4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/div64.h>
47 #include <asm/timex.h>
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/timer.h>
53 u64 jiffies_64 __cacheline_aligned_in_smp
= INITIAL_JIFFIES
;
55 EXPORT_SYMBOL(jiffies_64
);
58 * per-CPU timer vector definitions:
60 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62 #define TVN_SIZE (1 << TVN_BITS)
63 #define TVR_SIZE (1 << TVR_BITS)
64 #define TVN_MASK (TVN_SIZE - 1)
65 #define TVR_MASK (TVR_SIZE - 1)
68 struct list_head vec
[TVN_SIZE
];
72 struct list_head vec
[TVR_SIZE
];
77 struct timer_list
*running_timer
;
78 unsigned long timer_jiffies
;
79 unsigned long next_timer
;
85 } ____cacheline_aligned
;
87 struct tvec_base boot_tvec_bases
;
88 EXPORT_SYMBOL(boot_tvec_bases
);
89 static DEFINE_PER_CPU(struct tvec_base
*, tvec_bases
) = &boot_tvec_bases
;
92 * Note that all tvec_bases are 2 byte aligned and lower bit of
93 * base in timer_list is guaranteed to be zero. Use the LSB to
94 * indicate whether the timer is deferrable.
96 * A deferrable timer will work normally when the system is busy, but
97 * will not cause a CPU to come out of idle just to service it; instead,
98 * the timer will be serviced when the CPU eventually wakes up with a
99 * subsequent non-deferrable timer.
101 #define TBASE_DEFERRABLE_FLAG (0x1)
103 /* Functions below help us manage 'deferrable' flag */
104 static inline unsigned int tbase_get_deferrable(struct tvec_base
*base
)
106 return ((unsigned int)(unsigned long)base
& TBASE_DEFERRABLE_FLAG
);
109 static inline struct tvec_base
*tbase_get_base(struct tvec_base
*base
)
111 return ((struct tvec_base
*)((unsigned long)base
& ~TBASE_DEFERRABLE_FLAG
));
114 static inline void timer_set_deferrable(struct timer_list
*timer
)
116 timer
->base
= ((struct tvec_base
*)((unsigned long)(timer
->base
) |
117 TBASE_DEFERRABLE_FLAG
));
121 timer_set_base(struct timer_list
*timer
, struct tvec_base
*new_base
)
123 timer
->base
= (struct tvec_base
*)((unsigned long)(new_base
) |
124 tbase_get_deferrable(timer
->base
));
127 static unsigned long round_jiffies_common(unsigned long j
, int cpu
,
131 unsigned long original
= j
;
134 * We don't want all cpus firing their timers at once hitting the
135 * same lock or cachelines, so we skew each extra cpu with an extra
136 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
138 * The skew is done by adding 3*cpunr, then round, then subtract this
139 * extra offset again.
146 * If the target jiffie is just after a whole second (which can happen
147 * due to delays of the timer irq, long irq off times etc etc) then
148 * we should round down to the whole second, not up. Use 1/4th second
149 * as cutoff for this rounding as an extreme upper bound for this.
150 * But never round down if @force_up is set.
152 if (rem
< HZ
/4 && !force_up
) /* round down */
157 /* now that we have rounded, subtract the extra skew again */
160 if (j
<= jiffies
) /* rounding ate our timeout entirely; */
166 * __round_jiffies - function to round jiffies to a full second
167 * @j: the time in (absolute) jiffies that should be rounded
168 * @cpu: the processor number on which the timeout will happen
170 * __round_jiffies() rounds an absolute time in the future (in jiffies)
171 * up or down to (approximately) full seconds. This is useful for timers
172 * for which the exact time they fire does not matter too much, as long as
173 * they fire approximately every X seconds.
175 * By rounding these timers to whole seconds, all such timers will fire
176 * at the same time, rather than at various times spread out. The goal
177 * of this is to have the CPU wake up less, which saves power.
179 * The exact rounding is skewed for each processor to avoid all
180 * processors firing at the exact same time, which could lead
181 * to lock contention or spurious cache line bouncing.
183 * The return value is the rounded version of the @j parameter.
185 unsigned long __round_jiffies(unsigned long j
, int cpu
)
187 return round_jiffies_common(j
, cpu
, false);
189 EXPORT_SYMBOL_GPL(__round_jiffies
);
192 * __round_jiffies_relative - function to round jiffies to a full second
193 * @j: the time in (relative) jiffies that should be rounded
194 * @cpu: the processor number on which the timeout will happen
196 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
197 * up or down to (approximately) full seconds. This is useful for timers
198 * for which the exact time they fire does not matter too much, as long as
199 * they fire approximately every X seconds.
201 * By rounding these timers to whole seconds, all such timers will fire
202 * at the same time, rather than at various times spread out. The goal
203 * of this is to have the CPU wake up less, which saves power.
205 * The exact rounding is skewed for each processor to avoid all
206 * processors firing at the exact same time, which could lead
207 * to lock contention or spurious cache line bouncing.
209 * The return value is the rounded version of the @j parameter.
211 unsigned long __round_jiffies_relative(unsigned long j
, int cpu
)
213 unsigned long j0
= jiffies
;
215 /* Use j0 because jiffies might change while we run */
216 return round_jiffies_common(j
+ j0
, cpu
, false) - j0
;
218 EXPORT_SYMBOL_GPL(__round_jiffies_relative
);
221 * round_jiffies - function to round jiffies to a full second
222 * @j: the time in (absolute) jiffies that should be rounded
224 * round_jiffies() rounds an absolute time in the future (in jiffies)
225 * up or down to (approximately) full seconds. This is useful for timers
226 * for which the exact time they fire does not matter too much, as long as
227 * they fire approximately every X seconds.
229 * By rounding these timers to whole seconds, all such timers will fire
230 * at the same time, rather than at various times spread out. The goal
231 * of this is to have the CPU wake up less, which saves power.
233 * The return value is the rounded version of the @j parameter.
235 unsigned long round_jiffies(unsigned long j
)
237 return round_jiffies_common(j
, raw_smp_processor_id(), false);
239 EXPORT_SYMBOL_GPL(round_jiffies
);
242 * round_jiffies_relative - function to round jiffies to a full second
243 * @j: the time in (relative) jiffies that should be rounded
245 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
246 * up or down to (approximately) full seconds. This is useful for timers
247 * for which the exact time they fire does not matter too much, as long as
248 * they fire approximately every X seconds.
250 * By rounding these timers to whole seconds, all such timers will fire
251 * at the same time, rather than at various times spread out. The goal
252 * of this is to have the CPU wake up less, which saves power.
254 * The return value is the rounded version of the @j parameter.
256 unsigned long round_jiffies_relative(unsigned long j
)
258 return __round_jiffies_relative(j
, raw_smp_processor_id());
260 EXPORT_SYMBOL_GPL(round_jiffies_relative
);
263 * __round_jiffies_up - function to round jiffies up to a full second
264 * @j: the time in (absolute) jiffies that should be rounded
265 * @cpu: the processor number on which the timeout will happen
267 * This is the same as __round_jiffies() except that it will never
268 * round down. This is useful for timeouts for which the exact time
269 * of firing does not matter too much, as long as they don't fire too
272 unsigned long __round_jiffies_up(unsigned long j
, int cpu
)
274 return round_jiffies_common(j
, cpu
, true);
276 EXPORT_SYMBOL_GPL(__round_jiffies_up
);
279 * __round_jiffies_up_relative - function to round jiffies up to a full second
280 * @j: the time in (relative) jiffies that should be rounded
281 * @cpu: the processor number on which the timeout will happen
283 * This is the same as __round_jiffies_relative() except that it will never
284 * round down. This is useful for timeouts for which the exact time
285 * of firing does not matter too much, as long as they don't fire too
288 unsigned long __round_jiffies_up_relative(unsigned long j
, int cpu
)
290 unsigned long j0
= jiffies
;
292 /* Use j0 because jiffies might change while we run */
293 return round_jiffies_common(j
+ j0
, cpu
, true) - j0
;
295 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative
);
298 * round_jiffies_up - function to round jiffies up to a full second
299 * @j: the time in (absolute) jiffies that should be rounded
301 * This is the same as round_jiffies() except that it will never
302 * round down. This is useful for timeouts for which the exact time
303 * of firing does not matter too much, as long as they don't fire too
306 unsigned long round_jiffies_up(unsigned long j
)
308 return round_jiffies_common(j
, raw_smp_processor_id(), true);
310 EXPORT_SYMBOL_GPL(round_jiffies_up
);
313 * round_jiffies_up_relative - function to round jiffies up to a full second
314 * @j: the time in (relative) jiffies that should be rounded
316 * This is the same as round_jiffies_relative() except that it will never
317 * round down. This is useful for timeouts for which the exact time
318 * of firing does not matter too much, as long as they don't fire too
321 unsigned long round_jiffies_up_relative(unsigned long j
)
323 return __round_jiffies_up_relative(j
, raw_smp_processor_id());
325 EXPORT_SYMBOL_GPL(round_jiffies_up_relative
);
328 * set_timer_slack - set the allowed slack for a timer
329 * @timer: the timer to be modified
330 * @slack_hz: the amount of time (in jiffies) allowed for rounding
332 * Set the amount of time, in jiffies, that a certain timer has
333 * in terms of slack. By setting this value, the timer subsystem
334 * will schedule the actual timer somewhere between
335 * the time mod_timer() asks for, and that time plus the slack.
337 * By setting the slack to -1, a percentage of the delay is used
340 void set_timer_slack(struct timer_list
*timer
, int slack_hz
)
342 timer
->slack
= slack_hz
;
344 EXPORT_SYMBOL_GPL(set_timer_slack
);
347 static inline void set_running_timer(struct tvec_base
*base
,
348 struct timer_list
*timer
)
351 base
->running_timer
= timer
;
355 static void internal_add_timer(struct tvec_base
*base
, struct timer_list
*timer
)
357 unsigned long expires
= timer
->expires
;
358 unsigned long idx
= expires
- base
->timer_jiffies
;
359 struct list_head
*vec
;
361 if (idx
< TVR_SIZE
) {
362 int i
= expires
& TVR_MASK
;
363 vec
= base
->tv1
.vec
+ i
;
364 } else if (idx
< 1 << (TVR_BITS
+ TVN_BITS
)) {
365 int i
= (expires
>> TVR_BITS
) & TVN_MASK
;
366 vec
= base
->tv2
.vec
+ i
;
367 } else if (idx
< 1 << (TVR_BITS
+ 2 * TVN_BITS
)) {
368 int i
= (expires
>> (TVR_BITS
+ TVN_BITS
)) & TVN_MASK
;
369 vec
= base
->tv3
.vec
+ i
;
370 } else if (idx
< 1 << (TVR_BITS
+ 3 * TVN_BITS
)) {
371 int i
= (expires
>> (TVR_BITS
+ 2 * TVN_BITS
)) & TVN_MASK
;
372 vec
= base
->tv4
.vec
+ i
;
373 } else if ((signed long) idx
< 0) {
375 * Can happen if you add a timer with expires == jiffies,
376 * or you set a timer to go off in the past
378 vec
= base
->tv1
.vec
+ (base
->timer_jiffies
& TVR_MASK
);
381 /* If the timeout is larger than 0xffffffff on 64-bit
382 * architectures then we use the maximum timeout:
384 if (idx
> 0xffffffffUL
) {
386 expires
= idx
+ base
->timer_jiffies
;
388 i
= (expires
>> (TVR_BITS
+ 3 * TVN_BITS
)) & TVN_MASK
;
389 vec
= base
->tv5
.vec
+ i
;
394 list_add_tail(&timer
->entry
, vec
);
397 #ifdef CONFIG_TIMER_STATS
398 void __timer_stats_timer_set_start_info(struct timer_list
*timer
, void *addr
)
400 if (timer
->start_site
)
403 timer
->start_site
= addr
;
404 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
405 timer
->start_pid
= current
->pid
;
408 static void timer_stats_account_timer(struct timer_list
*timer
)
410 unsigned int flag
= 0;
412 if (likely(!timer
->start_site
))
414 if (unlikely(tbase_get_deferrable(timer
->base
)))
415 flag
|= TIMER_STATS_FLAG_DEFERRABLE
;
417 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
418 timer
->function
, timer
->start_comm
, flag
);
422 static void timer_stats_account_timer(struct timer_list
*timer
) {}
425 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
427 static struct debug_obj_descr timer_debug_descr
;
430 * fixup_init is called when:
431 * - an active object is initialized
433 static int timer_fixup_init(void *addr
, enum debug_obj_state state
)
435 struct timer_list
*timer
= addr
;
438 case ODEBUG_STATE_ACTIVE
:
439 del_timer_sync(timer
);
440 debug_object_init(timer
, &timer_debug_descr
);
448 * fixup_activate is called when:
449 * - an active object is activated
450 * - an unknown object is activated (might be a statically initialized object)
452 static int timer_fixup_activate(void *addr
, enum debug_obj_state state
)
454 struct timer_list
*timer
= addr
;
458 case ODEBUG_STATE_NOTAVAILABLE
:
460 * This is not really a fixup. The timer was
461 * statically initialized. We just make sure that it
462 * is tracked in the object tracker.
464 if (timer
->entry
.next
== NULL
&&
465 timer
->entry
.prev
== TIMER_ENTRY_STATIC
) {
466 debug_object_init(timer
, &timer_debug_descr
);
467 debug_object_activate(timer
, &timer_debug_descr
);
474 case ODEBUG_STATE_ACTIVE
:
483 * fixup_free is called when:
484 * - an active object is freed
486 static int timer_fixup_free(void *addr
, enum debug_obj_state state
)
488 struct timer_list
*timer
= addr
;
491 case ODEBUG_STATE_ACTIVE
:
492 del_timer_sync(timer
);
493 debug_object_free(timer
, &timer_debug_descr
);
500 static struct debug_obj_descr timer_debug_descr
= {
501 .name
= "timer_list",
502 .fixup_init
= timer_fixup_init
,
503 .fixup_activate
= timer_fixup_activate
,
504 .fixup_free
= timer_fixup_free
,
507 static inline void debug_timer_init(struct timer_list
*timer
)
509 debug_object_init(timer
, &timer_debug_descr
);
512 static inline void debug_timer_activate(struct timer_list
*timer
)
514 debug_object_activate(timer
, &timer_debug_descr
);
517 static inline void debug_timer_deactivate(struct timer_list
*timer
)
519 debug_object_deactivate(timer
, &timer_debug_descr
);
522 static inline void debug_timer_free(struct timer_list
*timer
)
524 debug_object_free(timer
, &timer_debug_descr
);
527 static void __init_timer(struct timer_list
*timer
,
529 struct lock_class_key
*key
);
531 void init_timer_on_stack_key(struct timer_list
*timer
,
533 struct lock_class_key
*key
)
535 debug_object_init_on_stack(timer
, &timer_debug_descr
);
536 __init_timer(timer
, name
, key
);
538 EXPORT_SYMBOL_GPL(init_timer_on_stack_key
);
540 void destroy_timer_on_stack(struct timer_list
*timer
)
542 debug_object_free(timer
, &timer_debug_descr
);
544 EXPORT_SYMBOL_GPL(destroy_timer_on_stack
);
547 static inline void debug_timer_init(struct timer_list
*timer
) { }
548 static inline void debug_timer_activate(struct timer_list
*timer
) { }
549 static inline void debug_timer_deactivate(struct timer_list
*timer
) { }
552 static inline void debug_init(struct timer_list
*timer
)
554 debug_timer_init(timer
);
555 trace_timer_init(timer
);
559 debug_activate(struct timer_list
*timer
, unsigned long expires
)
561 debug_timer_activate(timer
);
562 trace_timer_start(timer
, expires
);
565 static inline void debug_deactivate(struct timer_list
*timer
)
567 debug_timer_deactivate(timer
);
568 trace_timer_cancel(timer
);
571 static void __init_timer(struct timer_list
*timer
,
573 struct lock_class_key
*key
)
575 timer
->entry
.next
= NULL
;
576 timer
->base
= __raw_get_cpu_var(tvec_bases
);
578 #ifdef CONFIG_TIMER_STATS
579 timer
->start_site
= NULL
;
580 timer
->start_pid
= -1;
581 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
583 lockdep_init_map(&timer
->lockdep_map
, name
, key
, 0);
586 void setup_deferrable_timer_on_stack_key(struct timer_list
*timer
,
588 struct lock_class_key
*key
,
589 void (*function
)(unsigned long),
592 timer
->function
= function
;
594 init_timer_on_stack_key(timer
, name
, key
);
595 timer_set_deferrable(timer
);
597 EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key
);
600 * init_timer_key - initialize a timer
601 * @timer: the timer to be initialized
602 * @name: name of the timer
603 * @key: lockdep class key of the fake lock used for tracking timer
604 * sync lock dependencies
606 * init_timer_key() must be done to a timer prior calling *any* of the
607 * other timer functions.
609 void init_timer_key(struct timer_list
*timer
,
611 struct lock_class_key
*key
)
614 __init_timer(timer
, name
, key
);
616 EXPORT_SYMBOL(init_timer_key
);
618 void init_timer_deferrable_key(struct timer_list
*timer
,
620 struct lock_class_key
*key
)
622 init_timer_key(timer
, name
, key
);
623 timer_set_deferrable(timer
);
625 EXPORT_SYMBOL(init_timer_deferrable_key
);
627 static inline void detach_timer(struct timer_list
*timer
,
630 struct list_head
*entry
= &timer
->entry
;
632 debug_deactivate(timer
);
634 __list_del(entry
->prev
, entry
->next
);
637 entry
->prev
= LIST_POISON2
;
641 * We are using hashed locking: holding per_cpu(tvec_bases).lock
642 * means that all timers which are tied to this base via timer->base are
643 * locked, and the base itself is locked too.
645 * So __run_timers/migrate_timers can safely modify all timers which could
646 * be found on ->tvX lists.
648 * When the timer's base is locked, and the timer removed from list, it is
649 * possible to set timer->base = NULL and drop the lock: the timer remains
652 static struct tvec_base
*lock_timer_base(struct timer_list
*timer
,
653 unsigned long *flags
)
654 __acquires(timer
->base
->lock
)
656 struct tvec_base
*base
;
659 struct tvec_base
*prelock_base
= timer
->base
;
660 base
= tbase_get_base(prelock_base
);
661 if (likely(base
!= NULL
)) {
662 spin_lock_irqsave(&base
->lock
, *flags
);
663 if (likely(prelock_base
== timer
->base
))
665 /* The timer has migrated to another CPU */
666 spin_unlock_irqrestore(&base
->lock
, *flags
);
673 __mod_timer(struct timer_list
*timer
, unsigned long expires
,
674 bool pending_only
, int pinned
)
676 struct tvec_base
*base
, *new_base
;
680 timer_stats_timer_set_start_info(timer
);
681 BUG_ON(!timer
->function
);
683 base
= lock_timer_base(timer
, &flags
);
685 if (timer_pending(timer
)) {
686 detach_timer(timer
, 0);
687 if (timer
->expires
== base
->next_timer
&&
688 !tbase_get_deferrable(timer
->base
))
689 base
->next_timer
= base
->timer_jiffies
;
696 debug_activate(timer
, expires
);
698 cpu
= smp_processor_id();
700 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
701 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(cpu
))
702 cpu
= get_nohz_timer_target();
704 new_base
= per_cpu(tvec_bases
, cpu
);
706 if (base
!= new_base
) {
708 * We are trying to schedule the timer on the local CPU.
709 * However we can't change timer's base while it is running,
710 * otherwise del_timer_sync() can't detect that the timer's
711 * handler yet has not finished. This also guarantees that
712 * the timer is serialized wrt itself.
714 if (likely(base
->running_timer
!= timer
)) {
715 /* See the comment in lock_timer_base() */
716 timer_set_base(timer
, NULL
);
717 spin_unlock(&base
->lock
);
719 spin_lock(&base
->lock
);
720 timer_set_base(timer
, base
);
724 timer
->expires
= expires
;
725 if (time_before(timer
->expires
, base
->next_timer
) &&
726 !tbase_get_deferrable(timer
->base
))
727 base
->next_timer
= timer
->expires
;
728 internal_add_timer(base
, timer
);
731 spin_unlock_irqrestore(&base
->lock
, flags
);
737 * mod_timer_pending - modify a pending timer's timeout
738 * @timer: the pending timer to be modified
739 * @expires: new timeout in jiffies
741 * mod_timer_pending() is the same for pending timers as mod_timer(),
742 * but will not re-activate and modify already deleted timers.
744 * It is useful for unserialized use of timers.
746 int mod_timer_pending(struct timer_list
*timer
, unsigned long expires
)
748 return __mod_timer(timer
, expires
, true, TIMER_NOT_PINNED
);
750 EXPORT_SYMBOL(mod_timer_pending
);
753 * Decide where to put the timer while taking the slack into account
756 * 1) calculate the maximum (absolute) time
757 * 2) calculate the highest bit where the expires and new max are different
758 * 3) use this bit to make a mask
759 * 4) use the bitmask to round down the maximum time, so that all last
763 unsigned long apply_slack(struct timer_list
*timer
, unsigned long expires
)
765 unsigned long expires_limit
, mask
;
768 expires_limit
= expires
;
770 if (timer
->slack
>= 0) {
771 expires_limit
= expires
+ timer
->slack
;
773 unsigned long now
= jiffies
;
775 /* No slack, if already expired else auto slack 0.4% */
776 if (time_after(expires
, now
))
777 expires_limit
= expires
+ (expires
- now
)/256;
779 mask
= expires
^ expires_limit
;
783 bit
= find_last_bit(&mask
, BITS_PER_LONG
);
785 mask
= (1 << bit
) - 1;
787 expires_limit
= expires_limit
& ~(mask
);
789 return expires_limit
;
793 * mod_timer - modify a timer's timeout
794 * @timer: the timer to be modified
795 * @expires: new timeout in jiffies
797 * mod_timer() is a more efficient way to update the expire field of an
798 * active timer (if the timer is inactive it will be activated)
800 * mod_timer(timer, expires) is equivalent to:
802 * del_timer(timer); timer->expires = expires; add_timer(timer);
804 * Note that if there are multiple unserialized concurrent users of the
805 * same timer, then mod_timer() is the only safe way to modify the timeout,
806 * since add_timer() cannot modify an already running timer.
808 * The function returns whether it has modified a pending timer or not.
809 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
810 * active timer returns 1.)
812 int mod_timer(struct timer_list
*timer
, unsigned long expires
)
815 * This is a common optimization triggered by the
816 * networking code - if the timer is re-modified
817 * to be the same thing then just return:
819 if (timer_pending(timer
) && timer
->expires
== expires
)
822 expires
= apply_slack(timer
, expires
);
824 return __mod_timer(timer
, expires
, false, TIMER_NOT_PINNED
);
826 EXPORT_SYMBOL(mod_timer
);
829 * mod_timer_pinned - modify a timer's timeout
830 * @timer: the timer to be modified
831 * @expires: new timeout in jiffies
833 * mod_timer_pinned() is a way to update the expire field of an
834 * active timer (if the timer is inactive it will be activated)
835 * and not allow the timer to be migrated to a different CPU.
837 * mod_timer_pinned(timer, expires) is equivalent to:
839 * del_timer(timer); timer->expires = expires; add_timer(timer);
841 int mod_timer_pinned(struct timer_list
*timer
, unsigned long expires
)
843 if (timer
->expires
== expires
&& timer_pending(timer
))
846 return __mod_timer(timer
, expires
, false, TIMER_PINNED
);
848 EXPORT_SYMBOL(mod_timer_pinned
);
851 * add_timer - start a timer
852 * @timer: the timer to be added
854 * The kernel will do a ->function(->data) callback from the
855 * timer interrupt at the ->expires point in the future. The
856 * current time is 'jiffies'.
858 * The timer's ->expires, ->function (and if the handler uses it, ->data)
859 * fields must be set prior calling this function.
861 * Timers with an ->expires field in the past will be executed in the next
864 void add_timer(struct timer_list
*timer
)
866 BUG_ON(timer_pending(timer
));
867 mod_timer(timer
, timer
->expires
);
869 EXPORT_SYMBOL(add_timer
);
872 * add_timer_on - start a timer on a particular CPU
873 * @timer: the timer to be added
874 * @cpu: the CPU to start it on
876 * This is not very scalable on SMP. Double adds are not possible.
878 void add_timer_on(struct timer_list
*timer
, int cpu
)
880 struct tvec_base
*base
= per_cpu(tvec_bases
, cpu
);
883 timer_stats_timer_set_start_info(timer
);
884 BUG_ON(timer_pending(timer
) || !timer
->function
);
885 spin_lock_irqsave(&base
->lock
, flags
);
886 timer_set_base(timer
, base
);
887 debug_activate(timer
, timer
->expires
);
888 if (time_before(timer
->expires
, base
->next_timer
) &&
889 !tbase_get_deferrable(timer
->base
))
890 base
->next_timer
= timer
->expires
;
891 internal_add_timer(base
, timer
);
893 * Check whether the other CPU is idle and needs to be
894 * triggered to reevaluate the timer wheel when nohz is
895 * active. We are protected against the other CPU fiddling
896 * with the timer by holding the timer base lock. This also
897 * makes sure that a CPU on the way to idle can not evaluate
900 wake_up_idle_cpu(cpu
);
901 spin_unlock_irqrestore(&base
->lock
, flags
);
903 EXPORT_SYMBOL_GPL(add_timer_on
);
906 * del_timer - deactive a timer.
907 * @timer: the timer to be deactivated
909 * del_timer() deactivates a timer - this works on both active and inactive
912 * The function returns whether it has deactivated a pending timer or not.
913 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
914 * active timer returns 1.)
916 int del_timer(struct timer_list
*timer
)
918 struct tvec_base
*base
;
922 timer_stats_timer_clear_start_info(timer
);
923 if (timer_pending(timer
)) {
924 base
= lock_timer_base(timer
, &flags
);
925 if (timer_pending(timer
)) {
926 detach_timer(timer
, 1);
927 if (timer
->expires
== base
->next_timer
&&
928 !tbase_get_deferrable(timer
->base
))
929 base
->next_timer
= base
->timer_jiffies
;
932 spin_unlock_irqrestore(&base
->lock
, flags
);
937 EXPORT_SYMBOL(del_timer
);
941 * try_to_del_timer_sync - Try to deactivate a timer
942 * @timer: timer do del
944 * This function tries to deactivate a timer. Upon successful (ret >= 0)
945 * exit the timer is not queued and the handler is not running on any CPU.
947 * It must not be called from interrupt contexts.
949 int try_to_del_timer_sync(struct timer_list
*timer
)
951 struct tvec_base
*base
;
955 base
= lock_timer_base(timer
, &flags
);
957 if (base
->running_timer
== timer
)
960 timer_stats_timer_clear_start_info(timer
);
962 if (timer_pending(timer
)) {
963 detach_timer(timer
, 1);
964 if (timer
->expires
== base
->next_timer
&&
965 !tbase_get_deferrable(timer
->base
))
966 base
->next_timer
= base
->timer_jiffies
;
970 spin_unlock_irqrestore(&base
->lock
, flags
);
974 EXPORT_SYMBOL(try_to_del_timer_sync
);
977 * del_timer_sync - deactivate a timer and wait for the handler to finish.
978 * @timer: the timer to be deactivated
980 * This function only differs from del_timer() on SMP: besides deactivating
981 * the timer it also makes sure the handler has finished executing on other
984 * Synchronization rules: Callers must prevent restarting of the timer,
985 * otherwise this function is meaningless. It must not be called from
986 * interrupt contexts. The caller must not hold locks which would prevent
987 * completion of the timer's handler. The timer's handler must not call
988 * add_timer_on(). Upon exit the timer is not queued and the handler is
989 * not running on any CPU.
991 * The function returns whether it has deactivated a pending timer or not.
993 int del_timer_sync(struct timer_list
*timer
)
995 #ifdef CONFIG_LOCKDEP
998 local_irq_save(flags
);
999 lock_map_acquire(&timer
->lockdep_map
);
1000 lock_map_release(&timer
->lockdep_map
);
1001 local_irq_restore(flags
);
1005 int ret
= try_to_del_timer_sync(timer
);
1011 EXPORT_SYMBOL(del_timer_sync
);
1014 static int cascade(struct tvec_base
*base
, struct tvec
*tv
, int index
)
1016 /* cascade all the timers from tv up one level */
1017 struct timer_list
*timer
, *tmp
;
1018 struct list_head tv_list
;
1020 list_replace_init(tv
->vec
+ index
, &tv_list
);
1023 * We are removing _all_ timers from the list, so we
1024 * don't have to detach them individually.
1026 list_for_each_entry_safe(timer
, tmp
, &tv_list
, entry
) {
1027 BUG_ON(tbase_get_base(timer
->base
) != base
);
1028 internal_add_timer(base
, timer
);
1034 static void call_timer_fn(struct timer_list
*timer
, void (*fn
)(unsigned long),
1037 int preempt_count
= preempt_count();
1039 #ifdef CONFIG_LOCKDEP
1041 * It is permissible to free the timer from inside the
1042 * function that is called from it, this we need to take into
1043 * account for lockdep too. To avoid bogus "held lock freed"
1044 * warnings as well as problems when looking into
1045 * timer->lockdep_map, make a copy and use that here.
1047 struct lockdep_map lockdep_map
= timer
->lockdep_map
;
1050 * Couple the lock chain with the lock chain at
1051 * del_timer_sync() by acquiring the lock_map around the fn()
1052 * call here and in del_timer_sync().
1054 lock_map_acquire(&lockdep_map
);
1056 trace_timer_expire_entry(timer
);
1058 trace_timer_expire_exit(timer
);
1060 lock_map_release(&lockdep_map
);
1062 if (preempt_count
!= preempt_count()) {
1063 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1064 fn
, preempt_count
, preempt_count());
1066 * Restore the preempt count. That gives us a decent
1067 * chance to survive and extract information. If the
1068 * callback kept a lock held, bad luck, but not worse
1069 * than the BUG() we had.
1071 preempt_count() = preempt_count
;
1075 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1078 * __run_timers - run all expired timers (if any) on this CPU.
1079 * @base: the timer vector to be processed.
1081 * This function cascades all vectors and executes all expired timer
1084 static inline void __run_timers(struct tvec_base
*base
)
1086 struct timer_list
*timer
;
1088 spin_lock_irq(&base
->lock
);
1089 while (time_after_eq(jiffies
, base
->timer_jiffies
)) {
1090 struct list_head work_list
;
1091 struct list_head
*head
= &work_list
;
1092 int index
= base
->timer_jiffies
& TVR_MASK
;
1098 (!cascade(base
, &base
->tv2
, INDEX(0))) &&
1099 (!cascade(base
, &base
->tv3
, INDEX(1))) &&
1100 !cascade(base
, &base
->tv4
, INDEX(2)))
1101 cascade(base
, &base
->tv5
, INDEX(3));
1102 ++base
->timer_jiffies
;
1103 list_replace_init(base
->tv1
.vec
+ index
, &work_list
);
1104 while (!list_empty(head
)) {
1105 void (*fn
)(unsigned long);
1108 timer
= list_first_entry(head
, struct timer_list
,entry
);
1109 fn
= timer
->function
;
1112 timer_stats_account_timer(timer
);
1114 set_running_timer(base
, timer
);
1115 detach_timer(timer
, 1);
1117 spin_unlock_irq(&base
->lock
);
1118 call_timer_fn(timer
, fn
, data
);
1119 spin_lock_irq(&base
->lock
);
1122 set_running_timer(base
, NULL
);
1123 spin_unlock_irq(&base
->lock
);
1128 * Find out when the next timer event is due to happen. This
1129 * is used on S/390 to stop all activity when a CPU is idle.
1130 * This function needs to be called with interrupts disabled.
1132 static unsigned long __next_timer_interrupt(struct tvec_base
*base
)
1134 unsigned long timer_jiffies
= base
->timer_jiffies
;
1135 unsigned long expires
= timer_jiffies
+ NEXT_TIMER_MAX_DELTA
;
1136 int index
, slot
, array
, found
= 0;
1137 struct timer_list
*nte
;
1138 struct tvec
*varray
[4];
1140 /* Look for timer events in tv1. */
1141 index
= slot
= timer_jiffies
& TVR_MASK
;
1143 list_for_each_entry(nte
, base
->tv1
.vec
+ slot
, entry
) {
1144 if (tbase_get_deferrable(nte
->base
))
1148 expires
= nte
->expires
;
1149 /* Look at the cascade bucket(s)? */
1150 if (!index
|| slot
< index
)
1154 slot
= (slot
+ 1) & TVR_MASK
;
1155 } while (slot
!= index
);
1158 /* Calculate the next cascade event */
1160 timer_jiffies
+= TVR_SIZE
- index
;
1161 timer_jiffies
>>= TVR_BITS
;
1163 /* Check tv2-tv5. */
1164 varray
[0] = &base
->tv2
;
1165 varray
[1] = &base
->tv3
;
1166 varray
[2] = &base
->tv4
;
1167 varray
[3] = &base
->tv5
;
1169 for (array
= 0; array
< 4; array
++) {
1170 struct tvec
*varp
= varray
[array
];
1172 index
= slot
= timer_jiffies
& TVN_MASK
;
1174 list_for_each_entry(nte
, varp
->vec
+ slot
, entry
) {
1175 if (tbase_get_deferrable(nte
->base
))
1179 if (time_before(nte
->expires
, expires
))
1180 expires
= nte
->expires
;
1183 * Do we still search for the first timer or are
1184 * we looking up the cascade buckets ?
1187 /* Look at the cascade bucket(s)? */
1188 if (!index
|| slot
< index
)
1192 slot
= (slot
+ 1) & TVN_MASK
;
1193 } while (slot
!= index
);
1196 timer_jiffies
+= TVN_SIZE
- index
;
1197 timer_jiffies
>>= TVN_BITS
;
1203 * Check, if the next hrtimer event is before the next timer wheel
1206 static unsigned long cmp_next_hrtimer_event(unsigned long now
,
1207 unsigned long expires
)
1209 ktime_t hr_delta
= hrtimer_get_next_event();
1210 struct timespec tsdelta
;
1211 unsigned long delta
;
1213 if (hr_delta
.tv64
== KTIME_MAX
)
1217 * Expired timer available, let it expire in the next tick
1219 if (hr_delta
.tv64
<= 0)
1222 tsdelta
= ktime_to_timespec(hr_delta
);
1223 delta
= timespec_to_jiffies(&tsdelta
);
1226 * Limit the delta to the max value, which is checked in
1227 * tick_nohz_stop_sched_tick():
1229 if (delta
> NEXT_TIMER_MAX_DELTA
)
1230 delta
= NEXT_TIMER_MAX_DELTA
;
1233 * Take rounding errors in to account and make sure, that it
1234 * expires in the next tick. Otherwise we go into an endless
1235 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1241 if (time_before(now
, expires
))
1247 * get_next_timer_interrupt - return the jiffy of the next pending timer
1248 * @now: current time (in jiffies)
1250 unsigned long get_next_timer_interrupt(unsigned long now
)
1252 struct tvec_base
*base
= __get_cpu_var(tvec_bases
);
1253 unsigned long expires
;
1256 * Pretend that there is no timer pending if the cpu is offline.
1257 * Possible pending timers will be migrated later to an active cpu.
1259 if (cpu_is_offline(smp_processor_id()))
1260 return now
+ NEXT_TIMER_MAX_DELTA
;
1261 spin_lock(&base
->lock
);
1262 if (time_before_eq(base
->next_timer
, base
->timer_jiffies
))
1263 base
->next_timer
= __next_timer_interrupt(base
);
1264 expires
= base
->next_timer
;
1265 spin_unlock(&base
->lock
);
1267 if (time_before_eq(expires
, now
))
1270 return cmp_next_hrtimer_event(now
, expires
);
1275 * Called from the timer interrupt handler to charge one tick to the current
1276 * process. user_tick is 1 if the tick is user time, 0 for system.
1278 void update_process_times(int user_tick
)
1280 struct task_struct
*p
= current
;
1281 int cpu
= smp_processor_id();
1283 /* Note: this timer irq context must be accounted for as well. */
1284 account_process_tick(p
, user_tick
);
1286 rcu_check_callbacks(cpu
, user_tick
);
1288 #ifdef CONFIG_IRQ_WORK
1293 run_posix_cpu_timers(p
);
1297 * This function runs timers and the timer-tq in bottom half context.
1299 static void run_timer_softirq(struct softirq_action
*h
)
1301 struct tvec_base
*base
= __get_cpu_var(tvec_bases
);
1303 hrtimer_run_pending();
1305 if (time_after_eq(jiffies
, base
->timer_jiffies
))
1310 * Called by the local, per-CPU timer interrupt on SMP.
1312 void run_local_timers(void)
1314 hrtimer_run_queues();
1315 raise_softirq(TIMER_SOFTIRQ
);
1319 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1320 * without sampling the sequence number in xtime_lock.
1321 * jiffies is defined in the linker script...
1324 void do_timer(unsigned long ticks
)
1326 jiffies_64
+= ticks
;
1328 calc_global_load(ticks
);
1331 #ifdef __ARCH_WANT_SYS_ALARM
1334 * For backwards compatibility? This can be done in libc so Alpha
1335 * and all newer ports shouldn't need it.
1337 SYSCALL_DEFINE1(alarm
, unsigned int, seconds
)
1339 return alarm_setitimer(seconds
);
1347 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1348 * should be moved into arch/i386 instead?
1352 * sys_getpid - return the thread group id of the current process
1354 * Note, despite the name, this returns the tgid not the pid. The tgid and
1355 * the pid are identical unless CLONE_THREAD was specified on clone() in
1356 * which case the tgid is the same in all threads of the same group.
1358 * This is SMP safe as current->tgid does not change.
1360 SYSCALL_DEFINE0(getpid
)
1362 return task_tgid_vnr(current
);
1366 * Accessing ->real_parent is not SMP-safe, it could
1367 * change from under us. However, we can use a stale
1368 * value of ->real_parent under rcu_read_lock(), see
1369 * release_task()->call_rcu(delayed_put_task_struct).
1371 SYSCALL_DEFINE0(getppid
)
1376 pid
= task_tgid_vnr(current
->real_parent
);
1382 SYSCALL_DEFINE0(getuid
)
1384 /* Only we change this so SMP safe */
1385 return current_uid();
1388 SYSCALL_DEFINE0(geteuid
)
1390 /* Only we change this so SMP safe */
1391 return current_euid();
1394 SYSCALL_DEFINE0(getgid
)
1396 /* Only we change this so SMP safe */
1397 return current_gid();
1400 SYSCALL_DEFINE0(getegid
)
1402 /* Only we change this so SMP safe */
1403 return current_egid();
1408 static void process_timeout(unsigned long __data
)
1410 wake_up_process((struct task_struct
*)__data
);
1414 * schedule_timeout - sleep until timeout
1415 * @timeout: timeout value in jiffies
1417 * Make the current task sleep until @timeout jiffies have
1418 * elapsed. The routine will return immediately unless
1419 * the current task state has been set (see set_current_state()).
1421 * You can set the task state as follows -
1423 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1424 * pass before the routine returns. The routine will return 0
1426 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1427 * delivered to the current task. In this case the remaining time
1428 * in jiffies will be returned, or 0 if the timer expired in time
1430 * The current task state is guaranteed to be TASK_RUNNING when this
1433 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1434 * the CPU away without a bound on the timeout. In this case the return
1435 * value will be %MAX_SCHEDULE_TIMEOUT.
1437 * In all cases the return value is guaranteed to be non-negative.
1439 signed long __sched
schedule_timeout(signed long timeout
)
1441 struct timer_list timer
;
1442 unsigned long expire
;
1446 case MAX_SCHEDULE_TIMEOUT
:
1448 * These two special cases are useful to be comfortable
1449 * in the caller. Nothing more. We could take
1450 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1451 * but I' d like to return a valid offset (>=0) to allow
1452 * the caller to do everything it want with the retval.
1458 * Another bit of PARANOID. Note that the retval will be
1459 * 0 since no piece of kernel is supposed to do a check
1460 * for a negative retval of schedule_timeout() (since it
1461 * should never happens anyway). You just have the printk()
1462 * that will tell you if something is gone wrong and where.
1465 printk(KERN_ERR
"schedule_timeout: wrong timeout "
1466 "value %lx\n", timeout
);
1468 current
->state
= TASK_RUNNING
;
1473 expire
= timeout
+ jiffies
;
1475 setup_timer_on_stack(&timer
, process_timeout
, (unsigned long)current
);
1476 __mod_timer(&timer
, expire
, false, TIMER_NOT_PINNED
);
1478 del_singleshot_timer_sync(&timer
);
1480 /* Remove the timer from the object tracker */
1481 destroy_timer_on_stack(&timer
);
1483 timeout
= expire
- jiffies
;
1486 return timeout
< 0 ? 0 : timeout
;
1488 EXPORT_SYMBOL(schedule_timeout
);
1491 * We can use __set_current_state() here because schedule_timeout() calls
1492 * schedule() unconditionally.
1494 signed long __sched
schedule_timeout_interruptible(signed long timeout
)
1496 __set_current_state(TASK_INTERRUPTIBLE
);
1497 return schedule_timeout(timeout
);
1499 EXPORT_SYMBOL(schedule_timeout_interruptible
);
1501 signed long __sched
schedule_timeout_killable(signed long timeout
)
1503 __set_current_state(TASK_KILLABLE
);
1504 return schedule_timeout(timeout
);
1506 EXPORT_SYMBOL(schedule_timeout_killable
);
1508 signed long __sched
schedule_timeout_uninterruptible(signed long timeout
)
1510 __set_current_state(TASK_UNINTERRUPTIBLE
);
1511 return schedule_timeout(timeout
);
1513 EXPORT_SYMBOL(schedule_timeout_uninterruptible
);
1515 /* Thread ID - the internal kernel "pid" */
1516 SYSCALL_DEFINE0(gettid
)
1518 return task_pid_vnr(current
);
1522 * do_sysinfo - fill in sysinfo struct
1523 * @info: pointer to buffer to fill
1525 int do_sysinfo(struct sysinfo
*info
)
1527 unsigned long mem_total
, sav_total
;
1528 unsigned int mem_unit
, bitcount
;
1531 memset(info
, 0, sizeof(struct sysinfo
));
1534 monotonic_to_bootbased(&tp
);
1535 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
1537 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
1539 info
->procs
= nr_threads
;
1545 * If the sum of all the available memory (i.e. ram + swap)
1546 * is less than can be stored in a 32 bit unsigned long then
1547 * we can be binary compatible with 2.2.x kernels. If not,
1548 * well, in that case 2.2.x was broken anyways...
1550 * -Erik Andersen <andersee@debian.org>
1553 mem_total
= info
->totalram
+ info
->totalswap
;
1554 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
1557 mem_unit
= info
->mem_unit
;
1558 while (mem_unit
> 1) {
1561 sav_total
= mem_total
;
1563 if (mem_total
< sav_total
)
1568 * If mem_total did not overflow, multiply all memory values by
1569 * info->mem_unit and set it to 1. This leaves things compatible
1570 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1575 info
->totalram
<<= bitcount
;
1576 info
->freeram
<<= bitcount
;
1577 info
->sharedram
<<= bitcount
;
1578 info
->bufferram
<<= bitcount
;
1579 info
->totalswap
<<= bitcount
;
1580 info
->freeswap
<<= bitcount
;
1581 info
->totalhigh
<<= bitcount
;
1582 info
->freehigh
<<= bitcount
;
1588 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
1594 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
1600 static int __cpuinit
init_timers_cpu(int cpu
)
1603 struct tvec_base
*base
;
1604 static char __cpuinitdata tvec_base_done
[NR_CPUS
];
1606 if (!tvec_base_done
[cpu
]) {
1607 static char boot_done
;
1611 * The APs use this path later in boot
1613 base
= kmalloc_node(sizeof(*base
),
1614 GFP_KERNEL
| __GFP_ZERO
,
1619 /* Make sure that tvec_base is 2 byte aligned */
1620 if (tbase_get_deferrable(base
)) {
1625 per_cpu(tvec_bases
, cpu
) = base
;
1628 * This is for the boot CPU - we use compile-time
1629 * static initialisation because per-cpu memory isn't
1630 * ready yet and because the memory allocators are not
1631 * initialised either.
1634 base
= &boot_tvec_bases
;
1636 tvec_base_done
[cpu
] = 1;
1638 base
= per_cpu(tvec_bases
, cpu
);
1641 spin_lock_init(&base
->lock
);
1643 for (j
= 0; j
< TVN_SIZE
; j
++) {
1644 INIT_LIST_HEAD(base
->tv5
.vec
+ j
);
1645 INIT_LIST_HEAD(base
->tv4
.vec
+ j
);
1646 INIT_LIST_HEAD(base
->tv3
.vec
+ j
);
1647 INIT_LIST_HEAD(base
->tv2
.vec
+ j
);
1649 for (j
= 0; j
< TVR_SIZE
; j
++)
1650 INIT_LIST_HEAD(base
->tv1
.vec
+ j
);
1652 base
->timer_jiffies
= jiffies
;
1653 base
->next_timer
= base
->timer_jiffies
;
1657 #ifdef CONFIG_HOTPLUG_CPU
1658 static void migrate_timer_list(struct tvec_base
*new_base
, struct list_head
*head
)
1660 struct timer_list
*timer
;
1662 while (!list_empty(head
)) {
1663 timer
= list_first_entry(head
, struct timer_list
, entry
);
1664 detach_timer(timer
, 0);
1665 timer_set_base(timer
, new_base
);
1666 if (time_before(timer
->expires
, new_base
->next_timer
) &&
1667 !tbase_get_deferrable(timer
->base
))
1668 new_base
->next_timer
= timer
->expires
;
1669 internal_add_timer(new_base
, timer
);
1673 static void __cpuinit
migrate_timers(int cpu
)
1675 struct tvec_base
*old_base
;
1676 struct tvec_base
*new_base
;
1679 BUG_ON(cpu_online(cpu
));
1680 old_base
= per_cpu(tvec_bases
, cpu
);
1681 new_base
= get_cpu_var(tvec_bases
);
1683 * The caller is globally serialized and nobody else
1684 * takes two locks at once, deadlock is not possible.
1686 spin_lock_irq(&new_base
->lock
);
1687 spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1689 BUG_ON(old_base
->running_timer
);
1691 for (i
= 0; i
< TVR_SIZE
; i
++)
1692 migrate_timer_list(new_base
, old_base
->tv1
.vec
+ i
);
1693 for (i
= 0; i
< TVN_SIZE
; i
++) {
1694 migrate_timer_list(new_base
, old_base
->tv2
.vec
+ i
);
1695 migrate_timer_list(new_base
, old_base
->tv3
.vec
+ i
);
1696 migrate_timer_list(new_base
, old_base
->tv4
.vec
+ i
);
1697 migrate_timer_list(new_base
, old_base
->tv5
.vec
+ i
);
1700 spin_unlock(&old_base
->lock
);
1701 spin_unlock_irq(&new_base
->lock
);
1702 put_cpu_var(tvec_bases
);
1704 #endif /* CONFIG_HOTPLUG_CPU */
1706 static int __cpuinit
timer_cpu_notify(struct notifier_block
*self
,
1707 unsigned long action
, void *hcpu
)
1709 long cpu
= (long)hcpu
;
1713 case CPU_UP_PREPARE
:
1714 case CPU_UP_PREPARE_FROZEN
:
1715 err
= init_timers_cpu(cpu
);
1717 return notifier_from_errno(err
);
1719 #ifdef CONFIG_HOTPLUG_CPU
1721 case CPU_DEAD_FROZEN
:
1722 migrate_timers(cpu
);
1731 static struct notifier_block __cpuinitdata timers_nb
= {
1732 .notifier_call
= timer_cpu_notify
,
1736 void __init
init_timers(void)
1738 int err
= timer_cpu_notify(&timers_nb
, (unsigned long)CPU_UP_PREPARE
,
1739 (void *)(long)smp_processor_id());
1743 BUG_ON(err
!= NOTIFY_OK
);
1744 register_cpu_notifier(&timers_nb
);
1745 open_softirq(TIMER_SOFTIRQ
, run_timer_softirq
);
1749 * msleep - sleep safely even with waitqueue interruptions
1750 * @msecs: Time in milliseconds to sleep for
1752 void msleep(unsigned int msecs
)
1754 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1757 timeout
= schedule_timeout_uninterruptible(timeout
);
1760 EXPORT_SYMBOL(msleep
);
1763 * msleep_interruptible - sleep waiting for signals
1764 * @msecs: Time in milliseconds to sleep for
1766 unsigned long msleep_interruptible(unsigned int msecs
)
1768 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1770 while (timeout
&& !signal_pending(current
))
1771 timeout
= schedule_timeout_interruptible(timeout
);
1772 return jiffies_to_msecs(timeout
);
1775 EXPORT_SYMBOL(msleep_interruptible
);
1777 static int __sched
do_usleep_range(unsigned long min
, unsigned long max
)
1780 unsigned long delta
;
1782 kmin
= ktime_set(0, min
* NSEC_PER_USEC
);
1783 delta
= (max
- min
) * NSEC_PER_USEC
;
1784 return schedule_hrtimeout_range(&kmin
, delta
, HRTIMER_MODE_REL
);
1788 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1789 * @min: Minimum time in usecs to sleep
1790 * @max: Maximum time in usecs to sleep
1792 void usleep_range(unsigned long min
, unsigned long max
)
1794 __set_current_state(TASK_UNINTERRUPTIBLE
);
1795 do_usleep_range(min
, max
);
1797 EXPORT_SYMBOL(usleep_range
);