swp_entry_t entry
, gfp_t gfp
,
1190 struct shmem_inode_info
*info
, unsigned long idx
)
1192 return swapin_readahead(entry
, gfp
, NULL
, 0);
1195 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
1196 struct shmem_inode_info
*info
, unsigned long idx
)
1198 return alloc_page(gfp
);
1200 #endif /* CONFIG_NUMA */
1202 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1203 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1210 * shmem_getpage - either get the page from swap or allocate a new one
1212 * If we allocate a new one we do not mark it dirty. That's up to the
1213 * vm. If we swap it in we mark it dirty since we also free the swap
1214 * entry since a page cannot live in both the swap and page cache
1216 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
1217 struct page
**pagep
, enum sgp_type sgp
, int *type
)
1219 struct address_space
*mapping
= inode
->i_mapping
;
1220 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1221 struct shmem_sb_info
*sbinfo
;
1222 struct page
*filepage
= *pagep
;
1223 struct page
*swappage
;
1224 struct page
*prealloc_page
= NULL
;
1230 if (idx
>= SHMEM_MAX_INDEX
)
1237 * Normally, filepage is NULL on entry, and either found
1238 * uptodate immediately, or allocated and zeroed, or read
1239 * in under swappage, which is then assigned to filepage.
1240 * But shmem_readpage (required for splice) passes in a locked
1241 * filepage, which may be found not uptodate by other callers
1242 * too, and may need to be copied from the swappage read in.
1246 filepage
= find_lock_page(mapping
, idx
);
1247 if (filepage
&& PageUptodate(filepage
))
1249 gfp
= mapping_gfp_mask(mapping
);
1252 * Try to preload while we can wait, to not make a habit of
1253 * draining atomic reserves; but don't latch on to this cpu.
1255 error
= radix_tree_preload(gfp
& ~__GFP_HIGHMEM
);
1258 radix_tree_preload_end();
1259 if (sgp
!= SGP_READ
&& !prealloc_page
) {
1260 /* We don't care if this fails */
1261 prealloc_page
= shmem_alloc_page(gfp
, info
, idx
);
1262 if (prealloc_page
) {
1263 if (mem_cgroup_cache_charge(prealloc_page
,
1264 current
->mm
, GFP_KERNEL
)) {
1265 page_cache_release(prealloc_page
);
1266 prealloc_page
= NULL
;
1273 spin_lock(&info
->lock
);
1274 shmem_recalc_inode(inode
);
1275 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1276 if (IS_ERR(entry
)) {
1277 spin_unlock(&info
->lock
);
1278 error
= PTR_ERR(entry
);
1284 /* Look it up and read it in.. */
1285 swappage
= lookup_swap_cache(swap
);
1287 shmem_swp_unmap(entry
);
1288 /* here we actually do the io */
1289 if (type
&& !(*type
& VM_FAULT_MAJOR
)) {
1290 __count_vm_event(PGMAJFAULT
);
1291 *type
|= VM_FAULT_MAJOR
;
1293 spin_unlock(&info
->lock
);
1294 swappage
= shmem_swapin(swap
, gfp
, info
, idx
);
1296 spin_lock(&info
->lock
);
1297 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1299 error
= PTR_ERR(entry
);
1301 if (entry
->val
== swap
.val
)
1303 shmem_swp_unmap(entry
);
1305 spin_unlock(&info
->lock
);
1310 wait_on_page_locked(swappage
);
1311 page_cache_release(swappage
);
1315 /* We have to do this with page locked to prevent races */
1316 if (!trylock_page(swappage
)) {
1317 shmem_swp_unmap(entry
);
1318 spin_unlock(&info
->lock
);
1319 wait_on_page_locked(swappage
);
1320 page_cache_release(swappage
);
1323 if (PageWriteback(swappage
)) {
1324 shmem_swp_unmap(entry
);
1325 spin_unlock(&info
->lock
);
1326 wait_on_page_writeback(swappage
);
1327 unlock_page(swappage
);
1328 page_cache_release(swappage
);
1331 if (!PageUptodate(swappage
)) {
1332 shmem_swp_unmap(entry
);
1333 spin_unlock(&info
->lock
);
1334 unlock_page(swappage
);
1335 page_cache_release(swappage
);
1341 shmem_swp_set(info
, entry
, 0);
1342 shmem_swp_unmap(entry
);
1343 delete_from_swap_cache(swappage
);
1344 spin_unlock(&info
->lock
);
1345 copy_highpage(filepage
, swappage
);
1346 unlock_page(swappage
);
1347 page_cache_release(swappage
);
1348 flush_dcache_page(filepage
);
1349 SetPageUptodate(filepage
);
1350 set_page_dirty(filepage
);
1352 } else if (!(error
= add_to_page_cache_locked(swappage
, mapping
,
1353 idx
, GFP_NOWAIT
))) {
1354 info
->flags
|= SHMEM_PAGEIN
;
1355 shmem_swp_set(info
, entry
, 0);
1356 shmem_swp_unmap(entry
);
1357 delete_from_swap_cache(swappage
);
1358 spin_unlock(&info
->lock
);
1359 filepage
= swappage
;
1360 set_page_dirty(filepage
);
1363 shmem_swp_unmap(entry
);
1364 spin_unlock(&info
->lock
);
1365 if (error
== -ENOMEM
) {
1367 * reclaim from proper memory cgroup and
1368 * call memcg's OOM if needed.
1370 error
= mem_cgroup_shmem_charge_fallback(
1375 unlock_page(swappage
);
1376 page_cache_release(swappage
);
1380 unlock_page(swappage
);
1381 page_cache_release(swappage
);
1384 } else if (sgp
== SGP_READ
&& !filepage
) {
1385 shmem_swp_unmap(entry
);
1386 filepage
= find_get_page(mapping
, idx
);
1388 (!PageUptodate(filepage
) || !trylock_page(filepage
))) {
1389 spin_unlock(&info
->lock
);
1390 wait_on_page_locked(filepage
);
1391 page_cache_release(filepage
);
1395 spin_unlock(&info
->lock
);
1397 shmem_swp_unmap(entry
);
1398 sbinfo
= SHMEM_SB(inode
->i_sb
);
1399 if (sbinfo
->max_blocks
) {
1400 if ((percpu_counter_compare(&sbinfo
->used_blocks
, sbinfo
->max_blocks
) > 0) ||
1401 shmem_acct_block(info
->flags
)) {
1402 spin_unlock(&info
->lock
);
1406 percpu_counter_inc(&sbinfo
->used_blocks
);
1407 spin_lock(&inode
->i_lock
);
1408 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1409 spin_unlock(&inode
->i_lock
);
1410 } else if (shmem_acct_block(info
->flags
)) {
1411 spin_unlock(&info
->lock
);
1419 if (!prealloc_page
) {
1420 spin_unlock(&info
->lock
);
1421 filepage
= shmem_alloc_page(gfp
, info
, idx
);
1423 shmem_unacct_blocks(info
->flags
, 1);
1424 shmem_free_blocks(inode
, 1);
1428 SetPageSwapBacked(filepage
);
1431 * Precharge page while we can wait, compensate
1434 error
= mem_cgroup_cache_charge(filepage
,
1435 current
->mm
, GFP_KERNEL
);
1437 page_cache_release(filepage
);
1438 shmem_unacct_blocks(info
->flags
, 1);
1439 shmem_free_blocks(inode
, 1);
1444 spin_lock(&info
->lock
);
1446 filepage
= prealloc_page
;
1447 prealloc_page
= NULL
;
1448 SetPageSwapBacked(filepage
);
1451 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1453 error
= PTR_ERR(entry
);
1456 shmem_swp_unmap(entry
);
1458 ret
= error
|| swap
.val
;
1460 mem_cgroup_uncharge_cache_page(filepage
);
1462 ret
= add_to_page_cache_lru(filepage
, mapping
,
1465 * At add_to_page_cache_lru() failure, uncharge will
1466 * be done automatically.
1469 spin_unlock(&info
->lock
);
1470 page_cache_release(filepage
);
1471 shmem_unacct_blocks(info
->flags
, 1);
1472 shmem_free_blocks(inode
, 1);
1478 info
->flags
|= SHMEM_PAGEIN
;
1482 spin_unlock(&info
->lock
);
1483 clear_highpage(filepage
);
1484 flush_dcache_page(filepage
);
1485 SetPageUptodate(filepage
);
1486 if (sgp
== SGP_DIRTY
)
1487 set_page_dirty(filepage
);
1495 if (*pagep
!= filepage
) {
1496 unlock_page(filepage
);
1497 page_cache_release(filepage
);
1500 if (prealloc_page
) {
1501 mem_cgroup_uncharge_cache_page(prealloc_page
);
1502 page_cache_release(prealloc_page
);
1507 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1509 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1513 if (((loff_t
)vmf
->pgoff
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
1514 return VM_FAULT_SIGBUS
;
1516 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1518 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1520 return ret
| VM_FAULT_LOCKED
;
1524 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*new)
1526 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1527 return mpol_set_shared_policy(&SHMEM_I(i
)->policy
, vma
, new);
1530 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1533 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1536 idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1537 return mpol_shared_policy_lookup(&SHMEM_I(i
)->policy
, idx
);
1541 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1543 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1544 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1545 int retval
= -ENOMEM
;
1547 spin_lock(&info
->lock
);
1548 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1549 if (!user_shm_lock(inode
->i_size
, user
))
1551 info
->flags
|= VM_LOCKED
;
1552 mapping_set_unevictable(file
->f_mapping
);
1554 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1555 user_shm_unlock(inode
->i_size
, user
);
1556 info
->flags
&= ~VM_LOCKED
;
1557 mapping_clear_unevictable(file
->f_mapping
);
1558 scan_mapping_unevictable_pages(file
->f_mapping
);
1563 spin_unlock(&info
->lock
);
1567 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1569 file_accessed(file
);
1570 vma
->vm_ops
= &shmem_vm_ops
;
1571 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1575 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
1576 int mode
, dev_t dev
, unsigned long flags
)
1578 struct inode
*inode
;
1579 struct shmem_inode_info
*info
;
1580 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1582 if (shmem_reserve_inode(sb
))
1585 inode
= new_inode(sb
);
1587 inode
->i_ino
= get_next_ino();
1588 inode_init_owner(inode
, dir
, mode
);
1589 inode
->i_blocks
= 0;
1590 inode
->i_mapping
->backing_dev_info
= &shmem_backing_dev_info
;
1591 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1592 inode
->i_generation
= get_seconds();
1593 info
= SHMEM_I(inode
);
1594 memset(info
, 0, (char *)inode
- (char *)info
);
1595 spin_lock_init(&info
->lock
);
1596 info
->flags
= flags
& VM_NORESERVE
;
1597 INIT_LIST_HEAD(&info
->swaplist
);
1598 cache_no_acl(inode
);
1600 switch (mode
& S_IFMT
) {
1602 inode
->i_op
= &shmem_special_inode_operations
;
1603 init_special_inode(inode
, mode
, dev
);
1606 inode
->i_mapping
->a_ops
= &shmem_aops
;
1607 inode
->i_op
= &shmem_inode_operations
;
1608 inode
->i_fop
= &shmem_file_operations
;
1609 mpol_shared_policy_init(&info
->policy
,
1610 shmem_get_sbmpol(sbinfo
));
1614 /* Some things misbehave if size == 0 on a directory */
1615 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1616 inode
->i_op
= &shmem_dir_inode_operations
;
1617 inode
->i_fop
= &simple_dir_operations
;
1621 * Must not load anything in the rbtree,
1622 * mpol_free_shared_policy will not be called.
1624 mpol_shared_policy_init(&info
->policy
, NULL
);
1628 shmem_free_inode(sb
);
1633 static const struct inode_operations shmem_symlink_inode_operations
;
1634 static const struct inode_operations shmem_symlink_inline_operations
;
1637 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1638 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1639 * below the loop driver, in the generic fashion that many filesystems support.
1641 static int shmem_readpage(struct file
*file
, struct page
*page
)
1643 struct inode
*inode
= page
->mapping
->host
;
1644 int error
= shmem_getpage(inode
, page
->index
, &page
, SGP_CACHE
, NULL
);
1650 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1651 loff_t pos
, unsigned len
, unsigned flags
,
1652 struct page
**pagep
, void **fsdata
)
1654 struct inode
*inode
= mapping
->host
;
1655 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1657 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1661 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1662 loff_t pos
, unsigned len
, unsigned copied
,
1663 struct page
*page
, void *fsdata
)
1665 struct inode
*inode
= mapping
->host
;
1667 if (pos
+ copied
> inode
->i_size
)
1668 i_size_write(inode
, pos
+ copied
);
1670 set_page_dirty(page
);
1672 page_cache_release(page
);
1677 static void do_shmem_file_read(struct file
*filp
, loff_t
*ppos
, read_descriptor_t
*desc
, read_actor_t actor
)
1679 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
1680 struct address_space
*mapping
= inode
->i_mapping
;
1681 unsigned long index
, offset
;
1682 enum sgp_type sgp
= SGP_READ
;
1685 * Might this read be for a stacking filesystem? Then when reading
1686 * holes of a sparse file, we actually need to allocate those pages,
1687 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1689 if (segment_eq(get_fs(), KERNEL_DS
))
1692 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1693 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1696 struct page
*page
= NULL
;
1697 unsigned long end_index
, nr
, ret
;
1698 loff_t i_size
= i_size_read(inode
);
1700 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1701 if (index
> end_index
)
1703 if (index
== end_index
) {
1704 nr
= i_size
& ~PAGE_CACHE_MASK
;
1709 desc
->error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1711 if (desc
->error
== -EINVAL
)
1719 * We must evaluate after, since reads (unlike writes)
1720 * are called without i_mutex protection against truncate
1722 nr
= PAGE_CACHE_SIZE
;
1723 i_size
= i_size_read(inode
);
1724 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1725 if (index
== end_index
) {
1726 nr
= i_size
& ~PAGE_CACHE_MASK
;
1729 page_cache_release(page
);
1737 * If users can be writing to this page using arbitrary
1738 * virtual addresses, take care about potential aliasing
1739 * before reading the page on the kernel side.
1741 if (mapping_writably_mapped(mapping
))
1742 flush_dcache_page(page
);
1744 * Mark the page accessed if we read the beginning.
1747 mark_page_accessed(page
);
1749 page
= ZERO_PAGE(0);
1750 page_cache_get(page
);
1754 * Ok, we have the page, and it's up-to-date, so
1755 * now we can copy it to user space...
1757 * The actor routine returns how many bytes were actually used..
1758 * NOTE! This may not be the same as how much of a user buffer
1759 * we filled up (we may be padding etc), so we can only update
1760 * "pos" here (the actor routine has to update the user buffer
1761 * pointers and the remaining count).
1763 ret
= actor(desc
, page
, offset
, nr
);
1765 index
+= offset
>> PAGE_CACHE_SHIFT
;
1766 offset
&= ~PAGE_CACHE_MASK
;
1768 page_cache_release(page
);
1769 if (ret
!= nr
|| !desc
->count
)
1775 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1776 file_accessed(filp
);
1779 static ssize_t
shmem_file_aio_read(struct kiocb
*iocb
,
1780 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
1782 struct file
*filp
= iocb
->ki_filp
;
1786 loff_t
*ppos
= &iocb
->ki_pos
;
1788 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1792 for (seg
= 0; seg
< nr_segs
; seg
++) {
1793 read_descriptor_t desc
;
1796 desc
.arg
.buf
= iov
[seg
].iov_base
;
1797 desc
.count
= iov
[seg
].iov_len
;
1798 if (desc
.count
== 0)
1801 do_shmem_file_read(filp
, ppos
, &desc
, file_read_actor
);
1802 retval
+= desc
.written
;
1804 retval
= retval
?: desc
.error
;
1813 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1815 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
1817 buf
->f_type
= TMPFS_MAGIC
;
1818 buf
->f_bsize
= PAGE_CACHE_SIZE
;
1819 buf
->f_namelen
= NAME_MAX
;
1820 if (sbinfo
->max_blocks
) {
1821 buf
->f_blocks
= sbinfo
->max_blocks
;
1822 buf
->f_bavail
= buf
->f_bfree
=
1823 sbinfo
->max_blocks
- percpu_counter_sum(&sbinfo
->used_blocks
);
1825 if (sbinfo
->max_inodes
) {
1826 buf
->f_files
= sbinfo
->max_inodes
;
1827 buf
->f_ffree
= sbinfo
->free_inodes
;
1829 /* else leave those fields 0 like simple_statfs */
1834 * File creation. Allocate an inode, and we're done..
1837 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, int mode
, dev_t dev
)
1839 struct inode
*inode
;
1840 int error
= -ENOSPC
;
1842 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
1844 error
= security_inode_init_security(inode
, dir
,
1845 &dentry
->d_name
, NULL
,
1848 if (error
!= -EOPNOTSUPP
) {
1853 #ifdef CONFIG_TMPFS_POSIX_ACL
1854 error
= generic_acl_init(inode
, dir
);
1862 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1863 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1864 d_instantiate(dentry
, inode
);
1865 dget(dentry
); /* Extra count - pin the dentry in core */
1870 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
1874 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
1880 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, int mode
,
1881 struct nameidata
*nd
)
1883 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
1889 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1891 struct inode
*inode
= old_dentry
->d_inode
;
1895 * No ordinary (disk based) filesystem counts links as inodes;
1896 * but each new link needs a new dentry, pinning lowmem, and
1897 * tmpfs dentries cannot be pruned until they are unlinked.
1899 ret
= shmem_reserve_inode(inode
->i_sb
);
1903 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1904 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1906 ihold(inode
); /* New dentry reference */
1907 dget(dentry
); /* Extra pinning count for the created dentry */
1908 d_instantiate(dentry
, inode
);
1913 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
1915 struct inode
*inode
= dentry
->d_inode
;
1917 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
1918 shmem_free_inode(inode
->i_sb
);
1920 dir
->i_size
-= BOGO_DIRENT_SIZE
;
1921 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1923 dput(dentry
); /* Undo the count from "create" - this does all the work */
1927 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1929 if (!simple_empty(dentry
))
1932 drop_nlink(dentry
->d_inode
);
1934 return shmem_unlink(dir
, dentry
);
1938 * The VFS layer already does all the dentry stuff for rename,
1939 * we just have to decrement the usage count for the target if
1940 * it exists so that the VFS layer correctly free's it when it
1943 static int shmem_rename(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
1945 struct inode
*inode
= old_dentry
->d_inode
;
1946 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
1948 if (!simple_empty(new_dentry
))
1951 if (new_dentry
->d_inode
) {
1952 (void) shmem_unlink(new_dir
, new_dentry
);
1954 drop_nlink(old_dir
);
1955 } else if (they_are_dirs
) {
1956 drop_nlink(old_dir
);
1960 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
1961 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
1962 old_dir
->i_ctime
= old_dir
->i_mtime
=
1963 new_dir
->i_ctime
= new_dir
->i_mtime
=
1964 inode
->i_ctime
= CURRENT_TIME
;
1968 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1972 struct inode
*inode
;
1973 struct page
*page
= NULL
;
1975 struct shmem_inode_info
*info
;
1977 len
= strlen(symname
) + 1;
1978 if (len
> PAGE_CACHE_SIZE
)
1979 return -ENAMETOOLONG
;
1981 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
1985 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
, NULL
,
1988 if (error
!= -EOPNOTSUPP
) {
1995 info
= SHMEM_I(inode
);
1996 inode
->i_size
= len
-1;
1997 if (len
<= (char *)inode
- (char *)info
) {
1999 memcpy(info
, symname
, len
);
2000 inode
->i_op
= &shmem_symlink_inline_operations
;
2002 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
2007 inode
->i_mapping
->a_ops
= &shmem_aops
;
2008 inode
->i_op
= &shmem_symlink_inode_operations
;
2009 kaddr
= kmap_atomic(page
, KM_USER0
);
2010 memcpy(kaddr
, symname
, len
);
2011 kunmap_atomic(kaddr
, KM_USER0
);
2012 set_page_dirty(page
);
2014 page_cache_release(page
);
2016 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2017 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2018 d_instantiate(dentry
, inode
);
2023 static void *shmem_follow_link_inline(struct dentry
*dentry
, struct nameidata
*nd
)
2025 nd_set_link(nd
, (char *)SHMEM_I(dentry
->d_inode
));
2029 static void *shmem_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
2031 struct page
*page
= NULL
;
2032 int res
= shmem_getpage(dentry
->d_inode
, 0, &page
, SGP_READ
, NULL
);
2033 nd_set_link(nd
, res
? ERR_PTR(res
) : kmap(page
));
2039 static void shmem_put_link(struct dentry
*dentry
, struct nameidata
*nd
, void *cookie
)
2041 if (!IS_ERR(nd_get_link(nd
))) {
2042 struct page
*page
= cookie
;
2044 mark_page_accessed(page
);
2045 page_cache_release(page
);
2049 static const struct inode_operations shmem_symlink_inline_operations
= {
2050 .readlink
= generic_readlink
,
2051 .follow_link
= shmem_follow_link_inline
,
2054 static const struct inode_operations shmem_symlink_inode_operations
= {
2055 .readlink
= generic_readlink
,
2056 .follow_link
= shmem_follow_link
,
2057 .put_link
= shmem_put_link
,
2060 #ifdef CONFIG_TMPFS_POSIX_ACL
2062 * Superblocks without xattr inode operations will get security.* xattr
2063 * support from the VFS "for free". As soon as we have any other xattrs
2064 * like ACLs, we also need to implement the security.* handlers at
2065 * filesystem level, though.
2068 static size_t shmem_xattr_security_list(struct dentry
*dentry
, char *list
,
2069 size_t list_len
, const char *name
,
2070 size_t name_len
, int handler_flags
)
2072 return security_inode_listsecurity(dentry
->d_inode
, list
, list_len
);
2075 static int shmem_xattr_security_get(struct dentry
*dentry
, const char *name
,
2076 void *buffer
, size_t size
, int handler_flags
)
2078 if (strcmp(name
, "") == 0)
2080 return xattr_getsecurity(dentry
->d_inode
, name
, buffer
, size
);
2083 static int shmem_xattr_security_set(struct dentry
*dentry
, const char *name
,
2084 const void *value
, size_t size
, int flags
, int handler_flags
)
2086 if (strcmp(name
, "") == 0)
2088 return security_inode_setsecurity(dentry
->d_inode
, name
, value
,
2092 static const struct xattr_handler shmem_xattr_security_handler
= {
2093 .prefix
= XATTR_SECURITY_PREFIX
,
2094 .list
= shmem_xattr_security_list
,
2095 .get
= shmem_xattr_security_get
,
2096 .set
= shmem_xattr_security_set
,
2099 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
2100 &generic_acl_access_handler
,
2101 &generic_acl_default_handler
,
2102 &shmem_xattr_security_handler
,
2107 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2109 return ERR_PTR(-ESTALE
);
2112 static int shmem_match(struct inode
*ino
, void *vfh
)
2116 inum
= (inum
<< 32) | fh
[1];
2117 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2120 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2121 struct fid
*fid
, int fh_len
, int fh_type
)
2123 struct inode
*inode
;
2124 struct dentry
*dentry
= NULL
;
2125 u64 inum
= fid
->raw
[2];
2126 inum
= (inum
<< 32) | fid
->raw
[1];
2131 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2132 shmem_match
, fid
->raw
);
2134 dentry
= d_find_alias(inode
);
2141 static int shmem_encode_fh(struct dentry
*dentry
, __u32
*fh
, int *len
,
2144 struct inode
*inode
= dentry
->d_inode
;
2151 if (inode_unhashed(inode
)) {
2152 /* Unfortunately insert_inode_hash is not idempotent,
2153 * so as we hash inodes here rather than at creation
2154 * time, we need a lock to ensure we only try
2157 static DEFINE_SPINLOCK(lock
);
2159 if (inode_unhashed(inode
))
2160 __insert_inode_hash(inode
,
2161 inode
->i_ino
+ inode
->i_generation
);
2165 fh
[0] = inode
->i_generation
;
2166 fh
[1] = inode
->i_ino
;
2167 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2173 static const struct export_operations shmem_export_ops
= {
2174 .get_parent
= shmem_get_parent
,
2175 .encode_fh
= shmem_encode_fh
,
2176 .fh_to_dentry
= shmem_fh_to_dentry
,
2179 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
2182 char *this_char
, *value
, *rest
;
2184 while (options
!= NULL
) {
2185 this_char
= options
;
2188 * NUL-terminate this option: unfortunately,
2189 * mount options form a comma-separated list,
2190 * but mpol's nodelist may also contain commas.
2192 options
= strchr(options
, ',');
2193 if (options
== NULL
)
2196 if (!isdigit(*options
)) {
2203 if ((value
= strchr(this_char
,'=')) != NULL
) {
2207 "tmpfs: No value for mount option '%s'\n",
2212 if (!strcmp(this_char
,"size")) {
2213 unsigned long long size
;
2214 size
= memparse(value
,&rest
);
2216 size
<<= PAGE_SHIFT
;
2217 size
*= totalram_pages
;
2223 sbinfo
->max_blocks
=
2224 DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2225 } else if (!strcmp(this_char
,"nr_blocks")) {
2226 sbinfo
->max_blocks
= memparse(value
, &rest
);
2229 } else if (!strcmp(this_char
,"nr_inodes")) {
2230 sbinfo
->max_inodes
= memparse(value
, &rest
);
2233 } else if (!strcmp(this_char
,"mode")) {
2236 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
2239 } else if (!strcmp(this_char
,"uid")) {
2242 sbinfo
->uid
= simple_strtoul(value
, &rest
, 0);
2245 } else if (!strcmp(this_char
,"gid")) {
2248 sbinfo
->gid
= simple_strtoul(value
, &rest
, 0);
2251 } else if (!strcmp(this_char
,"mpol")) {
2252 if (mpol_parse_str(value
, &sbinfo
->mpol
, 1))
2255 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2263 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2269 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2271 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2272 struct shmem_sb_info config
= *sbinfo
;
2273 unsigned long inodes
;
2274 int error
= -EINVAL
;
2276 if (shmem_parse_options(data
, &config
, true))
2279 spin_lock(&sbinfo
->stat_lock
);
2280 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2281 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
2283 if (config
.max_inodes
< inodes
)
2286 * Those tests also disallow limited->unlimited while any are in
2287 * use, so i_blocks will always be zero when max_blocks is zero;
2288 * but we must separately disallow unlimited->limited, because
2289 * in that case we have no record of how much is already in use.
2291 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
2293 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
2297 sbinfo
->max_blocks
= config
.max_blocks
;
2298 sbinfo
->max_inodes
= config
.max_inodes
;
2299 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
2301 mpol_put(sbinfo
->mpol
);
2302 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
2304 spin_unlock(&sbinfo
->stat_lock
);
2308 static int shmem_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
2310 struct shmem_sb_info
*sbinfo
= SHMEM_SB(vfs
->mnt_sb
);
2312 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
2313 seq_printf(seq
, ",size=%luk",
2314 sbinfo
->max_blocks
<< (PAGE_CACHE_SHIFT
- 10));
2315 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
2316 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
2317 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
2318 seq_printf(seq
, ",mode=%03o", sbinfo
->mode
);
2319 if (sbinfo
->uid
!= 0)
2320 seq_printf(seq
, ",uid=%u", sbinfo
->uid
);
2321 if (sbinfo
->gid
!= 0)
2322 seq_printf(seq
, ",gid=%u", sbinfo
->gid
);
2323 shmem_show_mpol(seq
, sbinfo
->mpol
);
2326 #endif /* CONFIG_TMPFS */
2328 static void shmem_put_super(struct super_block
*sb
)
2330 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2332 percpu_counter_destroy(&sbinfo
->used_blocks
);
2334 sb
->s_fs_info
= NULL
;
2337 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
2339 struct inode
*inode
;
2340 struct dentry
*root
;
2341 struct shmem_sb_info
*sbinfo
;
2344 /* Round up to L1_CACHE_BYTES to resist false sharing */
2345 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
2346 L1_CACHE_BYTES
), GFP_KERNEL
);
2350 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
2351 sbinfo
->uid
= current_fsuid();
2352 sbinfo
->gid
= current_fsgid();
2353 sb
->s_fs_info
= sbinfo
;
2357 * Per default we only allow half of the physical ram per
2358 * tmpfs instance, limiting inodes to one per page of lowmem;
2359 * but the internal instance is left unlimited.
2361 if (!(sb
->s_flags
& MS_NOUSER
)) {
2362 sbinfo
->max_blocks
= shmem_default_max_blocks();
2363 sbinfo
->max_inodes
= shmem_default_max_inodes();
2364 if (shmem_parse_options(data
, sbinfo
, false)) {
2369 sb
->s_export_op
= &shmem_export_ops
;
2371 sb
->s_flags
|= MS_NOUSER
;
2374 spin_lock_init(&sbinfo
->stat_lock
);
2375 if (percpu_counter_init(&sbinfo
->used_blocks
, 0))
2377 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
2379 sb
->s_maxbytes
= SHMEM_MAX_BYTES
;
2380 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
2381 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
2382 sb
->s_magic
= TMPFS_MAGIC
;
2383 sb
->s_op
= &shmem_ops
;
2384 sb
->s_time_gran
= 1;
2385 #ifdef CONFIG_TMPFS_POSIX_ACL
2386 sb
->s_xattr
= shmem_xattr_handlers
;
2387 sb
->s_flags
|= MS_POSIXACL
;
2390 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
2393 inode
->i_uid
= sbinfo
->uid
;
2394 inode
->i_gid
= sbinfo
->gid
;
2395 root
= d_alloc_root(inode
);
2404 shmem_put_super(sb
);
2408 static struct kmem_cache
*shmem_inode_cachep
;
2410 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
2412 struct shmem_inode_info
*p
;
2413 p
= (struct shmem_inode_info
*)kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
2416 return &p
->vfs_inode
;
2419 static void shmem_i_callback(struct rcu_head
*head
)
2421 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
2422 INIT_LIST_HEAD(&inode
->i_dentry
);
2423 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
2426 static void shmem_destroy_inode(struct inode
*inode
)
2428 if ((inode
->i_mode
& S_IFMT
) == S_IFREG
) {
2429 /* only struct inode is valid if it's an inline symlink */
2430 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
2432 call_rcu(&inode
->i_rcu
, shmem_i_callback
);
2435 static void init_once(void *foo
)
2437 struct shmem_inode_info
*p
= (struct shmem_inode_info
*) foo
;
2439 inode_init_once(&p
->vfs_inode
);
2442 static int init_inodecache(void)
2444 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
2445 sizeof(struct shmem_inode_info
),
2446 0, SLAB_PANIC
, init_once
);
2450 static void destroy_inodecache(void)
2452 kmem_cache_destroy(shmem_inode_cachep
);
2455 static const struct address_space_operations shmem_aops
= {
2456 .writepage
= shmem_writepage
,
2457 .set_page_dirty
= __set_page_dirty_no_writeback
,
2459 .readpage
= shmem_readpage
,
2460 .write_begin
= shmem_write_begin
,
2461 .write_end
= shmem_write_end
,
2463 .migratepage
= migrate_page
,
2464 .error_remove_page
= generic_error_remove_page
,
2467 static const struct file_operations shmem_file_operations
= {
2470 .llseek
= generic_file_llseek
,
2471 .read
= do_sync_read
,
2472 .write
= do_sync_write
,
2473 .aio_read
= shmem_file_aio_read
,
2474 .aio_write
= generic_file_aio_write
,
2475 .fsync
= noop_fsync
,
2476 .splice_read
= generic_file_splice_read
,
2477 .splice_write
= generic_file_splice_write
,
2481 static const struct inode_operations shmem_inode_operations
= {
2482 .setattr
= shmem_notify_change
,
2483 .truncate_range
= shmem_truncate_range
,
2484 #ifdef CONFIG_TMPFS_POSIX_ACL
2485 .setxattr
= generic_setxattr
,
2486 .getxattr
= generic_getxattr
,
2487 .listxattr
= generic_listxattr
,
2488 .removexattr
= generic_removexattr
,
2489 .check_acl
= generic_check_acl
,
2494 static const struct inode_operations shmem_dir_inode_operations
= {
2496 .create
= shmem_create
,
2497 .lookup
= simple_lookup
,
2499 .unlink
= shmem_unlink
,
2500 .symlink
= shmem_symlink
,
2501 .mkdir
= shmem_mkdir
,
2502 .rmdir
= shmem_rmdir
,
2503 .mknod
= shmem_mknod
,
2504 .rename
= shmem_rename
,
2506 #ifdef CONFIG_TMPFS_POSIX_ACL
2507 .setattr
= shmem_notify_change
,
2508 .setxattr
= generic_setxattr
,
2509 .getxattr
= generic_getxattr
,
2510 .listxattr
= generic_listxattr
,
2511 .removexattr
= generic_removexattr
,
2512 .check_acl
= generic_check_acl
,
2516 static const struct inode_operations shmem_special_inode_operations
= {
2517 #ifdef CONFIG_TMPFS_POSIX_ACL
2518 .setattr
= shmem_notify_change
,
2519 .setxattr
= generic_setxattr
,
2520 .getxattr
= generic_getxattr
,
2521 .listxattr
= generic_listxattr
,
2522 .removexattr
= generic_removexattr
,
2523 .check_acl
= generic_check_acl
,
2527 static const struct super_operations shmem_ops
= {
2528 .alloc_inode
= shmem_alloc_inode
,
2529 .destroy_inode
= shmem_destroy_inode
,
2531 .statfs
= shmem_statfs
,
2532 .remount_fs
= shmem_remount_fs
,
2533 .show_options
= shmem_show_options
,
2535 .evict_inode
= shmem_evict_inode
,
2536 .drop_inode
= generic_delete_inode
,
2537 .put_super
= shmem_put_super
,
2540 static const struct vm_operations_struct shmem_vm_ops
= {
2541 .fault
= shmem_fault
,
2543 .set_policy
= shmem_set_policy
,
2544 .get_policy
= shmem_get_policy
,
2549 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
2550 int flags
, const char *dev_name
, void *data
)
2552 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
2555 static struct file_system_type tmpfs_fs_type
= {
2556 .owner
= THIS_MODULE
,
2558 .mount
= shmem_mount
,
2559 .kill_sb
= kill_litter_super
,
2562 int __init
init_tmpfs(void)
2566 error
= bdi_init(&shmem_backing_dev_info
);
2570 error
= init_inodecache();
2574 error
= register_filesystem(&tmpfs_fs_type
);
2576 printk(KERN_ERR
"Could not register tmpfs\n");
2580 shm_mnt
= vfs_kern_mount(&tmpfs_fs_type
, MS_NOUSER
,
2581 tmpfs_fs_type
.name
, NULL
);
2582 if (IS_ERR(shm_mnt
)) {
2583 error
= PTR_ERR(shm_mnt
);
2584 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
2590 unregister_filesystem(&tmpfs_fs_type
);
2592 destroy_inodecache();
2594 bdi_destroy(&shmem_backing_dev_info
);
2596 shm_mnt
= ERR_PTR(error
);
2600 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2602 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2603 * @inode: the inode to be searched
2604 * @pgoff: the offset to be searched
2605 * @pagep: the pointer for the found page to be stored
2606 * @ent: the pointer for the found swap entry to be stored
2608 * If a page is found, refcount of it is incremented. Callers should handle
2611 void mem_cgroup_get_shmem_target(struct inode
*inode
, pgoff_t pgoff
,
2612 struct page
**pagep
, swp_entry_t
*ent
)
2614 swp_entry_t entry
= { .val
= 0 }, *ptr
;
2615 struct page
*page
= NULL
;
2616 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2618 if ((pgoff
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
2621 spin_lock(&info
->lock
);
2622 ptr
= shmem_swp_entry(info
, pgoff
, NULL
);
2624 if (ptr
&& ptr
->val
) {
2625 entry
.val
= ptr
->val
;
2626 page
= find_get_page(&swapper_space
, entry
.val
);
2629 page
= find_get_page(inode
->i_mapping
, pgoff
);
2631 shmem_swp_unmap(ptr
);
2632 spin_unlock(&info
->lock
);
2639 #else /* !CONFIG_SHMEM */
2642 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2644 * This is intended for small system where the benefits of the full
2645 * shmem code (swap-backed and resource-limited) are outweighed by
2646 * their complexity. On systems without swap this code should be
2647 * effectively equivalent, but much lighter weight.
2650 #include <linux/ramfs.h>
2652 static struct file_system_type tmpfs_fs_type
= {
2654 .mount
= ramfs_mount
,
2655 .kill_sb
= kill_litter_super
,
2658 int __init
init_tmpfs(void)
2660 BUG_ON(register_filesystem(&tmpfs_fs_type
) != 0);
2662 shm_mnt
= kern_mount(&tmpfs_fs_type
);
2663 BUG_ON(IS_ERR(shm_mnt
));
2668 int shmem_unuse(swp_entry_t entry
, struct page
*page
)
2673 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2678 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2680 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2681 * @inode: the inode to be searched
2682 * @pgoff: the offset to be searched
2683 * @pagep: the pointer for the found page to be stored
2684 * @ent: the pointer for the found swap entry to be stored
2686 * If a page is found, refcount of it is incremented. Callers should handle
2689 void mem_cgroup_get_shmem_target(struct inode
*inode
, pgoff_t pgoff
,
2690 struct page
**pagep
, swp_entry_t
*ent
)
2692 struct page
*page
= NULL
;
2694 if ((pgoff
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
2696 page
= find_get_page(inode
->i_mapping
, pgoff
);
2699 *ent
= (swp_entry_t
){ .val
= 0 };
2703 #define shmem_vm_ops generic_file_vm_ops
2704 #define shmem_file_operations ramfs_file_operations
2705 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2706 #define shmem_acct_size(flags, size) 0
2707 #define shmem_unacct_size(flags, size) do {} while (0)
2708 #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE
2710 #endif /* CONFIG_SHMEM */
2715 * shmem_file_setup - get an unlinked file living in tmpfs
2716 * @name: name for dentry (to be seen in /proc/<pid>/maps
2717 * @size: size to be set for the file
2718 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2720 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
2724 struct inode
*inode
;
2726 struct dentry
*root
;
2729 if (IS_ERR(shm_mnt
))
2730 return (void *)shm_mnt
;
2732 if (size
< 0 || size
> SHMEM_MAX_BYTES
)
2733 return ERR_PTR(-EINVAL
);
2735 if (shmem_acct_size(flags
, size
))
2736 return ERR_PTR(-ENOMEM
);
2740 this.len
= strlen(name
);
2741 this.hash
= 0; /* will go */
2742 root
= shm_mnt
->mnt_root
;
2743 path
.dentry
= d_alloc(root
, &this);
2746 path
.mnt
= mntget(shm_mnt
);
2749 inode
= shmem_get_inode(root
->d_sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
2753 d_instantiate(path
.dentry
, inode
);
2754 inode
->i_size
= size
;
2755 inode
->i_nlink
= 0; /* It is unlinked */
2757 error
= ramfs_nommu_expand_for_mapping(inode
, size
);
2763 file
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
2764 &shmem_file_operations
);
2773 shmem_unacct_size(flags
, size
);
2774 return ERR_PTR(error
);
2776 EXPORT_SYMBOL_GPL(shmem_file_setup
);
2779 * shmem_zero_setup - setup a shared anonymous mapping
2780 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2782 int shmem_zero_setup(struct vm_area_struct
*vma
)
2785 loff_t size
= vma
->vm_end
- vma
->vm_start
;
2787 file
= shmem_file_setup("dev/zero", size
, vma
->vm_flags
);
2789 return PTR_ERR(file
);
2793 vma
->vm_file
= file
;
2794 vma
->vm_ops
= &shmem_vm_ops
;
2795 vma
->vm_flags
|= VM_CAN_NONLINEAR
;