2 * segment.c - NILFS segment constructor.
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
24 #include <linux/pagemap.h>
25 #include <linux/buffer_head.h>
26 #include <linux/writeback.h>
27 #include <linux/bio.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/freezer.h>
32 #include <linux/kthread.h>
33 #include <linux/crc32.h>
34 #include <linux/pagevec.h>
49 #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
51 #define SC_MAX_SEGDELTA 64 /* Upper limit of the number of segments
52 appended in collection retry loop */
54 /* Construction mode */
56 SC_LSEG_SR
= 1, /* Make a logical segment having a super root */
57 SC_LSEG_DSYNC
, /* Flush data blocks of a given file and make
58 a logical segment without a super root */
59 SC_FLUSH_FILE
, /* Flush data files, leads to segment writes without
60 creating a checkpoint */
61 SC_FLUSH_DAT
, /* Flush DAT file. This also creates segments without
65 /* Stage numbers of dirty block collection */
68 NILFS_ST_GC
, /* Collecting dirty blocks for GC */
74 NILFS_ST_SR
, /* Super root */
75 NILFS_ST_DSYNC
, /* Data sync blocks */
79 /* State flags of collection */
80 #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
81 #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
82 #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED)
84 /* Operations depending on the construction mode and file type */
85 struct nilfs_sc_operations
{
86 int (*collect_data
)(struct nilfs_sc_info
*, struct buffer_head
*,
88 int (*collect_node
)(struct nilfs_sc_info
*, struct buffer_head
*,
90 int (*collect_bmap
)(struct nilfs_sc_info
*, struct buffer_head
*,
92 void (*write_data_binfo
)(struct nilfs_sc_info
*,
93 struct nilfs_segsum_pointer
*,
95 void (*write_node_binfo
)(struct nilfs_sc_info
*,
96 struct nilfs_segsum_pointer
*,
103 static void nilfs_segctor_start_timer(struct nilfs_sc_info
*);
104 static void nilfs_segctor_do_flush(struct nilfs_sc_info
*, int);
105 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info
*);
106 static void nilfs_dispose_list(struct nilfs_sb_info
*, struct list_head
*,
109 #define nilfs_cnt32_gt(a, b) \
110 (typecheck(__u32, a) && typecheck(__u32, b) && \
111 ((__s32)(b) - (__s32)(a) < 0))
112 #define nilfs_cnt32_ge(a, b) \
113 (typecheck(__u32, a) && typecheck(__u32, b) && \
114 ((__s32)(a) - (__s32)(b) >= 0))
115 #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
116 #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
121 static struct kmem_cache
*nilfs_transaction_cachep
;
124 * nilfs_init_transaction_cache - create a cache for nilfs_transaction_info
126 * nilfs_init_transaction_cache() creates a slab cache for the struct
127 * nilfs_transaction_info.
129 * Return Value: On success, it returns 0. On error, one of the following
130 * negative error code is returned.
132 * %-ENOMEM - Insufficient memory available.
134 int nilfs_init_transaction_cache(void)
136 nilfs_transaction_cachep
=
137 kmem_cache_create("nilfs2_transaction_cache",
138 sizeof(struct nilfs_transaction_info
),
139 0, SLAB_RECLAIM_ACCOUNT
, NULL
);
140 return (nilfs_transaction_cachep
== NULL
) ? -ENOMEM
: 0;
144 * nilfs_detroy_transaction_cache - destroy the cache for transaction info
146 * nilfs_destroy_transaction_cache() frees the slab cache for the struct
147 * nilfs_transaction_info.
149 void nilfs_destroy_transaction_cache(void)
151 kmem_cache_destroy(nilfs_transaction_cachep
);
154 static int nilfs_prepare_segment_lock(struct nilfs_transaction_info
*ti
)
156 struct nilfs_transaction_info
*cur_ti
= current
->journal_info
;
160 if (cur_ti
->ti_magic
== NILFS_TI_MAGIC
)
161 return ++cur_ti
->ti_count
;
164 * If journal_info field is occupied by other FS,
165 * it is saved and will be restored on
166 * nilfs_transaction_commit().
169 "NILFS warning: journal info from a different "
171 save
= current
->journal_info
;
175 ti
= kmem_cache_alloc(nilfs_transaction_cachep
, GFP_NOFS
);
178 ti
->ti_flags
= NILFS_TI_DYNAMIC_ALLOC
;
184 ti
->ti_magic
= NILFS_TI_MAGIC
;
185 current
->journal_info
= ti
;
190 * nilfs_transaction_begin - start indivisible file operations.
192 * @ti: nilfs_transaction_info
193 * @vacancy_check: flags for vacancy rate checks
195 * nilfs_transaction_begin() acquires a reader/writer semaphore, called
196 * the segment semaphore, to make a segment construction and write tasks
197 * exclusive. The function is used with nilfs_transaction_commit() in pairs.
198 * The region enclosed by these two functions can be nested. To avoid a
199 * deadlock, the semaphore is only acquired or released in the outermost call.
201 * This function allocates a nilfs_transaction_info struct to keep context
202 * information on it. It is initialized and hooked onto the current task in
203 * the outermost call. If a pre-allocated struct is given to @ti, it is used
204 * instead; othewise a new struct is assigned from a slab.
206 * When @vacancy_check flag is set, this function will check the amount of
207 * free space, and will wait for the GC to reclaim disk space if low capacity.
209 * Return Value: On success, 0 is returned. On error, one of the following
210 * negative error code is returned.
212 * %-ENOMEM - Insufficient memory available.
214 * %-ENOSPC - No space left on device
216 int nilfs_transaction_begin(struct super_block
*sb
,
217 struct nilfs_transaction_info
*ti
,
220 struct nilfs_sb_info
*sbi
;
221 struct the_nilfs
*nilfs
;
222 int ret
= nilfs_prepare_segment_lock(ti
);
224 if (unlikely(ret
< 0))
230 nilfs
= sbi
->s_nilfs
;
231 down_read(&nilfs
->ns_segctor_sem
);
232 if (vacancy_check
&& nilfs_near_disk_full(nilfs
)) {
233 up_read(&nilfs
->ns_segctor_sem
);
240 ti
= current
->journal_info
;
241 current
->journal_info
= ti
->ti_save
;
242 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
243 kmem_cache_free(nilfs_transaction_cachep
, ti
);
248 * nilfs_transaction_commit - commit indivisible file operations.
251 * nilfs_transaction_commit() releases the read semaphore which is
252 * acquired by nilfs_transaction_begin(). This is only performed
253 * in outermost call of this function. If a commit flag is set,
254 * nilfs_transaction_commit() sets a timer to start the segment
255 * constructor. If a sync flag is set, it starts construction
258 int nilfs_transaction_commit(struct super_block
*sb
)
260 struct nilfs_transaction_info
*ti
= current
->journal_info
;
261 struct nilfs_sb_info
*sbi
;
262 struct nilfs_sc_info
*sci
;
265 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
266 ti
->ti_flags
|= NILFS_TI_COMMIT
;
267 if (ti
->ti_count
> 0) {
274 if (ti
->ti_flags
& NILFS_TI_COMMIT
)
275 nilfs_segctor_start_timer(sci
);
276 if (atomic_read(&sbi
->s_nilfs
->ns_ndirtyblks
) >
278 nilfs_segctor_do_flush(sci
, 0);
280 up_read(&sbi
->s_nilfs
->ns_segctor_sem
);
281 current
->journal_info
= ti
->ti_save
;
283 if (ti
->ti_flags
& NILFS_TI_SYNC
)
284 err
= nilfs_construct_segment(sb
);
285 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
286 kmem_cache_free(nilfs_transaction_cachep
, ti
);
290 void nilfs_transaction_abort(struct super_block
*sb
)
292 struct nilfs_transaction_info
*ti
= current
->journal_info
;
294 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
295 if (ti
->ti_count
> 0) {
299 up_read(&NILFS_SB(sb
)->s_nilfs
->ns_segctor_sem
);
301 current
->journal_info
= ti
->ti_save
;
302 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
303 kmem_cache_free(nilfs_transaction_cachep
, ti
);
306 void nilfs_relax_pressure_in_lock(struct super_block
*sb
)
308 struct nilfs_sb_info
*sbi
= NILFS_SB(sb
);
309 struct nilfs_sc_info
*sci
= NILFS_SC(sbi
);
310 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
312 if (!sci
|| !sci
->sc_flush_request
)
315 set_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
);
316 up_read(&nilfs
->ns_segctor_sem
);
318 down_write(&nilfs
->ns_segctor_sem
);
319 if (sci
->sc_flush_request
&&
320 test_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
)) {
321 struct nilfs_transaction_info
*ti
= current
->journal_info
;
323 ti
->ti_flags
|= NILFS_TI_WRITER
;
324 nilfs_segctor_do_immediate_flush(sci
);
325 ti
->ti_flags
&= ~NILFS_TI_WRITER
;
327 downgrade_write(&nilfs
->ns_segctor_sem
);
330 static void nilfs_transaction_lock(struct nilfs_sb_info
*sbi
,
331 struct nilfs_transaction_info
*ti
,
334 struct nilfs_transaction_info
*cur_ti
= current
->journal_info
;
337 ti
->ti_flags
= NILFS_TI_WRITER
;
339 ti
->ti_save
= cur_ti
;
340 ti
->ti_magic
= NILFS_TI_MAGIC
;
341 INIT_LIST_HEAD(&ti
->ti_garbage
);
342 current
->journal_info
= ti
;
345 down_write(&sbi
->s_nilfs
->ns_segctor_sem
);
346 if (!test_bit(NILFS_SC_PRIOR_FLUSH
, &NILFS_SC(sbi
)->sc_flags
))
349 nilfs_segctor_do_immediate_flush(NILFS_SC(sbi
));
351 up_write(&sbi
->s_nilfs
->ns_segctor_sem
);
355 ti
->ti_flags
|= NILFS_TI_GC
;
358 static void nilfs_transaction_unlock(struct nilfs_sb_info
*sbi
)
360 struct nilfs_transaction_info
*ti
= current
->journal_info
;
362 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
363 BUG_ON(ti
->ti_count
> 0);
365 up_write(&sbi
->s_nilfs
->ns_segctor_sem
);
366 current
->journal_info
= ti
->ti_save
;
367 if (!list_empty(&ti
->ti_garbage
))
368 nilfs_dispose_list(sbi
, &ti
->ti_garbage
, 0);
371 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info
*sci
,
372 struct nilfs_segsum_pointer
*ssp
,
375 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
376 unsigned blocksize
= sci
->sc_super
->s_blocksize
;
379 if (unlikely(ssp
->offset
+ bytes
> blocksize
)) {
381 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp
->bh
,
382 &segbuf
->sb_segsum_buffers
));
383 ssp
->bh
= NILFS_SEGBUF_NEXT_BH(ssp
->bh
);
385 p
= ssp
->bh
->b_data
+ ssp
->offset
;
386 ssp
->offset
+= bytes
;
391 * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
392 * @sci: nilfs_sc_info
394 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info
*sci
)
396 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
397 struct buffer_head
*sumbh
;
402 if (nilfs_doing_gc())
404 err
= nilfs_segbuf_reset(segbuf
, flags
, sci
->sc_seg_ctime
);
408 sumbh
= NILFS_SEGBUF_FIRST_BH(&segbuf
->sb_segsum_buffers
);
409 sumbytes
= segbuf
->sb_sum
.sumbytes
;
410 sci
->sc_finfo_ptr
.bh
= sumbh
; sci
->sc_finfo_ptr
.offset
= sumbytes
;
411 sci
->sc_binfo_ptr
.bh
= sumbh
; sci
->sc_binfo_ptr
.offset
= sumbytes
;
412 sci
->sc_blk_cnt
= sci
->sc_datablk_cnt
= 0;
416 static int nilfs_segctor_feed_segment(struct nilfs_sc_info
*sci
)
418 sci
->sc_nblk_this_inc
+= sci
->sc_curseg
->sb_sum
.nblocks
;
419 if (NILFS_SEGBUF_IS_LAST(sci
->sc_curseg
, &sci
->sc_segbufs
))
420 return -E2BIG
; /* The current segment is filled up
422 sci
->sc_curseg
= NILFS_NEXT_SEGBUF(sci
->sc_curseg
);
423 return nilfs_segctor_reset_segment_buffer(sci
);
426 static int nilfs_segctor_add_super_root(struct nilfs_sc_info
*sci
)
428 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
431 if (segbuf
->sb_sum
.nblocks
>= segbuf
->sb_rest_blocks
) {
432 err
= nilfs_segctor_feed_segment(sci
);
435 segbuf
= sci
->sc_curseg
;
437 err
= nilfs_segbuf_extend_payload(segbuf
, &sci
->sc_super_root
);
439 segbuf
->sb_sum
.flags
|= NILFS_SS_SR
;
444 * Functions for making segment summary and payloads
446 static int nilfs_segctor_segsum_block_required(
447 struct nilfs_sc_info
*sci
, const struct nilfs_segsum_pointer
*ssp
,
450 unsigned blocksize
= sci
->sc_super
->s_blocksize
;
451 /* Size of finfo and binfo is enough small against blocksize */
453 return ssp
->offset
+ binfo_size
+
454 (!sci
->sc_blk_cnt
? sizeof(struct nilfs_finfo
) : 0) >
458 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info
*sci
,
461 sci
->sc_curseg
->sb_sum
.nfinfo
++;
462 sci
->sc_binfo_ptr
= sci
->sc_finfo_ptr
;
463 nilfs_segctor_map_segsum_entry(
464 sci
, &sci
->sc_binfo_ptr
, sizeof(struct nilfs_finfo
));
466 if (inode
->i_sb
&& !test_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
))
467 set_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
);
471 static void nilfs_segctor_end_finfo(struct nilfs_sc_info
*sci
,
474 struct nilfs_finfo
*finfo
;
475 struct nilfs_inode_info
*ii
;
476 struct nilfs_segment_buffer
*segbuf
;
478 if (sci
->sc_blk_cnt
== 0)
482 finfo
= nilfs_segctor_map_segsum_entry(sci
, &sci
->sc_finfo_ptr
,
484 finfo
->fi_ino
= cpu_to_le64(inode
->i_ino
);
485 finfo
->fi_nblocks
= cpu_to_le32(sci
->sc_blk_cnt
);
486 finfo
->fi_ndatablk
= cpu_to_le32(sci
->sc_datablk_cnt
);
487 finfo
->fi_cno
= cpu_to_le64(ii
->i_cno
);
489 segbuf
= sci
->sc_curseg
;
490 segbuf
->sb_sum
.sumbytes
= sci
->sc_binfo_ptr
.offset
+
491 sci
->sc_super
->s_blocksize
* (segbuf
->sb_sum
.nsumblk
- 1);
492 sci
->sc_finfo_ptr
= sci
->sc_binfo_ptr
;
493 sci
->sc_blk_cnt
= sci
->sc_datablk_cnt
= 0;
496 static int nilfs_segctor_add_file_block(struct nilfs_sc_info
*sci
,
497 struct buffer_head
*bh
,
501 struct nilfs_segment_buffer
*segbuf
;
502 int required
, err
= 0;
505 segbuf
= sci
->sc_curseg
;
506 required
= nilfs_segctor_segsum_block_required(
507 sci
, &sci
->sc_binfo_ptr
, binfo_size
);
508 if (segbuf
->sb_sum
.nblocks
+ required
+ 1 > segbuf
->sb_rest_blocks
) {
509 nilfs_segctor_end_finfo(sci
, inode
);
510 err
= nilfs_segctor_feed_segment(sci
);
515 if (unlikely(required
)) {
516 err
= nilfs_segbuf_extend_segsum(segbuf
);
520 if (sci
->sc_blk_cnt
== 0)
521 nilfs_segctor_begin_finfo(sci
, inode
);
523 nilfs_segctor_map_segsum_entry(sci
, &sci
->sc_binfo_ptr
, binfo_size
);
524 /* Substitution to vblocknr is delayed until update_blocknr() */
525 nilfs_segbuf_add_file_buffer(segbuf
, bh
);
531 static int nilfs_handle_bmap_error(int err
, const char *fname
,
532 struct inode
*inode
, struct super_block
*sb
)
534 if (err
== -EINVAL
) {
535 nilfs_error(sb
, fname
, "broken bmap (inode=%lu)\n",
543 * Callback functions that enumerate, mark, and collect dirty blocks
545 static int nilfs_collect_file_data(struct nilfs_sc_info
*sci
,
546 struct buffer_head
*bh
, struct inode
*inode
)
550 err
= nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
551 if (unlikely(err
< 0))
552 return nilfs_handle_bmap_error(err
, __func__
, inode
,
555 err
= nilfs_segctor_add_file_block(sci
, bh
, inode
,
556 sizeof(struct nilfs_binfo_v
));
558 sci
->sc_datablk_cnt
++;
562 static int nilfs_collect_file_node(struct nilfs_sc_info
*sci
,
563 struct buffer_head
*bh
,
568 err
= nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
569 if (unlikely(err
< 0))
570 return nilfs_handle_bmap_error(err
, __func__
, inode
,
575 static int nilfs_collect_file_bmap(struct nilfs_sc_info
*sci
,
576 struct buffer_head
*bh
,
579 WARN_ON(!buffer_dirty(bh
));
580 return nilfs_segctor_add_file_block(sci
, bh
, inode
, sizeof(__le64
));
583 static void nilfs_write_file_data_binfo(struct nilfs_sc_info
*sci
,
584 struct nilfs_segsum_pointer
*ssp
,
585 union nilfs_binfo
*binfo
)
587 struct nilfs_binfo_v
*binfo_v
= nilfs_segctor_map_segsum_entry(
588 sci
, ssp
, sizeof(*binfo_v
));
589 *binfo_v
= binfo
->bi_v
;
592 static void nilfs_write_file_node_binfo(struct nilfs_sc_info
*sci
,
593 struct nilfs_segsum_pointer
*ssp
,
594 union nilfs_binfo
*binfo
)
596 __le64
*vblocknr
= nilfs_segctor_map_segsum_entry(
597 sci
, ssp
, sizeof(*vblocknr
));
598 *vblocknr
= binfo
->bi_v
.bi_vblocknr
;
601 struct nilfs_sc_operations nilfs_sc_file_ops
= {
602 .collect_data
= nilfs_collect_file_data
,
603 .collect_node
= nilfs_collect_file_node
,
604 .collect_bmap
= nilfs_collect_file_bmap
,
605 .write_data_binfo
= nilfs_write_file_data_binfo
,
606 .write_node_binfo
= nilfs_write_file_node_binfo
,
609 static int nilfs_collect_dat_data(struct nilfs_sc_info
*sci
,
610 struct buffer_head
*bh
, struct inode
*inode
)
614 err
= nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
615 if (unlikely(err
< 0))
616 return nilfs_handle_bmap_error(err
, __func__
, inode
,
619 err
= nilfs_segctor_add_file_block(sci
, bh
, inode
, sizeof(__le64
));
621 sci
->sc_datablk_cnt
++;
625 static int nilfs_collect_dat_bmap(struct nilfs_sc_info
*sci
,
626 struct buffer_head
*bh
, struct inode
*inode
)
628 WARN_ON(!buffer_dirty(bh
));
629 return nilfs_segctor_add_file_block(sci
, bh
, inode
,
630 sizeof(struct nilfs_binfo_dat
));
633 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info
*sci
,
634 struct nilfs_segsum_pointer
*ssp
,
635 union nilfs_binfo
*binfo
)
637 __le64
*blkoff
= nilfs_segctor_map_segsum_entry(sci
, ssp
,
639 *blkoff
= binfo
->bi_dat
.bi_blkoff
;
642 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info
*sci
,
643 struct nilfs_segsum_pointer
*ssp
,
644 union nilfs_binfo
*binfo
)
646 struct nilfs_binfo_dat
*binfo_dat
=
647 nilfs_segctor_map_segsum_entry(sci
, ssp
, sizeof(*binfo_dat
));
648 *binfo_dat
= binfo
->bi_dat
;
651 struct nilfs_sc_operations nilfs_sc_dat_ops
= {
652 .collect_data
= nilfs_collect_dat_data
,
653 .collect_node
= nilfs_collect_file_node
,
654 .collect_bmap
= nilfs_collect_dat_bmap
,
655 .write_data_binfo
= nilfs_write_dat_data_binfo
,
656 .write_node_binfo
= nilfs_write_dat_node_binfo
,
659 struct nilfs_sc_operations nilfs_sc_dsync_ops
= {
660 .collect_data
= nilfs_collect_file_data
,
661 .collect_node
= NULL
,
662 .collect_bmap
= NULL
,
663 .write_data_binfo
= nilfs_write_file_data_binfo
,
664 .write_node_binfo
= NULL
,
667 static size_t nilfs_lookup_dirty_data_buffers(struct inode
*inode
,
668 struct list_head
*listp
,
670 loff_t start
, loff_t end
)
672 struct address_space
*mapping
= inode
->i_mapping
;
674 pgoff_t index
= 0, last
= ULONG_MAX
;
678 if (unlikely(start
!= 0 || end
!= LLONG_MAX
)) {
680 * A valid range is given for sync-ing data pages. The
681 * range is rounded to per-page; extra dirty buffers
682 * may be included if blocksize < pagesize.
684 index
= start
>> PAGE_SHIFT
;
685 last
= end
>> PAGE_SHIFT
;
687 pagevec_init(&pvec
, 0);
689 if (unlikely(index
> last
) ||
690 !pagevec_lookup_tag(&pvec
, mapping
, &index
, PAGECACHE_TAG_DIRTY
,
691 min_t(pgoff_t
, last
- index
,
692 PAGEVEC_SIZE
- 1) + 1))
695 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
696 struct buffer_head
*bh
, *head
;
697 struct page
*page
= pvec
.pages
[i
];
699 if (unlikely(page
->index
> last
))
704 if (!page_has_buffers(page
))
705 create_empty_buffers(page
,
706 1 << inode
->i_blkbits
, 0);
710 bh
= head
= page_buffers(page
);
712 if (!buffer_dirty(bh
))
715 list_add_tail(&bh
->b_assoc_buffers
, listp
);
717 if (unlikely(ndirties
>= nlimit
)) {
718 pagevec_release(&pvec
);
722 } while (bh
= bh
->b_this_page
, bh
!= head
);
724 pagevec_release(&pvec
);
729 static void nilfs_lookup_dirty_node_buffers(struct inode
*inode
,
730 struct list_head
*listp
)
732 struct nilfs_inode_info
*ii
= NILFS_I(inode
);
733 struct address_space
*mapping
= &ii
->i_btnode_cache
;
735 struct buffer_head
*bh
, *head
;
739 pagevec_init(&pvec
, 0);
741 while (pagevec_lookup_tag(&pvec
, mapping
, &index
, PAGECACHE_TAG_DIRTY
,
743 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
744 bh
= head
= page_buffers(pvec
.pages
[i
]);
746 if (buffer_dirty(bh
)) {
748 list_add_tail(&bh
->b_assoc_buffers
,
751 bh
= bh
->b_this_page
;
752 } while (bh
!= head
);
754 pagevec_release(&pvec
);
759 static void nilfs_dispose_list(struct nilfs_sb_info
*sbi
,
760 struct list_head
*head
, int force
)
762 struct nilfs_inode_info
*ii
, *n
;
763 struct nilfs_inode_info
*ivec
[SC_N_INODEVEC
], **pii
;
766 while (!list_empty(head
)) {
767 spin_lock(&sbi
->s_inode_lock
);
768 list_for_each_entry_safe(ii
, n
, head
, i_dirty
) {
769 list_del_init(&ii
->i_dirty
);
771 if (unlikely(ii
->i_bh
)) {
775 } else if (test_bit(NILFS_I_DIRTY
, &ii
->i_state
)) {
776 set_bit(NILFS_I_QUEUED
, &ii
->i_state
);
777 list_add_tail(&ii
->i_dirty
,
778 &sbi
->s_dirty_files
);
782 if (nv
== SC_N_INODEVEC
)
785 spin_unlock(&sbi
->s_inode_lock
);
787 for (pii
= ivec
; nv
> 0; pii
++, nv
--)
788 iput(&(*pii
)->vfs_inode
);
792 static int nilfs_test_metadata_dirty(struct nilfs_sb_info
*sbi
)
794 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
797 if (nilfs_mdt_fetch_dirty(sbi
->s_ifile
))
799 if (nilfs_mdt_fetch_dirty(nilfs
->ns_cpfile
))
801 if (nilfs_mdt_fetch_dirty(nilfs
->ns_sufile
))
803 if (ret
|| nilfs_doing_gc())
804 if (nilfs_mdt_fetch_dirty(nilfs_dat_inode(nilfs
)))
809 static int nilfs_segctor_clean(struct nilfs_sc_info
*sci
)
811 return list_empty(&sci
->sc_dirty_files
) &&
812 !test_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
) &&
813 list_empty(&sci
->sc_cleaning_segments
) &&
814 (!nilfs_doing_gc() || list_empty(&sci
->sc_gc_inodes
));
817 static int nilfs_segctor_confirm(struct nilfs_sc_info
*sci
)
819 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
822 if (nilfs_test_metadata_dirty(sbi
))
823 set_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
825 spin_lock(&sbi
->s_inode_lock
);
826 if (list_empty(&sbi
->s_dirty_files
) && nilfs_segctor_clean(sci
))
829 spin_unlock(&sbi
->s_inode_lock
);
833 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info
*sci
)
835 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
836 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
838 nilfs_mdt_clear_dirty(sbi
->s_ifile
);
839 nilfs_mdt_clear_dirty(nilfs
->ns_cpfile
);
840 nilfs_mdt_clear_dirty(nilfs
->ns_sufile
);
841 nilfs_mdt_clear_dirty(nilfs_dat_inode(nilfs
));
844 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info
*sci
)
846 struct the_nilfs
*nilfs
= sci
->sc_sbi
->s_nilfs
;
847 struct buffer_head
*bh_cp
;
848 struct nilfs_checkpoint
*raw_cp
;
851 /* XXX: this interface will be changed */
852 err
= nilfs_cpfile_get_checkpoint(nilfs
->ns_cpfile
, nilfs
->ns_cno
, 1,
855 /* The following code is duplicated with cpfile. But, it is
856 needed to collect the checkpoint even if it was not newly
858 nilfs_mdt_mark_buffer_dirty(bh_cp
);
859 nilfs_mdt_mark_dirty(nilfs
->ns_cpfile
);
860 nilfs_cpfile_put_checkpoint(
861 nilfs
->ns_cpfile
, nilfs
->ns_cno
, bh_cp
);
863 WARN_ON(err
== -EINVAL
|| err
== -ENOENT
);
868 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info
*sci
)
870 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
871 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
872 struct buffer_head
*bh_cp
;
873 struct nilfs_checkpoint
*raw_cp
;
876 err
= nilfs_cpfile_get_checkpoint(nilfs
->ns_cpfile
, nilfs
->ns_cno
, 0,
879 WARN_ON(err
== -EINVAL
|| err
== -ENOENT
);
882 raw_cp
->cp_snapshot_list
.ssl_next
= 0;
883 raw_cp
->cp_snapshot_list
.ssl_prev
= 0;
884 raw_cp
->cp_inodes_count
=
885 cpu_to_le64(atomic_read(&sbi
->s_inodes_count
));
886 raw_cp
->cp_blocks_count
=
887 cpu_to_le64(atomic_read(&sbi
->s_blocks_count
));
888 raw_cp
->cp_nblk_inc
=
889 cpu_to_le64(sci
->sc_nblk_inc
+ sci
->sc_nblk_this_inc
);
890 raw_cp
->cp_create
= cpu_to_le64(sci
->sc_seg_ctime
);
891 raw_cp
->cp_cno
= cpu_to_le64(nilfs
->ns_cno
);
893 if (test_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
))
894 nilfs_checkpoint_clear_minor(raw_cp
);
896 nilfs_checkpoint_set_minor(raw_cp
);
898 nilfs_write_inode_common(sbi
->s_ifile
, &raw_cp
->cp_ifile_inode
, 1);
899 nilfs_cpfile_put_checkpoint(nilfs
->ns_cpfile
, nilfs
->ns_cno
, bh_cp
);
906 static void nilfs_fill_in_file_bmap(struct inode
*ifile
,
907 struct nilfs_inode_info
*ii
)
910 struct buffer_head
*ibh
;
911 struct nilfs_inode
*raw_inode
;
913 if (test_bit(NILFS_I_BMAP
, &ii
->i_state
)) {
916 raw_inode
= nilfs_ifile_map_inode(ifile
, ii
->vfs_inode
.i_ino
,
918 nilfs_bmap_write(ii
->i_bmap
, raw_inode
);
919 nilfs_ifile_unmap_inode(ifile
, ii
->vfs_inode
.i_ino
, ibh
);
923 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info
*sci
,
926 struct nilfs_inode_info
*ii
;
928 list_for_each_entry(ii
, &sci
->sc_dirty_files
, i_dirty
) {
929 nilfs_fill_in_file_bmap(ifile
, ii
);
930 set_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
935 * CRC calculation routines
937 static void nilfs_fill_in_super_root_crc(struct buffer_head
*bh_sr
, u32 seed
)
939 struct nilfs_super_root
*raw_sr
=
940 (struct nilfs_super_root
*)bh_sr
->b_data
;
944 (unsigned char *)raw_sr
+ sizeof(raw_sr
->sr_sum
),
945 NILFS_SR_BYTES
- sizeof(raw_sr
->sr_sum
));
946 raw_sr
->sr_sum
= cpu_to_le32(crc
);
949 static void nilfs_segctor_fill_in_checksums(struct nilfs_sc_info
*sci
,
952 struct nilfs_segment_buffer
*segbuf
;
954 if (sci
->sc_super_root
)
955 nilfs_fill_in_super_root_crc(sci
->sc_super_root
, seed
);
957 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
958 nilfs_segbuf_fill_in_segsum_crc(segbuf
, seed
);
959 nilfs_segbuf_fill_in_data_crc(segbuf
, seed
);
963 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info
*sci
,
964 struct the_nilfs
*nilfs
)
966 struct buffer_head
*bh_sr
= sci
->sc_super_root
;
967 struct nilfs_super_root
*raw_sr
=
968 (struct nilfs_super_root
*)bh_sr
->b_data
;
969 unsigned isz
= nilfs
->ns_inode_size
;
971 raw_sr
->sr_bytes
= cpu_to_le16(NILFS_SR_BYTES
);
972 raw_sr
->sr_nongc_ctime
973 = cpu_to_le64(nilfs_doing_gc() ?
974 nilfs
->ns_nongc_ctime
: sci
->sc_seg_ctime
);
975 raw_sr
->sr_flags
= 0;
977 nilfs_mdt_write_inode_direct(
978 nilfs_dat_inode(nilfs
), bh_sr
, NILFS_SR_DAT_OFFSET(isz
));
979 nilfs_mdt_write_inode_direct(
980 nilfs
->ns_cpfile
, bh_sr
, NILFS_SR_CPFILE_OFFSET(isz
));
981 nilfs_mdt_write_inode_direct(
982 nilfs
->ns_sufile
, bh_sr
, NILFS_SR_SUFILE_OFFSET(isz
));
985 static void nilfs_redirty_inodes(struct list_head
*head
)
987 struct nilfs_inode_info
*ii
;
989 list_for_each_entry(ii
, head
, i_dirty
) {
990 if (test_bit(NILFS_I_COLLECTED
, &ii
->i_state
))
991 clear_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
995 static void nilfs_drop_collected_inodes(struct list_head
*head
)
997 struct nilfs_inode_info
*ii
;
999 list_for_each_entry(ii
, head
, i_dirty
) {
1000 if (!test_and_clear_bit(NILFS_I_COLLECTED
, &ii
->i_state
))
1003 clear_bit(NILFS_I_INODE_DIRTY
, &ii
->i_state
);
1004 set_bit(NILFS_I_UPDATED
, &ii
->i_state
);
1008 static void nilfs_segctor_cancel_free_segments(struct nilfs_sc_info
*sci
,
1009 struct inode
*sufile
)
1012 struct list_head
*head
= &sci
->sc_cleaning_segments
;
1013 struct nilfs_segment_entry
*ent
;
1016 list_for_each_entry(ent
, head
, list
) {
1017 if (!(ent
->flags
& NILFS_SLH_FREED
))
1019 err
= nilfs_sufile_cancel_free(sufile
, ent
->segnum
);
1020 WARN_ON(err
); /* do not happen */
1021 ent
->flags
&= ~NILFS_SLH_FREED
;
1025 static int nilfs_segctor_prepare_free_segments(struct nilfs_sc_info
*sci
,
1026 struct inode
*sufile
)
1028 struct list_head
*head
= &sci
->sc_cleaning_segments
;
1029 struct nilfs_segment_entry
*ent
;
1032 list_for_each_entry(ent
, head
, list
) {
1033 err
= nilfs_sufile_free(sufile
, ent
->segnum
);
1036 ent
->flags
|= NILFS_SLH_FREED
;
1041 static void nilfs_segctor_commit_free_segments(struct nilfs_sc_info
*sci
)
1043 nilfs_dispose_segment_list(&sci
->sc_cleaning_segments
);
1046 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info
*sci
,
1047 struct inode
*inode
,
1048 struct list_head
*listp
,
1049 int (*collect
)(struct nilfs_sc_info
*,
1050 struct buffer_head
*,
1053 struct buffer_head
*bh
, *n
;
1057 list_for_each_entry_safe(bh
, n
, listp
, b_assoc_buffers
) {
1058 list_del_init(&bh
->b_assoc_buffers
);
1059 err
= collect(sci
, bh
, inode
);
1062 goto dispose_buffers
;
1068 while (!list_empty(listp
)) {
1069 bh
= list_entry(listp
->next
, struct buffer_head
,
1071 list_del_init(&bh
->b_assoc_buffers
);
1077 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info
*sci
)
1079 /* Remaining number of blocks within segment buffer */
1080 return sci
->sc_segbuf_nblocks
-
1081 (sci
->sc_nblk_this_inc
+ sci
->sc_curseg
->sb_sum
.nblocks
);
1084 static int nilfs_segctor_scan_file(struct nilfs_sc_info
*sci
,
1085 struct inode
*inode
,
1086 struct nilfs_sc_operations
*sc_ops
)
1088 LIST_HEAD(data_buffers
);
1089 LIST_HEAD(node_buffers
);
1092 if (!(sci
->sc_stage
.flags
& NILFS_CF_NODE
)) {
1093 size_t n
, rest
= nilfs_segctor_buffer_rest(sci
);
1095 n
= nilfs_lookup_dirty_data_buffers(
1096 inode
, &data_buffers
, rest
+ 1, 0, LLONG_MAX
);
1098 err
= nilfs_segctor_apply_buffers(
1099 sci
, inode
, &data_buffers
,
1100 sc_ops
->collect_data
);
1101 BUG_ON(!err
); /* always receive -E2BIG or true error */
1105 nilfs_lookup_dirty_node_buffers(inode
, &node_buffers
);
1107 if (!(sci
->sc_stage
.flags
& NILFS_CF_NODE
)) {
1108 err
= nilfs_segctor_apply_buffers(
1109 sci
, inode
, &data_buffers
, sc_ops
->collect_data
);
1110 if (unlikely(err
)) {
1111 /* dispose node list */
1112 nilfs_segctor_apply_buffers(
1113 sci
, inode
, &node_buffers
, NULL
);
1116 sci
->sc_stage
.flags
|= NILFS_CF_NODE
;
1119 err
= nilfs_segctor_apply_buffers(
1120 sci
, inode
, &node_buffers
, sc_ops
->collect_node
);
1124 nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode
)->i_bmap
, &node_buffers
);
1125 err
= nilfs_segctor_apply_buffers(
1126 sci
, inode
, &node_buffers
, sc_ops
->collect_bmap
);
1130 nilfs_segctor_end_finfo(sci
, inode
);
1131 sci
->sc_stage
.flags
&= ~NILFS_CF_NODE
;
1137 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info
*sci
,
1138 struct inode
*inode
)
1140 LIST_HEAD(data_buffers
);
1141 size_t n
, rest
= nilfs_segctor_buffer_rest(sci
);
1144 n
= nilfs_lookup_dirty_data_buffers(inode
, &data_buffers
, rest
+ 1,
1145 sci
->sc_dsync_start
,
1148 err
= nilfs_segctor_apply_buffers(sci
, inode
, &data_buffers
,
1149 nilfs_collect_file_data
);
1151 nilfs_segctor_end_finfo(sci
, inode
);
1153 /* always receive -E2BIG or true error if n > rest */
1158 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info
*sci
, int mode
)
1160 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
1161 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
1162 struct list_head
*head
;
1163 struct nilfs_inode_info
*ii
;
1166 switch (sci
->sc_stage
.scnt
) {
1169 sci
->sc_stage
.flags
= 0;
1171 if (!test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
)) {
1172 sci
->sc_nblk_inc
= 0;
1173 sci
->sc_curseg
->sb_sum
.flags
= NILFS_SS_LOGBGN
;
1174 if (mode
== SC_LSEG_DSYNC
) {
1175 sci
->sc_stage
.scnt
= NILFS_ST_DSYNC
;
1180 sci
->sc_stage
.dirty_file_ptr
= NULL
;
1181 sci
->sc_stage
.gc_inode_ptr
= NULL
;
1182 if (mode
== SC_FLUSH_DAT
) {
1183 sci
->sc_stage
.scnt
= NILFS_ST_DAT
;
1186 sci
->sc_stage
.scnt
++; /* Fall through */
1188 if (nilfs_doing_gc()) {
1189 head
= &sci
->sc_gc_inodes
;
1190 ii
= list_prepare_entry(sci
->sc_stage
.gc_inode_ptr
,
1192 list_for_each_entry_continue(ii
, head
, i_dirty
) {
1193 err
= nilfs_segctor_scan_file(
1194 sci
, &ii
->vfs_inode
,
1195 &nilfs_sc_file_ops
);
1196 if (unlikely(err
)) {
1197 sci
->sc_stage
.gc_inode_ptr
= list_entry(
1199 struct nilfs_inode_info
,
1203 set_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
1205 sci
->sc_stage
.gc_inode_ptr
= NULL
;
1207 sci
->sc_stage
.scnt
++; /* Fall through */
1209 head
= &sci
->sc_dirty_files
;
1210 ii
= list_prepare_entry(sci
->sc_stage
.dirty_file_ptr
, head
,
1212 list_for_each_entry_continue(ii
, head
, i_dirty
) {
1213 clear_bit(NILFS_I_DIRTY
, &ii
->i_state
);
1215 err
= nilfs_segctor_scan_file(sci
, &ii
->vfs_inode
,
1216 &nilfs_sc_file_ops
);
1217 if (unlikely(err
)) {
1218 sci
->sc_stage
.dirty_file_ptr
=
1219 list_entry(ii
->i_dirty
.prev
,
1220 struct nilfs_inode_info
,
1224 /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1225 /* XXX: required ? */
1227 sci
->sc_stage
.dirty_file_ptr
= NULL
;
1228 if (mode
== SC_FLUSH_FILE
) {
1229 sci
->sc_stage
.scnt
= NILFS_ST_DONE
;
1232 sci
->sc_stage
.scnt
++;
1233 sci
->sc_stage
.flags
|= NILFS_CF_IFILE_STARTED
;
1235 case NILFS_ST_IFILE
:
1236 err
= nilfs_segctor_scan_file(sci
, sbi
->s_ifile
,
1237 &nilfs_sc_file_ops
);
1240 sci
->sc_stage
.scnt
++;
1241 /* Creating a checkpoint */
1242 err
= nilfs_segctor_create_checkpoint(sci
);
1246 case NILFS_ST_CPFILE
:
1247 err
= nilfs_segctor_scan_file(sci
, nilfs
->ns_cpfile
,
1248 &nilfs_sc_file_ops
);
1251 sci
->sc_stage
.scnt
++; /* Fall through */
1252 case NILFS_ST_SUFILE
:
1253 err
= nilfs_segctor_prepare_free_segments(sci
,
1257 err
= nilfs_segctor_scan_file(sci
, nilfs
->ns_sufile
,
1258 &nilfs_sc_file_ops
);
1261 sci
->sc_stage
.scnt
++; /* Fall through */
1264 err
= nilfs_segctor_scan_file(sci
, nilfs_dat_inode(nilfs
),
1268 if (mode
== SC_FLUSH_DAT
) {
1269 sci
->sc_stage
.scnt
= NILFS_ST_DONE
;
1272 sci
->sc_stage
.scnt
++; /* Fall through */
1274 if (mode
== SC_LSEG_SR
) {
1275 /* Appending a super root */
1276 err
= nilfs_segctor_add_super_root(sci
);
1280 /* End of a logical segment */
1281 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_LOGEND
;
1282 sci
->sc_stage
.scnt
= NILFS_ST_DONE
;
1284 case NILFS_ST_DSYNC
:
1286 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_SYNDT
;
1287 ii
= sci
->sc_dsync_inode
;
1288 if (!test_bit(NILFS_I_BUSY
, &ii
->i_state
))
1291 err
= nilfs_segctor_scan_file_dsync(sci
, &ii
->vfs_inode
);
1294 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_LOGEND
;
1295 sci
->sc_stage
.scnt
= NILFS_ST_DONE
;
1307 static int nilfs_touch_segusage(struct inode
*sufile
, __u64 segnum
)
1309 struct buffer_head
*bh_su
;
1310 struct nilfs_segment_usage
*raw_su
;
1313 err
= nilfs_sufile_get_segment_usage(sufile
, segnum
, &raw_su
, &bh_su
);
1316 nilfs_mdt_mark_buffer_dirty(bh_su
);
1317 nilfs_mdt_mark_dirty(sufile
);
1318 nilfs_sufile_put_segment_usage(sufile
, segnum
, bh_su
);
1322 static int nilfs_segctor_begin_construction(struct nilfs_sc_info
*sci
,
1323 struct the_nilfs
*nilfs
)
1325 struct nilfs_segment_buffer
*segbuf
, *n
;
1329 if (list_empty(&sci
->sc_segbufs
)) {
1330 segbuf
= nilfs_segbuf_new(sci
->sc_super
);
1331 if (unlikely(!segbuf
))
1333 list_add(&segbuf
->sb_list
, &sci
->sc_segbufs
);
1335 segbuf
= NILFS_FIRST_SEGBUF(&sci
->sc_segbufs
);
1337 nilfs_segbuf_map(segbuf
, nilfs
->ns_segnum
, nilfs
->ns_pseg_offset
,
1340 if (segbuf
->sb_rest_blocks
< NILFS_PSEG_MIN_BLOCKS
) {
1341 nilfs_shift_to_next_segment(nilfs
);
1342 nilfs_segbuf_map(segbuf
, nilfs
->ns_segnum
, 0, nilfs
);
1344 sci
->sc_segbuf_nblocks
= segbuf
->sb_rest_blocks
;
1346 err
= nilfs_touch_segusage(nilfs
->ns_sufile
, segbuf
->sb_segnum
);
1350 if (nilfs
->ns_segnum
== nilfs
->ns_nextnum
) {
1351 /* Start from the head of a new full segment */
1352 err
= nilfs_sufile_alloc(nilfs
->ns_sufile
, &nextnum
);
1356 nextnum
= nilfs
->ns_nextnum
;
1358 segbuf
->sb_sum
.seg_seq
= nilfs
->ns_seg_seq
;
1359 nilfs_segbuf_set_next_segnum(segbuf
, nextnum
, nilfs
);
1361 /* truncating segment buffers */
1362 list_for_each_entry_safe_continue(segbuf
, n
, &sci
->sc_segbufs
,
1364 list_del_init(&segbuf
->sb_list
);
1365 nilfs_segbuf_free(segbuf
);
1370 static int nilfs_segctor_extend_segments(struct nilfs_sc_info
*sci
,
1371 struct the_nilfs
*nilfs
, int nadd
)
1373 struct nilfs_segment_buffer
*segbuf
, *prev
, *n
;
1374 struct inode
*sufile
= nilfs
->ns_sufile
;
1379 prev
= NILFS_LAST_SEGBUF(&sci
->sc_segbufs
);
1381 * Since the segment specified with nextnum might be allocated during
1382 * the previous construction, the buffer including its segusage may
1383 * not be dirty. The following call ensures that the buffer is dirty
1384 * and will pin the buffer on memory until the sufile is written.
1386 err
= nilfs_touch_segusage(sufile
, prev
->sb_nextnum
);
1390 for (i
= 0; i
< nadd
; i
++) {
1391 /* extend segment info */
1393 segbuf
= nilfs_segbuf_new(sci
->sc_super
);
1394 if (unlikely(!segbuf
))
1397 /* map this buffer to region of segment on-disk */
1398 nilfs_segbuf_map(segbuf
, prev
->sb_nextnum
, 0, nilfs
);
1399 sci
->sc_segbuf_nblocks
+= segbuf
->sb_rest_blocks
;
1401 /* allocate the next next full segment */
1402 err
= nilfs_sufile_alloc(sufile
, &nextnextnum
);
1406 segbuf
->sb_sum
.seg_seq
= prev
->sb_sum
.seg_seq
+ 1;
1407 nilfs_segbuf_set_next_segnum(segbuf
, nextnextnum
, nilfs
);
1409 list_add_tail(&segbuf
->sb_list
, &list
);
1412 list_splice(&list
, sci
->sc_segbufs
.prev
);
1416 nilfs_segbuf_free(segbuf
);
1418 list_for_each_entry_safe(segbuf
, n
, &list
, sb_list
) {
1419 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1420 WARN_ON(ret
); /* never fails */
1421 list_del_init(&segbuf
->sb_list
);
1422 nilfs_segbuf_free(segbuf
);
1427 static void nilfs_segctor_free_incomplete_segments(struct nilfs_sc_info
*sci
,
1428 struct the_nilfs
*nilfs
)
1430 struct nilfs_segment_buffer
*segbuf
;
1433 segbuf
= NILFS_FIRST_SEGBUF(&sci
->sc_segbufs
);
1434 if (nilfs
->ns_nextnum
!= segbuf
->sb_nextnum
) {
1435 ret
= nilfs_sufile_free(nilfs
->ns_sufile
, segbuf
->sb_nextnum
);
1436 WARN_ON(ret
); /* never fails */
1438 if (segbuf
->sb_io_error
) {
1439 /* Case 1: The first segment failed */
1440 if (segbuf
->sb_pseg_start
!= segbuf
->sb_fseg_start
)
1441 /* Case 1a: Partial segment appended into an existing
1443 nilfs_terminate_segment(nilfs
, segbuf
->sb_fseg_start
,
1444 segbuf
->sb_fseg_end
);
1445 else /* Case 1b: New full segment */
1446 set_nilfs_discontinued(nilfs
);
1450 list_for_each_entry_continue(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1451 ret
= nilfs_sufile_free(nilfs
->ns_sufile
, segbuf
->sb_nextnum
);
1452 WARN_ON(ret
); /* never fails */
1453 if (!done
&& segbuf
->sb_io_error
) {
1454 if (segbuf
->sb_segnum
!= nilfs
->ns_nextnum
)
1455 /* Case 2: extended segment (!= next) failed */
1456 nilfs_sufile_set_error(nilfs
->ns_sufile
,
1463 static void nilfs_segctor_clear_segment_buffers(struct nilfs_sc_info
*sci
)
1465 struct nilfs_segment_buffer
*segbuf
;
1467 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
)
1468 nilfs_segbuf_clear(segbuf
);
1469 sci
->sc_super_root
= NULL
;
1472 static void nilfs_segctor_destroy_segment_buffers(struct nilfs_sc_info
*sci
)
1474 struct nilfs_segment_buffer
*segbuf
;
1476 while (!list_empty(&sci
->sc_segbufs
)) {
1477 segbuf
= NILFS_FIRST_SEGBUF(&sci
->sc_segbufs
);
1478 list_del_init(&segbuf
->sb_list
);
1479 nilfs_segbuf_free(segbuf
);
1481 /* sci->sc_curseg = NULL; */
1484 static void nilfs_segctor_end_construction(struct nilfs_sc_info
*sci
,
1485 struct the_nilfs
*nilfs
, int err
)
1487 if (unlikely(err
)) {
1488 nilfs_segctor_free_incomplete_segments(sci
, nilfs
);
1489 nilfs_segctor_cancel_free_segments(sci
, nilfs
->ns_sufile
);
1491 nilfs_segctor_clear_segment_buffers(sci
);
1494 static void nilfs_segctor_update_segusage(struct nilfs_sc_info
*sci
,
1495 struct inode
*sufile
)
1497 struct nilfs_segment_buffer
*segbuf
;
1498 struct buffer_head
*bh_su
;
1499 struct nilfs_segment_usage
*raw_su
;
1500 unsigned long live_blocks
;
1503 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1504 ret
= nilfs_sufile_get_segment_usage(sufile
, segbuf
->sb_segnum
,
1506 WARN_ON(ret
); /* always succeed because bh_su is dirty */
1507 live_blocks
= segbuf
->sb_sum
.nblocks
+
1508 (segbuf
->sb_pseg_start
- segbuf
->sb_fseg_start
);
1509 raw_su
->su_lastmod
= cpu_to_le64(sci
->sc_seg_ctime
);
1510 raw_su
->su_nblocks
= cpu_to_le32(live_blocks
);
1511 nilfs_sufile_put_segment_usage(sufile
, segbuf
->sb_segnum
,
1516 static void nilfs_segctor_cancel_segusage(struct nilfs_sc_info
*sci
,
1517 struct inode
*sufile
)
1519 struct nilfs_segment_buffer
*segbuf
;
1520 struct buffer_head
*bh_su
;
1521 struct nilfs_segment_usage
*raw_su
;
1524 segbuf
= NILFS_FIRST_SEGBUF(&sci
->sc_segbufs
);
1525 ret
= nilfs_sufile_get_segment_usage(sufile
, segbuf
->sb_segnum
,
1527 WARN_ON(ret
); /* always succeed because bh_su is dirty */
1528 raw_su
->su_nblocks
= cpu_to_le32(segbuf
->sb_pseg_start
-
1529 segbuf
->sb_fseg_start
);
1530 nilfs_sufile_put_segment_usage(sufile
, segbuf
->sb_segnum
, bh_su
);
1532 list_for_each_entry_continue(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1533 ret
= nilfs_sufile_get_segment_usage(sufile
, segbuf
->sb_segnum
,
1535 WARN_ON(ret
); /* always succeed */
1536 raw_su
->su_nblocks
= 0;
1537 nilfs_sufile_put_segment_usage(sufile
, segbuf
->sb_segnum
,
1542 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info
*sci
,
1543 struct nilfs_segment_buffer
*last
,
1544 struct inode
*sufile
)
1546 struct nilfs_segment_buffer
*segbuf
= last
, *n
;
1549 list_for_each_entry_safe_continue(segbuf
, n
, &sci
->sc_segbufs
,
1551 list_del_init(&segbuf
->sb_list
);
1552 sci
->sc_segbuf_nblocks
-= segbuf
->sb_rest_blocks
;
1553 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1555 nilfs_segbuf_free(segbuf
);
1560 static int nilfs_segctor_collect(struct nilfs_sc_info
*sci
,
1561 struct the_nilfs
*nilfs
, int mode
)
1563 struct nilfs_cstage prev_stage
= sci
->sc_stage
;
1566 /* Collection retry loop */
1568 sci
->sc_super_root
= NULL
;
1569 sci
->sc_nblk_this_inc
= 0;
1570 sci
->sc_curseg
= NILFS_FIRST_SEGBUF(&sci
->sc_segbufs
);
1572 err
= nilfs_segctor_reset_segment_buffer(sci
);
1576 err
= nilfs_segctor_collect_blocks(sci
, mode
);
1577 sci
->sc_nblk_this_inc
+= sci
->sc_curseg
->sb_sum
.nblocks
;
1581 if (unlikely(err
!= -E2BIG
))
1584 /* The current segment is filled up */
1585 if (mode
!= SC_LSEG_SR
|| sci
->sc_stage
.scnt
< NILFS_ST_CPFILE
)
1588 nilfs_segctor_cancel_free_segments(sci
, nilfs
->ns_sufile
);
1589 nilfs_segctor_clear_segment_buffers(sci
);
1591 err
= nilfs_segctor_extend_segments(sci
, nilfs
, nadd
);
1595 nadd
= min_t(int, nadd
<< 1, SC_MAX_SEGDELTA
);
1596 sci
->sc_stage
= prev_stage
;
1598 nilfs_segctor_truncate_segments(sci
, sci
->sc_curseg
, nilfs
->ns_sufile
);
1605 static void nilfs_list_replace_buffer(struct buffer_head
*old_bh
,
1606 struct buffer_head
*new_bh
)
1608 BUG_ON(!list_empty(&new_bh
->b_assoc_buffers
));
1610 list_replace_init(&old_bh
->b_assoc_buffers
, &new_bh
->b_assoc_buffers
);
1611 /* The caller must release old_bh */
1615 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info
*sci
,
1616 struct nilfs_segment_buffer
*segbuf
,
1619 struct inode
*inode
= NULL
;
1621 unsigned long nfinfo
= segbuf
->sb_sum
.nfinfo
;
1622 unsigned long nblocks
= 0, ndatablk
= 0;
1623 struct nilfs_sc_operations
*sc_op
= NULL
;
1624 struct nilfs_segsum_pointer ssp
;
1625 struct nilfs_finfo
*finfo
= NULL
;
1626 union nilfs_binfo binfo
;
1627 struct buffer_head
*bh
, *bh_org
;
1634 blocknr
= segbuf
->sb_pseg_start
+ segbuf
->sb_sum
.nsumblk
;
1635 ssp
.bh
= NILFS_SEGBUF_FIRST_BH(&segbuf
->sb_segsum_buffers
);
1636 ssp
.offset
= sizeof(struct nilfs_segment_summary
);
1638 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
, b_assoc_buffers
) {
1639 if (bh
== sci
->sc_super_root
)
1642 finfo
= nilfs_segctor_map_segsum_entry(
1643 sci
, &ssp
, sizeof(*finfo
));
1644 ino
= le64_to_cpu(finfo
->fi_ino
);
1645 nblocks
= le32_to_cpu(finfo
->fi_nblocks
);
1646 ndatablk
= le32_to_cpu(finfo
->fi_ndatablk
);
1648 if (buffer_nilfs_node(bh
))
1649 inode
= NILFS_BTNC_I(bh
->b_page
->mapping
);
1651 inode
= NILFS_AS_I(bh
->b_page
->mapping
);
1653 if (mode
== SC_LSEG_DSYNC
)
1654 sc_op
= &nilfs_sc_dsync_ops
;
1655 else if (ino
== NILFS_DAT_INO
)
1656 sc_op
= &nilfs_sc_dat_ops
;
1657 else /* file blocks */
1658 sc_op
= &nilfs_sc_file_ops
;
1662 err
= nilfs_bmap_assign(NILFS_I(inode
)->i_bmap
, &bh
, blocknr
,
1665 nilfs_list_replace_buffer(bh_org
, bh
);
1671 sc_op
->write_data_binfo(sci
, &ssp
, &binfo
);
1673 sc_op
->write_node_binfo(sci
, &ssp
, &binfo
);
1676 if (--nblocks
== 0) {
1680 } else if (ndatablk
> 0)
1687 err
= nilfs_handle_bmap_error(err
, __func__
, inode
, sci
->sc_super
);
1691 static int nilfs_segctor_assign(struct nilfs_sc_info
*sci
, int mode
)
1693 struct nilfs_segment_buffer
*segbuf
;
1696 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1697 err
= nilfs_segctor_update_payload_blocknr(sci
, segbuf
, mode
);
1700 nilfs_segbuf_fill_in_segsum(segbuf
);
1706 nilfs_copy_replace_page_buffers(struct page
*page
, struct list_head
*out
)
1708 struct page
*clone_page
;
1709 struct buffer_head
*bh
, *head
, *bh2
;
1712 bh
= head
= page_buffers(page
);
1714 clone_page
= nilfs_alloc_private_page(bh
->b_bdev
, bh
->b_size
, 0);
1715 if (unlikely(!clone_page
))
1718 bh2
= page_buffers(clone_page
);
1719 kaddr
= kmap_atomic(page
, KM_USER0
);
1721 if (list_empty(&bh
->b_assoc_buffers
))
1724 page_cache_get(clone_page
); /* for each bh */
1725 memcpy(bh2
->b_data
, kaddr
+ bh_offset(bh
), bh2
->b_size
);
1726 bh2
->b_blocknr
= bh
->b_blocknr
;
1727 list_replace(&bh
->b_assoc_buffers
, &bh2
->b_assoc_buffers
);
1728 list_add_tail(&bh
->b_assoc_buffers
, out
);
1729 } while (bh
= bh
->b_this_page
, bh2
= bh2
->b_this_page
, bh
!= head
);
1730 kunmap_atomic(kaddr
, KM_USER0
);
1732 if (!TestSetPageWriteback(clone_page
))
1733 inc_zone_page_state(clone_page
, NR_WRITEBACK
);
1734 unlock_page(clone_page
);
1739 static int nilfs_test_page_to_be_frozen(struct page
*page
)
1741 struct address_space
*mapping
= page
->mapping
;
1743 if (!mapping
|| !mapping
->host
|| S_ISDIR(mapping
->host
->i_mode
))
1746 if (page_mapped(page
)) {
1747 ClearPageChecked(page
);
1750 return PageChecked(page
);
1753 static int nilfs_begin_page_io(struct page
*page
, struct list_head
*out
)
1755 if (!page
|| PageWriteback(page
))
1756 /* For split b-tree node pages, this function may be called
1757 twice. We ignore the 2nd or later calls by this check. */
1761 clear_page_dirty_for_io(page
);
1762 set_page_writeback(page
);
1765 if (nilfs_test_page_to_be_frozen(page
)) {
1766 int err
= nilfs_copy_replace_page_buffers(page
, out
);
1773 static int nilfs_segctor_prepare_write(struct nilfs_sc_info
*sci
,
1774 struct page
**failed_page
)
1776 struct nilfs_segment_buffer
*segbuf
;
1777 struct page
*bd_page
= NULL
, *fs_page
= NULL
;
1778 struct list_head
*list
= &sci
->sc_copied_buffers
;
1781 *failed_page
= NULL
;
1782 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1783 struct buffer_head
*bh
;
1785 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1787 if (bh
->b_page
!= bd_page
) {
1790 clear_page_dirty_for_io(bd_page
);
1791 set_page_writeback(bd_page
);
1792 unlock_page(bd_page
);
1794 bd_page
= bh
->b_page
;
1798 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
1800 if (bh
== sci
->sc_super_root
) {
1801 if (bh
->b_page
!= bd_page
) {
1803 clear_page_dirty_for_io(bd_page
);
1804 set_page_writeback(bd_page
);
1805 unlock_page(bd_page
);
1806 bd_page
= bh
->b_page
;
1810 if (bh
->b_page
!= fs_page
) {
1811 err
= nilfs_begin_page_io(fs_page
, list
);
1812 if (unlikely(err
)) {
1813 *failed_page
= fs_page
;
1816 fs_page
= bh
->b_page
;
1822 clear_page_dirty_for_io(bd_page
);
1823 set_page_writeback(bd_page
);
1824 unlock_page(bd_page
);
1826 err
= nilfs_begin_page_io(fs_page
, list
);
1828 *failed_page
= fs_page
;
1833 static int nilfs_segctor_write(struct nilfs_sc_info
*sci
,
1834 struct backing_dev_info
*bdi
)
1836 struct nilfs_segment_buffer
*segbuf
;
1837 struct nilfs_write_info wi
;
1840 wi
.sb
= sci
->sc_super
;
1841 wi
.bh_sr
= sci
->sc_super_root
;
1844 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1845 nilfs_segbuf_prepare_write(segbuf
, &wi
);
1846 err
= nilfs_segbuf_write(segbuf
, &wi
);
1848 res
= nilfs_segbuf_wait(segbuf
, &wi
);
1849 err
= unlikely(err
) ? : res
;
1856 static int nilfs_page_has_uncleared_buffer(struct page
*page
)
1858 struct buffer_head
*head
, *bh
;
1860 head
= bh
= page_buffers(page
);
1862 if (buffer_dirty(bh
) && !list_empty(&bh
->b_assoc_buffers
))
1864 bh
= bh
->b_this_page
;
1865 } while (bh
!= head
);
1869 static void __nilfs_end_page_io(struct page
*page
, int err
)
1872 if (!nilfs_page_buffers_clean(page
))
1873 __set_page_dirty_nobuffers(page
);
1874 ClearPageError(page
);
1876 __set_page_dirty_nobuffers(page
);
1880 if (buffer_nilfs_allocated(page_buffers(page
))) {
1881 if (TestClearPageWriteback(page
))
1882 dec_zone_page_state(page
, NR_WRITEBACK
);
1884 end_page_writeback(page
);
1887 static void nilfs_end_page_io(struct page
*page
, int err
)
1892 if (buffer_nilfs_node(page_buffers(page
)) &&
1893 nilfs_page_has_uncleared_buffer(page
))
1894 /* For b-tree node pages, this function may be called twice
1895 or more because they might be split in a segment.
1896 This check assures that cleanup has been done for all
1897 buffers in a split btnode page. */
1900 __nilfs_end_page_io(page
, err
);
1903 static void nilfs_clear_copied_buffers(struct list_head
*list
, int err
)
1905 struct buffer_head
*bh
, *head
;
1908 while (!list_empty(list
)) {
1909 bh
= list_entry(list
->next
, struct buffer_head
,
1912 page_cache_get(page
);
1913 head
= bh
= page_buffers(page
);
1915 if (!list_empty(&bh
->b_assoc_buffers
)) {
1916 list_del_init(&bh
->b_assoc_buffers
);
1918 set_buffer_uptodate(bh
);
1919 clear_buffer_dirty(bh
);
1920 clear_buffer_nilfs_volatile(bh
);
1922 brelse(bh
); /* for b_assoc_buffers */
1924 } while ((bh
= bh
->b_this_page
) != head
);
1926 __nilfs_end_page_io(page
, err
);
1927 page_cache_release(page
);
1931 static void nilfs_segctor_abort_write(struct nilfs_sc_info
*sci
,
1932 struct page
*failed_page
, int err
)
1934 struct nilfs_segment_buffer
*segbuf
;
1935 struct page
*bd_page
= NULL
, *fs_page
= NULL
;
1937 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1938 struct buffer_head
*bh
;
1940 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1942 if (bh
->b_page
!= bd_page
) {
1944 end_page_writeback(bd_page
);
1945 bd_page
= bh
->b_page
;
1949 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
1951 if (bh
== sci
->sc_super_root
) {
1952 if (bh
->b_page
!= bd_page
) {
1953 end_page_writeback(bd_page
);
1954 bd_page
= bh
->b_page
;
1958 if (bh
->b_page
!= fs_page
) {
1959 nilfs_end_page_io(fs_page
, err
);
1960 if (unlikely(fs_page
== failed_page
))
1962 fs_page
= bh
->b_page
;
1967 end_page_writeback(bd_page
);
1969 nilfs_end_page_io(fs_page
, err
);
1971 nilfs_clear_copied_buffers(&sci
->sc_copied_buffers
, err
);
1974 static void nilfs_set_next_segment(struct the_nilfs
*nilfs
,
1975 struct nilfs_segment_buffer
*segbuf
)
1977 nilfs
->ns_segnum
= segbuf
->sb_segnum
;
1978 nilfs
->ns_nextnum
= segbuf
->sb_nextnum
;
1979 nilfs
->ns_pseg_offset
= segbuf
->sb_pseg_start
- segbuf
->sb_fseg_start
1980 + segbuf
->sb_sum
.nblocks
;
1981 nilfs
->ns_seg_seq
= segbuf
->sb_sum
.seg_seq
;
1982 nilfs
->ns_ctime
= segbuf
->sb_sum
.ctime
;
1985 static void nilfs_segctor_complete_write(struct nilfs_sc_info
*sci
)
1987 struct nilfs_segment_buffer
*segbuf
;
1988 struct page
*bd_page
= NULL
, *fs_page
= NULL
;
1989 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
1990 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
1991 int update_sr
= (sci
->sc_super_root
!= NULL
);
1993 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1994 struct buffer_head
*bh
;
1996 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1998 set_buffer_uptodate(bh
);
1999 clear_buffer_dirty(bh
);
2000 if (bh
->b_page
!= bd_page
) {
2002 end_page_writeback(bd_page
);
2003 bd_page
= bh
->b_page
;
2007 * We assume that the buffers which belong to the same page
2008 * continue over the buffer list.
2009 * Under this assumption, the last BHs of pages is
2010 * identifiable by the discontinuity of bh->b_page
2011 * (page != fs_page).
2013 * For B-tree node blocks, however, this assumption is not
2014 * guaranteed. The cleanup code of B-tree node pages needs
2017 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
2019 set_buffer_uptodate(bh
);
2020 clear_buffer_dirty(bh
);
2021 clear_buffer_nilfs_volatile(bh
);
2022 if (bh
== sci
->sc_super_root
) {
2023 if (bh
->b_page
!= bd_page
) {
2024 end_page_writeback(bd_page
);
2025 bd_page
= bh
->b_page
;
2029 if (bh
->b_page
!= fs_page
) {
2030 nilfs_end_page_io(fs_page
, 0);
2031 fs_page
= bh
->b_page
;
2035 if (!NILFS_SEG_SIMPLEX(&segbuf
->sb_sum
)) {
2036 if (NILFS_SEG_LOGBGN(&segbuf
->sb_sum
)) {
2037 set_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
);
2038 sci
->sc_lseg_stime
= jiffies
;
2040 if (NILFS_SEG_LOGEND(&segbuf
->sb_sum
))
2041 clear_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
);
2045 * Since pages may continue over multiple segment buffers,
2046 * end of the last page must be checked outside of the loop.
2049 end_page_writeback(bd_page
);
2051 nilfs_end_page_io(fs_page
, 0);
2053 nilfs_clear_copied_buffers(&sci
->sc_copied_buffers
, 0);
2055 nilfs_drop_collected_inodes(&sci
->sc_dirty_files
);
2057 if (nilfs_doing_gc()) {
2058 nilfs_drop_collected_inodes(&sci
->sc_gc_inodes
);
2060 nilfs_commit_gcdat_inode(nilfs
);
2062 nilfs
->ns_nongc_ctime
= sci
->sc_seg_ctime
;
2064 sci
->sc_nblk_inc
+= sci
->sc_nblk_this_inc
;
2066 segbuf
= NILFS_LAST_SEGBUF(&sci
->sc_segbufs
);
2067 nilfs_set_next_segment(nilfs
, segbuf
);
2070 nilfs_set_last_segment(nilfs
, segbuf
->sb_pseg_start
,
2071 segbuf
->sb_sum
.seg_seq
, nilfs
->ns_cno
++);
2072 sbi
->s_super
->s_dirt
= 1;
2074 clear_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
);
2075 clear_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
2076 set_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
);
2078 clear_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
);
2081 static int nilfs_segctor_check_in_files(struct nilfs_sc_info
*sci
,
2082 struct nilfs_sb_info
*sbi
)
2084 struct nilfs_inode_info
*ii
, *n
;
2085 __u64 cno
= sbi
->s_nilfs
->ns_cno
;
2087 spin_lock(&sbi
->s_inode_lock
);
2089 list_for_each_entry_safe(ii
, n
, &sbi
->s_dirty_files
, i_dirty
) {
2091 struct buffer_head
*ibh
;
2094 spin_unlock(&sbi
->s_inode_lock
);
2095 err
= nilfs_ifile_get_inode_block(
2096 sbi
->s_ifile
, ii
->vfs_inode
.i_ino
, &ibh
);
2097 if (unlikely(err
)) {
2098 nilfs_warning(sbi
->s_super
, __func__
,
2099 "failed to get inode block.\n");
2102 nilfs_mdt_mark_buffer_dirty(ibh
);
2103 nilfs_mdt_mark_dirty(sbi
->s_ifile
);
2104 spin_lock(&sbi
->s_inode_lock
);
2105 if (likely(!ii
->i_bh
))
2113 clear_bit(NILFS_I_QUEUED
, &ii
->i_state
);
2114 set_bit(NILFS_I_BUSY
, &ii
->i_state
);
2115 list_del(&ii
->i_dirty
);
2116 list_add_tail(&ii
->i_dirty
, &sci
->sc_dirty_files
);
2118 spin_unlock(&sbi
->s_inode_lock
);
2120 NILFS_I(sbi
->s_ifile
)->i_cno
= cno
;
2125 static void nilfs_segctor_check_out_files(struct nilfs_sc_info
*sci
,
2126 struct nilfs_sb_info
*sbi
)
2128 struct nilfs_transaction_info
*ti
= current
->journal_info
;
2129 struct nilfs_inode_info
*ii
, *n
;
2130 __u64 cno
= sbi
->s_nilfs
->ns_cno
;
2132 spin_lock(&sbi
->s_inode_lock
);
2133 list_for_each_entry_safe(ii
, n
, &sci
->sc_dirty_files
, i_dirty
) {
2134 if (!test_and_clear_bit(NILFS_I_UPDATED
, &ii
->i_state
) ||
2135 test_bit(NILFS_I_DIRTY
, &ii
->i_state
)) {
2136 /* The current checkpoint number (=nilfs->ns_cno) is
2137 changed between check-in and check-out only if the
2138 super root is written out. So, we can update i_cno
2139 for the inodes that remain in the dirty list. */
2143 clear_bit(NILFS_I_BUSY
, &ii
->i_state
);
2146 list_del(&ii
->i_dirty
);
2147 list_add_tail(&ii
->i_dirty
, &ti
->ti_garbage
);
2149 spin_unlock(&sbi
->s_inode_lock
);
2153 * Main procedure of segment constructor
2155 static int nilfs_segctor_do_construct(struct nilfs_sc_info
*sci
, int mode
)
2157 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
2158 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
2159 struct page
*failed_page
;
2160 int err
, has_sr
= 0;
2162 sci
->sc_stage
.scnt
= NILFS_ST_INIT
;
2164 err
= nilfs_segctor_check_in_files(sci
, sbi
);
2168 if (nilfs_test_metadata_dirty(sbi
))
2169 set_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
2171 if (nilfs_segctor_clean(sci
))
2175 sci
->sc_stage
.flags
&= ~NILFS_CF_HISTORY_MASK
;
2177 err
= nilfs_segctor_begin_construction(sci
, nilfs
);
2181 /* Update time stamp */
2182 sci
->sc_seg_ctime
= get_seconds();
2184 err
= nilfs_segctor_collect(sci
, nilfs
, mode
);
2188 has_sr
= (sci
->sc_super_root
!= NULL
);
2190 /* Avoid empty segment */
2191 if (sci
->sc_stage
.scnt
== NILFS_ST_DONE
&&
2192 NILFS_SEG_EMPTY(&sci
->sc_curseg
->sb_sum
)) {
2193 nilfs_segctor_end_construction(sci
, nilfs
, 1);
2197 err
= nilfs_segctor_assign(sci
, mode
);
2201 if (sci
->sc_stage
.flags
& NILFS_CF_IFILE_STARTED
)
2202 nilfs_segctor_fill_in_file_bmap(sci
, sbi
->s_ifile
);
2205 err
= nilfs_segctor_fill_in_checkpoint(sci
);
2207 goto failed_to_make_up
;
2209 nilfs_segctor_fill_in_super_root(sci
, nilfs
);
2211 nilfs_segctor_update_segusage(sci
, nilfs
->ns_sufile
);
2213 /* Write partial segments */
2214 err
= nilfs_segctor_prepare_write(sci
, &failed_page
);
2216 goto failed_to_write
;
2218 nilfs_segctor_fill_in_checksums(sci
, nilfs
->ns_crc_seed
);
2220 err
= nilfs_segctor_write(sci
, nilfs
->ns_bdi
);
2222 goto failed_to_write
;
2224 nilfs_segctor_complete_write(sci
);
2226 /* Commit segments */
2228 nilfs_segctor_commit_free_segments(sci
);
2229 nilfs_segctor_clear_metadata_dirty(sci
);
2232 nilfs_segctor_end_construction(sci
, nilfs
, 0);
2234 } while (sci
->sc_stage
.scnt
!= NILFS_ST_DONE
);
2237 nilfs_segctor_destroy_segment_buffers(sci
);
2238 nilfs_segctor_check_out_files(sci
, sbi
);
2242 nilfs_segctor_abort_write(sci
, failed_page
, err
);
2243 nilfs_segctor_cancel_segusage(sci
, nilfs
->ns_sufile
);
2246 if (sci
->sc_stage
.flags
& NILFS_CF_IFILE_STARTED
)
2247 nilfs_redirty_inodes(&sci
->sc_dirty_files
);
2250 if (nilfs_doing_gc())
2251 nilfs_redirty_inodes(&sci
->sc_gc_inodes
);
2252 nilfs_segctor_end_construction(sci
, nilfs
, err
);
2257 * nilfs_secgtor_start_timer - set timer of background write
2258 * @sci: nilfs_sc_info
2260 * If the timer has already been set, it ignores the new request.
2261 * This function MUST be called within a section locking the segment
2264 static void nilfs_segctor_start_timer(struct nilfs_sc_info
*sci
)
2266 spin_lock(&sci
->sc_state_lock
);
2267 if (sci
->sc_timer
&& !(sci
->sc_state
& NILFS_SEGCTOR_COMMIT
)) {
2268 sci
->sc_timer
->expires
= jiffies
+ sci
->sc_interval
;
2269 add_timer(sci
->sc_timer
);
2270 sci
->sc_state
|= NILFS_SEGCTOR_COMMIT
;
2272 spin_unlock(&sci
->sc_state_lock
);
2275 static void nilfs_segctor_do_flush(struct nilfs_sc_info
*sci
, int bn
)
2277 spin_lock(&sci
->sc_state_lock
);
2278 if (!(sci
->sc_flush_request
& (1 << bn
))) {
2279 unsigned long prev_req
= sci
->sc_flush_request
;
2281 sci
->sc_flush_request
|= (1 << bn
);
2283 wake_up(&sci
->sc_wait_daemon
);
2285 spin_unlock(&sci
->sc_state_lock
);
2289 * nilfs_flush_segment - trigger a segment construction for resource control
2291 * @ino: inode number of the file to be flushed out.
2293 void nilfs_flush_segment(struct super_block
*sb
, ino_t ino
)
2295 struct nilfs_sb_info
*sbi
= NILFS_SB(sb
);
2296 struct nilfs_sc_info
*sci
= NILFS_SC(sbi
);
2298 if (!sci
|| nilfs_doing_construction())
2300 nilfs_segctor_do_flush(sci
, NILFS_MDT_INODE(sb
, ino
) ? ino
: 0);
2301 /* assign bit 0 to data files */
2304 int nilfs_segctor_add_segments_to_be_freed(struct nilfs_sc_info
*sci
,
2305 __u64
*segnum
, size_t nsegs
)
2307 struct nilfs_segment_entry
*ent
;
2308 struct the_nilfs
*nilfs
= sci
->sc_sbi
->s_nilfs
;
2309 struct inode
*sufile
= nilfs
->ns_sufile
;
2315 for (pnum
= segnum
, i
= 0; i
< nsegs
; pnum
++, i
++) {
2316 ent
= nilfs_alloc_segment_entry(*pnum
);
2317 if (unlikely(!ent
)) {
2321 list_add_tail(&ent
->list
, &list
);
2323 err
= nilfs_open_segment_entry(ent
, sufile
);
2327 if (unlikely(!nilfs_segment_usage_dirty(ent
->raw_su
)))
2328 printk(KERN_WARNING
"NILFS: unused segment is "
2329 "requested to be cleaned (segnum=%llu)\n",
2330 (unsigned long long)ent
->segnum
);
2331 nilfs_close_segment_entry(ent
, sufile
);
2333 list_splice(&list
, sci
->sc_cleaning_segments
.prev
);
2337 nilfs_dispose_segment_list(&list
);
2341 void nilfs_segctor_clear_segments_to_be_freed(struct nilfs_sc_info
*sci
)
2343 nilfs_dispose_segment_list(&sci
->sc_cleaning_segments
);
2346 struct nilfs_segctor_wait_request
{
2353 static int nilfs_segctor_sync(struct nilfs_sc_info
*sci
)
2355 struct nilfs_segctor_wait_request wait_req
;
2358 spin_lock(&sci
->sc_state_lock
);
2359 init_wait(&wait_req
.wq
);
2361 atomic_set(&wait_req
.done
, 0);
2362 wait_req
.seq
= ++sci
->sc_seq_request
;
2363 spin_unlock(&sci
->sc_state_lock
);
2365 init_waitqueue_entry(&wait_req
.wq
, current
);
2366 add_wait_queue(&sci
->sc_wait_request
, &wait_req
.wq
);
2367 set_current_state(TASK_INTERRUPTIBLE
);
2368 wake_up(&sci
->sc_wait_daemon
);
2371 if (atomic_read(&wait_req
.done
)) {
2375 if (!signal_pending(current
)) {
2382 finish_wait(&sci
->sc_wait_request
, &wait_req
.wq
);
2386 static void nilfs_segctor_wakeup(struct nilfs_sc_info
*sci
, int err
)
2388 struct nilfs_segctor_wait_request
*wrq
, *n
;
2389 unsigned long flags
;
2391 spin_lock_irqsave(&sci
->sc_wait_request
.lock
, flags
);
2392 list_for_each_entry_safe(wrq
, n
, &sci
->sc_wait_request
.task_list
,
2394 if (!atomic_read(&wrq
->done
) &&
2395 nilfs_cnt32_ge(sci
->sc_seq_done
, wrq
->seq
)) {
2397 atomic_set(&wrq
->done
, 1);
2399 if (atomic_read(&wrq
->done
)) {
2400 wrq
->wq
.func(&wrq
->wq
,
2401 TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
2405 spin_unlock_irqrestore(&sci
->sc_wait_request
.lock
, flags
);
2409 * nilfs_construct_segment - construct a logical segment
2412 * Return Value: On success, 0 is retured. On errors, one of the following
2413 * negative error code is returned.
2415 * %-EROFS - Read only filesystem.
2419 * %-ENOSPC - No space left on device (only in a panic state).
2421 * %-ERESTARTSYS - Interrupted.
2423 * %-ENOMEM - Insufficient memory available.
2425 int nilfs_construct_segment(struct super_block
*sb
)
2427 struct nilfs_sb_info
*sbi
= NILFS_SB(sb
);
2428 struct nilfs_sc_info
*sci
= NILFS_SC(sbi
);
2429 struct nilfs_transaction_info
*ti
;
2435 /* A call inside transactions causes a deadlock. */
2436 BUG_ON((ti
= current
->journal_info
) && ti
->ti_magic
== NILFS_TI_MAGIC
);
2438 err
= nilfs_segctor_sync(sci
);
2443 * nilfs_construct_dsync_segment - construct a data-only logical segment
2445 * @inode: inode whose data blocks should be written out
2446 * @start: start byte offset
2447 * @end: end byte offset (inclusive)
2449 * Return Value: On success, 0 is retured. On errors, one of the following
2450 * negative error code is returned.
2452 * %-EROFS - Read only filesystem.
2456 * %-ENOSPC - No space left on device (only in a panic state).
2458 * %-ERESTARTSYS - Interrupted.
2460 * %-ENOMEM - Insufficient memory available.
2462 int nilfs_construct_dsync_segment(struct super_block
*sb
, struct inode
*inode
,
2463 loff_t start
, loff_t end
)
2465 struct nilfs_sb_info
*sbi
= NILFS_SB(sb
);
2466 struct nilfs_sc_info
*sci
= NILFS_SC(sbi
);
2467 struct nilfs_inode_info
*ii
;
2468 struct nilfs_transaction_info ti
;
2474 nilfs_transaction_lock(sbi
, &ti
, 0);
2476 ii
= NILFS_I(inode
);
2477 if (test_bit(NILFS_I_INODE_DIRTY
, &ii
->i_state
) ||
2478 nilfs_test_opt(sbi
, STRICT_ORDER
) ||
2479 test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
) ||
2480 nilfs_discontinued(sbi
->s_nilfs
)) {
2481 nilfs_transaction_unlock(sbi
);
2482 err
= nilfs_segctor_sync(sci
);
2486 spin_lock(&sbi
->s_inode_lock
);
2487 if (!test_bit(NILFS_I_QUEUED
, &ii
->i_state
) &&
2488 !test_bit(NILFS_I_BUSY
, &ii
->i_state
)) {
2489 spin_unlock(&sbi
->s_inode_lock
);
2490 nilfs_transaction_unlock(sbi
);
2493 spin_unlock(&sbi
->s_inode_lock
);
2494 sci
->sc_dsync_inode
= ii
;
2495 sci
->sc_dsync_start
= start
;
2496 sci
->sc_dsync_end
= end
;
2498 err
= nilfs_segctor_do_construct(sci
, SC_LSEG_DSYNC
);
2500 nilfs_transaction_unlock(sbi
);
2504 struct nilfs_segctor_req
{
2507 int sc_err
; /* construction failure */
2508 int sb_err
; /* super block writeback failure */
2511 #define FLUSH_FILE_BIT (0x1) /* data file only */
2512 #define FLUSH_DAT_BIT (1 << NILFS_DAT_INO) /* DAT only */
2514 static void nilfs_segctor_accept(struct nilfs_sc_info
*sci
,
2515 struct nilfs_segctor_req
*req
)
2517 req
->sc_err
= req
->sb_err
= 0;
2518 spin_lock(&sci
->sc_state_lock
);
2519 req
->seq_accepted
= sci
->sc_seq_request
;
2520 spin_unlock(&sci
->sc_state_lock
);
2523 del_timer_sync(sci
->sc_timer
);
2526 static void nilfs_segctor_notify(struct nilfs_sc_info
*sci
,
2527 struct nilfs_segctor_req
*req
)
2529 /* Clear requests (even when the construction failed) */
2530 spin_lock(&sci
->sc_state_lock
);
2532 sci
->sc_state
&= ~NILFS_SEGCTOR_COMMIT
;
2534 if (req
->mode
== SC_LSEG_SR
) {
2535 sci
->sc_seq_done
= req
->seq_accepted
;
2536 nilfs_segctor_wakeup(sci
, req
->sc_err
? : req
->sb_err
);
2537 sci
->sc_flush_request
= 0;
2538 } else if (req
->mode
== SC_FLUSH_FILE
)
2539 sci
->sc_flush_request
&= ~FLUSH_FILE_BIT
;
2540 else if (req
->mode
== SC_FLUSH_DAT
)
2541 sci
->sc_flush_request
&= ~FLUSH_DAT_BIT
;
2543 spin_unlock(&sci
->sc_state_lock
);
2546 static int nilfs_segctor_construct(struct nilfs_sc_info
*sci
,
2547 struct nilfs_segctor_req
*req
)
2549 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
2550 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
2553 if (nilfs_discontinued(nilfs
))
2554 req
->mode
= SC_LSEG_SR
;
2555 if (!nilfs_segctor_confirm(sci
)) {
2556 err
= nilfs_segctor_do_construct(sci
, req
->mode
);
2560 if (req
->mode
!= SC_FLUSH_DAT
)
2561 atomic_set(&nilfs
->ns_ndirtyblks
, 0);
2562 if (test_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
) &&
2563 nilfs_discontinued(nilfs
)) {
2564 down_write(&nilfs
->ns_sem
);
2565 req
->sb_err
= nilfs_commit_super(sbi
, 0);
2566 up_write(&nilfs
->ns_sem
);
2572 static void nilfs_construction_timeout(unsigned long data
)
2574 struct task_struct
*p
= (struct task_struct
*)data
;
2579 nilfs_remove_written_gcinodes(struct the_nilfs
*nilfs
, struct list_head
*head
)
2581 struct nilfs_inode_info
*ii
, *n
;
2583 list_for_each_entry_safe(ii
, n
, head
, i_dirty
) {
2584 if (!test_bit(NILFS_I_UPDATED
, &ii
->i_state
))
2586 hlist_del_init(&ii
->vfs_inode
.i_hash
);
2587 list_del_init(&ii
->i_dirty
);
2588 nilfs_clear_gcinode(&ii
->vfs_inode
);
2592 int nilfs_clean_segments(struct super_block
*sb
, void __user
*argp
)
2594 struct nilfs_sb_info
*sbi
= NILFS_SB(sb
);
2595 struct nilfs_sc_info
*sci
= NILFS_SC(sbi
);
2596 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
2597 struct nilfs_transaction_info ti
;
2598 struct nilfs_segctor_req req
= { .mode
= SC_LSEG_SR
};
2604 nilfs_transaction_lock(sbi
, &ti
, 1);
2606 err
= nilfs_init_gcdat_inode(nilfs
);
2609 err
= nilfs_ioctl_prepare_clean_segments(nilfs
, argp
);
2613 list_splice_init(&nilfs
->ns_gc_inodes
, sci
->sc_gc_inodes
.prev
);
2616 nilfs_segctor_accept(sci
, &req
);
2617 err
= nilfs_segctor_construct(sci
, &req
);
2618 nilfs_remove_written_gcinodes(nilfs
, &sci
->sc_gc_inodes
);
2619 nilfs_segctor_notify(sci
, &req
);
2624 nilfs_warning(sb
, __func__
,
2625 "segment construction failed. (err=%d)", err
);
2626 set_current_state(TASK_INTERRUPTIBLE
);
2627 schedule_timeout(sci
->sc_interval
);
2631 nilfs_clear_gcdat_inode(nilfs
);
2632 nilfs_transaction_unlock(sbi
);
2636 static void nilfs_segctor_thread_construct(struct nilfs_sc_info
*sci
, int mode
)
2638 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
2639 struct nilfs_transaction_info ti
;
2640 struct nilfs_segctor_req req
= { .mode
= mode
};
2642 nilfs_transaction_lock(sbi
, &ti
, 0);
2644 nilfs_segctor_accept(sci
, &req
);
2645 nilfs_segctor_construct(sci
, &req
);
2646 nilfs_segctor_notify(sci
, &req
);
2649 * Unclosed segment should be retried. We do this using sc_timer.
2650 * Timeout of sc_timer will invoke complete construction which leads
2651 * to close the current logical segment.
2653 if (test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
))
2654 nilfs_segctor_start_timer(sci
);
2656 nilfs_transaction_unlock(sbi
);
2659 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info
*sci
)
2664 spin_lock(&sci
->sc_state_lock
);
2665 mode
= (sci
->sc_flush_request
& FLUSH_DAT_BIT
) ?
2666 SC_FLUSH_DAT
: SC_FLUSH_FILE
;
2667 spin_unlock(&sci
->sc_state_lock
);
2670 err
= nilfs_segctor_do_construct(sci
, mode
);
2672 spin_lock(&sci
->sc_state_lock
);
2673 sci
->sc_flush_request
&= (mode
== SC_FLUSH_FILE
) ?
2674 ~FLUSH_FILE_BIT
: ~FLUSH_DAT_BIT
;
2675 spin_unlock(&sci
->sc_state_lock
);
2677 clear_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
);
2680 static int nilfs_segctor_flush_mode(struct nilfs_sc_info
*sci
)
2682 if (!test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
) ||
2683 time_before(jiffies
, sci
->sc_lseg_stime
+ sci
->sc_mjcp_freq
)) {
2684 if (!(sci
->sc_flush_request
& ~FLUSH_FILE_BIT
))
2685 return SC_FLUSH_FILE
;
2686 else if (!(sci
->sc_flush_request
& ~FLUSH_DAT_BIT
))
2687 return SC_FLUSH_DAT
;
2693 * nilfs_segctor_thread - main loop of the segment constructor thread.
2694 * @arg: pointer to a struct nilfs_sc_info.
2696 * nilfs_segctor_thread() initializes a timer and serves as a daemon
2697 * to execute segment constructions.
2699 static int nilfs_segctor_thread(void *arg
)
2701 struct nilfs_sc_info
*sci
= (struct nilfs_sc_info
*)arg
;
2702 struct timer_list timer
;
2706 timer
.data
= (unsigned long)current
;
2707 timer
.function
= nilfs_construction_timeout
;
2708 sci
->sc_timer
= &timer
;
2711 sci
->sc_task
= current
;
2712 wake_up(&sci
->sc_wait_task
); /* for nilfs_segctor_start_thread() */
2714 "segctord starting. Construction interval = %lu seconds, "
2715 "CP frequency < %lu seconds\n",
2716 sci
->sc_interval
/ HZ
, sci
->sc_mjcp_freq
/ HZ
);
2718 spin_lock(&sci
->sc_state_lock
);
2723 if (sci
->sc_state
& NILFS_SEGCTOR_QUIT
)
2726 if (timeout
|| sci
->sc_seq_request
!= sci
->sc_seq_done
)
2728 else if (!sci
->sc_flush_request
)
2731 mode
= nilfs_segctor_flush_mode(sci
);
2733 spin_unlock(&sci
->sc_state_lock
);
2734 nilfs_segctor_thread_construct(sci
, mode
);
2735 spin_lock(&sci
->sc_state_lock
);
2740 if (freezing(current
)) {
2741 spin_unlock(&sci
->sc_state_lock
);
2743 spin_lock(&sci
->sc_state_lock
);
2746 int should_sleep
= 1;
2748 prepare_to_wait(&sci
->sc_wait_daemon
, &wait
,
2749 TASK_INTERRUPTIBLE
);
2751 if (sci
->sc_seq_request
!= sci
->sc_seq_done
)
2753 else if (sci
->sc_flush_request
)
2755 else if (sci
->sc_state
& NILFS_SEGCTOR_COMMIT
)
2756 should_sleep
= time_before(jiffies
,
2757 sci
->sc_timer
->expires
);
2760 spin_unlock(&sci
->sc_state_lock
);
2762 spin_lock(&sci
->sc_state_lock
);
2764 finish_wait(&sci
->sc_wait_daemon
, &wait
);
2765 timeout
= ((sci
->sc_state
& NILFS_SEGCTOR_COMMIT
) &&
2766 time_after_eq(jiffies
, sci
->sc_timer
->expires
));
2771 spin_unlock(&sci
->sc_state_lock
);
2772 del_timer_sync(sci
->sc_timer
);
2773 sci
->sc_timer
= NULL
;
2776 sci
->sc_task
= NULL
;
2777 wake_up(&sci
->sc_wait_task
); /* for nilfs_segctor_kill_thread() */
2781 static int nilfs_segctor_start_thread(struct nilfs_sc_info
*sci
)
2783 struct task_struct
*t
;
2785 t
= kthread_run(nilfs_segctor_thread
, sci
, "segctord");
2787 int err
= PTR_ERR(t
);
2789 printk(KERN_ERR
"NILFS: error %d creating segctord thread\n",
2793 wait_event(sci
->sc_wait_task
, sci
->sc_task
!= NULL
);
2797 static void nilfs_segctor_kill_thread(struct nilfs_sc_info
*sci
)
2799 sci
->sc_state
|= NILFS_SEGCTOR_QUIT
;
2801 while (sci
->sc_task
) {
2802 wake_up(&sci
->sc_wait_daemon
);
2803 spin_unlock(&sci
->sc_state_lock
);
2804 wait_event(sci
->sc_wait_task
, sci
->sc_task
== NULL
);
2805 spin_lock(&sci
->sc_state_lock
);
2809 static int nilfs_segctor_init(struct nilfs_sc_info
*sci
)
2811 sci
->sc_seq_done
= sci
->sc_seq_request
;
2813 return nilfs_segctor_start_thread(sci
);
2817 * Setup & clean-up functions
2819 static struct nilfs_sc_info
*nilfs_segctor_new(struct nilfs_sb_info
*sbi
)
2821 struct nilfs_sc_info
*sci
;
2823 sci
= kzalloc(sizeof(*sci
), GFP_KERNEL
);
2828 sci
->sc_super
= sbi
->s_super
;
2830 init_waitqueue_head(&sci
->sc_wait_request
);
2831 init_waitqueue_head(&sci
->sc_wait_daemon
);
2832 init_waitqueue_head(&sci
->sc_wait_task
);
2833 spin_lock_init(&sci
->sc_state_lock
);
2834 INIT_LIST_HEAD(&sci
->sc_dirty_files
);
2835 INIT_LIST_HEAD(&sci
->sc_segbufs
);
2836 INIT_LIST_HEAD(&sci
->sc_gc_inodes
);
2837 INIT_LIST_HEAD(&sci
->sc_cleaning_segments
);
2838 INIT_LIST_HEAD(&sci
->sc_copied_buffers
);
2840 sci
->sc_interval
= HZ
* NILFS_SC_DEFAULT_TIMEOUT
;
2841 sci
->sc_mjcp_freq
= HZ
* NILFS_SC_DEFAULT_SR_FREQ
;
2842 sci
->sc_watermark
= NILFS_SC_DEFAULT_WATERMARK
;
2844 if (sbi
->s_interval
)
2845 sci
->sc_interval
= sbi
->s_interval
;
2846 if (sbi
->s_watermark
)
2847 sci
->sc_watermark
= sbi
->s_watermark
;
2851 static void nilfs_segctor_write_out(struct nilfs_sc_info
*sci
)
2853 int ret
, retrycount
= NILFS_SC_CLEANUP_RETRY
;
2855 /* The segctord thread was stopped and its timer was removed.
2856 But some tasks remain. */
2858 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
2859 struct nilfs_transaction_info ti
;
2860 struct nilfs_segctor_req req
= { .mode
= SC_LSEG_SR
};
2862 nilfs_transaction_lock(sbi
, &ti
, 0);
2863 nilfs_segctor_accept(sci
, &req
);
2864 ret
= nilfs_segctor_construct(sci
, &req
);
2865 nilfs_segctor_notify(sci
, &req
);
2866 nilfs_transaction_unlock(sbi
);
2868 } while (ret
&& retrycount
-- > 0);
2872 * nilfs_segctor_destroy - destroy the segment constructor.
2873 * @sci: nilfs_sc_info
2875 * nilfs_segctor_destroy() kills the segctord thread and frees
2876 * the nilfs_sc_info struct.
2877 * Caller must hold the segment semaphore.
2879 static void nilfs_segctor_destroy(struct nilfs_sc_info
*sci
)
2881 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
2884 up_write(&sbi
->s_nilfs
->ns_segctor_sem
);
2886 spin_lock(&sci
->sc_state_lock
);
2887 nilfs_segctor_kill_thread(sci
);
2888 flag
= ((sci
->sc_state
& NILFS_SEGCTOR_COMMIT
) || sci
->sc_flush_request
2889 || sci
->sc_seq_request
!= sci
->sc_seq_done
);
2890 spin_unlock(&sci
->sc_state_lock
);
2892 if (flag
|| nilfs_segctor_confirm(sci
))
2893 nilfs_segctor_write_out(sci
);
2895 WARN_ON(!list_empty(&sci
->sc_copied_buffers
));
2897 if (!list_empty(&sci
->sc_dirty_files
)) {
2898 nilfs_warning(sbi
->s_super
, __func__
,
2899 "dirty file(s) after the final construction\n");
2900 nilfs_dispose_list(sbi
, &sci
->sc_dirty_files
, 1);
2903 if (!list_empty(&sci
->sc_cleaning_segments
))
2904 nilfs_dispose_segment_list(&sci
->sc_cleaning_segments
);
2906 WARN_ON(!list_empty(&sci
->sc_segbufs
));
2908 down_write(&sbi
->s_nilfs
->ns_segctor_sem
);
2914 * nilfs_attach_segment_constructor - attach a segment constructor
2915 * @sbi: nilfs_sb_info
2917 * nilfs_attach_segment_constructor() allocates a struct nilfs_sc_info,
2918 * initilizes it, and starts the segment constructor.
2920 * Return Value: On success, 0 is returned. On error, one of the following
2921 * negative error code is returned.
2923 * %-ENOMEM - Insufficient memory available.
2925 int nilfs_attach_segment_constructor(struct nilfs_sb_info
*sbi
)
2927 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
2930 /* Each field of nilfs_segctor is cleared through the initialization
2931 of super-block info */
2932 sbi
->s_sc_info
= nilfs_segctor_new(sbi
);
2933 if (!sbi
->s_sc_info
)
2936 nilfs_attach_writer(nilfs
, sbi
);
2937 err
= nilfs_segctor_init(NILFS_SC(sbi
));
2939 nilfs_detach_writer(nilfs
, sbi
);
2940 kfree(sbi
->s_sc_info
);
2941 sbi
->s_sc_info
= NULL
;
2947 * nilfs_detach_segment_constructor - destroy the segment constructor
2948 * @sbi: nilfs_sb_info
2950 * nilfs_detach_segment_constructor() kills the segment constructor daemon,
2951 * frees the struct nilfs_sc_info, and destroy the dirty file list.
2953 void nilfs_detach_segment_constructor(struct nilfs_sb_info
*sbi
)
2955 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
2956 LIST_HEAD(garbage_list
);
2958 down_write(&nilfs
->ns_segctor_sem
);
2959 if (NILFS_SC(sbi
)) {
2960 nilfs_segctor_destroy(NILFS_SC(sbi
));
2961 sbi
->s_sc_info
= NULL
;
2964 /* Force to free the list of dirty files */
2965 spin_lock(&sbi
->s_inode_lock
);
2966 if (!list_empty(&sbi
->s_dirty_files
)) {
2967 list_splice_init(&sbi
->s_dirty_files
, &garbage_list
);
2968 nilfs_warning(sbi
->s_super
, __func__
,
2969 "Non empty dirty list after the last "
2970 "segment construction\n");
2972 spin_unlock(&sbi
->s_inode_lock
);
2973 up_write(&nilfs
->ns_segctor_sem
);
2975 nilfs_dispose_list(sbi
, &garbage_list
, 1);
2976 nilfs_detach_writer(nilfs
, sbi
);