x86/uv: fix init of memory-less nodes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / reiserfs / inode.c
blob6fd0f47e45db72b252808386450e468ad425af61
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include <linux/reiserfs_fs.h>
8 #include <linux/reiserfs_acl.h>
9 #include <linux/reiserfs_xattr.h>
10 #include <linux/exportfs.h>
11 #include <linux/smp_lock.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
22 int reiserfs_commit_write(struct file *f, struct page *page,
23 unsigned from, unsigned to);
24 int reiserfs_prepare_write(struct file *f, struct page *page,
25 unsigned from, unsigned to);
27 void reiserfs_delete_inode(struct inode *inode)
29 /* We need blocks for transaction + (user+group) quota update (possibly delete) */
30 int jbegin_count =
31 JOURNAL_PER_BALANCE_CNT * 2 +
32 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
33 struct reiserfs_transaction_handle th;
34 int err;
36 truncate_inode_pages(&inode->i_data, 0);
38 reiserfs_write_lock(inode->i_sb);
40 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
41 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
42 reiserfs_delete_xattrs(inode);
44 if (journal_begin(&th, inode->i_sb, jbegin_count))
45 goto out;
46 reiserfs_update_inode_transaction(inode);
48 reiserfs_discard_prealloc(&th, inode);
50 err = reiserfs_delete_object(&th, inode);
52 /* Do quota update inside a transaction for journaled quotas. We must do that
53 * after delete_object so that quota updates go into the same transaction as
54 * stat data deletion */
55 if (!err)
56 vfs_dq_free_inode(inode);
58 if (journal_end(&th, inode->i_sb, jbegin_count))
59 goto out;
61 /* check return value from reiserfs_delete_object after
62 * ending the transaction
64 if (err)
65 goto out;
67 /* all items of file are deleted, so we can remove "save" link */
68 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything
69 * about an error here */
70 } else {
71 /* no object items are in the tree */
74 out:
75 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */
76 inode->i_blocks = 0;
77 reiserfs_write_unlock(inode->i_sb);
80 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
81 __u32 objectid, loff_t offset, int type, int length)
83 key->version = version;
85 key->on_disk_key.k_dir_id = dirid;
86 key->on_disk_key.k_objectid = objectid;
87 set_cpu_key_k_offset(key, offset);
88 set_cpu_key_k_type(key, type);
89 key->key_length = length;
92 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
93 offset and type of key */
94 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
95 int type, int length)
97 _make_cpu_key(key, get_inode_item_key_version(inode),
98 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
99 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
100 length);
104 // when key is 0, do not set version and short key
106 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
107 int version,
108 loff_t offset, int type, int length,
109 int entry_count /*or ih_free_space */ )
111 if (key) {
112 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
113 ih->ih_key.k_objectid =
114 cpu_to_le32(key->on_disk_key.k_objectid);
116 put_ih_version(ih, version);
117 set_le_ih_k_offset(ih, offset);
118 set_le_ih_k_type(ih, type);
119 put_ih_item_len(ih, length);
120 /* set_ih_free_space (ih, 0); */
121 // for directory items it is entry count, for directs and stat
122 // datas - 0xffff, for indirects - 0
123 put_ih_entry_count(ih, entry_count);
127 // FIXME: we might cache recently accessed indirect item
129 // Ugh. Not too eager for that....
130 // I cut the code until such time as I see a convincing argument (benchmark).
131 // I don't want a bloated inode struct..., and I don't like code complexity....
133 /* cutting the code is fine, since it really isn't in use yet and is easy
134 ** to add back in. But, Vladimir has a really good idea here. Think
135 ** about what happens for reading a file. For each page,
136 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
137 ** an indirect item. This indirect item has X number of pointers, where
138 ** X is a big number if we've done the block allocation right. But,
139 ** we only use one or two of these pointers during each call to readpage,
140 ** needlessly researching again later on.
142 ** The size of the cache could be dynamic based on the size of the file.
144 ** I'd also like to see us cache the location the stat data item, since
145 ** we are needlessly researching for that frequently.
147 ** --chris
150 /* If this page has a file tail in it, and
151 ** it was read in by get_block_create_0, the page data is valid,
152 ** but tail is still sitting in a direct item, and we can't write to
153 ** it. So, look through this page, and check all the mapped buffers
154 ** to make sure they have valid block numbers. Any that don't need
155 ** to be unmapped, so that block_prepare_write will correctly call
156 ** reiserfs_get_block to convert the tail into an unformatted node
158 static inline void fix_tail_page_for_writing(struct page *page)
160 struct buffer_head *head, *next, *bh;
162 if (page && page_has_buffers(page)) {
163 head = page_buffers(page);
164 bh = head;
165 do {
166 next = bh->b_this_page;
167 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
168 reiserfs_unmap_buffer(bh);
170 bh = next;
171 } while (bh != head);
175 /* reiserfs_get_block does not need to allocate a block only if it has been
176 done already or non-hole position has been found in the indirect item */
177 static inline int allocation_needed(int retval, b_blocknr_t allocated,
178 struct item_head *ih,
179 __le32 * item, int pos_in_item)
181 if (allocated)
182 return 0;
183 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
184 get_block_num(item, pos_in_item))
185 return 0;
186 return 1;
189 static inline int indirect_item_found(int retval, struct item_head *ih)
191 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
194 static inline void set_block_dev_mapped(struct buffer_head *bh,
195 b_blocknr_t block, struct inode *inode)
197 map_bh(bh, inode->i_sb, block);
201 // files which were created in the earlier version can not be longer,
202 // than 2 gb
204 static int file_capable(struct inode *inode, sector_t block)
206 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file.
207 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
208 return 1;
210 return 0;
213 static int restart_transaction(struct reiserfs_transaction_handle *th,
214 struct inode *inode, struct treepath *path)
216 struct super_block *s = th->t_super;
217 int len = th->t_blocks_allocated;
218 int err;
220 BUG_ON(!th->t_trans_id);
221 BUG_ON(!th->t_refcount);
223 pathrelse(path);
225 /* we cannot restart while nested */
226 if (th->t_refcount > 1) {
227 return 0;
229 reiserfs_update_sd(th, inode);
230 err = journal_end(th, s, len);
231 if (!err) {
232 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
233 if (!err)
234 reiserfs_update_inode_transaction(inode);
236 return err;
239 // it is called by get_block when create == 0. Returns block number
240 // for 'block'-th logical block of file. When it hits direct item it
241 // returns 0 (being called from bmap) or read direct item into piece
242 // of page (bh_result)
244 // Please improve the english/clarity in the comment above, as it is
245 // hard to understand.
247 static int _get_block_create_0(struct inode *inode, sector_t block,
248 struct buffer_head *bh_result, int args)
250 INITIALIZE_PATH(path);
251 struct cpu_key key;
252 struct buffer_head *bh;
253 struct item_head *ih, tmp_ih;
254 int fs_gen;
255 b_blocknr_t blocknr;
256 char *p = NULL;
257 int chars;
258 int ret;
259 int result;
260 int done = 0;
261 unsigned long offset;
263 // prepare the key to look for the 'block'-th block of file
264 make_cpu_key(&key, inode,
265 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
268 research:
269 result = search_for_position_by_key(inode->i_sb, &key, &path);
270 if (result != POSITION_FOUND) {
271 pathrelse(&path);
272 if (p)
273 kunmap(bh_result->b_page);
274 if (result == IO_ERROR)
275 return -EIO;
276 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
277 // That there is some MMAPED data associated with it that is yet to be written to disk.
278 if ((args & GET_BLOCK_NO_HOLE)
279 && !PageUptodate(bh_result->b_page)) {
280 return -ENOENT;
282 return 0;
285 bh = get_last_bh(&path);
286 ih = get_ih(&path);
287 if (is_indirect_le_ih(ih)) {
288 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
290 /* FIXME: here we could cache indirect item or part of it in
291 the inode to avoid search_by_key in case of subsequent
292 access to file */
293 blocknr = get_block_num(ind_item, path.pos_in_item);
294 ret = 0;
295 if (blocknr) {
296 map_bh(bh_result, inode->i_sb, blocknr);
297 if (path.pos_in_item ==
298 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
299 set_buffer_boundary(bh_result);
301 } else
302 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
303 // That there is some MMAPED data associated with it that is yet to be written to disk.
304 if ((args & GET_BLOCK_NO_HOLE)
305 && !PageUptodate(bh_result->b_page)) {
306 ret = -ENOENT;
309 pathrelse(&path);
310 if (p)
311 kunmap(bh_result->b_page);
312 return ret;
314 // requested data are in direct item(s)
315 if (!(args & GET_BLOCK_READ_DIRECT)) {
316 // we are called by bmap. FIXME: we can not map block of file
317 // when it is stored in direct item(s)
318 pathrelse(&path);
319 if (p)
320 kunmap(bh_result->b_page);
321 return -ENOENT;
324 /* if we've got a direct item, and the buffer or page was uptodate,
325 ** we don't want to pull data off disk again. skip to the
326 ** end, where we map the buffer and return
328 if (buffer_uptodate(bh_result)) {
329 goto finished;
330 } else
332 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
333 ** pages without any buffers. If the page is up to date, we don't want
334 ** read old data off disk. Set the up to date bit on the buffer instead
335 ** and jump to the end
337 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
338 set_buffer_uptodate(bh_result);
339 goto finished;
341 // read file tail into part of page
342 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
343 fs_gen = get_generation(inode->i_sb);
344 copy_item_head(&tmp_ih, ih);
346 /* we only want to kmap if we are reading the tail into the page.
347 ** this is not the common case, so we don't kmap until we are
348 ** sure we need to. But, this means the item might move if
349 ** kmap schedules
351 if (!p) {
352 p = (char *)kmap(bh_result->b_page);
353 if (fs_changed(fs_gen, inode->i_sb)
354 && item_moved(&tmp_ih, &path)) {
355 goto research;
358 p += offset;
359 memset(p, 0, inode->i_sb->s_blocksize);
360 do {
361 if (!is_direct_le_ih(ih)) {
362 BUG();
364 /* make sure we don't read more bytes than actually exist in
365 ** the file. This can happen in odd cases where i_size isn't
366 ** correct, and when direct item padding results in a few
367 ** extra bytes at the end of the direct item
369 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
370 break;
371 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
372 chars =
373 inode->i_size - (le_ih_k_offset(ih) - 1) -
374 path.pos_in_item;
375 done = 1;
376 } else {
377 chars = ih_item_len(ih) - path.pos_in_item;
379 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
381 if (done)
382 break;
384 p += chars;
386 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
387 // we done, if read direct item is not the last item of
388 // node FIXME: we could try to check right delimiting key
389 // to see whether direct item continues in the right
390 // neighbor or rely on i_size
391 break;
393 // update key to look for the next piece
394 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
395 result = search_for_position_by_key(inode->i_sb, &key, &path);
396 if (result != POSITION_FOUND)
397 // i/o error most likely
398 break;
399 bh = get_last_bh(&path);
400 ih = get_ih(&path);
401 } while (1);
403 flush_dcache_page(bh_result->b_page);
404 kunmap(bh_result->b_page);
406 finished:
407 pathrelse(&path);
409 if (result == IO_ERROR)
410 return -EIO;
412 /* this buffer has valid data, but isn't valid for io. mapping it to
413 * block #0 tells the rest of reiserfs it just has a tail in it
415 map_bh(bh_result, inode->i_sb, 0);
416 set_buffer_uptodate(bh_result);
417 return 0;
420 // this is called to create file map. So, _get_block_create_0 will not
421 // read direct item
422 static int reiserfs_bmap(struct inode *inode, sector_t block,
423 struct buffer_head *bh_result, int create)
425 if (!file_capable(inode, block))
426 return -EFBIG;
428 reiserfs_write_lock(inode->i_sb);
429 /* do not read the direct item */
430 _get_block_create_0(inode, block, bh_result, 0);
431 reiserfs_write_unlock(inode->i_sb);
432 return 0;
435 /* special version of get_block that is only used by grab_tail_page right
436 ** now. It is sent to block_prepare_write, and when you try to get a
437 ** block past the end of the file (or a block from a hole) it returns
438 ** -ENOENT instead of a valid buffer. block_prepare_write expects to
439 ** be able to do i/o on the buffers returned, unless an error value
440 ** is also returned.
442 ** So, this allows block_prepare_write to be used for reading a single block
443 ** in a page. Where it does not produce a valid page for holes, or past the
444 ** end of the file. This turns out to be exactly what we need for reading
445 ** tails for conversion.
447 ** The point of the wrapper is forcing a certain value for create, even
448 ** though the VFS layer is calling this function with create==1. If you
449 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
450 ** don't use this function.
452 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
453 struct buffer_head *bh_result,
454 int create)
456 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
459 /* This is special helper for reiserfs_get_block in case we are executing
460 direct_IO request. */
461 static int reiserfs_get_blocks_direct_io(struct inode *inode,
462 sector_t iblock,
463 struct buffer_head *bh_result,
464 int create)
466 int ret;
468 bh_result->b_page = NULL;
470 /* We set the b_size before reiserfs_get_block call since it is
471 referenced in convert_tail_for_hole() that may be called from
472 reiserfs_get_block() */
473 bh_result->b_size = (1 << inode->i_blkbits);
475 ret = reiserfs_get_block(inode, iblock, bh_result,
476 create | GET_BLOCK_NO_DANGLE);
477 if (ret)
478 goto out;
480 /* don't allow direct io onto tail pages */
481 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
482 /* make sure future calls to the direct io funcs for this offset
483 ** in the file fail by unmapping the buffer
485 clear_buffer_mapped(bh_result);
486 ret = -EINVAL;
488 /* Possible unpacked tail. Flush the data before pages have
489 disappeared */
490 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
491 int err;
492 lock_kernel();
493 err = reiserfs_commit_for_inode(inode);
494 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
495 unlock_kernel();
496 if (err < 0)
497 ret = err;
499 out:
500 return ret;
504 ** helper function for when reiserfs_get_block is called for a hole
505 ** but the file tail is still in a direct item
506 ** bh_result is the buffer head for the hole
507 ** tail_offset is the offset of the start of the tail in the file
509 ** This calls prepare_write, which will start a new transaction
510 ** you should not be in a transaction, or have any paths held when you
511 ** call this.
513 static int convert_tail_for_hole(struct inode *inode,
514 struct buffer_head *bh_result,
515 loff_t tail_offset)
517 unsigned long index;
518 unsigned long tail_end;
519 unsigned long tail_start;
520 struct page *tail_page;
521 struct page *hole_page = bh_result->b_page;
522 int retval = 0;
524 if ((tail_offset & (bh_result->b_size - 1)) != 1)
525 return -EIO;
527 /* always try to read until the end of the block */
528 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
529 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
531 index = tail_offset >> PAGE_CACHE_SHIFT;
532 /* hole_page can be zero in case of direct_io, we are sure
533 that we cannot get here if we write with O_DIRECT into
534 tail page */
535 if (!hole_page || index != hole_page->index) {
536 tail_page = grab_cache_page(inode->i_mapping, index);
537 retval = -ENOMEM;
538 if (!tail_page) {
539 goto out;
541 } else {
542 tail_page = hole_page;
545 /* we don't have to make sure the conversion did not happen while
546 ** we were locking the page because anyone that could convert
547 ** must first take i_mutex.
549 ** We must fix the tail page for writing because it might have buffers
550 ** that are mapped, but have a block number of 0. This indicates tail
551 ** data that has been read directly into the page, and block_prepare_write
552 ** won't trigger a get_block in this case.
554 fix_tail_page_for_writing(tail_page);
555 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
556 if (retval)
557 goto unlock;
559 /* tail conversion might change the data in the page */
560 flush_dcache_page(tail_page);
562 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
564 unlock:
565 if (tail_page != hole_page) {
566 unlock_page(tail_page);
567 page_cache_release(tail_page);
569 out:
570 return retval;
573 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
574 sector_t block,
575 struct inode *inode,
576 b_blocknr_t * allocated_block_nr,
577 struct treepath *path, int flags)
579 BUG_ON(!th->t_trans_id);
581 #ifdef REISERFS_PREALLOCATE
582 if (!(flags & GET_BLOCK_NO_IMUX)) {
583 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
584 path, block);
586 #endif
587 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
588 block);
591 int reiserfs_get_block(struct inode *inode, sector_t block,
592 struct buffer_head *bh_result, int create)
594 int repeat, retval = 0;
595 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int
596 INITIALIZE_PATH(path);
597 int pos_in_item;
598 struct cpu_key key;
599 struct buffer_head *bh, *unbh = NULL;
600 struct item_head *ih, tmp_ih;
601 __le32 *item;
602 int done;
603 int fs_gen;
604 struct reiserfs_transaction_handle *th = NULL;
605 /* space reserved in transaction batch:
606 . 3 balancings in direct->indirect conversion
607 . 1 block involved into reiserfs_update_sd()
608 XXX in practically impossible worst case direct2indirect()
609 can incur (much) more than 3 balancings.
610 quota update for user, group */
611 int jbegin_count =
612 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
613 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
614 int version;
615 int dangle = 1;
616 loff_t new_offset =
617 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
619 /* bad.... */
620 reiserfs_write_lock(inode->i_sb);
621 version = get_inode_item_key_version(inode);
623 if (!file_capable(inode, block)) {
624 reiserfs_write_unlock(inode->i_sb);
625 return -EFBIG;
628 /* if !create, we aren't changing the FS, so we don't need to
629 ** log anything, so we don't need to start a transaction
631 if (!(create & GET_BLOCK_CREATE)) {
632 int ret;
633 /* find number of block-th logical block of the file */
634 ret = _get_block_create_0(inode, block, bh_result,
635 create | GET_BLOCK_READ_DIRECT);
636 reiserfs_write_unlock(inode->i_sb);
637 return ret;
640 * if we're already in a transaction, make sure to close
641 * any new transactions we start in this func
643 if ((create & GET_BLOCK_NO_DANGLE) ||
644 reiserfs_transaction_running(inode->i_sb))
645 dangle = 0;
647 /* If file is of such a size, that it might have a tail and tails are enabled
648 ** we should mark it as possibly needing tail packing on close
650 if ((have_large_tails(inode->i_sb)
651 && inode->i_size < i_block_size(inode) * 4)
652 || (have_small_tails(inode->i_sb)
653 && inode->i_size < i_block_size(inode)))
654 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
656 /* set the key of the first byte in the 'block'-th block of file */
657 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
658 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
659 start_trans:
660 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
661 if (!th) {
662 retval = -ENOMEM;
663 goto failure;
665 reiserfs_update_inode_transaction(inode);
667 research:
669 retval = search_for_position_by_key(inode->i_sb, &key, &path);
670 if (retval == IO_ERROR) {
671 retval = -EIO;
672 goto failure;
675 bh = get_last_bh(&path);
676 ih = get_ih(&path);
677 item = get_item(&path);
678 pos_in_item = path.pos_in_item;
680 fs_gen = get_generation(inode->i_sb);
681 copy_item_head(&tmp_ih, ih);
683 if (allocation_needed
684 (retval, allocated_block_nr, ih, item, pos_in_item)) {
685 /* we have to allocate block for the unformatted node */
686 if (!th) {
687 pathrelse(&path);
688 goto start_trans;
691 repeat =
692 _allocate_block(th, block, inode, &allocated_block_nr,
693 &path, create);
695 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
696 /* restart the transaction to give the journal a chance to free
697 ** some blocks. releases the path, so we have to go back to
698 ** research if we succeed on the second try
700 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
701 retval = restart_transaction(th, inode, &path);
702 if (retval)
703 goto failure;
704 repeat =
705 _allocate_block(th, block, inode,
706 &allocated_block_nr, NULL, create);
708 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
709 goto research;
711 if (repeat == QUOTA_EXCEEDED)
712 retval = -EDQUOT;
713 else
714 retval = -ENOSPC;
715 goto failure;
718 if (fs_changed(fs_gen, inode->i_sb)
719 && item_moved(&tmp_ih, &path)) {
720 goto research;
724 if (indirect_item_found(retval, ih)) {
725 b_blocknr_t unfm_ptr;
726 /* 'block'-th block is in the file already (there is
727 corresponding cell in some indirect item). But it may be
728 zero unformatted node pointer (hole) */
729 unfm_ptr = get_block_num(item, pos_in_item);
730 if (unfm_ptr == 0) {
731 /* use allocated block to plug the hole */
732 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
733 if (fs_changed(fs_gen, inode->i_sb)
734 && item_moved(&tmp_ih, &path)) {
735 reiserfs_restore_prepared_buffer(inode->i_sb,
736 bh);
737 goto research;
739 set_buffer_new(bh_result);
740 if (buffer_dirty(bh_result)
741 && reiserfs_data_ordered(inode->i_sb))
742 reiserfs_add_ordered_list(inode, bh_result);
743 put_block_num(item, pos_in_item, allocated_block_nr);
744 unfm_ptr = allocated_block_nr;
745 journal_mark_dirty(th, inode->i_sb, bh);
746 reiserfs_update_sd(th, inode);
748 set_block_dev_mapped(bh_result, unfm_ptr, inode);
749 pathrelse(&path);
750 retval = 0;
751 if (!dangle && th)
752 retval = reiserfs_end_persistent_transaction(th);
754 reiserfs_write_unlock(inode->i_sb);
756 /* the item was found, so new blocks were not added to the file
757 ** there is no need to make sure the inode is updated with this
758 ** transaction
760 return retval;
763 if (!th) {
764 pathrelse(&path);
765 goto start_trans;
768 /* desired position is not found or is in the direct item. We have
769 to append file with holes up to 'block'-th block converting
770 direct items to indirect one if necessary */
771 done = 0;
772 do {
773 if (is_statdata_le_ih(ih)) {
774 __le32 unp = 0;
775 struct cpu_key tmp_key;
777 /* indirect item has to be inserted */
778 make_le_item_head(&tmp_ih, &key, version, 1,
779 TYPE_INDIRECT, UNFM_P_SIZE,
780 0 /* free_space */ );
782 if (cpu_key_k_offset(&key) == 1) {
783 /* we are going to add 'block'-th block to the file. Use
784 allocated block for that */
785 unp = cpu_to_le32(allocated_block_nr);
786 set_block_dev_mapped(bh_result,
787 allocated_block_nr, inode);
788 set_buffer_new(bh_result);
789 done = 1;
791 tmp_key = key; // ;)
792 set_cpu_key_k_offset(&tmp_key, 1);
793 PATH_LAST_POSITION(&path)++;
795 retval =
796 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
797 inode, (char *)&unp);
798 if (retval) {
799 reiserfs_free_block(th, inode,
800 allocated_block_nr, 1);
801 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
803 //mark_tail_converted (inode);
804 } else if (is_direct_le_ih(ih)) {
805 /* direct item has to be converted */
806 loff_t tail_offset;
808 tail_offset =
809 ((le_ih_k_offset(ih) -
810 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
811 if (tail_offset == cpu_key_k_offset(&key)) {
812 /* direct item we just found fits into block we have
813 to map. Convert it into unformatted node: use
814 bh_result for the conversion */
815 set_block_dev_mapped(bh_result,
816 allocated_block_nr, inode);
817 unbh = bh_result;
818 done = 1;
819 } else {
820 /* we have to padd file tail stored in direct item(s)
821 up to block size and convert it to unformatted
822 node. FIXME: this should also get into page cache */
824 pathrelse(&path);
826 * ugly, but we can only end the transaction if
827 * we aren't nested
829 BUG_ON(!th->t_refcount);
830 if (th->t_refcount == 1) {
831 retval =
832 reiserfs_end_persistent_transaction
833 (th);
834 th = NULL;
835 if (retval)
836 goto failure;
839 retval =
840 convert_tail_for_hole(inode, bh_result,
841 tail_offset);
842 if (retval) {
843 if (retval != -ENOSPC)
844 reiserfs_error(inode->i_sb,
845 "clm-6004",
846 "convert tail failed "
847 "inode %lu, error %d",
848 inode->i_ino,
849 retval);
850 if (allocated_block_nr) {
851 /* the bitmap, the super, and the stat data == 3 */
852 if (!th)
853 th = reiserfs_persistent_transaction(inode->i_sb, 3);
854 if (th)
855 reiserfs_free_block(th,
856 inode,
857 allocated_block_nr,
860 goto failure;
862 goto research;
864 retval =
865 direct2indirect(th, inode, &path, unbh,
866 tail_offset);
867 if (retval) {
868 reiserfs_unmap_buffer(unbh);
869 reiserfs_free_block(th, inode,
870 allocated_block_nr, 1);
871 goto failure;
873 /* it is important the set_buffer_uptodate is done after
874 ** the direct2indirect. The buffer might contain valid
875 ** data newer than the data on disk (read by readpage, changed,
876 ** and then sent here by writepage). direct2indirect needs
877 ** to know if unbh was already up to date, so it can decide
878 ** if the data in unbh needs to be replaced with data from
879 ** the disk
881 set_buffer_uptodate(unbh);
883 /* unbh->b_page == NULL in case of DIRECT_IO request, this means
884 buffer will disappear shortly, so it should not be added to
886 if (unbh->b_page) {
887 /* we've converted the tail, so we must
888 ** flush unbh before the transaction commits
890 reiserfs_add_tail_list(inode, unbh);
892 /* mark it dirty now to prevent commit_write from adding
893 ** this buffer to the inode's dirty buffer list
896 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
897 * It's still atomic, but it sets the page dirty too,
898 * which makes it eligible for writeback at any time by the
899 * VM (which was also the case with __mark_buffer_dirty())
901 mark_buffer_dirty(unbh);
903 } else {
904 /* append indirect item with holes if needed, when appending
905 pointer to 'block'-th block use block, which is already
906 allocated */
907 struct cpu_key tmp_key;
908 unp_t unf_single = 0; // We use this in case we need to allocate only
909 // one block which is a fastpath
910 unp_t *un;
911 __u64 max_to_insert =
912 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
913 UNFM_P_SIZE;
914 __u64 blocks_needed;
916 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
917 "vs-804: invalid position for append");
918 /* indirect item has to be appended, set up key of that position */
919 make_cpu_key(&tmp_key, inode,
920 le_key_k_offset(version,
921 &(ih->ih_key)) +
922 op_bytes_number(ih,
923 inode->i_sb->s_blocksize),
924 //pos_in_item * inode->i_sb->s_blocksize,
925 TYPE_INDIRECT, 3); // key type is unimportant
927 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
928 "green-805: invalid offset");
929 blocks_needed =
931 ((cpu_key_k_offset(&key) -
932 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
933 s_blocksize_bits);
935 if (blocks_needed == 1) {
936 un = &unf_single;
937 } else {
938 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC); // We need to avoid scheduling.
939 if (!un) {
940 un = &unf_single;
941 blocks_needed = 1;
942 max_to_insert = 0;
945 if (blocks_needed <= max_to_insert) {
946 /* we are going to add target block to the file. Use allocated
947 block for that */
948 un[blocks_needed - 1] =
949 cpu_to_le32(allocated_block_nr);
950 set_block_dev_mapped(bh_result,
951 allocated_block_nr, inode);
952 set_buffer_new(bh_result);
953 done = 1;
954 } else {
955 /* paste hole to the indirect item */
956 /* If kmalloc failed, max_to_insert becomes zero and it means we
957 only have space for one block */
958 blocks_needed =
959 max_to_insert ? max_to_insert : 1;
961 retval =
962 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
963 (char *)un,
964 UNFM_P_SIZE *
965 blocks_needed);
967 if (blocks_needed != 1)
968 kfree(un);
970 if (retval) {
971 reiserfs_free_block(th, inode,
972 allocated_block_nr, 1);
973 goto failure;
975 if (!done) {
976 /* We need to mark new file size in case this function will be
977 interrupted/aborted later on. And we may do this only for
978 holes. */
979 inode->i_size +=
980 inode->i_sb->s_blocksize * blocks_needed;
984 if (done == 1)
985 break;
987 /* this loop could log more blocks than we had originally asked
988 ** for. So, we have to allow the transaction to end if it is
989 ** too big or too full. Update the inode so things are
990 ** consistent if we crash before the function returns
992 ** release the path so that anybody waiting on the path before
993 ** ending their transaction will be able to continue.
995 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
996 retval = restart_transaction(th, inode, &path);
997 if (retval)
998 goto failure;
1000 /* inserting indirect pointers for a hole can take a
1001 ** long time. reschedule if needed
1003 cond_resched();
1005 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1006 if (retval == IO_ERROR) {
1007 retval = -EIO;
1008 goto failure;
1010 if (retval == POSITION_FOUND) {
1011 reiserfs_warning(inode->i_sb, "vs-825",
1012 "%K should not be found", &key);
1013 retval = -EEXIST;
1014 if (allocated_block_nr)
1015 reiserfs_free_block(th, inode,
1016 allocated_block_nr, 1);
1017 pathrelse(&path);
1018 goto failure;
1020 bh = get_last_bh(&path);
1021 ih = get_ih(&path);
1022 item = get_item(&path);
1023 pos_in_item = path.pos_in_item;
1024 } while (1);
1026 retval = 0;
1028 failure:
1029 if (th && (!dangle || (retval && !th->t_trans_id))) {
1030 int err;
1031 if (th->t_trans_id)
1032 reiserfs_update_sd(th, inode);
1033 err = reiserfs_end_persistent_transaction(th);
1034 if (err)
1035 retval = err;
1038 reiserfs_write_unlock(inode->i_sb);
1039 reiserfs_check_path(&path);
1040 return retval;
1043 static int
1044 reiserfs_readpages(struct file *file, struct address_space *mapping,
1045 struct list_head *pages, unsigned nr_pages)
1047 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1050 /* Compute real number of used bytes by file
1051 * Following three functions can go away when we'll have enough space in stat item
1053 static int real_space_diff(struct inode *inode, int sd_size)
1055 int bytes;
1056 loff_t blocksize = inode->i_sb->s_blocksize;
1058 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1059 return sd_size;
1061 /* End of file is also in full block with indirect reference, so round
1062 ** up to the next block.
1064 ** there is just no way to know if the tail is actually packed
1065 ** on the file, so we have to assume it isn't. When we pack the
1066 ** tail, we add 4 bytes to pretend there really is an unformatted
1067 ** node pointer
1069 bytes =
1070 ((inode->i_size +
1071 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1072 sd_size;
1073 return bytes;
1076 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1077 int sd_size)
1079 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1080 return inode->i_size +
1081 (loff_t) (real_space_diff(inode, sd_size));
1083 return ((loff_t) real_space_diff(inode, sd_size)) +
1084 (((loff_t) blocks) << 9);
1087 /* Compute number of blocks used by file in ReiserFS counting */
1088 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1090 loff_t bytes = inode_get_bytes(inode);
1091 loff_t real_space = real_space_diff(inode, sd_size);
1093 /* keeps fsck and non-quota versions of reiserfs happy */
1094 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1095 bytes += (loff_t) 511;
1098 /* files from before the quota patch might i_blocks such that
1099 ** bytes < real_space. Deal with that here to prevent it from
1100 ** going negative.
1102 if (bytes < real_space)
1103 return 0;
1104 return (bytes - real_space) >> 9;
1108 // BAD: new directories have stat data of new type and all other items
1109 // of old type. Version stored in the inode says about body items, so
1110 // in update_stat_data we can not rely on inode, but have to check
1111 // item version directly
1114 // called by read_locked_inode
1115 static void init_inode(struct inode *inode, struct treepath *path)
1117 struct buffer_head *bh;
1118 struct item_head *ih;
1119 __u32 rdev;
1120 //int version = ITEM_VERSION_1;
1122 bh = PATH_PLAST_BUFFER(path);
1123 ih = PATH_PITEM_HEAD(path);
1125 copy_key(INODE_PKEY(inode), &(ih->ih_key));
1127 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1128 REISERFS_I(inode)->i_flags = 0;
1129 REISERFS_I(inode)->i_prealloc_block = 0;
1130 REISERFS_I(inode)->i_prealloc_count = 0;
1131 REISERFS_I(inode)->i_trans_id = 0;
1132 REISERFS_I(inode)->i_jl = NULL;
1133 mutex_init(&(REISERFS_I(inode)->i_mmap));
1134 reiserfs_init_acl_access(inode);
1135 reiserfs_init_acl_default(inode);
1136 reiserfs_init_xattr_rwsem(inode);
1138 if (stat_data_v1(ih)) {
1139 struct stat_data_v1 *sd =
1140 (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1141 unsigned long blocks;
1143 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1144 set_inode_sd_version(inode, STAT_DATA_V1);
1145 inode->i_mode = sd_v1_mode(sd);
1146 inode->i_nlink = sd_v1_nlink(sd);
1147 inode->i_uid = sd_v1_uid(sd);
1148 inode->i_gid = sd_v1_gid(sd);
1149 inode->i_size = sd_v1_size(sd);
1150 inode->i_atime.tv_sec = sd_v1_atime(sd);
1151 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1152 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1153 inode->i_atime.tv_nsec = 0;
1154 inode->i_ctime.tv_nsec = 0;
1155 inode->i_mtime.tv_nsec = 0;
1157 inode->i_blocks = sd_v1_blocks(sd);
1158 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1159 blocks = (inode->i_size + 511) >> 9;
1160 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1161 if (inode->i_blocks > blocks) {
1162 // there was a bug in <=3.5.23 when i_blocks could take negative
1163 // values. Starting from 3.5.17 this value could even be stored in
1164 // stat data. For such files we set i_blocks based on file
1165 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1166 // only updated if file's inode will ever change
1167 inode->i_blocks = blocks;
1170 rdev = sd_v1_rdev(sd);
1171 REISERFS_I(inode)->i_first_direct_byte =
1172 sd_v1_first_direct_byte(sd);
1173 /* an early bug in the quota code can give us an odd number for the
1174 ** block count. This is incorrect, fix it here.
1176 if (inode->i_blocks & 1) {
1177 inode->i_blocks++;
1179 inode_set_bytes(inode,
1180 to_real_used_space(inode, inode->i_blocks,
1181 SD_V1_SIZE));
1182 /* nopack is initially zero for v1 objects. For v2 objects,
1183 nopack is initialised from sd_attrs */
1184 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1185 } else {
1186 // new stat data found, but object may have old items
1187 // (directories and symlinks)
1188 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1190 inode->i_mode = sd_v2_mode(sd);
1191 inode->i_nlink = sd_v2_nlink(sd);
1192 inode->i_uid = sd_v2_uid(sd);
1193 inode->i_size = sd_v2_size(sd);
1194 inode->i_gid = sd_v2_gid(sd);
1195 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1196 inode->i_atime.tv_sec = sd_v2_atime(sd);
1197 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1198 inode->i_ctime.tv_nsec = 0;
1199 inode->i_mtime.tv_nsec = 0;
1200 inode->i_atime.tv_nsec = 0;
1201 inode->i_blocks = sd_v2_blocks(sd);
1202 rdev = sd_v2_rdev(sd);
1203 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1204 inode->i_generation =
1205 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1206 else
1207 inode->i_generation = sd_v2_generation(sd);
1209 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1210 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1211 else
1212 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1213 REISERFS_I(inode)->i_first_direct_byte = 0;
1214 set_inode_sd_version(inode, STAT_DATA_V2);
1215 inode_set_bytes(inode,
1216 to_real_used_space(inode, inode->i_blocks,
1217 SD_V2_SIZE));
1218 /* read persistent inode attributes from sd and initalise
1219 generic inode flags from them */
1220 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1221 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1224 pathrelse(path);
1225 if (S_ISREG(inode->i_mode)) {
1226 inode->i_op = &reiserfs_file_inode_operations;
1227 inode->i_fop = &reiserfs_file_operations;
1228 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1229 } else if (S_ISDIR(inode->i_mode)) {
1230 inode->i_op = &reiserfs_dir_inode_operations;
1231 inode->i_fop = &reiserfs_dir_operations;
1232 } else if (S_ISLNK(inode->i_mode)) {
1233 inode->i_op = &reiserfs_symlink_inode_operations;
1234 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1235 } else {
1236 inode->i_blocks = 0;
1237 inode->i_op = &reiserfs_special_inode_operations;
1238 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1242 // update new stat data with inode fields
1243 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1245 struct stat_data *sd_v2 = (struct stat_data *)sd;
1246 __u16 flags;
1248 set_sd_v2_mode(sd_v2, inode->i_mode);
1249 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1250 set_sd_v2_uid(sd_v2, inode->i_uid);
1251 set_sd_v2_size(sd_v2, size);
1252 set_sd_v2_gid(sd_v2, inode->i_gid);
1253 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1254 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1255 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1256 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1257 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1258 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1259 else
1260 set_sd_v2_generation(sd_v2, inode->i_generation);
1261 flags = REISERFS_I(inode)->i_attrs;
1262 i_attrs_to_sd_attrs(inode, &flags);
1263 set_sd_v2_attrs(sd_v2, flags);
1266 // used to copy inode's fields to old stat data
1267 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1269 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1271 set_sd_v1_mode(sd_v1, inode->i_mode);
1272 set_sd_v1_uid(sd_v1, inode->i_uid);
1273 set_sd_v1_gid(sd_v1, inode->i_gid);
1274 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1275 set_sd_v1_size(sd_v1, size);
1276 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1277 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1278 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1280 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1281 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1282 else
1283 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1285 // Sigh. i_first_direct_byte is back
1286 set_sd_v1_first_direct_byte(sd_v1,
1287 REISERFS_I(inode)->i_first_direct_byte);
1290 /* NOTE, you must prepare the buffer head before sending it here,
1291 ** and then log it after the call
1293 static void update_stat_data(struct treepath *path, struct inode *inode,
1294 loff_t size)
1296 struct buffer_head *bh;
1297 struct item_head *ih;
1299 bh = PATH_PLAST_BUFFER(path);
1300 ih = PATH_PITEM_HEAD(path);
1302 if (!is_statdata_le_ih(ih))
1303 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1304 INODE_PKEY(inode), ih);
1306 if (stat_data_v1(ih)) {
1307 // path points to old stat data
1308 inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1309 } else {
1310 inode2sd(B_I_PITEM(bh, ih), inode, size);
1313 return;
1316 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1317 struct inode *inode, loff_t size)
1319 struct cpu_key key;
1320 INITIALIZE_PATH(path);
1321 struct buffer_head *bh;
1322 int fs_gen;
1323 struct item_head *ih, tmp_ih;
1324 int retval;
1326 BUG_ON(!th->t_trans_id);
1328 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant
1330 for (;;) {
1331 int pos;
1332 /* look for the object's stat data */
1333 retval = search_item(inode->i_sb, &key, &path);
1334 if (retval == IO_ERROR) {
1335 reiserfs_error(inode->i_sb, "vs-13050",
1336 "i/o failure occurred trying to "
1337 "update %K stat data", &key);
1338 return;
1340 if (retval == ITEM_NOT_FOUND) {
1341 pos = PATH_LAST_POSITION(&path);
1342 pathrelse(&path);
1343 if (inode->i_nlink == 0) {
1344 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1345 return;
1347 reiserfs_warning(inode->i_sb, "vs-13060",
1348 "stat data of object %k (nlink == %d) "
1349 "not found (pos %d)",
1350 INODE_PKEY(inode), inode->i_nlink,
1351 pos);
1352 reiserfs_check_path(&path);
1353 return;
1356 /* sigh, prepare_for_journal might schedule. When it schedules the
1357 ** FS might change. We have to detect that, and loop back to the
1358 ** search if the stat data item has moved
1360 bh = get_last_bh(&path);
1361 ih = get_ih(&path);
1362 copy_item_head(&tmp_ih, ih);
1363 fs_gen = get_generation(inode->i_sb);
1364 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1365 if (fs_changed(fs_gen, inode->i_sb)
1366 && item_moved(&tmp_ih, &path)) {
1367 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1368 continue; /* Stat_data item has been moved after scheduling. */
1370 break;
1372 update_stat_data(&path, inode, size);
1373 journal_mark_dirty(th, th->t_super, bh);
1374 pathrelse(&path);
1375 return;
1378 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1379 ** does a make_bad_inode when things go wrong. But, we need to make sure
1380 ** and clear the key in the private portion of the inode, otherwise a
1381 ** corresponding iput might try to delete whatever object the inode last
1382 ** represented.
1384 static void reiserfs_make_bad_inode(struct inode *inode)
1386 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1387 make_bad_inode(inode);
1391 // initially this function was derived from minix or ext2's analog and
1392 // evolved as the prototype did
1395 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1397 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1398 inode->i_ino = args->objectid;
1399 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1400 return 0;
1403 /* looks for stat data in the tree, and fills up the fields of in-core
1404 inode stat data fields */
1405 void reiserfs_read_locked_inode(struct inode *inode,
1406 struct reiserfs_iget_args *args)
1408 INITIALIZE_PATH(path_to_sd);
1409 struct cpu_key key;
1410 unsigned long dirino;
1411 int retval;
1413 dirino = args->dirid;
1415 /* set version 1, version 2 could be used too, because stat data
1416 key is the same in both versions */
1417 key.version = KEY_FORMAT_3_5;
1418 key.on_disk_key.k_dir_id = dirino;
1419 key.on_disk_key.k_objectid = inode->i_ino;
1420 key.on_disk_key.k_offset = 0;
1421 key.on_disk_key.k_type = 0;
1423 /* look for the object's stat data */
1424 retval = search_item(inode->i_sb, &key, &path_to_sd);
1425 if (retval == IO_ERROR) {
1426 reiserfs_error(inode->i_sb, "vs-13070",
1427 "i/o failure occurred trying to find "
1428 "stat data of %K", &key);
1429 reiserfs_make_bad_inode(inode);
1430 return;
1432 if (retval != ITEM_FOUND) {
1433 /* a stale NFS handle can trigger this without it being an error */
1434 pathrelse(&path_to_sd);
1435 reiserfs_make_bad_inode(inode);
1436 inode->i_nlink = 0;
1437 return;
1440 init_inode(inode, &path_to_sd);
1442 /* It is possible that knfsd is trying to access inode of a file
1443 that is being removed from the disk by some other thread. As we
1444 update sd on unlink all that is required is to check for nlink
1445 here. This bug was first found by Sizif when debugging
1446 SquidNG/Butterfly, forgotten, and found again after Philippe
1447 Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1449 More logical fix would require changes in fs/inode.c:iput() to
1450 remove inode from hash-table _after_ fs cleaned disk stuff up and
1451 in iget() to return NULL if I_FREEING inode is found in
1452 hash-table. */
1453 /* Currently there is one place where it's ok to meet inode with
1454 nlink==0: processing of open-unlinked and half-truncated files
1455 during mount (fs/reiserfs/super.c:finish_unfinished()). */
1456 if ((inode->i_nlink == 0) &&
1457 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1458 reiserfs_warning(inode->i_sb, "vs-13075",
1459 "dead inode read from disk %K. "
1460 "This is likely to be race with knfsd. Ignore",
1461 &key);
1462 reiserfs_make_bad_inode(inode);
1465 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */
1470 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1472 * @inode: inode from hash table to check
1473 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1475 * This function is called by iget5_locked() to distinguish reiserfs inodes
1476 * having the same inode numbers. Such inodes can only exist due to some
1477 * error condition. One of them should be bad. Inodes with identical
1478 * inode numbers (objectids) are distinguished by parent directory ids.
1481 int reiserfs_find_actor(struct inode *inode, void *opaque)
1483 struct reiserfs_iget_args *args;
1485 args = opaque;
1486 /* args is already in CPU order */
1487 return (inode->i_ino == args->objectid) &&
1488 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1491 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1493 struct inode *inode;
1494 struct reiserfs_iget_args args;
1496 args.objectid = key->on_disk_key.k_objectid;
1497 args.dirid = key->on_disk_key.k_dir_id;
1498 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1499 reiserfs_find_actor, reiserfs_init_locked_inode,
1500 (void *)(&args));
1501 if (!inode)
1502 return ERR_PTR(-ENOMEM);
1504 if (inode->i_state & I_NEW) {
1505 reiserfs_read_locked_inode(inode, &args);
1506 unlock_new_inode(inode);
1509 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1510 /* either due to i/o error or a stale NFS handle */
1511 iput(inode);
1512 inode = NULL;
1514 return inode;
1517 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1518 u32 objectid, u32 dir_id, u32 generation)
1521 struct cpu_key key;
1522 struct inode *inode;
1524 key.on_disk_key.k_objectid = objectid;
1525 key.on_disk_key.k_dir_id = dir_id;
1526 reiserfs_write_lock(sb);
1527 inode = reiserfs_iget(sb, &key);
1528 if (inode && !IS_ERR(inode) && generation != 0 &&
1529 generation != inode->i_generation) {
1530 iput(inode);
1531 inode = NULL;
1533 reiserfs_write_unlock(sb);
1535 return d_obtain_alias(inode);
1538 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1539 int fh_len, int fh_type)
1541 /* fhtype happens to reflect the number of u32s encoded.
1542 * due to a bug in earlier code, fhtype might indicate there
1543 * are more u32s then actually fitted.
1544 * so if fhtype seems to be more than len, reduce fhtype.
1545 * Valid types are:
1546 * 2 - objectid + dir_id - legacy support
1547 * 3 - objectid + dir_id + generation
1548 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1549 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1550 * 6 - as above plus generation of directory
1551 * 6 does not fit in NFSv2 handles
1553 if (fh_type > fh_len) {
1554 if (fh_type != 6 || fh_len != 5)
1555 reiserfs_warning(sb, "reiserfs-13077",
1556 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1557 fh_type, fh_len);
1558 fh_type = 5;
1561 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1562 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1565 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1566 int fh_len, int fh_type)
1568 if (fh_type < 4)
1569 return NULL;
1571 return reiserfs_get_dentry(sb,
1572 (fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1573 (fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1574 (fh_type == 6) ? fid->raw[5] : 0);
1577 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1578 int need_parent)
1580 struct inode *inode = dentry->d_inode;
1581 int maxlen = *lenp;
1583 if (maxlen < 3)
1584 return 255;
1586 data[0] = inode->i_ino;
1587 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1588 data[2] = inode->i_generation;
1589 *lenp = 3;
1590 /* no room for directory info? return what we've stored so far */
1591 if (maxlen < 5 || !need_parent)
1592 return 3;
1594 spin_lock(&dentry->d_lock);
1595 inode = dentry->d_parent->d_inode;
1596 data[3] = inode->i_ino;
1597 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1598 *lenp = 5;
1599 if (maxlen >= 6) {
1600 data[5] = inode->i_generation;
1601 *lenp = 6;
1603 spin_unlock(&dentry->d_lock);
1604 return *lenp;
1607 /* looks for stat data, then copies fields to it, marks the buffer
1608 containing stat data as dirty */
1609 /* reiserfs inodes are never really dirty, since the dirty inode call
1610 ** always logs them. This call allows the VFS inode marking routines
1611 ** to properly mark inodes for datasync and such, but only actually
1612 ** does something when called for a synchronous update.
1614 int reiserfs_write_inode(struct inode *inode, int do_sync)
1616 struct reiserfs_transaction_handle th;
1617 int jbegin_count = 1;
1619 if (inode->i_sb->s_flags & MS_RDONLY)
1620 return -EROFS;
1621 /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1622 ** these cases are just when the system needs ram, not when the
1623 ** inode needs to reach disk for safety, and they can safely be
1624 ** ignored because the altered inode has already been logged.
1626 if (do_sync && !(current->flags & PF_MEMALLOC)) {
1627 reiserfs_write_lock(inode->i_sb);
1628 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1629 reiserfs_update_sd(&th, inode);
1630 journal_end_sync(&th, inode->i_sb, jbegin_count);
1632 reiserfs_write_unlock(inode->i_sb);
1634 return 0;
1637 /* stat data of new object is inserted already, this inserts the item
1638 containing "." and ".." entries */
1639 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1640 struct inode *inode,
1641 struct item_head *ih, struct treepath *path,
1642 struct inode *dir)
1644 struct super_block *sb = th->t_super;
1645 char empty_dir[EMPTY_DIR_SIZE];
1646 char *body = empty_dir;
1647 struct cpu_key key;
1648 int retval;
1650 BUG_ON(!th->t_trans_id);
1652 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1653 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1654 TYPE_DIRENTRY, 3 /*key length */ );
1656 /* compose item head for new item. Directories consist of items of
1657 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1658 is done by reiserfs_new_inode */
1659 if (old_format_only(sb)) {
1660 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1661 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1663 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1664 ih->ih_key.k_objectid,
1665 INODE_PKEY(dir)->k_dir_id,
1666 INODE_PKEY(dir)->k_objectid);
1667 } else {
1668 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1669 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1671 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1672 ih->ih_key.k_objectid,
1673 INODE_PKEY(dir)->k_dir_id,
1674 INODE_PKEY(dir)->k_objectid);
1677 /* look for place in the tree for new item */
1678 retval = search_item(sb, &key, path);
1679 if (retval == IO_ERROR) {
1680 reiserfs_error(sb, "vs-13080",
1681 "i/o failure occurred creating new directory");
1682 return -EIO;
1684 if (retval == ITEM_FOUND) {
1685 pathrelse(path);
1686 reiserfs_warning(sb, "vs-13070",
1687 "object with this key exists (%k)",
1688 &(ih->ih_key));
1689 return -EEXIST;
1692 /* insert item, that is empty directory item */
1693 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1696 /* stat data of object has been inserted, this inserts the item
1697 containing the body of symlink */
1698 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */
1699 struct item_head *ih,
1700 struct treepath *path, const char *symname,
1701 int item_len)
1703 struct super_block *sb = th->t_super;
1704 struct cpu_key key;
1705 int retval;
1707 BUG_ON(!th->t_trans_id);
1709 _make_cpu_key(&key, KEY_FORMAT_3_5,
1710 le32_to_cpu(ih->ih_key.k_dir_id),
1711 le32_to_cpu(ih->ih_key.k_objectid),
1712 1, TYPE_DIRECT, 3 /*key length */ );
1714 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1715 0 /*free_space */ );
1717 /* look for place in the tree for new item */
1718 retval = search_item(sb, &key, path);
1719 if (retval == IO_ERROR) {
1720 reiserfs_error(sb, "vs-13080",
1721 "i/o failure occurred creating new symlink");
1722 return -EIO;
1724 if (retval == ITEM_FOUND) {
1725 pathrelse(path);
1726 reiserfs_warning(sb, "vs-13080",
1727 "object with this key exists (%k)",
1728 &(ih->ih_key));
1729 return -EEXIST;
1732 /* insert item, that is body of symlink */
1733 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1736 /* inserts the stat data into the tree, and then calls
1737 reiserfs_new_directory (to insert ".", ".." item if new object is
1738 directory) or reiserfs_new_symlink (to insert symlink body if new
1739 object is symlink) or nothing (if new object is regular file)
1741 NOTE! uid and gid must already be set in the inode. If we return
1742 non-zero due to an error, we have to drop the quota previously allocated
1743 for the fresh inode. This can only be done outside a transaction, so
1744 if we return non-zero, we also end the transaction. */
1745 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1746 struct inode *dir, int mode, const char *symname,
1747 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1748 strlen (symname) for symlinks) */
1749 loff_t i_size, struct dentry *dentry,
1750 struct inode *inode,
1751 struct reiserfs_security_handle *security)
1753 struct super_block *sb;
1754 struct reiserfs_iget_args args;
1755 INITIALIZE_PATH(path_to_key);
1756 struct cpu_key key;
1757 struct item_head ih;
1758 struct stat_data sd;
1759 int retval;
1760 int err;
1762 BUG_ON(!th->t_trans_id);
1764 if (vfs_dq_alloc_inode(inode)) {
1765 err = -EDQUOT;
1766 goto out_end_trans;
1768 if (!dir->i_nlink) {
1769 err = -EPERM;
1770 goto out_bad_inode;
1773 sb = dir->i_sb;
1775 /* item head of new item */
1776 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1777 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1778 if (!ih.ih_key.k_objectid) {
1779 err = -ENOMEM;
1780 goto out_bad_inode;
1782 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1783 if (old_format_only(sb))
1784 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1785 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1786 else
1787 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1788 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1789 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1790 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1791 if (insert_inode_locked4(inode, args.objectid,
1792 reiserfs_find_actor, &args) < 0) {
1793 err = -EINVAL;
1794 goto out_bad_inode;
1796 if (old_format_only(sb))
1797 /* not a perfect generation count, as object ids can be reused, but
1798 ** this is as good as reiserfs can do right now.
1799 ** note that the private part of inode isn't filled in yet, we have
1800 ** to use the directory.
1802 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1803 else
1804 #if defined( USE_INODE_GENERATION_COUNTER )
1805 inode->i_generation =
1806 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1807 #else
1808 inode->i_generation = ++event;
1809 #endif
1811 /* fill stat data */
1812 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1814 /* uid and gid must already be set by the caller for quota init */
1816 /* symlink cannot be immutable or append only, right? */
1817 if (S_ISLNK(inode->i_mode))
1818 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1820 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1821 inode->i_size = i_size;
1822 inode->i_blocks = 0;
1823 inode->i_bytes = 0;
1824 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1825 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1827 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1828 REISERFS_I(inode)->i_flags = 0;
1829 REISERFS_I(inode)->i_prealloc_block = 0;
1830 REISERFS_I(inode)->i_prealloc_count = 0;
1831 REISERFS_I(inode)->i_trans_id = 0;
1832 REISERFS_I(inode)->i_jl = NULL;
1833 REISERFS_I(inode)->i_attrs =
1834 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1835 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1836 mutex_init(&(REISERFS_I(inode)->i_mmap));
1837 reiserfs_init_acl_access(inode);
1838 reiserfs_init_acl_default(inode);
1839 reiserfs_init_xattr_rwsem(inode);
1841 /* key to search for correct place for new stat data */
1842 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1843 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1844 TYPE_STAT_DATA, 3 /*key length */ );
1846 /* find proper place for inserting of stat data */
1847 retval = search_item(sb, &key, &path_to_key);
1848 if (retval == IO_ERROR) {
1849 err = -EIO;
1850 goto out_bad_inode;
1852 if (retval == ITEM_FOUND) {
1853 pathrelse(&path_to_key);
1854 err = -EEXIST;
1855 goto out_bad_inode;
1857 if (old_format_only(sb)) {
1858 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1859 pathrelse(&path_to_key);
1860 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1861 err = -EINVAL;
1862 goto out_bad_inode;
1864 inode2sd_v1(&sd, inode, inode->i_size);
1865 } else {
1866 inode2sd(&sd, inode, inode->i_size);
1868 // store in in-core inode the key of stat data and version all
1869 // object items will have (directory items will have old offset
1870 // format, other new objects will consist of new items)
1871 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1872 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1873 else
1874 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1875 if (old_format_only(sb))
1876 set_inode_sd_version(inode, STAT_DATA_V1);
1877 else
1878 set_inode_sd_version(inode, STAT_DATA_V2);
1880 /* insert the stat data into the tree */
1881 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1882 if (REISERFS_I(dir)->new_packing_locality)
1883 th->displace_new_blocks = 1;
1884 #endif
1885 retval =
1886 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1887 (char *)(&sd));
1888 if (retval) {
1889 err = retval;
1890 reiserfs_check_path(&path_to_key);
1891 goto out_bad_inode;
1893 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1894 if (!th->displace_new_blocks)
1895 REISERFS_I(dir)->new_packing_locality = 0;
1896 #endif
1897 if (S_ISDIR(mode)) {
1898 /* insert item with "." and ".." */
1899 retval =
1900 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1903 if (S_ISLNK(mode)) {
1904 /* insert body of symlink */
1905 if (!old_format_only(sb))
1906 i_size = ROUND_UP(i_size);
1907 retval =
1908 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1909 i_size);
1911 if (retval) {
1912 err = retval;
1913 reiserfs_check_path(&path_to_key);
1914 journal_end(th, th->t_super, th->t_blocks_allocated);
1915 goto out_inserted_sd;
1918 if (reiserfs_posixacl(inode->i_sb)) {
1919 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1920 if (retval) {
1921 err = retval;
1922 reiserfs_check_path(&path_to_key);
1923 journal_end(th, th->t_super, th->t_blocks_allocated);
1924 goto out_inserted_sd;
1926 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1927 reiserfs_warning(inode->i_sb, "jdm-13090",
1928 "ACLs aren't enabled in the fs, "
1929 "but vfs thinks they are!");
1930 } else if (IS_PRIVATE(dir))
1931 inode->i_flags |= S_PRIVATE;
1933 if (security->name) {
1934 retval = reiserfs_security_write(th, inode, security);
1935 if (retval) {
1936 err = retval;
1937 reiserfs_check_path(&path_to_key);
1938 retval = journal_end(th, th->t_super,
1939 th->t_blocks_allocated);
1940 if (retval)
1941 err = retval;
1942 goto out_inserted_sd;
1946 reiserfs_update_sd(th, inode);
1947 reiserfs_check_path(&path_to_key);
1949 return 0;
1951 /* it looks like you can easily compress these two goto targets into
1952 * one. Keeping it like this doesn't actually hurt anything, and they
1953 * are place holders for what the quota code actually needs.
1955 out_bad_inode:
1956 /* Invalidate the object, nothing was inserted yet */
1957 INODE_PKEY(inode)->k_objectid = 0;
1959 /* Quota change must be inside a transaction for journaling */
1960 vfs_dq_free_inode(inode);
1962 out_end_trans:
1963 journal_end(th, th->t_super, th->t_blocks_allocated);
1964 /* Drop can be outside and it needs more credits so it's better to have it outside */
1965 vfs_dq_drop(inode);
1966 inode->i_flags |= S_NOQUOTA;
1967 make_bad_inode(inode);
1969 out_inserted_sd:
1970 inode->i_nlink = 0;
1971 th->t_trans_id = 0; /* so the caller can't use this handle later */
1972 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
1973 iput(inode);
1974 return err;
1978 ** finds the tail page in the page cache,
1979 ** reads the last block in.
1981 ** On success, page_result is set to a locked, pinned page, and bh_result
1982 ** is set to an up to date buffer for the last block in the file. returns 0.
1984 ** tail conversion is not done, so bh_result might not be valid for writing
1985 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1986 ** trying to write the block.
1988 ** on failure, nonzero is returned, page_result and bh_result are untouched.
1990 static int grab_tail_page(struct inode *inode,
1991 struct page **page_result,
1992 struct buffer_head **bh_result)
1995 /* we want the page with the last byte in the file,
1996 ** not the page that will hold the next byte for appending
1998 unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
1999 unsigned long pos = 0;
2000 unsigned long start = 0;
2001 unsigned long blocksize = inode->i_sb->s_blocksize;
2002 unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2003 struct buffer_head *bh;
2004 struct buffer_head *head;
2005 struct page *page;
2006 int error;
2008 /* we know that we are only called with inode->i_size > 0.
2009 ** we also know that a file tail can never be as big as a block
2010 ** If i_size % blocksize == 0, our file is currently block aligned
2011 ** and it won't need converting or zeroing after a truncate.
2013 if ((offset & (blocksize - 1)) == 0) {
2014 return -ENOENT;
2016 page = grab_cache_page(inode->i_mapping, index);
2017 error = -ENOMEM;
2018 if (!page) {
2019 goto out;
2021 /* start within the page of the last block in the file */
2022 start = (offset / blocksize) * blocksize;
2024 error = block_prepare_write(page, start, offset,
2025 reiserfs_get_block_create_0);
2026 if (error)
2027 goto unlock;
2029 head = page_buffers(page);
2030 bh = head;
2031 do {
2032 if (pos >= start) {
2033 break;
2035 bh = bh->b_this_page;
2036 pos += blocksize;
2037 } while (bh != head);
2039 if (!buffer_uptodate(bh)) {
2040 /* note, this should never happen, prepare_write should
2041 ** be taking care of this for us. If the buffer isn't up to date,
2042 ** I've screwed up the code to find the buffer, or the code to
2043 ** call prepare_write
2045 reiserfs_error(inode->i_sb, "clm-6000",
2046 "error reading block %lu", bh->b_blocknr);
2047 error = -EIO;
2048 goto unlock;
2050 *bh_result = bh;
2051 *page_result = page;
2053 out:
2054 return error;
2056 unlock:
2057 unlock_page(page);
2058 page_cache_release(page);
2059 return error;
2063 ** vfs version of truncate file. Must NOT be called with
2064 ** a transaction already started.
2066 ** some code taken from block_truncate_page
2068 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2070 struct reiserfs_transaction_handle th;
2071 /* we want the offset for the first byte after the end of the file */
2072 unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2073 unsigned blocksize = inode->i_sb->s_blocksize;
2074 unsigned length;
2075 struct page *page = NULL;
2076 int error;
2077 struct buffer_head *bh = NULL;
2078 int err2;
2080 reiserfs_write_lock(inode->i_sb);
2082 if (inode->i_size > 0) {
2083 error = grab_tail_page(inode, &page, &bh);
2084 if (error) {
2085 // -ENOENT means we truncated past the end of the file,
2086 // and get_block_create_0 could not find a block to read in,
2087 // which is ok.
2088 if (error != -ENOENT)
2089 reiserfs_error(inode->i_sb, "clm-6001",
2090 "grab_tail_page failed %d",
2091 error);
2092 page = NULL;
2093 bh = NULL;
2097 /* so, if page != NULL, we have a buffer head for the offset at
2098 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2099 ** then we have an unformatted node. Otherwise, we have a direct item,
2100 ** and no zeroing is required on disk. We zero after the truncate,
2101 ** because the truncate might pack the item anyway
2102 ** (it will unmap bh if it packs).
2104 /* it is enough to reserve space in transaction for 2 balancings:
2105 one for "save" link adding and another for the first
2106 cut_from_item. 1 is for update_sd */
2107 error = journal_begin(&th, inode->i_sb,
2108 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2109 if (error)
2110 goto out;
2111 reiserfs_update_inode_transaction(inode);
2112 if (update_timestamps)
2113 /* we are doing real truncate: if the system crashes before the last
2114 transaction of truncating gets committed - on reboot the file
2115 either appears truncated properly or not truncated at all */
2116 add_save_link(&th, inode, 1);
2117 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2118 error =
2119 journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2120 if (error)
2121 goto out;
2123 /* check reiserfs_do_truncate after ending the transaction */
2124 if (err2) {
2125 error = err2;
2126 goto out;
2129 if (update_timestamps) {
2130 error = remove_save_link(inode, 1 /* truncate */);
2131 if (error)
2132 goto out;
2135 if (page) {
2136 length = offset & (blocksize - 1);
2137 /* if we are not on a block boundary */
2138 if (length) {
2139 length = blocksize - length;
2140 zero_user(page, offset, length);
2141 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2142 mark_buffer_dirty(bh);
2145 unlock_page(page);
2146 page_cache_release(page);
2149 reiserfs_write_unlock(inode->i_sb);
2150 return 0;
2151 out:
2152 if (page) {
2153 unlock_page(page);
2154 page_cache_release(page);
2156 reiserfs_write_unlock(inode->i_sb);
2157 return error;
2160 static int map_block_for_writepage(struct inode *inode,
2161 struct buffer_head *bh_result,
2162 unsigned long block)
2164 struct reiserfs_transaction_handle th;
2165 int fs_gen;
2166 struct item_head tmp_ih;
2167 struct item_head *ih;
2168 struct buffer_head *bh;
2169 __le32 *item;
2170 struct cpu_key key;
2171 INITIALIZE_PATH(path);
2172 int pos_in_item;
2173 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2174 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2175 int retval;
2176 int use_get_block = 0;
2177 int bytes_copied = 0;
2178 int copy_size;
2179 int trans_running = 0;
2181 /* catch places below that try to log something without starting a trans */
2182 th.t_trans_id = 0;
2184 if (!buffer_uptodate(bh_result)) {
2185 return -EIO;
2188 kmap(bh_result->b_page);
2189 start_over:
2190 reiserfs_write_lock(inode->i_sb);
2191 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2193 research:
2194 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2195 if (retval != POSITION_FOUND) {
2196 use_get_block = 1;
2197 goto out;
2200 bh = get_last_bh(&path);
2201 ih = get_ih(&path);
2202 item = get_item(&path);
2203 pos_in_item = path.pos_in_item;
2205 /* we've found an unformatted node */
2206 if (indirect_item_found(retval, ih)) {
2207 if (bytes_copied > 0) {
2208 reiserfs_warning(inode->i_sb, "clm-6002",
2209 "bytes_copied %d", bytes_copied);
2211 if (!get_block_num(item, pos_in_item)) {
2212 /* crap, we are writing to a hole */
2213 use_get_block = 1;
2214 goto out;
2216 set_block_dev_mapped(bh_result,
2217 get_block_num(item, pos_in_item), inode);
2218 } else if (is_direct_le_ih(ih)) {
2219 char *p;
2220 p = page_address(bh_result->b_page);
2221 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2222 copy_size = ih_item_len(ih) - pos_in_item;
2224 fs_gen = get_generation(inode->i_sb);
2225 copy_item_head(&tmp_ih, ih);
2227 if (!trans_running) {
2228 /* vs-3050 is gone, no need to drop the path */
2229 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2230 if (retval)
2231 goto out;
2232 reiserfs_update_inode_transaction(inode);
2233 trans_running = 1;
2234 if (fs_changed(fs_gen, inode->i_sb)
2235 && item_moved(&tmp_ih, &path)) {
2236 reiserfs_restore_prepared_buffer(inode->i_sb,
2237 bh);
2238 goto research;
2242 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2244 if (fs_changed(fs_gen, inode->i_sb)
2245 && item_moved(&tmp_ih, &path)) {
2246 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2247 goto research;
2250 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2251 copy_size);
2253 journal_mark_dirty(&th, inode->i_sb, bh);
2254 bytes_copied += copy_size;
2255 set_block_dev_mapped(bh_result, 0, inode);
2257 /* are there still bytes left? */
2258 if (bytes_copied < bh_result->b_size &&
2259 (byte_offset + bytes_copied) < inode->i_size) {
2260 set_cpu_key_k_offset(&key,
2261 cpu_key_k_offset(&key) +
2262 copy_size);
2263 goto research;
2265 } else {
2266 reiserfs_warning(inode->i_sb, "clm-6003",
2267 "bad item inode %lu", inode->i_ino);
2268 retval = -EIO;
2269 goto out;
2271 retval = 0;
2273 out:
2274 pathrelse(&path);
2275 if (trans_running) {
2276 int err = journal_end(&th, inode->i_sb, jbegin_count);
2277 if (err)
2278 retval = err;
2279 trans_running = 0;
2281 reiserfs_write_unlock(inode->i_sb);
2283 /* this is where we fill in holes in the file. */
2284 if (use_get_block) {
2285 retval = reiserfs_get_block(inode, block, bh_result,
2286 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2287 | GET_BLOCK_NO_DANGLE);
2288 if (!retval) {
2289 if (!buffer_mapped(bh_result)
2290 || bh_result->b_blocknr == 0) {
2291 /* get_block failed to find a mapped unformatted node. */
2292 use_get_block = 0;
2293 goto start_over;
2297 kunmap(bh_result->b_page);
2299 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2300 /* we've copied data from the page into the direct item, so the
2301 * buffer in the page is now clean, mark it to reflect that.
2303 lock_buffer(bh_result);
2304 clear_buffer_dirty(bh_result);
2305 unlock_buffer(bh_result);
2307 return retval;
2311 * mason@suse.com: updated in 2.5.54 to follow the same general io
2312 * start/recovery path as __block_write_full_page, along with special
2313 * code to handle reiserfs tails.
2315 static int reiserfs_write_full_page(struct page *page,
2316 struct writeback_control *wbc)
2318 struct inode *inode = page->mapping->host;
2319 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2320 int error = 0;
2321 unsigned long block;
2322 sector_t last_block;
2323 struct buffer_head *head, *bh;
2324 int partial = 0;
2325 int nr = 0;
2326 int checked = PageChecked(page);
2327 struct reiserfs_transaction_handle th;
2328 struct super_block *s = inode->i_sb;
2329 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2330 th.t_trans_id = 0;
2332 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2333 if (checked && (current->flags & PF_MEMALLOC)) {
2334 redirty_page_for_writepage(wbc, page);
2335 unlock_page(page);
2336 return 0;
2339 /* The page dirty bit is cleared before writepage is called, which
2340 * means we have to tell create_empty_buffers to make dirty buffers
2341 * The page really should be up to date at this point, so tossing
2342 * in the BH_Uptodate is just a sanity check.
2344 if (!page_has_buffers(page)) {
2345 create_empty_buffers(page, s->s_blocksize,
2346 (1 << BH_Dirty) | (1 << BH_Uptodate));
2348 head = page_buffers(page);
2350 /* last page in the file, zero out any contents past the
2351 ** last byte in the file
2353 if (page->index >= end_index) {
2354 unsigned last_offset;
2356 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2357 /* no file contents in this page */
2358 if (page->index >= end_index + 1 || !last_offset) {
2359 unlock_page(page);
2360 return 0;
2362 zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2364 bh = head;
2365 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2366 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2367 /* first map all the buffers, logging any direct items we find */
2368 do {
2369 if (block > last_block) {
2371 * This can happen when the block size is less than
2372 * the page size. The corresponding bytes in the page
2373 * were zero filled above
2375 clear_buffer_dirty(bh);
2376 set_buffer_uptodate(bh);
2377 } else if ((checked || buffer_dirty(bh)) &&
2378 (!buffer_mapped(bh) || (buffer_mapped(bh)
2379 && bh->b_blocknr ==
2380 0))) {
2381 /* not mapped yet, or it points to a direct item, search
2382 * the btree for the mapping info, and log any direct
2383 * items found
2385 if ((error = map_block_for_writepage(inode, bh, block))) {
2386 goto fail;
2389 bh = bh->b_this_page;
2390 block++;
2391 } while (bh != head);
2394 * we start the transaction after map_block_for_writepage,
2395 * because it can create holes in the file (an unbounded operation).
2396 * starting it here, we can make a reliable estimate for how many
2397 * blocks we're going to log
2399 if (checked) {
2400 ClearPageChecked(page);
2401 reiserfs_write_lock(s);
2402 error = journal_begin(&th, s, bh_per_page + 1);
2403 if (error) {
2404 reiserfs_write_unlock(s);
2405 goto fail;
2407 reiserfs_update_inode_transaction(inode);
2409 /* now go through and lock any dirty buffers on the page */
2410 do {
2411 get_bh(bh);
2412 if (!buffer_mapped(bh))
2413 continue;
2414 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2415 continue;
2417 if (checked) {
2418 reiserfs_prepare_for_journal(s, bh, 1);
2419 journal_mark_dirty(&th, s, bh);
2420 continue;
2422 /* from this point on, we know the buffer is mapped to a
2423 * real block and not a direct item
2425 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2426 lock_buffer(bh);
2427 } else {
2428 if (!trylock_buffer(bh)) {
2429 redirty_page_for_writepage(wbc, page);
2430 continue;
2433 if (test_clear_buffer_dirty(bh)) {
2434 mark_buffer_async_write(bh);
2435 } else {
2436 unlock_buffer(bh);
2438 } while ((bh = bh->b_this_page) != head);
2440 if (checked) {
2441 error = journal_end(&th, s, bh_per_page + 1);
2442 reiserfs_write_unlock(s);
2443 if (error)
2444 goto fail;
2446 BUG_ON(PageWriteback(page));
2447 set_page_writeback(page);
2448 unlock_page(page);
2451 * since any buffer might be the only dirty buffer on the page,
2452 * the first submit_bh can bring the page out of writeback.
2453 * be careful with the buffers.
2455 do {
2456 struct buffer_head *next = bh->b_this_page;
2457 if (buffer_async_write(bh)) {
2458 submit_bh(WRITE, bh);
2459 nr++;
2461 put_bh(bh);
2462 bh = next;
2463 } while (bh != head);
2465 error = 0;
2466 done:
2467 if (nr == 0) {
2469 * if this page only had a direct item, it is very possible for
2470 * no io to be required without there being an error. Or,
2471 * someone else could have locked them and sent them down the
2472 * pipe without locking the page
2474 bh = head;
2475 do {
2476 if (!buffer_uptodate(bh)) {
2477 partial = 1;
2478 break;
2480 bh = bh->b_this_page;
2481 } while (bh != head);
2482 if (!partial)
2483 SetPageUptodate(page);
2484 end_page_writeback(page);
2486 return error;
2488 fail:
2489 /* catches various errors, we need to make sure any valid dirty blocks
2490 * get to the media. The page is currently locked and not marked for
2491 * writeback
2493 ClearPageUptodate(page);
2494 bh = head;
2495 do {
2496 get_bh(bh);
2497 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2498 lock_buffer(bh);
2499 mark_buffer_async_write(bh);
2500 } else {
2502 * clear any dirty bits that might have come from getting
2503 * attached to a dirty page
2505 clear_buffer_dirty(bh);
2507 bh = bh->b_this_page;
2508 } while (bh != head);
2509 SetPageError(page);
2510 BUG_ON(PageWriteback(page));
2511 set_page_writeback(page);
2512 unlock_page(page);
2513 do {
2514 struct buffer_head *next = bh->b_this_page;
2515 if (buffer_async_write(bh)) {
2516 clear_buffer_dirty(bh);
2517 submit_bh(WRITE, bh);
2518 nr++;
2520 put_bh(bh);
2521 bh = next;
2522 } while (bh != head);
2523 goto done;
2526 static int reiserfs_readpage(struct file *f, struct page *page)
2528 return block_read_full_page(page, reiserfs_get_block);
2531 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2533 struct inode *inode = page->mapping->host;
2534 reiserfs_wait_on_write_block(inode->i_sb);
2535 return reiserfs_write_full_page(page, wbc);
2538 static int reiserfs_write_begin(struct file *file,
2539 struct address_space *mapping,
2540 loff_t pos, unsigned len, unsigned flags,
2541 struct page **pagep, void **fsdata)
2543 struct inode *inode;
2544 struct page *page;
2545 pgoff_t index;
2546 int ret;
2547 int old_ref = 0;
2549 inode = mapping->host;
2550 *fsdata = 0;
2551 if (flags & AOP_FLAG_CONT_EXPAND &&
2552 (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2553 pos ++;
2554 *fsdata = (void *)(unsigned long)flags;
2557 index = pos >> PAGE_CACHE_SHIFT;
2558 page = grab_cache_page_write_begin(mapping, index, flags);
2559 if (!page)
2560 return -ENOMEM;
2561 *pagep = page;
2563 reiserfs_wait_on_write_block(inode->i_sb);
2564 fix_tail_page_for_writing(page);
2565 if (reiserfs_transaction_running(inode->i_sb)) {
2566 struct reiserfs_transaction_handle *th;
2567 th = (struct reiserfs_transaction_handle *)current->
2568 journal_info;
2569 BUG_ON(!th->t_refcount);
2570 BUG_ON(!th->t_trans_id);
2571 old_ref = th->t_refcount;
2572 th->t_refcount++;
2574 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2575 reiserfs_get_block);
2576 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2577 struct reiserfs_transaction_handle *th = current->journal_info;
2578 /* this gets a little ugly. If reiserfs_get_block returned an
2579 * error and left a transacstion running, we've got to close it,
2580 * and we've got to free handle if it was a persistent transaction.
2582 * But, if we had nested into an existing transaction, we need
2583 * to just drop the ref count on the handle.
2585 * If old_ref == 0, the transaction is from reiserfs_get_block,
2586 * and it was a persistent trans. Otherwise, it was nested above.
2588 if (th->t_refcount > old_ref) {
2589 if (old_ref)
2590 th->t_refcount--;
2591 else {
2592 int err;
2593 reiserfs_write_lock(inode->i_sb);
2594 err = reiserfs_end_persistent_transaction(th);
2595 reiserfs_write_unlock(inode->i_sb);
2596 if (err)
2597 ret = err;
2601 if (ret) {
2602 unlock_page(page);
2603 page_cache_release(page);
2605 return ret;
2608 int reiserfs_prepare_write(struct file *f, struct page *page,
2609 unsigned from, unsigned to)
2611 struct inode *inode = page->mapping->host;
2612 int ret;
2613 int old_ref = 0;
2615 reiserfs_wait_on_write_block(inode->i_sb);
2616 fix_tail_page_for_writing(page);
2617 if (reiserfs_transaction_running(inode->i_sb)) {
2618 struct reiserfs_transaction_handle *th;
2619 th = (struct reiserfs_transaction_handle *)current->
2620 journal_info;
2621 BUG_ON(!th->t_refcount);
2622 BUG_ON(!th->t_trans_id);
2623 old_ref = th->t_refcount;
2624 th->t_refcount++;
2627 ret = block_prepare_write(page, from, to, reiserfs_get_block);
2628 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2629 struct reiserfs_transaction_handle *th = current->journal_info;
2630 /* this gets a little ugly. If reiserfs_get_block returned an
2631 * error and left a transacstion running, we've got to close it,
2632 * and we've got to free handle if it was a persistent transaction.
2634 * But, if we had nested into an existing transaction, we need
2635 * to just drop the ref count on the handle.
2637 * If old_ref == 0, the transaction is from reiserfs_get_block,
2638 * and it was a persistent trans. Otherwise, it was nested above.
2640 if (th->t_refcount > old_ref) {
2641 if (old_ref)
2642 th->t_refcount--;
2643 else {
2644 int err;
2645 reiserfs_write_lock(inode->i_sb);
2646 err = reiserfs_end_persistent_transaction(th);
2647 reiserfs_write_unlock(inode->i_sb);
2648 if (err)
2649 ret = err;
2653 return ret;
2657 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2659 return generic_block_bmap(as, block, reiserfs_bmap);
2662 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2663 loff_t pos, unsigned len, unsigned copied,
2664 struct page *page, void *fsdata)
2666 struct inode *inode = page->mapping->host;
2667 int ret = 0;
2668 int update_sd = 0;
2669 struct reiserfs_transaction_handle *th;
2670 unsigned start;
2672 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2673 pos ++;
2675 reiserfs_wait_on_write_block(inode->i_sb);
2676 if (reiserfs_transaction_running(inode->i_sb))
2677 th = current->journal_info;
2678 else
2679 th = NULL;
2681 start = pos & (PAGE_CACHE_SIZE - 1);
2682 if (unlikely(copied < len)) {
2683 if (!PageUptodate(page))
2684 copied = 0;
2686 page_zero_new_buffers(page, start + copied, start + len);
2688 flush_dcache_page(page);
2690 reiserfs_commit_page(inode, page, start, start + copied);
2692 /* generic_commit_write does this for us, but does not update the
2693 ** transaction tracking stuff when the size changes. So, we have
2694 ** to do the i_size updates here.
2696 pos += copied;
2697 if (pos > inode->i_size) {
2698 struct reiserfs_transaction_handle myth;
2699 reiserfs_write_lock(inode->i_sb);
2700 /* If the file have grown beyond the border where it
2701 can have a tail, unmark it as needing a tail
2702 packing */
2703 if ((have_large_tails(inode->i_sb)
2704 && inode->i_size > i_block_size(inode) * 4)
2705 || (have_small_tails(inode->i_sb)
2706 && inode->i_size > i_block_size(inode)))
2707 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2709 ret = journal_begin(&myth, inode->i_sb, 1);
2710 if (ret) {
2711 reiserfs_write_unlock(inode->i_sb);
2712 goto journal_error;
2714 reiserfs_update_inode_transaction(inode);
2715 inode->i_size = pos;
2717 * this will just nest into our transaction. It's important
2718 * to use mark_inode_dirty so the inode gets pushed around on the
2719 * dirty lists, and so that O_SYNC works as expected
2721 mark_inode_dirty(inode);
2722 reiserfs_update_sd(&myth, inode);
2723 update_sd = 1;
2724 ret = journal_end(&myth, inode->i_sb, 1);
2725 reiserfs_write_unlock(inode->i_sb);
2726 if (ret)
2727 goto journal_error;
2729 if (th) {
2730 reiserfs_write_lock(inode->i_sb);
2731 if (!update_sd)
2732 mark_inode_dirty(inode);
2733 ret = reiserfs_end_persistent_transaction(th);
2734 reiserfs_write_unlock(inode->i_sb);
2735 if (ret)
2736 goto out;
2739 out:
2740 unlock_page(page);
2741 page_cache_release(page);
2742 return ret == 0 ? copied : ret;
2744 journal_error:
2745 if (th) {
2746 reiserfs_write_lock(inode->i_sb);
2747 if (!update_sd)
2748 reiserfs_update_sd(th, inode);
2749 ret = reiserfs_end_persistent_transaction(th);
2750 reiserfs_write_unlock(inode->i_sb);
2753 goto out;
2756 int reiserfs_commit_write(struct file *f, struct page *page,
2757 unsigned from, unsigned to)
2759 struct inode *inode = page->mapping->host;
2760 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2761 int ret = 0;
2762 int update_sd = 0;
2763 struct reiserfs_transaction_handle *th = NULL;
2765 reiserfs_wait_on_write_block(inode->i_sb);
2766 if (reiserfs_transaction_running(inode->i_sb)) {
2767 th = current->journal_info;
2769 reiserfs_commit_page(inode, page, from, to);
2771 /* generic_commit_write does this for us, but does not update the
2772 ** transaction tracking stuff when the size changes. So, we have
2773 ** to do the i_size updates here.
2775 if (pos > inode->i_size) {
2776 struct reiserfs_transaction_handle myth;
2777 reiserfs_write_lock(inode->i_sb);
2778 /* If the file have grown beyond the border where it
2779 can have a tail, unmark it as needing a tail
2780 packing */
2781 if ((have_large_tails(inode->i_sb)
2782 && inode->i_size > i_block_size(inode) * 4)
2783 || (have_small_tails(inode->i_sb)
2784 && inode->i_size > i_block_size(inode)))
2785 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2787 ret = journal_begin(&myth, inode->i_sb, 1);
2788 if (ret) {
2789 reiserfs_write_unlock(inode->i_sb);
2790 goto journal_error;
2792 reiserfs_update_inode_transaction(inode);
2793 inode->i_size = pos;
2795 * this will just nest into our transaction. It's important
2796 * to use mark_inode_dirty so the inode gets pushed around on the
2797 * dirty lists, and so that O_SYNC works as expected
2799 mark_inode_dirty(inode);
2800 reiserfs_update_sd(&myth, inode);
2801 update_sd = 1;
2802 ret = journal_end(&myth, inode->i_sb, 1);
2803 reiserfs_write_unlock(inode->i_sb);
2804 if (ret)
2805 goto journal_error;
2807 if (th) {
2808 reiserfs_write_lock(inode->i_sb);
2809 if (!update_sd)
2810 mark_inode_dirty(inode);
2811 ret = reiserfs_end_persistent_transaction(th);
2812 reiserfs_write_unlock(inode->i_sb);
2813 if (ret)
2814 goto out;
2817 out:
2818 return ret;
2820 journal_error:
2821 if (th) {
2822 reiserfs_write_lock(inode->i_sb);
2823 if (!update_sd)
2824 reiserfs_update_sd(th, inode);
2825 ret = reiserfs_end_persistent_transaction(th);
2826 reiserfs_write_unlock(inode->i_sb);
2829 return ret;
2832 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2834 if (reiserfs_attrs(inode->i_sb)) {
2835 if (sd_attrs & REISERFS_SYNC_FL)
2836 inode->i_flags |= S_SYNC;
2837 else
2838 inode->i_flags &= ~S_SYNC;
2839 if (sd_attrs & REISERFS_IMMUTABLE_FL)
2840 inode->i_flags |= S_IMMUTABLE;
2841 else
2842 inode->i_flags &= ~S_IMMUTABLE;
2843 if (sd_attrs & REISERFS_APPEND_FL)
2844 inode->i_flags |= S_APPEND;
2845 else
2846 inode->i_flags &= ~S_APPEND;
2847 if (sd_attrs & REISERFS_NOATIME_FL)
2848 inode->i_flags |= S_NOATIME;
2849 else
2850 inode->i_flags &= ~S_NOATIME;
2851 if (sd_attrs & REISERFS_NOTAIL_FL)
2852 REISERFS_I(inode)->i_flags |= i_nopack_mask;
2853 else
2854 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2858 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2860 if (reiserfs_attrs(inode->i_sb)) {
2861 if (inode->i_flags & S_IMMUTABLE)
2862 *sd_attrs |= REISERFS_IMMUTABLE_FL;
2863 else
2864 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2865 if (inode->i_flags & S_SYNC)
2866 *sd_attrs |= REISERFS_SYNC_FL;
2867 else
2868 *sd_attrs &= ~REISERFS_SYNC_FL;
2869 if (inode->i_flags & S_NOATIME)
2870 *sd_attrs |= REISERFS_NOATIME_FL;
2871 else
2872 *sd_attrs &= ~REISERFS_NOATIME_FL;
2873 if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2874 *sd_attrs |= REISERFS_NOTAIL_FL;
2875 else
2876 *sd_attrs &= ~REISERFS_NOTAIL_FL;
2880 /* decide if this buffer needs to stay around for data logging or ordered
2881 ** write purposes
2883 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2885 int ret = 1;
2886 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2888 lock_buffer(bh);
2889 spin_lock(&j->j_dirty_buffers_lock);
2890 if (!buffer_mapped(bh)) {
2891 goto free_jh;
2893 /* the page is locked, and the only places that log a data buffer
2894 * also lock the page.
2896 if (reiserfs_file_data_log(inode)) {
2898 * very conservative, leave the buffer pinned if
2899 * anyone might need it.
2901 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2902 ret = 0;
2904 } else if (buffer_dirty(bh)) {
2905 struct reiserfs_journal_list *jl;
2906 struct reiserfs_jh *jh = bh->b_private;
2908 /* why is this safe?
2909 * reiserfs_setattr updates i_size in the on disk
2910 * stat data before allowing vmtruncate to be called.
2912 * If buffer was put onto the ordered list for this
2913 * transaction, we know for sure either this transaction
2914 * or an older one already has updated i_size on disk,
2915 * and this ordered data won't be referenced in the file
2916 * if we crash.
2918 * if the buffer was put onto the ordered list for an older
2919 * transaction, we need to leave it around
2921 if (jh && (jl = jh->jl)
2922 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2923 ret = 0;
2925 free_jh:
2926 if (ret && bh->b_private) {
2927 reiserfs_free_jh(bh);
2929 spin_unlock(&j->j_dirty_buffers_lock);
2930 unlock_buffer(bh);
2931 return ret;
2934 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2935 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2937 struct buffer_head *head, *bh, *next;
2938 struct inode *inode = page->mapping->host;
2939 unsigned int curr_off = 0;
2940 int ret = 1;
2942 BUG_ON(!PageLocked(page));
2944 if (offset == 0)
2945 ClearPageChecked(page);
2947 if (!page_has_buffers(page))
2948 goto out;
2950 head = page_buffers(page);
2951 bh = head;
2952 do {
2953 unsigned int next_off = curr_off + bh->b_size;
2954 next = bh->b_this_page;
2957 * is this block fully invalidated?
2959 if (offset <= curr_off) {
2960 if (invalidatepage_can_drop(inode, bh))
2961 reiserfs_unmap_buffer(bh);
2962 else
2963 ret = 0;
2965 curr_off = next_off;
2966 bh = next;
2967 } while (bh != head);
2970 * We release buffers only if the entire page is being invalidated.
2971 * The get_block cached value has been unconditionally invalidated,
2972 * so real IO is not possible anymore.
2974 if (!offset && ret) {
2975 ret = try_to_release_page(page, 0);
2976 /* maybe should BUG_ON(!ret); - neilb */
2978 out:
2979 return;
2982 static int reiserfs_set_page_dirty(struct page *page)
2984 struct inode *inode = page->mapping->host;
2985 if (reiserfs_file_data_log(inode)) {
2986 SetPageChecked(page);
2987 return __set_page_dirty_nobuffers(page);
2989 return __set_page_dirty_buffers(page);
2993 * Returns 1 if the page's buffers were dropped. The page is locked.
2995 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
2996 * in the buffers at page_buffers(page).
2998 * even in -o notail mode, we can't be sure an old mount without -o notail
2999 * didn't create files with tails.
3001 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3003 struct inode *inode = page->mapping->host;
3004 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3005 struct buffer_head *head;
3006 struct buffer_head *bh;
3007 int ret = 1;
3009 WARN_ON(PageChecked(page));
3010 spin_lock(&j->j_dirty_buffers_lock);
3011 head = page_buffers(page);
3012 bh = head;
3013 do {
3014 if (bh->b_private) {
3015 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3016 reiserfs_free_jh(bh);
3017 } else {
3018 ret = 0;
3019 break;
3022 bh = bh->b_this_page;
3023 } while (bh != head);
3024 if (ret)
3025 ret = try_to_free_buffers(page);
3026 spin_unlock(&j->j_dirty_buffers_lock);
3027 return ret;
3030 /* We thank Mingming Cao for helping us understand in great detail what
3031 to do in this section of the code. */
3032 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3033 const struct iovec *iov, loff_t offset,
3034 unsigned long nr_segs)
3036 struct file *file = iocb->ki_filp;
3037 struct inode *inode = file->f_mapping->host;
3039 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3040 offset, nr_segs,
3041 reiserfs_get_blocks_direct_io, NULL);
3044 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3046 struct inode *inode = dentry->d_inode;
3047 int error;
3048 unsigned int ia_valid;
3050 /* must be turned off for recursive notify_change calls */
3051 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3053 reiserfs_write_lock(inode->i_sb);
3054 if (attr->ia_valid & ATTR_SIZE) {
3055 /* version 2 items will be caught by the s_maxbytes check
3056 ** done for us in vmtruncate
3058 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3059 attr->ia_size > MAX_NON_LFS) {
3060 error = -EFBIG;
3061 goto out;
3063 /* fill in hole pointers in the expanding truncate case. */
3064 if (attr->ia_size > inode->i_size) {
3065 error = generic_cont_expand_simple(inode, attr->ia_size);
3066 if (REISERFS_I(inode)->i_prealloc_count > 0) {
3067 int err;
3068 struct reiserfs_transaction_handle th;
3069 /* we're changing at most 2 bitmaps, inode + super */
3070 err = journal_begin(&th, inode->i_sb, 4);
3071 if (!err) {
3072 reiserfs_discard_prealloc(&th, inode);
3073 err = journal_end(&th, inode->i_sb, 4);
3075 if (err)
3076 error = err;
3078 if (error)
3079 goto out;
3081 * file size is changed, ctime and mtime are
3082 * to be updated
3084 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3088 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3089 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3090 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3091 /* stat data of format v3.5 has 16 bit uid and gid */
3092 error = -EINVAL;
3093 goto out;
3096 error = inode_change_ok(inode, attr);
3097 if (!error) {
3098 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3099 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3100 error = reiserfs_chown_xattrs(inode, attr);
3102 if (!error) {
3103 struct reiserfs_transaction_handle th;
3104 int jbegin_count =
3106 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3107 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3110 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3111 error =
3112 journal_begin(&th, inode->i_sb,
3113 jbegin_count);
3114 if (error)
3115 goto out;
3116 error =
3117 vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
3118 if (error) {
3119 journal_end(&th, inode->i_sb,
3120 jbegin_count);
3121 goto out;
3123 /* Update corresponding info in inode so that everything is in
3124 * one transaction */
3125 if (attr->ia_valid & ATTR_UID)
3126 inode->i_uid = attr->ia_uid;
3127 if (attr->ia_valid & ATTR_GID)
3128 inode->i_gid = attr->ia_gid;
3129 mark_inode_dirty(inode);
3130 error =
3131 journal_end(&th, inode->i_sb, jbegin_count);
3134 if (!error)
3135 error = inode_setattr(inode, attr);
3138 if (!error && reiserfs_posixacl(inode->i_sb)) {
3139 if (attr->ia_valid & ATTR_MODE)
3140 error = reiserfs_acl_chmod(inode);
3143 out:
3144 reiserfs_write_unlock(inode->i_sb);
3145 return error;
3148 const struct address_space_operations reiserfs_address_space_operations = {
3149 .writepage = reiserfs_writepage,
3150 .readpage = reiserfs_readpage,
3151 .readpages = reiserfs_readpages,
3152 .releasepage = reiserfs_releasepage,
3153 .invalidatepage = reiserfs_invalidatepage,
3154 .sync_page = block_sync_page,
3155 .write_begin = reiserfs_write_begin,
3156 .write_end = reiserfs_write_end,
3157 .bmap = reiserfs_aop_bmap,
3158 .direct_IO = reiserfs_direct_IO,
3159 .set_page_dirty = reiserfs_set_page_dirty,