ext4: Convert to generic reserved quota's space management.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / inode.c
blob374d38cdb21c9cbba716d55d69ee3231d9faa5be
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
54 return jbd2_journal_begin_ordered_truncate(
55 EXT4_SB(inode->i_sb)->s_journal,
56 &EXT4_I(inode)->jinode,
57 new_size);
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63 * Test whether an inode is a fast symlink.
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
67 int ea_blocks = EXT4_I(inode)->i_file_acl ?
68 (inode->i_sb->s_blocksize >> 9) : 0;
70 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
74 * The ext4 forget function must perform a revoke if we are freeing data
75 * which has been journaled. Metadata (eg. indirect blocks) must be
76 * revoked in all cases.
78 * "bh" may be NULL: a metadata block may have been freed from memory
79 * but there may still be a record of it in the journal, and that record
80 * still needs to be revoked.
82 * If the handle isn't valid we're not journaling, but we still need to
83 * call into ext4_journal_revoke() to put the buffer head.
85 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
86 struct buffer_head *bh, ext4_fsblk_t blocknr)
88 int err;
90 might_sleep();
92 BUFFER_TRACE(bh, "enter");
94 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
95 "data mode %x\n",
96 bh, is_metadata, inode->i_mode,
97 test_opt(inode->i_sb, DATA_FLAGS));
99 /* Never use the revoke function if we are doing full data
100 * journaling: there is no need to, and a V1 superblock won't
101 * support it. Otherwise, only skip the revoke on un-journaled
102 * data blocks. */
104 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
105 (!is_metadata && !ext4_should_journal_data(inode))) {
106 if (bh) {
107 BUFFER_TRACE(bh, "call jbd2_journal_forget");
108 return ext4_journal_forget(handle, bh);
110 return 0;
114 * data!=journal && (is_metadata || should_journal_data(inode))
116 BUFFER_TRACE(bh, "call ext4_journal_revoke");
117 err = ext4_journal_revoke(handle, blocknr, bh);
118 if (err)
119 ext4_abort(inode->i_sb, __func__,
120 "error %d when attempting revoke", err);
121 BUFFER_TRACE(bh, "exit");
122 return err;
126 * Work out how many blocks we need to proceed with the next chunk of a
127 * truncate transaction.
129 static unsigned long blocks_for_truncate(struct inode *inode)
131 ext4_lblk_t needed;
133 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
135 /* Give ourselves just enough room to cope with inodes in which
136 * i_blocks is corrupt: we've seen disk corruptions in the past
137 * which resulted in random data in an inode which looked enough
138 * like a regular file for ext4 to try to delete it. Things
139 * will go a bit crazy if that happens, but at least we should
140 * try not to panic the whole kernel. */
141 if (needed < 2)
142 needed = 2;
144 /* But we need to bound the transaction so we don't overflow the
145 * journal. */
146 if (needed > EXT4_MAX_TRANS_DATA)
147 needed = EXT4_MAX_TRANS_DATA;
149 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
153 * Truncate transactions can be complex and absolutely huge. So we need to
154 * be able to restart the transaction at a conventient checkpoint to make
155 * sure we don't overflow the journal.
157 * start_transaction gets us a new handle for a truncate transaction,
158 * and extend_transaction tries to extend the existing one a bit. If
159 * extend fails, we need to propagate the failure up and restart the
160 * transaction in the top-level truncate loop. --sct
162 static handle_t *start_transaction(struct inode *inode)
164 handle_t *result;
166 result = ext4_journal_start(inode, blocks_for_truncate(inode));
167 if (!IS_ERR(result))
168 return result;
170 ext4_std_error(inode->i_sb, PTR_ERR(result));
171 return result;
175 * Try to extend this transaction for the purposes of truncation.
177 * Returns 0 if we managed to create more room. If we can't create more
178 * room, and the transaction must be restarted we return 1.
180 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
182 if (!ext4_handle_valid(handle))
183 return 0;
184 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
185 return 0;
186 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
187 return 0;
188 return 1;
192 * Restart the transaction associated with *handle. This does a commit,
193 * so before we call here everything must be consistently dirtied against
194 * this transaction.
196 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
197 int nblocks)
199 int ret;
202 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
203 * moment, get_block can be called only for blocks inside i_size since
204 * page cache has been already dropped and writes are blocked by
205 * i_mutex. So we can safely drop the i_data_sem here.
207 BUG_ON(EXT4_JOURNAL(inode) == NULL);
208 jbd_debug(2, "restarting handle %p\n", handle);
209 up_write(&EXT4_I(inode)->i_data_sem);
210 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
211 down_write(&EXT4_I(inode)->i_data_sem);
212 ext4_discard_preallocations(inode);
214 return ret;
218 * Called at the last iput() if i_nlink is zero.
220 void ext4_delete_inode(struct inode *inode)
222 handle_t *handle;
223 int err;
225 if (ext4_should_order_data(inode))
226 ext4_begin_ordered_truncate(inode, 0);
227 truncate_inode_pages(&inode->i_data, 0);
229 if (is_bad_inode(inode))
230 goto no_delete;
232 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
233 if (IS_ERR(handle)) {
234 ext4_std_error(inode->i_sb, PTR_ERR(handle));
236 * If we're going to skip the normal cleanup, we still need to
237 * make sure that the in-core orphan linked list is properly
238 * cleaned up.
240 ext4_orphan_del(NULL, inode);
241 goto no_delete;
244 if (IS_SYNC(inode))
245 ext4_handle_sync(handle);
246 inode->i_size = 0;
247 err = ext4_mark_inode_dirty(handle, inode);
248 if (err) {
249 ext4_warning(inode->i_sb, __func__,
250 "couldn't mark inode dirty (err %d)", err);
251 goto stop_handle;
253 if (inode->i_blocks)
254 ext4_truncate(inode);
257 * ext4_ext_truncate() doesn't reserve any slop when it
258 * restarts journal transactions; therefore there may not be
259 * enough credits left in the handle to remove the inode from
260 * the orphan list and set the dtime field.
262 if (!ext4_handle_has_enough_credits(handle, 3)) {
263 err = ext4_journal_extend(handle, 3);
264 if (err > 0)
265 err = ext4_journal_restart(handle, 3);
266 if (err != 0) {
267 ext4_warning(inode->i_sb, __func__,
268 "couldn't extend journal (err %d)", err);
269 stop_handle:
270 ext4_journal_stop(handle);
271 goto no_delete;
276 * Kill off the orphan record which ext4_truncate created.
277 * AKPM: I think this can be inside the above `if'.
278 * Note that ext4_orphan_del() has to be able to cope with the
279 * deletion of a non-existent orphan - this is because we don't
280 * know if ext4_truncate() actually created an orphan record.
281 * (Well, we could do this if we need to, but heck - it works)
283 ext4_orphan_del(handle, inode);
284 EXT4_I(inode)->i_dtime = get_seconds();
287 * One subtle ordering requirement: if anything has gone wrong
288 * (transaction abort, IO errors, whatever), then we can still
289 * do these next steps (the fs will already have been marked as
290 * having errors), but we can't free the inode if the mark_dirty
291 * fails.
293 if (ext4_mark_inode_dirty(handle, inode))
294 /* If that failed, just do the required in-core inode clear. */
295 clear_inode(inode);
296 else
297 ext4_free_inode(handle, inode);
298 ext4_journal_stop(handle);
299 return;
300 no_delete:
301 clear_inode(inode); /* We must guarantee clearing of inode... */
304 typedef struct {
305 __le32 *p;
306 __le32 key;
307 struct buffer_head *bh;
308 } Indirect;
310 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
312 p->key = *(p->p = v);
313 p->bh = bh;
317 * ext4_block_to_path - parse the block number into array of offsets
318 * @inode: inode in question (we are only interested in its superblock)
319 * @i_block: block number to be parsed
320 * @offsets: array to store the offsets in
321 * @boundary: set this non-zero if the referred-to block is likely to be
322 * followed (on disk) by an indirect block.
324 * To store the locations of file's data ext4 uses a data structure common
325 * for UNIX filesystems - tree of pointers anchored in the inode, with
326 * data blocks at leaves and indirect blocks in intermediate nodes.
327 * This function translates the block number into path in that tree -
328 * return value is the path length and @offsets[n] is the offset of
329 * pointer to (n+1)th node in the nth one. If @block is out of range
330 * (negative or too large) warning is printed and zero returned.
332 * Note: function doesn't find node addresses, so no IO is needed. All
333 * we need to know is the capacity of indirect blocks (taken from the
334 * inode->i_sb).
338 * Portability note: the last comparison (check that we fit into triple
339 * indirect block) is spelled differently, because otherwise on an
340 * architecture with 32-bit longs and 8Kb pages we might get into trouble
341 * if our filesystem had 8Kb blocks. We might use long long, but that would
342 * kill us on x86. Oh, well, at least the sign propagation does not matter -
343 * i_block would have to be negative in the very beginning, so we would not
344 * get there at all.
347 static int ext4_block_to_path(struct inode *inode,
348 ext4_lblk_t i_block,
349 ext4_lblk_t offsets[4], int *boundary)
351 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
352 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
353 const long direct_blocks = EXT4_NDIR_BLOCKS,
354 indirect_blocks = ptrs,
355 double_blocks = (1 << (ptrs_bits * 2));
356 int n = 0;
357 int final = 0;
359 if (i_block < direct_blocks) {
360 offsets[n++] = i_block;
361 final = direct_blocks;
362 } else if ((i_block -= direct_blocks) < indirect_blocks) {
363 offsets[n++] = EXT4_IND_BLOCK;
364 offsets[n++] = i_block;
365 final = ptrs;
366 } else if ((i_block -= indirect_blocks) < double_blocks) {
367 offsets[n++] = EXT4_DIND_BLOCK;
368 offsets[n++] = i_block >> ptrs_bits;
369 offsets[n++] = i_block & (ptrs - 1);
370 final = ptrs;
371 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
372 offsets[n++] = EXT4_TIND_BLOCK;
373 offsets[n++] = i_block >> (ptrs_bits * 2);
374 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
375 offsets[n++] = i_block & (ptrs - 1);
376 final = ptrs;
377 } else {
378 ext4_warning(inode->i_sb, "ext4_block_to_path",
379 "block %lu > max in inode %lu",
380 i_block + direct_blocks +
381 indirect_blocks + double_blocks, inode->i_ino);
383 if (boundary)
384 *boundary = final - 1 - (i_block & (ptrs - 1));
385 return n;
388 static int __ext4_check_blockref(const char *function, struct inode *inode,
389 __le32 *p, unsigned int max)
391 __le32 *bref = p;
392 unsigned int blk;
394 while (bref < p+max) {
395 blk = le32_to_cpu(*bref++);
396 if (blk &&
397 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
398 blk, 1))) {
399 ext4_error(inode->i_sb, function,
400 "invalid block reference %u "
401 "in inode #%lu", blk, inode->i_ino);
402 return -EIO;
405 return 0;
409 #define ext4_check_indirect_blockref(inode, bh) \
410 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
411 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
413 #define ext4_check_inode_blockref(inode) \
414 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
415 EXT4_NDIR_BLOCKS)
418 * ext4_get_branch - read the chain of indirect blocks leading to data
419 * @inode: inode in question
420 * @depth: depth of the chain (1 - direct pointer, etc.)
421 * @offsets: offsets of pointers in inode/indirect blocks
422 * @chain: place to store the result
423 * @err: here we store the error value
425 * Function fills the array of triples <key, p, bh> and returns %NULL
426 * if everything went OK or the pointer to the last filled triple
427 * (incomplete one) otherwise. Upon the return chain[i].key contains
428 * the number of (i+1)-th block in the chain (as it is stored in memory,
429 * i.e. little-endian 32-bit), chain[i].p contains the address of that
430 * number (it points into struct inode for i==0 and into the bh->b_data
431 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
432 * block for i>0 and NULL for i==0. In other words, it holds the block
433 * numbers of the chain, addresses they were taken from (and where we can
434 * verify that chain did not change) and buffer_heads hosting these
435 * numbers.
437 * Function stops when it stumbles upon zero pointer (absent block)
438 * (pointer to last triple returned, *@err == 0)
439 * or when it gets an IO error reading an indirect block
440 * (ditto, *@err == -EIO)
441 * or when it reads all @depth-1 indirect blocks successfully and finds
442 * the whole chain, all way to the data (returns %NULL, *err == 0).
444 * Need to be called with
445 * down_read(&EXT4_I(inode)->i_data_sem)
447 static Indirect *ext4_get_branch(struct inode *inode, int depth,
448 ext4_lblk_t *offsets,
449 Indirect chain[4], int *err)
451 struct super_block *sb = inode->i_sb;
452 Indirect *p = chain;
453 struct buffer_head *bh;
455 *err = 0;
456 /* i_data is not going away, no lock needed */
457 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
458 if (!p->key)
459 goto no_block;
460 while (--depth) {
461 bh = sb_getblk(sb, le32_to_cpu(p->key));
462 if (unlikely(!bh))
463 goto failure;
465 if (!bh_uptodate_or_lock(bh)) {
466 if (bh_submit_read(bh) < 0) {
467 put_bh(bh);
468 goto failure;
470 /* validate block references */
471 if (ext4_check_indirect_blockref(inode, bh)) {
472 put_bh(bh);
473 goto failure;
477 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
478 /* Reader: end */
479 if (!p->key)
480 goto no_block;
482 return NULL;
484 failure:
485 *err = -EIO;
486 no_block:
487 return p;
491 * ext4_find_near - find a place for allocation with sufficient locality
492 * @inode: owner
493 * @ind: descriptor of indirect block.
495 * This function returns the preferred place for block allocation.
496 * It is used when heuristic for sequential allocation fails.
497 * Rules are:
498 * + if there is a block to the left of our position - allocate near it.
499 * + if pointer will live in indirect block - allocate near that block.
500 * + if pointer will live in inode - allocate in the same
501 * cylinder group.
503 * In the latter case we colour the starting block by the callers PID to
504 * prevent it from clashing with concurrent allocations for a different inode
505 * in the same block group. The PID is used here so that functionally related
506 * files will be close-by on-disk.
508 * Caller must make sure that @ind is valid and will stay that way.
510 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
512 struct ext4_inode_info *ei = EXT4_I(inode);
513 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
514 __le32 *p;
515 ext4_fsblk_t bg_start;
516 ext4_fsblk_t last_block;
517 ext4_grpblk_t colour;
518 ext4_group_t block_group;
519 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
521 /* Try to find previous block */
522 for (p = ind->p - 1; p >= start; p--) {
523 if (*p)
524 return le32_to_cpu(*p);
527 /* No such thing, so let's try location of indirect block */
528 if (ind->bh)
529 return ind->bh->b_blocknr;
532 * It is going to be referred to from the inode itself? OK, just put it
533 * into the same cylinder group then.
535 block_group = ei->i_block_group;
536 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
537 block_group &= ~(flex_size-1);
538 if (S_ISREG(inode->i_mode))
539 block_group++;
541 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
542 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
545 * If we are doing delayed allocation, we don't need take
546 * colour into account.
548 if (test_opt(inode->i_sb, DELALLOC))
549 return bg_start;
551 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
552 colour = (current->pid % 16) *
553 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
554 else
555 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
556 return bg_start + colour;
560 * ext4_find_goal - find a preferred place for allocation.
561 * @inode: owner
562 * @block: block we want
563 * @partial: pointer to the last triple within a chain
565 * Normally this function find the preferred place for block allocation,
566 * returns it.
567 * Because this is only used for non-extent files, we limit the block nr
568 * to 32 bits.
570 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
571 Indirect *partial)
573 ext4_fsblk_t goal;
576 * XXX need to get goal block from mballoc's data structures
579 goal = ext4_find_near(inode, partial);
580 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
581 return goal;
585 * ext4_blks_to_allocate: Look up the block map and count the number
586 * of direct blocks need to be allocated for the given branch.
588 * @branch: chain of indirect blocks
589 * @k: number of blocks need for indirect blocks
590 * @blks: number of data blocks to be mapped.
591 * @blocks_to_boundary: the offset in the indirect block
593 * return the total number of blocks to be allocate, including the
594 * direct and indirect blocks.
596 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
597 int blocks_to_boundary)
599 unsigned int count = 0;
602 * Simple case, [t,d]Indirect block(s) has not allocated yet
603 * then it's clear blocks on that path have not allocated
605 if (k > 0) {
606 /* right now we don't handle cross boundary allocation */
607 if (blks < blocks_to_boundary + 1)
608 count += blks;
609 else
610 count += blocks_to_boundary + 1;
611 return count;
614 count++;
615 while (count < blks && count <= blocks_to_boundary &&
616 le32_to_cpu(*(branch[0].p + count)) == 0) {
617 count++;
619 return count;
623 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
624 * @indirect_blks: the number of blocks need to allocate for indirect
625 * blocks
627 * @new_blocks: on return it will store the new block numbers for
628 * the indirect blocks(if needed) and the first direct block,
629 * @blks: on return it will store the total number of allocated
630 * direct blocks
632 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
633 ext4_lblk_t iblock, ext4_fsblk_t goal,
634 int indirect_blks, int blks,
635 ext4_fsblk_t new_blocks[4], int *err)
637 struct ext4_allocation_request ar;
638 int target, i;
639 unsigned long count = 0, blk_allocated = 0;
640 int index = 0;
641 ext4_fsblk_t current_block = 0;
642 int ret = 0;
645 * Here we try to allocate the requested multiple blocks at once,
646 * on a best-effort basis.
647 * To build a branch, we should allocate blocks for
648 * the indirect blocks(if not allocated yet), and at least
649 * the first direct block of this branch. That's the
650 * minimum number of blocks need to allocate(required)
652 /* first we try to allocate the indirect blocks */
653 target = indirect_blks;
654 while (target > 0) {
655 count = target;
656 /* allocating blocks for indirect blocks and direct blocks */
657 current_block = ext4_new_meta_blocks(handle, inode,
658 goal, &count, err);
659 if (*err)
660 goto failed_out;
662 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
664 target -= count;
665 /* allocate blocks for indirect blocks */
666 while (index < indirect_blks && count) {
667 new_blocks[index++] = current_block++;
668 count--;
670 if (count > 0) {
672 * save the new block number
673 * for the first direct block
675 new_blocks[index] = current_block;
676 printk(KERN_INFO "%s returned more blocks than "
677 "requested\n", __func__);
678 WARN_ON(1);
679 break;
683 target = blks - count ;
684 blk_allocated = count;
685 if (!target)
686 goto allocated;
687 /* Now allocate data blocks */
688 memset(&ar, 0, sizeof(ar));
689 ar.inode = inode;
690 ar.goal = goal;
691 ar.len = target;
692 ar.logical = iblock;
693 if (S_ISREG(inode->i_mode))
694 /* enable in-core preallocation only for regular files */
695 ar.flags = EXT4_MB_HINT_DATA;
697 current_block = ext4_mb_new_blocks(handle, &ar, err);
698 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
700 if (*err && (target == blks)) {
702 * if the allocation failed and we didn't allocate
703 * any blocks before
705 goto failed_out;
707 if (!*err) {
708 if (target == blks) {
710 * save the new block number
711 * for the first direct block
713 new_blocks[index] = current_block;
715 blk_allocated += ar.len;
717 allocated:
718 /* total number of blocks allocated for direct blocks */
719 ret = blk_allocated;
720 *err = 0;
721 return ret;
722 failed_out:
723 for (i = 0; i < index; i++)
724 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
725 return ret;
729 * ext4_alloc_branch - allocate and set up a chain of blocks.
730 * @inode: owner
731 * @indirect_blks: number of allocated indirect blocks
732 * @blks: number of allocated direct blocks
733 * @offsets: offsets (in the blocks) to store the pointers to next.
734 * @branch: place to store the chain in.
736 * This function allocates blocks, zeroes out all but the last one,
737 * links them into chain and (if we are synchronous) writes them to disk.
738 * In other words, it prepares a branch that can be spliced onto the
739 * inode. It stores the information about that chain in the branch[], in
740 * the same format as ext4_get_branch() would do. We are calling it after
741 * we had read the existing part of chain and partial points to the last
742 * triple of that (one with zero ->key). Upon the exit we have the same
743 * picture as after the successful ext4_get_block(), except that in one
744 * place chain is disconnected - *branch->p is still zero (we did not
745 * set the last link), but branch->key contains the number that should
746 * be placed into *branch->p to fill that gap.
748 * If allocation fails we free all blocks we've allocated (and forget
749 * their buffer_heads) and return the error value the from failed
750 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
751 * as described above and return 0.
753 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
754 ext4_lblk_t iblock, int indirect_blks,
755 int *blks, ext4_fsblk_t goal,
756 ext4_lblk_t *offsets, Indirect *branch)
758 int blocksize = inode->i_sb->s_blocksize;
759 int i, n = 0;
760 int err = 0;
761 struct buffer_head *bh;
762 int num;
763 ext4_fsblk_t new_blocks[4];
764 ext4_fsblk_t current_block;
766 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
767 *blks, new_blocks, &err);
768 if (err)
769 return err;
771 branch[0].key = cpu_to_le32(new_blocks[0]);
773 * metadata blocks and data blocks are allocated.
775 for (n = 1; n <= indirect_blks; n++) {
777 * Get buffer_head for parent block, zero it out
778 * and set the pointer to new one, then send
779 * parent to disk.
781 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
782 branch[n].bh = bh;
783 lock_buffer(bh);
784 BUFFER_TRACE(bh, "call get_create_access");
785 err = ext4_journal_get_create_access(handle, bh);
786 if (err) {
787 /* Don't brelse(bh) here; it's done in
788 * ext4_journal_forget() below */
789 unlock_buffer(bh);
790 goto failed;
793 memset(bh->b_data, 0, blocksize);
794 branch[n].p = (__le32 *) bh->b_data + offsets[n];
795 branch[n].key = cpu_to_le32(new_blocks[n]);
796 *branch[n].p = branch[n].key;
797 if (n == indirect_blks) {
798 current_block = new_blocks[n];
800 * End of chain, update the last new metablock of
801 * the chain to point to the new allocated
802 * data blocks numbers
804 for (i = 1; i < num; i++)
805 *(branch[n].p + i) = cpu_to_le32(++current_block);
807 BUFFER_TRACE(bh, "marking uptodate");
808 set_buffer_uptodate(bh);
809 unlock_buffer(bh);
811 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
812 err = ext4_handle_dirty_metadata(handle, inode, bh);
813 if (err)
814 goto failed;
816 *blks = num;
817 return err;
818 failed:
819 /* Allocation failed, free what we already allocated */
820 for (i = 1; i <= n ; i++) {
821 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
822 ext4_journal_forget(handle, branch[i].bh);
824 for (i = 0; i < indirect_blks; i++)
825 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
827 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
829 return err;
833 * ext4_splice_branch - splice the allocated branch onto inode.
834 * @inode: owner
835 * @block: (logical) number of block we are adding
836 * @chain: chain of indirect blocks (with a missing link - see
837 * ext4_alloc_branch)
838 * @where: location of missing link
839 * @num: number of indirect blocks we are adding
840 * @blks: number of direct blocks we are adding
842 * This function fills the missing link and does all housekeeping needed in
843 * inode (->i_blocks, etc.). In case of success we end up with the full
844 * chain to new block and return 0.
846 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
847 ext4_lblk_t block, Indirect *where, int num,
848 int blks)
850 int i;
851 int err = 0;
852 ext4_fsblk_t current_block;
855 * If we're splicing into a [td]indirect block (as opposed to the
856 * inode) then we need to get write access to the [td]indirect block
857 * before the splice.
859 if (where->bh) {
860 BUFFER_TRACE(where->bh, "get_write_access");
861 err = ext4_journal_get_write_access(handle, where->bh);
862 if (err)
863 goto err_out;
865 /* That's it */
867 *where->p = where->key;
870 * Update the host buffer_head or inode to point to more just allocated
871 * direct blocks blocks
873 if (num == 0 && blks > 1) {
874 current_block = le32_to_cpu(where->key) + 1;
875 for (i = 1; i < blks; i++)
876 *(where->p + i) = cpu_to_le32(current_block++);
879 /* We are done with atomic stuff, now do the rest of housekeeping */
880 /* had we spliced it onto indirect block? */
881 if (where->bh) {
883 * If we spliced it onto an indirect block, we haven't
884 * altered the inode. Note however that if it is being spliced
885 * onto an indirect block at the very end of the file (the
886 * file is growing) then we *will* alter the inode to reflect
887 * the new i_size. But that is not done here - it is done in
888 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
890 jbd_debug(5, "splicing indirect only\n");
891 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
892 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
893 if (err)
894 goto err_out;
895 } else {
897 * OK, we spliced it into the inode itself on a direct block.
899 ext4_mark_inode_dirty(handle, inode);
900 jbd_debug(5, "splicing direct\n");
902 return err;
904 err_out:
905 for (i = 1; i <= num; i++) {
906 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
907 ext4_journal_forget(handle, where[i].bh);
908 ext4_free_blocks(handle, inode,
909 le32_to_cpu(where[i-1].key), 1, 0);
911 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
913 return err;
917 * The ext4_ind_get_blocks() function handles non-extents inodes
918 * (i.e., using the traditional indirect/double-indirect i_blocks
919 * scheme) for ext4_get_blocks().
921 * Allocation strategy is simple: if we have to allocate something, we will
922 * have to go the whole way to leaf. So let's do it before attaching anything
923 * to tree, set linkage between the newborn blocks, write them if sync is
924 * required, recheck the path, free and repeat if check fails, otherwise
925 * set the last missing link (that will protect us from any truncate-generated
926 * removals - all blocks on the path are immune now) and possibly force the
927 * write on the parent block.
928 * That has a nice additional property: no special recovery from the failed
929 * allocations is needed - we simply release blocks and do not touch anything
930 * reachable from inode.
932 * `handle' can be NULL if create == 0.
934 * return > 0, # of blocks mapped or allocated.
935 * return = 0, if plain lookup failed.
936 * return < 0, error case.
938 * The ext4_ind_get_blocks() function should be called with
939 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
940 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
941 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
942 * blocks.
944 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
945 ext4_lblk_t iblock, unsigned int maxblocks,
946 struct buffer_head *bh_result,
947 int flags)
949 int err = -EIO;
950 ext4_lblk_t offsets[4];
951 Indirect chain[4];
952 Indirect *partial;
953 ext4_fsblk_t goal;
954 int indirect_blks;
955 int blocks_to_boundary = 0;
956 int depth;
957 int count = 0;
958 ext4_fsblk_t first_block = 0;
960 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
961 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
962 depth = ext4_block_to_path(inode, iblock, offsets,
963 &blocks_to_boundary);
965 if (depth == 0)
966 goto out;
968 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
970 /* Simplest case - block found, no allocation needed */
971 if (!partial) {
972 first_block = le32_to_cpu(chain[depth - 1].key);
973 clear_buffer_new(bh_result);
974 count++;
975 /*map more blocks*/
976 while (count < maxblocks && count <= blocks_to_boundary) {
977 ext4_fsblk_t blk;
979 blk = le32_to_cpu(*(chain[depth-1].p + count));
981 if (blk == first_block + count)
982 count++;
983 else
984 break;
986 goto got_it;
989 /* Next simple case - plain lookup or failed read of indirect block */
990 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
991 goto cleanup;
994 * Okay, we need to do block allocation.
996 goal = ext4_find_goal(inode, iblock, partial);
998 /* the number of blocks need to allocate for [d,t]indirect blocks */
999 indirect_blks = (chain + depth) - partial - 1;
1002 * Next look up the indirect map to count the totoal number of
1003 * direct blocks to allocate for this branch.
1005 count = ext4_blks_to_allocate(partial, indirect_blks,
1006 maxblocks, blocks_to_boundary);
1008 * Block out ext4_truncate while we alter the tree
1010 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
1011 &count, goal,
1012 offsets + (partial - chain), partial);
1015 * The ext4_splice_branch call will free and forget any buffers
1016 * on the new chain if there is a failure, but that risks using
1017 * up transaction credits, especially for bitmaps where the
1018 * credits cannot be returned. Can we handle this somehow? We
1019 * may need to return -EAGAIN upwards in the worst case. --sct
1021 if (!err)
1022 err = ext4_splice_branch(handle, inode, iblock,
1023 partial, indirect_blks, count);
1024 if (err)
1025 goto cleanup;
1027 set_buffer_new(bh_result);
1029 ext4_update_inode_fsync_trans(handle, inode, 1);
1030 got_it:
1031 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1032 if (count > blocks_to_boundary)
1033 set_buffer_boundary(bh_result);
1034 err = count;
1035 /* Clean up and exit */
1036 partial = chain + depth - 1; /* the whole chain */
1037 cleanup:
1038 while (partial > chain) {
1039 BUFFER_TRACE(partial->bh, "call brelse");
1040 brelse(partial->bh);
1041 partial--;
1043 BUFFER_TRACE(bh_result, "returned");
1044 out:
1045 return err;
1048 #ifdef CONFIG_QUOTA
1049 qsize_t *ext4_get_reserved_space(struct inode *inode)
1051 return &EXT4_I(inode)->i_reserved_quota;
1053 #endif
1055 * Calculate the number of metadata blocks need to reserve
1056 * to allocate @blocks for non extent file based file
1058 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1060 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1061 int ind_blks, dind_blks, tind_blks;
1063 /* number of new indirect blocks needed */
1064 ind_blks = (blocks + icap - 1) / icap;
1066 dind_blks = (ind_blks + icap - 1) / icap;
1068 tind_blks = 1;
1070 return ind_blks + dind_blks + tind_blks;
1074 * Calculate the number of metadata blocks need to reserve
1075 * to allocate given number of blocks
1077 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1079 if (!blocks)
1080 return 0;
1082 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1083 return ext4_ext_calc_metadata_amount(inode, blocks);
1085 return ext4_indirect_calc_metadata_amount(inode, blocks);
1088 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1090 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1091 int total, mdb, mdb_free;
1093 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1094 /* recalculate the number of metablocks still need to be reserved */
1095 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1096 mdb = ext4_calc_metadata_amount(inode, total);
1098 /* figure out how many metablocks to release */
1099 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1100 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1102 if (mdb_free) {
1103 /* Account for allocated meta_blocks */
1104 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1106 /* update fs dirty blocks counter */
1107 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1108 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1109 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1112 /* update per-inode reservations */
1113 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1114 EXT4_I(inode)->i_reserved_data_blocks -= used;
1115 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1118 * free those over-booking quota for metadata blocks
1120 if (mdb_free)
1121 vfs_dq_release_reservation_block(inode, mdb_free);
1124 * If we have done all the pending block allocations and if
1125 * there aren't any writers on the inode, we can discard the
1126 * inode's preallocations.
1128 if (!total && (atomic_read(&inode->i_writecount) == 0))
1129 ext4_discard_preallocations(inode);
1132 static int check_block_validity(struct inode *inode, const char *msg,
1133 sector_t logical, sector_t phys, int len)
1135 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1136 ext4_error(inode->i_sb, msg,
1137 "inode #%lu logical block %llu mapped to %llu "
1138 "(size %d)", inode->i_ino,
1139 (unsigned long long) logical,
1140 (unsigned long long) phys, len);
1141 return -EIO;
1143 return 0;
1147 * Return the number of contiguous dirty pages in a given inode
1148 * starting at page frame idx.
1150 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1151 unsigned int max_pages)
1153 struct address_space *mapping = inode->i_mapping;
1154 pgoff_t index;
1155 struct pagevec pvec;
1156 pgoff_t num = 0;
1157 int i, nr_pages, done = 0;
1159 if (max_pages == 0)
1160 return 0;
1161 pagevec_init(&pvec, 0);
1162 while (!done) {
1163 index = idx;
1164 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1165 PAGECACHE_TAG_DIRTY,
1166 (pgoff_t)PAGEVEC_SIZE);
1167 if (nr_pages == 0)
1168 break;
1169 for (i = 0; i < nr_pages; i++) {
1170 struct page *page = pvec.pages[i];
1171 struct buffer_head *bh, *head;
1173 lock_page(page);
1174 if (unlikely(page->mapping != mapping) ||
1175 !PageDirty(page) ||
1176 PageWriteback(page) ||
1177 page->index != idx) {
1178 done = 1;
1179 unlock_page(page);
1180 break;
1182 if (page_has_buffers(page)) {
1183 bh = head = page_buffers(page);
1184 do {
1185 if (!buffer_delay(bh) &&
1186 !buffer_unwritten(bh))
1187 done = 1;
1188 bh = bh->b_this_page;
1189 } while (!done && (bh != head));
1191 unlock_page(page);
1192 if (done)
1193 break;
1194 idx++;
1195 num++;
1196 if (num >= max_pages)
1197 break;
1199 pagevec_release(&pvec);
1201 return num;
1205 * The ext4_get_blocks() function tries to look up the requested blocks,
1206 * and returns if the blocks are already mapped.
1208 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1209 * and store the allocated blocks in the result buffer head and mark it
1210 * mapped.
1212 * If file type is extents based, it will call ext4_ext_get_blocks(),
1213 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1214 * based files
1216 * On success, it returns the number of blocks being mapped or allocate.
1217 * if create==0 and the blocks are pre-allocated and uninitialized block,
1218 * the result buffer head is unmapped. If the create ==1, it will make sure
1219 * the buffer head is mapped.
1221 * It returns 0 if plain look up failed (blocks have not been allocated), in
1222 * that casem, buffer head is unmapped
1224 * It returns the error in case of allocation failure.
1226 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1227 unsigned int max_blocks, struct buffer_head *bh,
1228 int flags)
1230 int retval;
1232 clear_buffer_mapped(bh);
1233 clear_buffer_unwritten(bh);
1235 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1236 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1237 (unsigned long)block);
1239 * Try to see if we can get the block without requesting a new
1240 * file system block.
1242 down_read((&EXT4_I(inode)->i_data_sem));
1243 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1244 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1245 bh, 0);
1246 } else {
1247 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1248 bh, 0);
1250 up_read((&EXT4_I(inode)->i_data_sem));
1252 if (retval > 0 && buffer_mapped(bh)) {
1253 int ret = check_block_validity(inode, "file system corruption",
1254 block, bh->b_blocknr, retval);
1255 if (ret != 0)
1256 return ret;
1259 /* If it is only a block(s) look up */
1260 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1261 return retval;
1264 * Returns if the blocks have already allocated
1266 * Note that if blocks have been preallocated
1267 * ext4_ext_get_block() returns th create = 0
1268 * with buffer head unmapped.
1270 if (retval > 0 && buffer_mapped(bh))
1271 return retval;
1274 * When we call get_blocks without the create flag, the
1275 * BH_Unwritten flag could have gotten set if the blocks
1276 * requested were part of a uninitialized extent. We need to
1277 * clear this flag now that we are committed to convert all or
1278 * part of the uninitialized extent to be an initialized
1279 * extent. This is because we need to avoid the combination
1280 * of BH_Unwritten and BH_Mapped flags being simultaneously
1281 * set on the buffer_head.
1283 clear_buffer_unwritten(bh);
1286 * New blocks allocate and/or writing to uninitialized extent
1287 * will possibly result in updating i_data, so we take
1288 * the write lock of i_data_sem, and call get_blocks()
1289 * with create == 1 flag.
1291 down_write((&EXT4_I(inode)->i_data_sem));
1294 * if the caller is from delayed allocation writeout path
1295 * we have already reserved fs blocks for allocation
1296 * let the underlying get_block() function know to
1297 * avoid double accounting
1299 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1300 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1302 * We need to check for EXT4 here because migrate
1303 * could have changed the inode type in between
1305 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1306 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1307 bh, flags);
1308 } else {
1309 retval = ext4_ind_get_blocks(handle, inode, block,
1310 max_blocks, bh, flags);
1312 if (retval > 0 && buffer_new(bh)) {
1314 * We allocated new blocks which will result in
1315 * i_data's format changing. Force the migrate
1316 * to fail by clearing migrate flags
1318 EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1322 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1323 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1326 * Update reserved blocks/metadata blocks after successful
1327 * block allocation which had been deferred till now.
1329 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1330 ext4_da_update_reserve_space(inode, retval);
1332 up_write((&EXT4_I(inode)->i_data_sem));
1333 if (retval > 0 && buffer_mapped(bh)) {
1334 int ret = check_block_validity(inode, "file system "
1335 "corruption after allocation",
1336 block, bh->b_blocknr, retval);
1337 if (ret != 0)
1338 return ret;
1340 return retval;
1343 /* Maximum number of blocks we map for direct IO at once. */
1344 #define DIO_MAX_BLOCKS 4096
1346 int ext4_get_block(struct inode *inode, sector_t iblock,
1347 struct buffer_head *bh_result, int create)
1349 handle_t *handle = ext4_journal_current_handle();
1350 int ret = 0, started = 0;
1351 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1352 int dio_credits;
1354 if (create && !handle) {
1355 /* Direct IO write... */
1356 if (max_blocks > DIO_MAX_BLOCKS)
1357 max_blocks = DIO_MAX_BLOCKS;
1358 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1359 handle = ext4_journal_start(inode, dio_credits);
1360 if (IS_ERR(handle)) {
1361 ret = PTR_ERR(handle);
1362 goto out;
1364 started = 1;
1367 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1368 create ? EXT4_GET_BLOCKS_CREATE : 0);
1369 if (ret > 0) {
1370 bh_result->b_size = (ret << inode->i_blkbits);
1371 ret = 0;
1373 if (started)
1374 ext4_journal_stop(handle);
1375 out:
1376 return ret;
1380 * `handle' can be NULL if create is zero
1382 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1383 ext4_lblk_t block, int create, int *errp)
1385 struct buffer_head dummy;
1386 int fatal = 0, err;
1387 int flags = 0;
1389 J_ASSERT(handle != NULL || create == 0);
1391 dummy.b_state = 0;
1392 dummy.b_blocknr = -1000;
1393 buffer_trace_init(&dummy.b_history);
1394 if (create)
1395 flags |= EXT4_GET_BLOCKS_CREATE;
1396 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1398 * ext4_get_blocks() returns number of blocks mapped. 0 in
1399 * case of a HOLE.
1401 if (err > 0) {
1402 if (err > 1)
1403 WARN_ON(1);
1404 err = 0;
1406 *errp = err;
1407 if (!err && buffer_mapped(&dummy)) {
1408 struct buffer_head *bh;
1409 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1410 if (!bh) {
1411 *errp = -EIO;
1412 goto err;
1414 if (buffer_new(&dummy)) {
1415 J_ASSERT(create != 0);
1416 J_ASSERT(handle != NULL);
1419 * Now that we do not always journal data, we should
1420 * keep in mind whether this should always journal the
1421 * new buffer as metadata. For now, regular file
1422 * writes use ext4_get_block instead, so it's not a
1423 * problem.
1425 lock_buffer(bh);
1426 BUFFER_TRACE(bh, "call get_create_access");
1427 fatal = ext4_journal_get_create_access(handle, bh);
1428 if (!fatal && !buffer_uptodate(bh)) {
1429 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1430 set_buffer_uptodate(bh);
1432 unlock_buffer(bh);
1433 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1434 err = ext4_handle_dirty_metadata(handle, inode, bh);
1435 if (!fatal)
1436 fatal = err;
1437 } else {
1438 BUFFER_TRACE(bh, "not a new buffer");
1440 if (fatal) {
1441 *errp = fatal;
1442 brelse(bh);
1443 bh = NULL;
1445 return bh;
1447 err:
1448 return NULL;
1451 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1452 ext4_lblk_t block, int create, int *err)
1454 struct buffer_head *bh;
1456 bh = ext4_getblk(handle, inode, block, create, err);
1457 if (!bh)
1458 return bh;
1459 if (buffer_uptodate(bh))
1460 return bh;
1461 ll_rw_block(READ_META, 1, &bh);
1462 wait_on_buffer(bh);
1463 if (buffer_uptodate(bh))
1464 return bh;
1465 put_bh(bh);
1466 *err = -EIO;
1467 return NULL;
1470 static int walk_page_buffers(handle_t *handle,
1471 struct buffer_head *head,
1472 unsigned from,
1473 unsigned to,
1474 int *partial,
1475 int (*fn)(handle_t *handle,
1476 struct buffer_head *bh))
1478 struct buffer_head *bh;
1479 unsigned block_start, block_end;
1480 unsigned blocksize = head->b_size;
1481 int err, ret = 0;
1482 struct buffer_head *next;
1484 for (bh = head, block_start = 0;
1485 ret == 0 && (bh != head || !block_start);
1486 block_start = block_end, bh = next) {
1487 next = bh->b_this_page;
1488 block_end = block_start + blocksize;
1489 if (block_end <= from || block_start >= to) {
1490 if (partial && !buffer_uptodate(bh))
1491 *partial = 1;
1492 continue;
1494 err = (*fn)(handle, bh);
1495 if (!ret)
1496 ret = err;
1498 return ret;
1502 * To preserve ordering, it is essential that the hole instantiation and
1503 * the data write be encapsulated in a single transaction. We cannot
1504 * close off a transaction and start a new one between the ext4_get_block()
1505 * and the commit_write(). So doing the jbd2_journal_start at the start of
1506 * prepare_write() is the right place.
1508 * Also, this function can nest inside ext4_writepage() ->
1509 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1510 * has generated enough buffer credits to do the whole page. So we won't
1511 * block on the journal in that case, which is good, because the caller may
1512 * be PF_MEMALLOC.
1514 * By accident, ext4 can be reentered when a transaction is open via
1515 * quota file writes. If we were to commit the transaction while thus
1516 * reentered, there can be a deadlock - we would be holding a quota
1517 * lock, and the commit would never complete if another thread had a
1518 * transaction open and was blocking on the quota lock - a ranking
1519 * violation.
1521 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1522 * will _not_ run commit under these circumstances because handle->h_ref
1523 * is elevated. We'll still have enough credits for the tiny quotafile
1524 * write.
1526 static int do_journal_get_write_access(handle_t *handle,
1527 struct buffer_head *bh)
1529 if (!buffer_mapped(bh) || buffer_freed(bh))
1530 return 0;
1531 return ext4_journal_get_write_access(handle, bh);
1535 * Truncate blocks that were not used by write. We have to truncate the
1536 * pagecache as well so that corresponding buffers get properly unmapped.
1538 static void ext4_truncate_failed_write(struct inode *inode)
1540 truncate_inode_pages(inode->i_mapping, inode->i_size);
1541 ext4_truncate(inode);
1544 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1545 loff_t pos, unsigned len, unsigned flags,
1546 struct page **pagep, void **fsdata)
1548 struct inode *inode = mapping->host;
1549 int ret, needed_blocks;
1550 handle_t *handle;
1551 int retries = 0;
1552 struct page *page;
1553 pgoff_t index;
1554 unsigned from, to;
1556 trace_ext4_write_begin(inode, pos, len, flags);
1558 * Reserve one block more for addition to orphan list in case
1559 * we allocate blocks but write fails for some reason
1561 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1562 index = pos >> PAGE_CACHE_SHIFT;
1563 from = pos & (PAGE_CACHE_SIZE - 1);
1564 to = from + len;
1566 retry:
1567 handle = ext4_journal_start(inode, needed_blocks);
1568 if (IS_ERR(handle)) {
1569 ret = PTR_ERR(handle);
1570 goto out;
1573 /* We cannot recurse into the filesystem as the transaction is already
1574 * started */
1575 flags |= AOP_FLAG_NOFS;
1577 page = grab_cache_page_write_begin(mapping, index, flags);
1578 if (!page) {
1579 ext4_journal_stop(handle);
1580 ret = -ENOMEM;
1581 goto out;
1583 *pagep = page;
1585 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1586 ext4_get_block);
1588 if (!ret && ext4_should_journal_data(inode)) {
1589 ret = walk_page_buffers(handle, page_buffers(page),
1590 from, to, NULL, do_journal_get_write_access);
1593 if (ret) {
1594 unlock_page(page);
1595 page_cache_release(page);
1597 * block_write_begin may have instantiated a few blocks
1598 * outside i_size. Trim these off again. Don't need
1599 * i_size_read because we hold i_mutex.
1601 * Add inode to orphan list in case we crash before
1602 * truncate finishes
1604 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1605 ext4_orphan_add(handle, inode);
1607 ext4_journal_stop(handle);
1608 if (pos + len > inode->i_size) {
1609 ext4_truncate_failed_write(inode);
1611 * If truncate failed early the inode might
1612 * still be on the orphan list; we need to
1613 * make sure the inode is removed from the
1614 * orphan list in that case.
1616 if (inode->i_nlink)
1617 ext4_orphan_del(NULL, inode);
1621 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1622 goto retry;
1623 out:
1624 return ret;
1627 /* For write_end() in data=journal mode */
1628 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1630 if (!buffer_mapped(bh) || buffer_freed(bh))
1631 return 0;
1632 set_buffer_uptodate(bh);
1633 return ext4_handle_dirty_metadata(handle, NULL, bh);
1636 static int ext4_generic_write_end(struct file *file,
1637 struct address_space *mapping,
1638 loff_t pos, unsigned len, unsigned copied,
1639 struct page *page, void *fsdata)
1641 int i_size_changed = 0;
1642 struct inode *inode = mapping->host;
1643 handle_t *handle = ext4_journal_current_handle();
1645 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1648 * No need to use i_size_read() here, the i_size
1649 * cannot change under us because we hold i_mutex.
1651 * But it's important to update i_size while still holding page lock:
1652 * page writeout could otherwise come in and zero beyond i_size.
1654 if (pos + copied > inode->i_size) {
1655 i_size_write(inode, pos + copied);
1656 i_size_changed = 1;
1659 if (pos + copied > EXT4_I(inode)->i_disksize) {
1660 /* We need to mark inode dirty even if
1661 * new_i_size is less that inode->i_size
1662 * bu greater than i_disksize.(hint delalloc)
1664 ext4_update_i_disksize(inode, (pos + copied));
1665 i_size_changed = 1;
1667 unlock_page(page);
1668 page_cache_release(page);
1671 * Don't mark the inode dirty under page lock. First, it unnecessarily
1672 * makes the holding time of page lock longer. Second, it forces lock
1673 * ordering of page lock and transaction start for journaling
1674 * filesystems.
1676 if (i_size_changed)
1677 ext4_mark_inode_dirty(handle, inode);
1679 return copied;
1683 * We need to pick up the new inode size which generic_commit_write gave us
1684 * `file' can be NULL - eg, when called from page_symlink().
1686 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1687 * buffers are managed internally.
1689 static int ext4_ordered_write_end(struct file *file,
1690 struct address_space *mapping,
1691 loff_t pos, unsigned len, unsigned copied,
1692 struct page *page, void *fsdata)
1694 handle_t *handle = ext4_journal_current_handle();
1695 struct inode *inode = mapping->host;
1696 int ret = 0, ret2;
1698 trace_ext4_ordered_write_end(inode, pos, len, copied);
1699 ret = ext4_jbd2_file_inode(handle, inode);
1701 if (ret == 0) {
1702 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1703 page, fsdata);
1704 copied = ret2;
1705 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1706 /* if we have allocated more blocks and copied
1707 * less. We will have blocks allocated outside
1708 * inode->i_size. So truncate them
1710 ext4_orphan_add(handle, inode);
1711 if (ret2 < 0)
1712 ret = ret2;
1714 ret2 = ext4_journal_stop(handle);
1715 if (!ret)
1716 ret = ret2;
1718 if (pos + len > inode->i_size) {
1719 ext4_truncate_failed_write(inode);
1721 * If truncate failed early the inode might still be
1722 * on the orphan list; we need to make sure the inode
1723 * is removed from the orphan list in that case.
1725 if (inode->i_nlink)
1726 ext4_orphan_del(NULL, inode);
1730 return ret ? ret : copied;
1733 static int ext4_writeback_write_end(struct file *file,
1734 struct address_space *mapping,
1735 loff_t pos, unsigned len, unsigned copied,
1736 struct page *page, void *fsdata)
1738 handle_t *handle = ext4_journal_current_handle();
1739 struct inode *inode = mapping->host;
1740 int ret = 0, ret2;
1742 trace_ext4_writeback_write_end(inode, pos, len, copied);
1743 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1744 page, fsdata);
1745 copied = ret2;
1746 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1747 /* if we have allocated more blocks and copied
1748 * less. We will have blocks allocated outside
1749 * inode->i_size. So truncate them
1751 ext4_orphan_add(handle, inode);
1753 if (ret2 < 0)
1754 ret = ret2;
1756 ret2 = ext4_journal_stop(handle);
1757 if (!ret)
1758 ret = ret2;
1760 if (pos + len > inode->i_size) {
1761 ext4_truncate_failed_write(inode);
1763 * If truncate failed early the inode might still be
1764 * on the orphan list; we need to make sure the inode
1765 * is removed from the orphan list in that case.
1767 if (inode->i_nlink)
1768 ext4_orphan_del(NULL, inode);
1771 return ret ? ret : copied;
1774 static int ext4_journalled_write_end(struct file *file,
1775 struct address_space *mapping,
1776 loff_t pos, unsigned len, unsigned copied,
1777 struct page *page, void *fsdata)
1779 handle_t *handle = ext4_journal_current_handle();
1780 struct inode *inode = mapping->host;
1781 int ret = 0, ret2;
1782 int partial = 0;
1783 unsigned from, to;
1784 loff_t new_i_size;
1786 trace_ext4_journalled_write_end(inode, pos, len, copied);
1787 from = pos & (PAGE_CACHE_SIZE - 1);
1788 to = from + len;
1790 if (copied < len) {
1791 if (!PageUptodate(page))
1792 copied = 0;
1793 page_zero_new_buffers(page, from+copied, to);
1796 ret = walk_page_buffers(handle, page_buffers(page), from,
1797 to, &partial, write_end_fn);
1798 if (!partial)
1799 SetPageUptodate(page);
1800 new_i_size = pos + copied;
1801 if (new_i_size > inode->i_size)
1802 i_size_write(inode, pos+copied);
1803 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1804 if (new_i_size > EXT4_I(inode)->i_disksize) {
1805 ext4_update_i_disksize(inode, new_i_size);
1806 ret2 = ext4_mark_inode_dirty(handle, inode);
1807 if (!ret)
1808 ret = ret2;
1811 unlock_page(page);
1812 page_cache_release(page);
1813 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1814 /* if we have allocated more blocks and copied
1815 * less. We will have blocks allocated outside
1816 * inode->i_size. So truncate them
1818 ext4_orphan_add(handle, inode);
1820 ret2 = ext4_journal_stop(handle);
1821 if (!ret)
1822 ret = ret2;
1823 if (pos + len > inode->i_size) {
1824 ext4_truncate_failed_write(inode);
1826 * If truncate failed early the inode might still be
1827 * on the orphan list; we need to make sure the inode
1828 * is removed from the orphan list in that case.
1830 if (inode->i_nlink)
1831 ext4_orphan_del(NULL, inode);
1834 return ret ? ret : copied;
1837 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1839 int retries = 0;
1840 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1841 unsigned long md_needed, mdblocks, total = 0;
1844 * recalculate the amount of metadata blocks to reserve
1845 * in order to allocate nrblocks
1846 * worse case is one extent per block
1848 repeat:
1849 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1850 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1851 mdblocks = ext4_calc_metadata_amount(inode, total);
1852 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1854 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1855 total = md_needed + nrblocks;
1858 * Make quota reservation here to prevent quota overflow
1859 * later. Real quota accounting is done at pages writeout
1860 * time.
1862 if (vfs_dq_reserve_block(inode, total)) {
1863 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1864 return -EDQUOT;
1867 if (ext4_claim_free_blocks(sbi, total)) {
1868 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1869 vfs_dq_release_reservation_block(inode, total);
1870 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1871 yield();
1872 goto repeat;
1874 return -ENOSPC;
1876 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1877 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1879 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1880 return 0; /* success */
1883 static void ext4_da_release_space(struct inode *inode, int to_free)
1885 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1886 int total, mdb, mdb_free, release;
1888 if (!to_free)
1889 return; /* Nothing to release, exit */
1891 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1893 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1895 * if there is no reserved blocks, but we try to free some
1896 * then the counter is messed up somewhere.
1897 * but since this function is called from invalidate
1898 * page, it's harmless to return without any action
1900 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1901 "blocks for inode %lu, but there is no reserved "
1902 "data blocks\n", to_free, inode->i_ino);
1903 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1904 return;
1907 /* recalculate the number of metablocks still need to be reserved */
1908 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1909 mdb = ext4_calc_metadata_amount(inode, total);
1911 /* figure out how many metablocks to release */
1912 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1913 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1915 release = to_free + mdb_free;
1917 /* update fs dirty blocks counter for truncate case */
1918 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1920 /* update per-inode reservations */
1921 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1922 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1924 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1925 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1926 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1928 vfs_dq_release_reservation_block(inode, release);
1931 static void ext4_da_page_release_reservation(struct page *page,
1932 unsigned long offset)
1934 int to_release = 0;
1935 struct buffer_head *head, *bh;
1936 unsigned int curr_off = 0;
1938 head = page_buffers(page);
1939 bh = head;
1940 do {
1941 unsigned int next_off = curr_off + bh->b_size;
1943 if ((offset <= curr_off) && (buffer_delay(bh))) {
1944 to_release++;
1945 clear_buffer_delay(bh);
1947 curr_off = next_off;
1948 } while ((bh = bh->b_this_page) != head);
1949 ext4_da_release_space(page->mapping->host, to_release);
1953 * Delayed allocation stuff
1957 * mpage_da_submit_io - walks through extent of pages and try to write
1958 * them with writepage() call back
1960 * @mpd->inode: inode
1961 * @mpd->first_page: first page of the extent
1962 * @mpd->next_page: page after the last page of the extent
1964 * By the time mpage_da_submit_io() is called we expect all blocks
1965 * to be allocated. this may be wrong if allocation failed.
1967 * As pages are already locked by write_cache_pages(), we can't use it
1969 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1971 long pages_skipped;
1972 struct pagevec pvec;
1973 unsigned long index, end;
1974 int ret = 0, err, nr_pages, i;
1975 struct inode *inode = mpd->inode;
1976 struct address_space *mapping = inode->i_mapping;
1978 BUG_ON(mpd->next_page <= mpd->first_page);
1980 * We need to start from the first_page to the next_page - 1
1981 * to make sure we also write the mapped dirty buffer_heads.
1982 * If we look at mpd->b_blocknr we would only be looking
1983 * at the currently mapped buffer_heads.
1985 index = mpd->first_page;
1986 end = mpd->next_page - 1;
1988 pagevec_init(&pvec, 0);
1989 while (index <= end) {
1990 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1991 if (nr_pages == 0)
1992 break;
1993 for (i = 0; i < nr_pages; i++) {
1994 struct page *page = pvec.pages[i];
1996 index = page->index;
1997 if (index > end)
1998 break;
1999 index++;
2001 BUG_ON(!PageLocked(page));
2002 BUG_ON(PageWriteback(page));
2004 pages_skipped = mpd->wbc->pages_skipped;
2005 err = mapping->a_ops->writepage(page, mpd->wbc);
2006 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2008 * have successfully written the page
2009 * without skipping the same
2011 mpd->pages_written++;
2013 * In error case, we have to continue because
2014 * remaining pages are still locked
2015 * XXX: unlock and re-dirty them?
2017 if (ret == 0)
2018 ret = err;
2020 pagevec_release(&pvec);
2022 return ret;
2026 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2028 * @mpd->inode - inode to walk through
2029 * @exbh->b_blocknr - first block on a disk
2030 * @exbh->b_size - amount of space in bytes
2031 * @logical - first logical block to start assignment with
2033 * the function goes through all passed space and put actual disk
2034 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2036 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2037 struct buffer_head *exbh)
2039 struct inode *inode = mpd->inode;
2040 struct address_space *mapping = inode->i_mapping;
2041 int blocks = exbh->b_size >> inode->i_blkbits;
2042 sector_t pblock = exbh->b_blocknr, cur_logical;
2043 struct buffer_head *head, *bh;
2044 pgoff_t index, end;
2045 struct pagevec pvec;
2046 int nr_pages, i;
2048 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2049 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2050 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2052 pagevec_init(&pvec, 0);
2054 while (index <= end) {
2055 /* XXX: optimize tail */
2056 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2057 if (nr_pages == 0)
2058 break;
2059 for (i = 0; i < nr_pages; i++) {
2060 struct page *page = pvec.pages[i];
2062 index = page->index;
2063 if (index > end)
2064 break;
2065 index++;
2067 BUG_ON(!PageLocked(page));
2068 BUG_ON(PageWriteback(page));
2069 BUG_ON(!page_has_buffers(page));
2071 bh = page_buffers(page);
2072 head = bh;
2074 /* skip blocks out of the range */
2075 do {
2076 if (cur_logical >= logical)
2077 break;
2078 cur_logical++;
2079 } while ((bh = bh->b_this_page) != head);
2081 do {
2082 if (cur_logical >= logical + blocks)
2083 break;
2085 if (buffer_delay(bh) ||
2086 buffer_unwritten(bh)) {
2088 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2090 if (buffer_delay(bh)) {
2091 clear_buffer_delay(bh);
2092 bh->b_blocknr = pblock;
2093 } else {
2095 * unwritten already should have
2096 * blocknr assigned. Verify that
2098 clear_buffer_unwritten(bh);
2099 BUG_ON(bh->b_blocknr != pblock);
2102 } else if (buffer_mapped(bh))
2103 BUG_ON(bh->b_blocknr != pblock);
2105 cur_logical++;
2106 pblock++;
2107 } while ((bh = bh->b_this_page) != head);
2109 pagevec_release(&pvec);
2115 * __unmap_underlying_blocks - just a helper function to unmap
2116 * set of blocks described by @bh
2118 static inline void __unmap_underlying_blocks(struct inode *inode,
2119 struct buffer_head *bh)
2121 struct block_device *bdev = inode->i_sb->s_bdev;
2122 int blocks, i;
2124 blocks = bh->b_size >> inode->i_blkbits;
2125 for (i = 0; i < blocks; i++)
2126 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2129 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2130 sector_t logical, long blk_cnt)
2132 int nr_pages, i;
2133 pgoff_t index, end;
2134 struct pagevec pvec;
2135 struct inode *inode = mpd->inode;
2136 struct address_space *mapping = inode->i_mapping;
2138 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2139 end = (logical + blk_cnt - 1) >>
2140 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2141 while (index <= end) {
2142 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2143 if (nr_pages == 0)
2144 break;
2145 for (i = 0; i < nr_pages; i++) {
2146 struct page *page = pvec.pages[i];
2147 index = page->index;
2148 if (index > end)
2149 break;
2150 index++;
2152 BUG_ON(!PageLocked(page));
2153 BUG_ON(PageWriteback(page));
2154 block_invalidatepage(page, 0);
2155 ClearPageUptodate(page);
2156 unlock_page(page);
2159 return;
2162 static void ext4_print_free_blocks(struct inode *inode)
2164 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2165 printk(KERN_CRIT "Total free blocks count %lld\n",
2166 ext4_count_free_blocks(inode->i_sb));
2167 printk(KERN_CRIT "Free/Dirty block details\n");
2168 printk(KERN_CRIT "free_blocks=%lld\n",
2169 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2170 printk(KERN_CRIT "dirty_blocks=%lld\n",
2171 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2172 printk(KERN_CRIT "Block reservation details\n");
2173 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2174 EXT4_I(inode)->i_reserved_data_blocks);
2175 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2176 EXT4_I(inode)->i_reserved_meta_blocks);
2177 return;
2181 * mpage_da_map_blocks - go through given space
2183 * @mpd - bh describing space
2185 * The function skips space we know is already mapped to disk blocks.
2188 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2190 int err, blks, get_blocks_flags;
2191 struct buffer_head new;
2192 sector_t next = mpd->b_blocknr;
2193 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2194 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2195 handle_t *handle = NULL;
2198 * We consider only non-mapped and non-allocated blocks
2200 if ((mpd->b_state & (1 << BH_Mapped)) &&
2201 !(mpd->b_state & (1 << BH_Delay)) &&
2202 !(mpd->b_state & (1 << BH_Unwritten)))
2203 return 0;
2206 * If we didn't accumulate anything to write simply return
2208 if (!mpd->b_size)
2209 return 0;
2211 handle = ext4_journal_current_handle();
2212 BUG_ON(!handle);
2215 * Call ext4_get_blocks() to allocate any delayed allocation
2216 * blocks, or to convert an uninitialized extent to be
2217 * initialized (in the case where we have written into
2218 * one or more preallocated blocks).
2220 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2221 * indicate that we are on the delayed allocation path. This
2222 * affects functions in many different parts of the allocation
2223 * call path. This flag exists primarily because we don't
2224 * want to change *many* call functions, so ext4_get_blocks()
2225 * will set the magic i_delalloc_reserved_flag once the
2226 * inode's allocation semaphore is taken.
2228 * If the blocks in questions were delalloc blocks, set
2229 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2230 * variables are updated after the blocks have been allocated.
2232 new.b_state = 0;
2233 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2234 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2235 if (mpd->b_state & (1 << BH_Delay))
2236 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2237 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2238 &new, get_blocks_flags);
2239 if (blks < 0) {
2240 err = blks;
2242 * If get block returns with error we simply
2243 * return. Later writepage will redirty the page and
2244 * writepages will find the dirty page again
2246 if (err == -EAGAIN)
2247 return 0;
2249 if (err == -ENOSPC &&
2250 ext4_count_free_blocks(mpd->inode->i_sb)) {
2251 mpd->retval = err;
2252 return 0;
2256 * get block failure will cause us to loop in
2257 * writepages, because a_ops->writepage won't be able
2258 * to make progress. The page will be redirtied by
2259 * writepage and writepages will again try to write
2260 * the same.
2262 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2263 "delayed block allocation failed for inode %lu at "
2264 "logical offset %llu with max blocks %zd with "
2265 "error %d\n", mpd->inode->i_ino,
2266 (unsigned long long) next,
2267 mpd->b_size >> mpd->inode->i_blkbits, err);
2268 printk(KERN_CRIT "This should not happen!! "
2269 "Data will be lost\n");
2270 if (err == -ENOSPC) {
2271 ext4_print_free_blocks(mpd->inode);
2273 /* invalidate all the pages */
2274 ext4_da_block_invalidatepages(mpd, next,
2275 mpd->b_size >> mpd->inode->i_blkbits);
2276 return err;
2278 BUG_ON(blks == 0);
2280 new.b_size = (blks << mpd->inode->i_blkbits);
2282 if (buffer_new(&new))
2283 __unmap_underlying_blocks(mpd->inode, &new);
2286 * If blocks are delayed marked, we need to
2287 * put actual blocknr and drop delayed bit
2289 if ((mpd->b_state & (1 << BH_Delay)) ||
2290 (mpd->b_state & (1 << BH_Unwritten)))
2291 mpage_put_bnr_to_bhs(mpd, next, &new);
2293 if (ext4_should_order_data(mpd->inode)) {
2294 err = ext4_jbd2_file_inode(handle, mpd->inode);
2295 if (err)
2296 return err;
2300 * Update on-disk size along with block allocation.
2302 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2303 if (disksize > i_size_read(mpd->inode))
2304 disksize = i_size_read(mpd->inode);
2305 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2306 ext4_update_i_disksize(mpd->inode, disksize);
2307 return ext4_mark_inode_dirty(handle, mpd->inode);
2310 return 0;
2313 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2314 (1 << BH_Delay) | (1 << BH_Unwritten))
2317 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2319 * @mpd->lbh - extent of blocks
2320 * @logical - logical number of the block in the file
2321 * @bh - bh of the block (used to access block's state)
2323 * the function is used to collect contig. blocks in same state
2325 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2326 sector_t logical, size_t b_size,
2327 unsigned long b_state)
2329 sector_t next;
2330 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2332 /* check if thereserved journal credits might overflow */
2333 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2334 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2336 * With non-extent format we are limited by the journal
2337 * credit available. Total credit needed to insert
2338 * nrblocks contiguous blocks is dependent on the
2339 * nrblocks. So limit nrblocks.
2341 goto flush_it;
2342 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2343 EXT4_MAX_TRANS_DATA) {
2345 * Adding the new buffer_head would make it cross the
2346 * allowed limit for which we have journal credit
2347 * reserved. So limit the new bh->b_size
2349 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2350 mpd->inode->i_blkbits;
2351 /* we will do mpage_da_submit_io in the next loop */
2355 * First block in the extent
2357 if (mpd->b_size == 0) {
2358 mpd->b_blocknr = logical;
2359 mpd->b_size = b_size;
2360 mpd->b_state = b_state & BH_FLAGS;
2361 return;
2364 next = mpd->b_blocknr + nrblocks;
2366 * Can we merge the block to our big extent?
2368 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2369 mpd->b_size += b_size;
2370 return;
2373 flush_it:
2375 * We couldn't merge the block to our extent, so we
2376 * need to flush current extent and start new one
2378 if (mpage_da_map_blocks(mpd) == 0)
2379 mpage_da_submit_io(mpd);
2380 mpd->io_done = 1;
2381 return;
2384 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2386 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2390 * __mpage_da_writepage - finds extent of pages and blocks
2392 * @page: page to consider
2393 * @wbc: not used, we just follow rules
2394 * @data: context
2396 * The function finds extents of pages and scan them for all blocks.
2398 static int __mpage_da_writepage(struct page *page,
2399 struct writeback_control *wbc, void *data)
2401 struct mpage_da_data *mpd = data;
2402 struct inode *inode = mpd->inode;
2403 struct buffer_head *bh, *head;
2404 sector_t logical;
2406 if (mpd->io_done) {
2408 * Rest of the page in the page_vec
2409 * redirty then and skip then. We will
2410 * try to write them again after
2411 * starting a new transaction
2413 redirty_page_for_writepage(wbc, page);
2414 unlock_page(page);
2415 return MPAGE_DA_EXTENT_TAIL;
2418 * Can we merge this page to current extent?
2420 if (mpd->next_page != page->index) {
2422 * Nope, we can't. So, we map non-allocated blocks
2423 * and start IO on them using writepage()
2425 if (mpd->next_page != mpd->first_page) {
2426 if (mpage_da_map_blocks(mpd) == 0)
2427 mpage_da_submit_io(mpd);
2429 * skip rest of the page in the page_vec
2431 mpd->io_done = 1;
2432 redirty_page_for_writepage(wbc, page);
2433 unlock_page(page);
2434 return MPAGE_DA_EXTENT_TAIL;
2438 * Start next extent of pages ...
2440 mpd->first_page = page->index;
2443 * ... and blocks
2445 mpd->b_size = 0;
2446 mpd->b_state = 0;
2447 mpd->b_blocknr = 0;
2450 mpd->next_page = page->index + 1;
2451 logical = (sector_t) page->index <<
2452 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2454 if (!page_has_buffers(page)) {
2455 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2456 (1 << BH_Dirty) | (1 << BH_Uptodate));
2457 if (mpd->io_done)
2458 return MPAGE_DA_EXTENT_TAIL;
2459 } else {
2461 * Page with regular buffer heads, just add all dirty ones
2463 head = page_buffers(page);
2464 bh = head;
2465 do {
2466 BUG_ON(buffer_locked(bh));
2468 * We need to try to allocate
2469 * unmapped blocks in the same page.
2470 * Otherwise we won't make progress
2471 * with the page in ext4_writepage
2473 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2474 mpage_add_bh_to_extent(mpd, logical,
2475 bh->b_size,
2476 bh->b_state);
2477 if (mpd->io_done)
2478 return MPAGE_DA_EXTENT_TAIL;
2479 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2481 * mapped dirty buffer. We need to update
2482 * the b_state because we look at
2483 * b_state in mpage_da_map_blocks. We don't
2484 * update b_size because if we find an
2485 * unmapped buffer_head later we need to
2486 * use the b_state flag of that buffer_head.
2488 if (mpd->b_size == 0)
2489 mpd->b_state = bh->b_state & BH_FLAGS;
2491 logical++;
2492 } while ((bh = bh->b_this_page) != head);
2495 return 0;
2499 * This is a special get_blocks_t callback which is used by
2500 * ext4_da_write_begin(). It will either return mapped block or
2501 * reserve space for a single block.
2503 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2504 * We also have b_blocknr = -1 and b_bdev initialized properly
2506 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2507 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2508 * initialized properly.
2510 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2511 struct buffer_head *bh_result, int create)
2513 int ret = 0;
2514 sector_t invalid_block = ~((sector_t) 0xffff);
2516 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2517 invalid_block = ~0;
2519 BUG_ON(create == 0);
2520 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2523 * first, we need to know whether the block is allocated already
2524 * preallocated blocks are unmapped but should treated
2525 * the same as allocated blocks.
2527 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2528 if ((ret == 0) && !buffer_delay(bh_result)) {
2529 /* the block isn't (pre)allocated yet, let's reserve space */
2531 * XXX: __block_prepare_write() unmaps passed block,
2532 * is it OK?
2534 ret = ext4_da_reserve_space(inode, 1);
2535 if (ret)
2536 /* not enough space to reserve */
2537 return ret;
2539 map_bh(bh_result, inode->i_sb, invalid_block);
2540 set_buffer_new(bh_result);
2541 set_buffer_delay(bh_result);
2542 } else if (ret > 0) {
2543 bh_result->b_size = (ret << inode->i_blkbits);
2544 if (buffer_unwritten(bh_result)) {
2545 /* A delayed write to unwritten bh should
2546 * be marked new and mapped. Mapped ensures
2547 * that we don't do get_block multiple times
2548 * when we write to the same offset and new
2549 * ensures that we do proper zero out for
2550 * partial write.
2552 set_buffer_new(bh_result);
2553 set_buffer_mapped(bh_result);
2555 ret = 0;
2558 return ret;
2562 * This function is used as a standard get_block_t calback function
2563 * when there is no desire to allocate any blocks. It is used as a
2564 * callback function for block_prepare_write(), nobh_writepage(), and
2565 * block_write_full_page(). These functions should only try to map a
2566 * single block at a time.
2568 * Since this function doesn't do block allocations even if the caller
2569 * requests it by passing in create=1, it is critically important that
2570 * any caller checks to make sure that any buffer heads are returned
2571 * by this function are either all already mapped or marked for
2572 * delayed allocation before calling nobh_writepage() or
2573 * block_write_full_page(). Otherwise, b_blocknr could be left
2574 * unitialized, and the page write functions will be taken by
2575 * surprise.
2577 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2578 struct buffer_head *bh_result, int create)
2580 int ret = 0;
2581 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2583 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2586 * we don't want to do block allocation in writepage
2587 * so call get_block_wrap with create = 0
2589 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2590 if (ret > 0) {
2591 bh_result->b_size = (ret << inode->i_blkbits);
2592 ret = 0;
2594 return ret;
2597 static int bget_one(handle_t *handle, struct buffer_head *bh)
2599 get_bh(bh);
2600 return 0;
2603 static int bput_one(handle_t *handle, struct buffer_head *bh)
2605 put_bh(bh);
2606 return 0;
2609 static int __ext4_journalled_writepage(struct page *page,
2610 struct writeback_control *wbc,
2611 unsigned int len)
2613 struct address_space *mapping = page->mapping;
2614 struct inode *inode = mapping->host;
2615 struct buffer_head *page_bufs;
2616 handle_t *handle = NULL;
2617 int ret = 0;
2618 int err;
2620 page_bufs = page_buffers(page);
2621 BUG_ON(!page_bufs);
2622 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2623 /* As soon as we unlock the page, it can go away, but we have
2624 * references to buffers so we are safe */
2625 unlock_page(page);
2627 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2628 if (IS_ERR(handle)) {
2629 ret = PTR_ERR(handle);
2630 goto out;
2633 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2634 do_journal_get_write_access);
2636 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2637 write_end_fn);
2638 if (ret == 0)
2639 ret = err;
2640 err = ext4_journal_stop(handle);
2641 if (!ret)
2642 ret = err;
2644 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2645 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2646 out:
2647 return ret;
2651 * Note that we don't need to start a transaction unless we're journaling data
2652 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2653 * need to file the inode to the transaction's list in ordered mode because if
2654 * we are writing back data added by write(), the inode is already there and if
2655 * we are writing back data modified via mmap(), noone guarantees in which
2656 * transaction the data will hit the disk. In case we are journaling data, we
2657 * cannot start transaction directly because transaction start ranks above page
2658 * lock so we have to do some magic.
2660 * This function can get called via...
2661 * - ext4_da_writepages after taking page lock (have journal handle)
2662 * - journal_submit_inode_data_buffers (no journal handle)
2663 * - shrink_page_list via pdflush (no journal handle)
2664 * - grab_page_cache when doing write_begin (have journal handle)
2666 * We don't do any block allocation in this function. If we have page with
2667 * multiple blocks we need to write those buffer_heads that are mapped. This
2668 * is important for mmaped based write. So if we do with blocksize 1K
2669 * truncate(f, 1024);
2670 * a = mmap(f, 0, 4096);
2671 * a[0] = 'a';
2672 * truncate(f, 4096);
2673 * we have in the page first buffer_head mapped via page_mkwrite call back
2674 * but other bufer_heads would be unmapped but dirty(dirty done via the
2675 * do_wp_page). So writepage should write the first block. If we modify
2676 * the mmap area beyond 1024 we will again get a page_fault and the
2677 * page_mkwrite callback will do the block allocation and mark the
2678 * buffer_heads mapped.
2680 * We redirty the page if we have any buffer_heads that is either delay or
2681 * unwritten in the page.
2683 * We can get recursively called as show below.
2685 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2686 * ext4_writepage()
2688 * But since we don't do any block allocation we should not deadlock.
2689 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2691 static int ext4_writepage(struct page *page,
2692 struct writeback_control *wbc)
2694 int ret = 0;
2695 loff_t size;
2696 unsigned int len;
2697 struct buffer_head *page_bufs;
2698 struct inode *inode = page->mapping->host;
2700 trace_ext4_writepage(inode, page);
2701 size = i_size_read(inode);
2702 if (page->index == size >> PAGE_CACHE_SHIFT)
2703 len = size & ~PAGE_CACHE_MASK;
2704 else
2705 len = PAGE_CACHE_SIZE;
2707 if (page_has_buffers(page)) {
2708 page_bufs = page_buffers(page);
2709 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2710 ext4_bh_delay_or_unwritten)) {
2712 * We don't want to do block allocation
2713 * So redirty the page and return
2714 * We may reach here when we do a journal commit
2715 * via journal_submit_inode_data_buffers.
2716 * If we don't have mapping block we just ignore
2717 * them. We can also reach here via shrink_page_list
2719 redirty_page_for_writepage(wbc, page);
2720 unlock_page(page);
2721 return 0;
2723 } else {
2725 * The test for page_has_buffers() is subtle:
2726 * We know the page is dirty but it lost buffers. That means
2727 * that at some moment in time after write_begin()/write_end()
2728 * has been called all buffers have been clean and thus they
2729 * must have been written at least once. So they are all
2730 * mapped and we can happily proceed with mapping them
2731 * and writing the page.
2733 * Try to initialize the buffer_heads and check whether
2734 * all are mapped and non delay. We don't want to
2735 * do block allocation here.
2737 ret = block_prepare_write(page, 0, len,
2738 noalloc_get_block_write);
2739 if (!ret) {
2740 page_bufs = page_buffers(page);
2741 /* check whether all are mapped and non delay */
2742 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2743 ext4_bh_delay_or_unwritten)) {
2744 redirty_page_for_writepage(wbc, page);
2745 unlock_page(page);
2746 return 0;
2748 } else {
2750 * We can't do block allocation here
2751 * so just redity the page and unlock
2752 * and return
2754 redirty_page_for_writepage(wbc, page);
2755 unlock_page(page);
2756 return 0;
2758 /* now mark the buffer_heads as dirty and uptodate */
2759 block_commit_write(page, 0, len);
2762 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2764 * It's mmapped pagecache. Add buffers and journal it. There
2765 * doesn't seem much point in redirtying the page here.
2767 ClearPageChecked(page);
2768 return __ext4_journalled_writepage(page, wbc, len);
2771 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2772 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2773 else
2774 ret = block_write_full_page(page, noalloc_get_block_write,
2775 wbc);
2777 return ret;
2781 * This is called via ext4_da_writepages() to
2782 * calulate the total number of credits to reserve to fit
2783 * a single extent allocation into a single transaction,
2784 * ext4_da_writpeages() will loop calling this before
2785 * the block allocation.
2788 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2790 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2793 * With non-extent format the journal credit needed to
2794 * insert nrblocks contiguous block is dependent on
2795 * number of contiguous block. So we will limit
2796 * number of contiguous block to a sane value
2798 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2799 (max_blocks > EXT4_MAX_TRANS_DATA))
2800 max_blocks = EXT4_MAX_TRANS_DATA;
2802 return ext4_chunk_trans_blocks(inode, max_blocks);
2805 static int ext4_da_writepages(struct address_space *mapping,
2806 struct writeback_control *wbc)
2808 pgoff_t index;
2809 int range_whole = 0;
2810 handle_t *handle = NULL;
2811 struct mpage_da_data mpd;
2812 struct inode *inode = mapping->host;
2813 int no_nrwrite_index_update;
2814 int pages_written = 0;
2815 long pages_skipped;
2816 unsigned int max_pages;
2817 int range_cyclic, cycled = 1, io_done = 0;
2818 int needed_blocks, ret = 0;
2819 long desired_nr_to_write, nr_to_writebump = 0;
2820 loff_t range_start = wbc->range_start;
2821 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2823 trace_ext4_da_writepages(inode, wbc);
2826 * No pages to write? This is mainly a kludge to avoid starting
2827 * a transaction for special inodes like journal inode on last iput()
2828 * because that could violate lock ordering on umount
2830 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2831 return 0;
2834 * If the filesystem has aborted, it is read-only, so return
2835 * right away instead of dumping stack traces later on that
2836 * will obscure the real source of the problem. We test
2837 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2838 * the latter could be true if the filesystem is mounted
2839 * read-only, and in that case, ext4_da_writepages should
2840 * *never* be called, so if that ever happens, we would want
2841 * the stack trace.
2843 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2844 return -EROFS;
2846 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2847 range_whole = 1;
2849 range_cyclic = wbc->range_cyclic;
2850 if (wbc->range_cyclic) {
2851 index = mapping->writeback_index;
2852 if (index)
2853 cycled = 0;
2854 wbc->range_start = index << PAGE_CACHE_SHIFT;
2855 wbc->range_end = LLONG_MAX;
2856 wbc->range_cyclic = 0;
2857 } else
2858 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2861 * This works around two forms of stupidity. The first is in
2862 * the writeback code, which caps the maximum number of pages
2863 * written to be 1024 pages. This is wrong on multiple
2864 * levels; different architectues have a different page size,
2865 * which changes the maximum amount of data which gets
2866 * written. Secondly, 4 megabytes is way too small. XFS
2867 * forces this value to be 16 megabytes by multiplying
2868 * nr_to_write parameter by four, and then relies on its
2869 * allocator to allocate larger extents to make them
2870 * contiguous. Unfortunately this brings us to the second
2871 * stupidity, which is that ext4's mballoc code only allocates
2872 * at most 2048 blocks. So we force contiguous writes up to
2873 * the number of dirty blocks in the inode, or
2874 * sbi->max_writeback_mb_bump whichever is smaller.
2876 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2877 if (!range_cyclic && range_whole)
2878 desired_nr_to_write = wbc->nr_to_write * 8;
2879 else
2880 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2881 max_pages);
2882 if (desired_nr_to_write > max_pages)
2883 desired_nr_to_write = max_pages;
2885 if (wbc->nr_to_write < desired_nr_to_write) {
2886 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2887 wbc->nr_to_write = desired_nr_to_write;
2890 mpd.wbc = wbc;
2891 mpd.inode = mapping->host;
2894 * we don't want write_cache_pages to update
2895 * nr_to_write and writeback_index
2897 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2898 wbc->no_nrwrite_index_update = 1;
2899 pages_skipped = wbc->pages_skipped;
2901 retry:
2902 while (!ret && wbc->nr_to_write > 0) {
2905 * we insert one extent at a time. So we need
2906 * credit needed for single extent allocation.
2907 * journalled mode is currently not supported
2908 * by delalloc
2910 BUG_ON(ext4_should_journal_data(inode));
2911 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2913 /* start a new transaction*/
2914 handle = ext4_journal_start(inode, needed_blocks);
2915 if (IS_ERR(handle)) {
2916 ret = PTR_ERR(handle);
2917 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2918 "%ld pages, ino %lu; err %d\n", __func__,
2919 wbc->nr_to_write, inode->i_ino, ret);
2920 goto out_writepages;
2924 * Now call __mpage_da_writepage to find the next
2925 * contiguous region of logical blocks that need
2926 * blocks to be allocated by ext4. We don't actually
2927 * submit the blocks for I/O here, even though
2928 * write_cache_pages thinks it will, and will set the
2929 * pages as clean for write before calling
2930 * __mpage_da_writepage().
2932 mpd.b_size = 0;
2933 mpd.b_state = 0;
2934 mpd.b_blocknr = 0;
2935 mpd.first_page = 0;
2936 mpd.next_page = 0;
2937 mpd.io_done = 0;
2938 mpd.pages_written = 0;
2939 mpd.retval = 0;
2940 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2941 &mpd);
2943 * If we have a contigous extent of pages and we
2944 * haven't done the I/O yet, map the blocks and submit
2945 * them for I/O.
2947 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2948 if (mpage_da_map_blocks(&mpd) == 0)
2949 mpage_da_submit_io(&mpd);
2950 mpd.io_done = 1;
2951 ret = MPAGE_DA_EXTENT_TAIL;
2953 trace_ext4_da_write_pages(inode, &mpd);
2954 wbc->nr_to_write -= mpd.pages_written;
2956 ext4_journal_stop(handle);
2958 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2959 /* commit the transaction which would
2960 * free blocks released in the transaction
2961 * and try again
2963 jbd2_journal_force_commit_nested(sbi->s_journal);
2964 wbc->pages_skipped = pages_skipped;
2965 ret = 0;
2966 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2968 * got one extent now try with
2969 * rest of the pages
2971 pages_written += mpd.pages_written;
2972 wbc->pages_skipped = pages_skipped;
2973 ret = 0;
2974 io_done = 1;
2975 } else if (wbc->nr_to_write)
2977 * There is no more writeout needed
2978 * or we requested for a noblocking writeout
2979 * and we found the device congested
2981 break;
2983 if (!io_done && !cycled) {
2984 cycled = 1;
2985 index = 0;
2986 wbc->range_start = index << PAGE_CACHE_SHIFT;
2987 wbc->range_end = mapping->writeback_index - 1;
2988 goto retry;
2990 if (pages_skipped != wbc->pages_skipped)
2991 ext4_msg(inode->i_sb, KERN_CRIT,
2992 "This should not happen leaving %s "
2993 "with nr_to_write = %ld ret = %d\n",
2994 __func__, wbc->nr_to_write, ret);
2996 /* Update index */
2997 index += pages_written;
2998 wbc->range_cyclic = range_cyclic;
2999 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3001 * set the writeback_index so that range_cyclic
3002 * mode will write it back later
3004 mapping->writeback_index = index;
3006 out_writepages:
3007 if (!no_nrwrite_index_update)
3008 wbc->no_nrwrite_index_update = 0;
3009 if (wbc->nr_to_write > nr_to_writebump)
3010 wbc->nr_to_write -= nr_to_writebump;
3011 wbc->range_start = range_start;
3012 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3013 return ret;
3016 #define FALL_BACK_TO_NONDELALLOC 1
3017 static int ext4_nonda_switch(struct super_block *sb)
3019 s64 free_blocks, dirty_blocks;
3020 struct ext4_sb_info *sbi = EXT4_SB(sb);
3023 * switch to non delalloc mode if we are running low
3024 * on free block. The free block accounting via percpu
3025 * counters can get slightly wrong with percpu_counter_batch getting
3026 * accumulated on each CPU without updating global counters
3027 * Delalloc need an accurate free block accounting. So switch
3028 * to non delalloc when we are near to error range.
3030 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3031 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3032 if (2 * free_blocks < 3 * dirty_blocks ||
3033 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3035 * free block count is less that 150% of dirty blocks
3036 * or free blocks is less that watermark
3038 return 1;
3040 return 0;
3043 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3044 loff_t pos, unsigned len, unsigned flags,
3045 struct page **pagep, void **fsdata)
3047 int ret, retries = 0;
3048 struct page *page;
3049 pgoff_t index;
3050 unsigned from, to;
3051 struct inode *inode = mapping->host;
3052 handle_t *handle;
3054 index = pos >> PAGE_CACHE_SHIFT;
3055 from = pos & (PAGE_CACHE_SIZE - 1);
3056 to = from + len;
3058 if (ext4_nonda_switch(inode->i_sb)) {
3059 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3060 return ext4_write_begin(file, mapping, pos,
3061 len, flags, pagep, fsdata);
3063 *fsdata = (void *)0;
3064 trace_ext4_da_write_begin(inode, pos, len, flags);
3065 retry:
3067 * With delayed allocation, we don't log the i_disksize update
3068 * if there is delayed block allocation. But we still need
3069 * to journalling the i_disksize update if writes to the end
3070 * of file which has an already mapped buffer.
3072 handle = ext4_journal_start(inode, 1);
3073 if (IS_ERR(handle)) {
3074 ret = PTR_ERR(handle);
3075 goto out;
3077 /* We cannot recurse into the filesystem as the transaction is already
3078 * started */
3079 flags |= AOP_FLAG_NOFS;
3081 page = grab_cache_page_write_begin(mapping, index, flags);
3082 if (!page) {
3083 ext4_journal_stop(handle);
3084 ret = -ENOMEM;
3085 goto out;
3087 *pagep = page;
3089 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3090 ext4_da_get_block_prep);
3091 if (ret < 0) {
3092 unlock_page(page);
3093 ext4_journal_stop(handle);
3094 page_cache_release(page);
3096 * block_write_begin may have instantiated a few blocks
3097 * outside i_size. Trim these off again. Don't need
3098 * i_size_read because we hold i_mutex.
3100 if (pos + len > inode->i_size)
3101 ext4_truncate_failed_write(inode);
3104 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3105 goto retry;
3106 out:
3107 return ret;
3111 * Check if we should update i_disksize
3112 * when write to the end of file but not require block allocation
3114 static int ext4_da_should_update_i_disksize(struct page *page,
3115 unsigned long offset)
3117 struct buffer_head *bh;
3118 struct inode *inode = page->mapping->host;
3119 unsigned int idx;
3120 int i;
3122 bh = page_buffers(page);
3123 idx = offset >> inode->i_blkbits;
3125 for (i = 0; i < idx; i++)
3126 bh = bh->b_this_page;
3128 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3129 return 0;
3130 return 1;
3133 static int ext4_da_write_end(struct file *file,
3134 struct address_space *mapping,
3135 loff_t pos, unsigned len, unsigned copied,
3136 struct page *page, void *fsdata)
3138 struct inode *inode = mapping->host;
3139 int ret = 0, ret2;
3140 handle_t *handle = ext4_journal_current_handle();
3141 loff_t new_i_size;
3142 unsigned long start, end;
3143 int write_mode = (int)(unsigned long)fsdata;
3145 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3146 if (ext4_should_order_data(inode)) {
3147 return ext4_ordered_write_end(file, mapping, pos,
3148 len, copied, page, fsdata);
3149 } else if (ext4_should_writeback_data(inode)) {
3150 return ext4_writeback_write_end(file, mapping, pos,
3151 len, copied, page, fsdata);
3152 } else {
3153 BUG();
3157 trace_ext4_da_write_end(inode, pos, len, copied);
3158 start = pos & (PAGE_CACHE_SIZE - 1);
3159 end = start + copied - 1;
3162 * generic_write_end() will run mark_inode_dirty() if i_size
3163 * changes. So let's piggyback the i_disksize mark_inode_dirty
3164 * into that.
3167 new_i_size = pos + copied;
3168 if (new_i_size > EXT4_I(inode)->i_disksize) {
3169 if (ext4_da_should_update_i_disksize(page, end)) {
3170 down_write(&EXT4_I(inode)->i_data_sem);
3171 if (new_i_size > EXT4_I(inode)->i_disksize) {
3173 * Updating i_disksize when extending file
3174 * without needing block allocation
3176 if (ext4_should_order_data(inode))
3177 ret = ext4_jbd2_file_inode(handle,
3178 inode);
3180 EXT4_I(inode)->i_disksize = new_i_size;
3182 up_write(&EXT4_I(inode)->i_data_sem);
3183 /* We need to mark inode dirty even if
3184 * new_i_size is less that inode->i_size
3185 * bu greater than i_disksize.(hint delalloc)
3187 ext4_mark_inode_dirty(handle, inode);
3190 ret2 = generic_write_end(file, mapping, pos, len, copied,
3191 page, fsdata);
3192 copied = ret2;
3193 if (ret2 < 0)
3194 ret = ret2;
3195 ret2 = ext4_journal_stop(handle);
3196 if (!ret)
3197 ret = ret2;
3199 return ret ? ret : copied;
3202 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3205 * Drop reserved blocks
3207 BUG_ON(!PageLocked(page));
3208 if (!page_has_buffers(page))
3209 goto out;
3211 ext4_da_page_release_reservation(page, offset);
3213 out:
3214 ext4_invalidatepage(page, offset);
3216 return;
3220 * Force all delayed allocation blocks to be allocated for a given inode.
3222 int ext4_alloc_da_blocks(struct inode *inode)
3224 trace_ext4_alloc_da_blocks(inode);
3226 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3227 !EXT4_I(inode)->i_reserved_meta_blocks)
3228 return 0;
3231 * We do something simple for now. The filemap_flush() will
3232 * also start triggering a write of the data blocks, which is
3233 * not strictly speaking necessary (and for users of
3234 * laptop_mode, not even desirable). However, to do otherwise
3235 * would require replicating code paths in:
3237 * ext4_da_writepages() ->
3238 * write_cache_pages() ---> (via passed in callback function)
3239 * __mpage_da_writepage() -->
3240 * mpage_add_bh_to_extent()
3241 * mpage_da_map_blocks()
3243 * The problem is that write_cache_pages(), located in
3244 * mm/page-writeback.c, marks pages clean in preparation for
3245 * doing I/O, which is not desirable if we're not planning on
3246 * doing I/O at all.
3248 * We could call write_cache_pages(), and then redirty all of
3249 * the pages by calling redirty_page_for_writeback() but that
3250 * would be ugly in the extreme. So instead we would need to
3251 * replicate parts of the code in the above functions,
3252 * simplifying them becuase we wouldn't actually intend to
3253 * write out the pages, but rather only collect contiguous
3254 * logical block extents, call the multi-block allocator, and
3255 * then update the buffer heads with the block allocations.
3257 * For now, though, we'll cheat by calling filemap_flush(),
3258 * which will map the blocks, and start the I/O, but not
3259 * actually wait for the I/O to complete.
3261 return filemap_flush(inode->i_mapping);
3265 * bmap() is special. It gets used by applications such as lilo and by
3266 * the swapper to find the on-disk block of a specific piece of data.
3268 * Naturally, this is dangerous if the block concerned is still in the
3269 * journal. If somebody makes a swapfile on an ext4 data-journaling
3270 * filesystem and enables swap, then they may get a nasty shock when the
3271 * data getting swapped to that swapfile suddenly gets overwritten by
3272 * the original zero's written out previously to the journal and
3273 * awaiting writeback in the kernel's buffer cache.
3275 * So, if we see any bmap calls here on a modified, data-journaled file,
3276 * take extra steps to flush any blocks which might be in the cache.
3278 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3280 struct inode *inode = mapping->host;
3281 journal_t *journal;
3282 int err;
3284 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3285 test_opt(inode->i_sb, DELALLOC)) {
3287 * With delalloc we want to sync the file
3288 * so that we can make sure we allocate
3289 * blocks for file
3291 filemap_write_and_wait(mapping);
3294 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3296 * This is a REALLY heavyweight approach, but the use of
3297 * bmap on dirty files is expected to be extremely rare:
3298 * only if we run lilo or swapon on a freshly made file
3299 * do we expect this to happen.
3301 * (bmap requires CAP_SYS_RAWIO so this does not
3302 * represent an unprivileged user DOS attack --- we'd be
3303 * in trouble if mortal users could trigger this path at
3304 * will.)
3306 * NB. EXT4_STATE_JDATA is not set on files other than
3307 * regular files. If somebody wants to bmap a directory
3308 * or symlink and gets confused because the buffer
3309 * hasn't yet been flushed to disk, they deserve
3310 * everything they get.
3313 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3314 journal = EXT4_JOURNAL(inode);
3315 jbd2_journal_lock_updates(journal);
3316 err = jbd2_journal_flush(journal);
3317 jbd2_journal_unlock_updates(journal);
3319 if (err)
3320 return 0;
3323 return generic_block_bmap(mapping, block, ext4_get_block);
3326 static int ext4_readpage(struct file *file, struct page *page)
3328 return mpage_readpage(page, ext4_get_block);
3331 static int
3332 ext4_readpages(struct file *file, struct address_space *mapping,
3333 struct list_head *pages, unsigned nr_pages)
3335 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3338 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3340 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3343 * If it's a full truncate we just forget about the pending dirtying
3345 if (offset == 0)
3346 ClearPageChecked(page);
3348 if (journal)
3349 jbd2_journal_invalidatepage(journal, page, offset);
3350 else
3351 block_invalidatepage(page, offset);
3354 static int ext4_releasepage(struct page *page, gfp_t wait)
3356 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3358 WARN_ON(PageChecked(page));
3359 if (!page_has_buffers(page))
3360 return 0;
3361 if (journal)
3362 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3363 else
3364 return try_to_free_buffers(page);
3368 * O_DIRECT for ext3 (or indirect map) based files
3370 * If the O_DIRECT write will extend the file then add this inode to the
3371 * orphan list. So recovery will truncate it back to the original size
3372 * if the machine crashes during the write.
3374 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3375 * crashes then stale disk data _may_ be exposed inside the file. But current
3376 * VFS code falls back into buffered path in that case so we are safe.
3378 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3379 const struct iovec *iov, loff_t offset,
3380 unsigned long nr_segs)
3382 struct file *file = iocb->ki_filp;
3383 struct inode *inode = file->f_mapping->host;
3384 struct ext4_inode_info *ei = EXT4_I(inode);
3385 handle_t *handle;
3386 ssize_t ret;
3387 int orphan = 0;
3388 size_t count = iov_length(iov, nr_segs);
3389 int retries = 0;
3391 if (rw == WRITE) {
3392 loff_t final_size = offset + count;
3394 if (final_size > inode->i_size) {
3395 /* Credits for sb + inode write */
3396 handle = ext4_journal_start(inode, 2);
3397 if (IS_ERR(handle)) {
3398 ret = PTR_ERR(handle);
3399 goto out;
3401 ret = ext4_orphan_add(handle, inode);
3402 if (ret) {
3403 ext4_journal_stop(handle);
3404 goto out;
3406 orphan = 1;
3407 ei->i_disksize = inode->i_size;
3408 ext4_journal_stop(handle);
3412 retry:
3413 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3414 offset, nr_segs,
3415 ext4_get_block, NULL);
3416 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3417 goto retry;
3419 if (orphan) {
3420 int err;
3422 /* Credits for sb + inode write */
3423 handle = ext4_journal_start(inode, 2);
3424 if (IS_ERR(handle)) {
3425 /* This is really bad luck. We've written the data
3426 * but cannot extend i_size. Bail out and pretend
3427 * the write failed... */
3428 ret = PTR_ERR(handle);
3429 goto out;
3431 if (inode->i_nlink)
3432 ext4_orphan_del(handle, inode);
3433 if (ret > 0) {
3434 loff_t end = offset + ret;
3435 if (end > inode->i_size) {
3436 ei->i_disksize = end;
3437 i_size_write(inode, end);
3439 * We're going to return a positive `ret'
3440 * here due to non-zero-length I/O, so there's
3441 * no way of reporting error returns from
3442 * ext4_mark_inode_dirty() to userspace. So
3443 * ignore it.
3445 ext4_mark_inode_dirty(handle, inode);
3448 err = ext4_journal_stop(handle);
3449 if (ret == 0)
3450 ret = err;
3452 out:
3453 return ret;
3456 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3457 struct buffer_head *bh_result, int create)
3459 handle_t *handle = NULL;
3460 int ret = 0;
3461 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3462 int dio_credits;
3464 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3465 inode->i_ino, create);
3467 * DIO VFS code passes create = 0 flag for write to
3468 * the middle of file. It does this to avoid block
3469 * allocation for holes, to prevent expose stale data
3470 * out when there is parallel buffered read (which does
3471 * not hold the i_mutex lock) while direct IO write has
3472 * not completed. DIO request on holes finally falls back
3473 * to buffered IO for this reason.
3475 * For ext4 extent based file, since we support fallocate,
3476 * new allocated extent as uninitialized, for holes, we
3477 * could fallocate blocks for holes, thus parallel
3478 * buffered IO read will zero out the page when read on
3479 * a hole while parallel DIO write to the hole has not completed.
3481 * when we come here, we know it's a direct IO write to
3482 * to the middle of file (<i_size)
3483 * so it's safe to override the create flag from VFS.
3485 create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3487 if (max_blocks > DIO_MAX_BLOCKS)
3488 max_blocks = DIO_MAX_BLOCKS;
3489 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3490 handle = ext4_journal_start(inode, dio_credits);
3491 if (IS_ERR(handle)) {
3492 ret = PTR_ERR(handle);
3493 goto out;
3495 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3496 create);
3497 if (ret > 0) {
3498 bh_result->b_size = (ret << inode->i_blkbits);
3499 ret = 0;
3501 ext4_journal_stop(handle);
3502 out:
3503 return ret;
3506 static void ext4_free_io_end(ext4_io_end_t *io)
3508 BUG_ON(!io);
3509 iput(io->inode);
3510 kfree(io);
3512 static void dump_aio_dio_list(struct inode * inode)
3514 #ifdef EXT4_DEBUG
3515 struct list_head *cur, *before, *after;
3516 ext4_io_end_t *io, *io0, *io1;
3518 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3519 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3520 return;
3523 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3524 list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3525 cur = &io->list;
3526 before = cur->prev;
3527 io0 = container_of(before, ext4_io_end_t, list);
3528 after = cur->next;
3529 io1 = container_of(after, ext4_io_end_t, list);
3531 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3532 io, inode->i_ino, io0, io1);
3534 #endif
3538 * check a range of space and convert unwritten extents to written.
3540 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3542 struct inode *inode = io->inode;
3543 loff_t offset = io->offset;
3544 size_t size = io->size;
3545 int ret = 0;
3547 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3548 "list->prev 0x%p\n",
3549 io, inode->i_ino, io->list.next, io->list.prev);
3551 if (list_empty(&io->list))
3552 return ret;
3554 if (io->flag != DIO_AIO_UNWRITTEN)
3555 return ret;
3557 if (offset + size <= i_size_read(inode))
3558 ret = ext4_convert_unwritten_extents(inode, offset, size);
3560 if (ret < 0) {
3561 printk(KERN_EMERG "%s: failed to convert unwritten"
3562 "extents to written extents, error is %d"
3563 " io is still on inode %lu aio dio list\n",
3564 __func__, ret, inode->i_ino);
3565 return ret;
3568 /* clear the DIO AIO unwritten flag */
3569 io->flag = 0;
3570 return ret;
3573 * work on completed aio dio IO, to convert unwritten extents to extents
3575 static void ext4_end_aio_dio_work(struct work_struct *work)
3577 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3578 struct inode *inode = io->inode;
3579 int ret = 0;
3581 mutex_lock(&inode->i_mutex);
3582 ret = ext4_end_aio_dio_nolock(io);
3583 if (ret >= 0) {
3584 if (!list_empty(&io->list))
3585 list_del_init(&io->list);
3586 ext4_free_io_end(io);
3588 mutex_unlock(&inode->i_mutex);
3591 * This function is called from ext4_sync_file().
3593 * When AIO DIO IO is completed, the work to convert unwritten
3594 * extents to written is queued on workqueue but may not get immediately
3595 * scheduled. When fsync is called, we need to ensure the
3596 * conversion is complete before fsync returns.
3597 * The inode keeps track of a list of completed AIO from DIO path
3598 * that might needs to do the conversion. This function walks through
3599 * the list and convert the related unwritten extents to written.
3601 int flush_aio_dio_completed_IO(struct inode *inode)
3603 ext4_io_end_t *io;
3604 int ret = 0;
3605 int ret2 = 0;
3607 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3608 return ret;
3610 dump_aio_dio_list(inode);
3611 while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3612 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3613 ext4_io_end_t, list);
3615 * Calling ext4_end_aio_dio_nolock() to convert completed
3616 * IO to written.
3618 * When ext4_sync_file() is called, run_queue() may already
3619 * about to flush the work corresponding to this io structure.
3620 * It will be upset if it founds the io structure related
3621 * to the work-to-be schedule is freed.
3623 * Thus we need to keep the io structure still valid here after
3624 * convertion finished. The io structure has a flag to
3625 * avoid double converting from both fsync and background work
3626 * queue work.
3628 ret = ext4_end_aio_dio_nolock(io);
3629 if (ret < 0)
3630 ret2 = ret;
3631 else
3632 list_del_init(&io->list);
3634 return (ret2 < 0) ? ret2 : 0;
3637 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3639 ext4_io_end_t *io = NULL;
3641 io = kmalloc(sizeof(*io), GFP_NOFS);
3643 if (io) {
3644 igrab(inode);
3645 io->inode = inode;
3646 io->flag = 0;
3647 io->offset = 0;
3648 io->size = 0;
3649 io->error = 0;
3650 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3651 INIT_LIST_HEAD(&io->list);
3654 return io;
3657 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3658 ssize_t size, void *private)
3660 ext4_io_end_t *io_end = iocb->private;
3661 struct workqueue_struct *wq;
3663 /* if not async direct IO or dio with 0 bytes write, just return */
3664 if (!io_end || !size)
3665 return;
3667 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3668 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3669 iocb->private, io_end->inode->i_ino, iocb, offset,
3670 size);
3672 /* if not aio dio with unwritten extents, just free io and return */
3673 if (io_end->flag != DIO_AIO_UNWRITTEN){
3674 ext4_free_io_end(io_end);
3675 iocb->private = NULL;
3676 return;
3679 io_end->offset = offset;
3680 io_end->size = size;
3681 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3683 /* queue the work to convert unwritten extents to written */
3684 queue_work(wq, &io_end->work);
3686 /* Add the io_end to per-inode completed aio dio list*/
3687 list_add_tail(&io_end->list,
3688 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3689 iocb->private = NULL;
3692 * For ext4 extent files, ext4 will do direct-io write to holes,
3693 * preallocated extents, and those write extend the file, no need to
3694 * fall back to buffered IO.
3696 * For holes, we fallocate those blocks, mark them as unintialized
3697 * If those blocks were preallocated, we mark sure they are splited, but
3698 * still keep the range to write as unintialized.
3700 * The unwrritten extents will be converted to written when DIO is completed.
3701 * For async direct IO, since the IO may still pending when return, we
3702 * set up an end_io call back function, which will do the convertion
3703 * when async direct IO completed.
3705 * If the O_DIRECT write will extend the file then add this inode to the
3706 * orphan list. So recovery will truncate it back to the original size
3707 * if the machine crashes during the write.
3710 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3711 const struct iovec *iov, loff_t offset,
3712 unsigned long nr_segs)
3714 struct file *file = iocb->ki_filp;
3715 struct inode *inode = file->f_mapping->host;
3716 ssize_t ret;
3717 size_t count = iov_length(iov, nr_segs);
3719 loff_t final_size = offset + count;
3720 if (rw == WRITE && final_size <= inode->i_size) {
3722 * We could direct write to holes and fallocate.
3724 * Allocated blocks to fill the hole are marked as uninitialized
3725 * to prevent paralel buffered read to expose the stale data
3726 * before DIO complete the data IO.
3728 * As to previously fallocated extents, ext4 get_block
3729 * will just simply mark the buffer mapped but still
3730 * keep the extents uninitialized.
3732 * for non AIO case, we will convert those unwritten extents
3733 * to written after return back from blockdev_direct_IO.
3735 * for async DIO, the conversion needs to be defered when
3736 * the IO is completed. The ext4 end_io callback function
3737 * will be called to take care of the conversion work.
3738 * Here for async case, we allocate an io_end structure to
3739 * hook to the iocb.
3741 iocb->private = NULL;
3742 EXT4_I(inode)->cur_aio_dio = NULL;
3743 if (!is_sync_kiocb(iocb)) {
3744 iocb->private = ext4_init_io_end(inode);
3745 if (!iocb->private)
3746 return -ENOMEM;
3748 * we save the io structure for current async
3749 * direct IO, so that later ext4_get_blocks()
3750 * could flag the io structure whether there
3751 * is a unwritten extents needs to be converted
3752 * when IO is completed.
3754 EXT4_I(inode)->cur_aio_dio = iocb->private;
3757 ret = blockdev_direct_IO(rw, iocb, inode,
3758 inode->i_sb->s_bdev, iov,
3759 offset, nr_segs,
3760 ext4_get_block_dio_write,
3761 ext4_end_io_dio);
3762 if (iocb->private)
3763 EXT4_I(inode)->cur_aio_dio = NULL;
3765 * The io_end structure takes a reference to the inode,
3766 * that structure needs to be destroyed and the
3767 * reference to the inode need to be dropped, when IO is
3768 * complete, even with 0 byte write, or failed.
3770 * In the successful AIO DIO case, the io_end structure will be
3771 * desctroyed and the reference to the inode will be dropped
3772 * after the end_io call back function is called.
3774 * In the case there is 0 byte write, or error case, since
3775 * VFS direct IO won't invoke the end_io call back function,
3776 * we need to free the end_io structure here.
3778 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3779 ext4_free_io_end(iocb->private);
3780 iocb->private = NULL;
3781 } else if (ret > 0 && (EXT4_I(inode)->i_state &
3782 EXT4_STATE_DIO_UNWRITTEN)) {
3783 int err;
3785 * for non AIO case, since the IO is already
3786 * completed, we could do the convertion right here
3788 err = ext4_convert_unwritten_extents(inode,
3789 offset, ret);
3790 if (err < 0)
3791 ret = err;
3792 EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
3794 return ret;
3797 /* for write the the end of file case, we fall back to old way */
3798 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3801 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3802 const struct iovec *iov, loff_t offset,
3803 unsigned long nr_segs)
3805 struct file *file = iocb->ki_filp;
3806 struct inode *inode = file->f_mapping->host;
3808 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3809 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3811 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3815 * Pages can be marked dirty completely asynchronously from ext4's journalling
3816 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3817 * much here because ->set_page_dirty is called under VFS locks. The page is
3818 * not necessarily locked.
3820 * We cannot just dirty the page and leave attached buffers clean, because the
3821 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3822 * or jbddirty because all the journalling code will explode.
3824 * So what we do is to mark the page "pending dirty" and next time writepage
3825 * is called, propagate that into the buffers appropriately.
3827 static int ext4_journalled_set_page_dirty(struct page *page)
3829 SetPageChecked(page);
3830 return __set_page_dirty_nobuffers(page);
3833 static const struct address_space_operations ext4_ordered_aops = {
3834 .readpage = ext4_readpage,
3835 .readpages = ext4_readpages,
3836 .writepage = ext4_writepage,
3837 .sync_page = block_sync_page,
3838 .write_begin = ext4_write_begin,
3839 .write_end = ext4_ordered_write_end,
3840 .bmap = ext4_bmap,
3841 .invalidatepage = ext4_invalidatepage,
3842 .releasepage = ext4_releasepage,
3843 .direct_IO = ext4_direct_IO,
3844 .migratepage = buffer_migrate_page,
3845 .is_partially_uptodate = block_is_partially_uptodate,
3846 .error_remove_page = generic_error_remove_page,
3849 static const struct address_space_operations ext4_writeback_aops = {
3850 .readpage = ext4_readpage,
3851 .readpages = ext4_readpages,
3852 .writepage = ext4_writepage,
3853 .sync_page = block_sync_page,
3854 .write_begin = ext4_write_begin,
3855 .write_end = ext4_writeback_write_end,
3856 .bmap = ext4_bmap,
3857 .invalidatepage = ext4_invalidatepage,
3858 .releasepage = ext4_releasepage,
3859 .direct_IO = ext4_direct_IO,
3860 .migratepage = buffer_migrate_page,
3861 .is_partially_uptodate = block_is_partially_uptodate,
3862 .error_remove_page = generic_error_remove_page,
3865 static const struct address_space_operations ext4_journalled_aops = {
3866 .readpage = ext4_readpage,
3867 .readpages = ext4_readpages,
3868 .writepage = ext4_writepage,
3869 .sync_page = block_sync_page,
3870 .write_begin = ext4_write_begin,
3871 .write_end = ext4_journalled_write_end,
3872 .set_page_dirty = ext4_journalled_set_page_dirty,
3873 .bmap = ext4_bmap,
3874 .invalidatepage = ext4_invalidatepage,
3875 .releasepage = ext4_releasepage,
3876 .is_partially_uptodate = block_is_partially_uptodate,
3877 .error_remove_page = generic_error_remove_page,
3880 static const struct address_space_operations ext4_da_aops = {
3881 .readpage = ext4_readpage,
3882 .readpages = ext4_readpages,
3883 .writepage = ext4_writepage,
3884 .writepages = ext4_da_writepages,
3885 .sync_page = block_sync_page,
3886 .write_begin = ext4_da_write_begin,
3887 .write_end = ext4_da_write_end,
3888 .bmap = ext4_bmap,
3889 .invalidatepage = ext4_da_invalidatepage,
3890 .releasepage = ext4_releasepage,
3891 .direct_IO = ext4_direct_IO,
3892 .migratepage = buffer_migrate_page,
3893 .is_partially_uptodate = block_is_partially_uptodate,
3894 .error_remove_page = generic_error_remove_page,
3897 void ext4_set_aops(struct inode *inode)
3899 if (ext4_should_order_data(inode) &&
3900 test_opt(inode->i_sb, DELALLOC))
3901 inode->i_mapping->a_ops = &ext4_da_aops;
3902 else if (ext4_should_order_data(inode))
3903 inode->i_mapping->a_ops = &ext4_ordered_aops;
3904 else if (ext4_should_writeback_data(inode) &&
3905 test_opt(inode->i_sb, DELALLOC))
3906 inode->i_mapping->a_ops = &ext4_da_aops;
3907 else if (ext4_should_writeback_data(inode))
3908 inode->i_mapping->a_ops = &ext4_writeback_aops;
3909 else
3910 inode->i_mapping->a_ops = &ext4_journalled_aops;
3914 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3915 * up to the end of the block which corresponds to `from'.
3916 * This required during truncate. We need to physically zero the tail end
3917 * of that block so it doesn't yield old data if the file is later grown.
3919 int ext4_block_truncate_page(handle_t *handle,
3920 struct address_space *mapping, loff_t from)
3922 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3923 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3924 unsigned blocksize, length, pos;
3925 ext4_lblk_t iblock;
3926 struct inode *inode = mapping->host;
3927 struct buffer_head *bh;
3928 struct page *page;
3929 int err = 0;
3931 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3932 mapping_gfp_mask(mapping) & ~__GFP_FS);
3933 if (!page)
3934 return -EINVAL;
3936 blocksize = inode->i_sb->s_blocksize;
3937 length = blocksize - (offset & (blocksize - 1));
3938 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3941 * For "nobh" option, we can only work if we don't need to
3942 * read-in the page - otherwise we create buffers to do the IO.
3944 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3945 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3946 zero_user(page, offset, length);
3947 set_page_dirty(page);
3948 goto unlock;
3951 if (!page_has_buffers(page))
3952 create_empty_buffers(page, blocksize, 0);
3954 /* Find the buffer that contains "offset" */
3955 bh = page_buffers(page);
3956 pos = blocksize;
3957 while (offset >= pos) {
3958 bh = bh->b_this_page;
3959 iblock++;
3960 pos += blocksize;
3963 err = 0;
3964 if (buffer_freed(bh)) {
3965 BUFFER_TRACE(bh, "freed: skip");
3966 goto unlock;
3969 if (!buffer_mapped(bh)) {
3970 BUFFER_TRACE(bh, "unmapped");
3971 ext4_get_block(inode, iblock, bh, 0);
3972 /* unmapped? It's a hole - nothing to do */
3973 if (!buffer_mapped(bh)) {
3974 BUFFER_TRACE(bh, "still unmapped");
3975 goto unlock;
3979 /* Ok, it's mapped. Make sure it's up-to-date */
3980 if (PageUptodate(page))
3981 set_buffer_uptodate(bh);
3983 if (!buffer_uptodate(bh)) {
3984 err = -EIO;
3985 ll_rw_block(READ, 1, &bh);
3986 wait_on_buffer(bh);
3987 /* Uhhuh. Read error. Complain and punt. */
3988 if (!buffer_uptodate(bh))
3989 goto unlock;
3992 if (ext4_should_journal_data(inode)) {
3993 BUFFER_TRACE(bh, "get write access");
3994 err = ext4_journal_get_write_access(handle, bh);
3995 if (err)
3996 goto unlock;
3999 zero_user(page, offset, length);
4001 BUFFER_TRACE(bh, "zeroed end of block");
4003 err = 0;
4004 if (ext4_should_journal_data(inode)) {
4005 err = ext4_handle_dirty_metadata(handle, inode, bh);
4006 } else {
4007 if (ext4_should_order_data(inode))
4008 err = ext4_jbd2_file_inode(handle, inode);
4009 mark_buffer_dirty(bh);
4012 unlock:
4013 unlock_page(page);
4014 page_cache_release(page);
4015 return err;
4019 * Probably it should be a library function... search for first non-zero word
4020 * or memcmp with zero_page, whatever is better for particular architecture.
4021 * Linus?
4023 static inline int all_zeroes(__le32 *p, __le32 *q)
4025 while (p < q)
4026 if (*p++)
4027 return 0;
4028 return 1;
4032 * ext4_find_shared - find the indirect blocks for partial truncation.
4033 * @inode: inode in question
4034 * @depth: depth of the affected branch
4035 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4036 * @chain: place to store the pointers to partial indirect blocks
4037 * @top: place to the (detached) top of branch
4039 * This is a helper function used by ext4_truncate().
4041 * When we do truncate() we may have to clean the ends of several
4042 * indirect blocks but leave the blocks themselves alive. Block is
4043 * partially truncated if some data below the new i_size is refered
4044 * from it (and it is on the path to the first completely truncated
4045 * data block, indeed). We have to free the top of that path along
4046 * with everything to the right of the path. Since no allocation
4047 * past the truncation point is possible until ext4_truncate()
4048 * finishes, we may safely do the latter, but top of branch may
4049 * require special attention - pageout below the truncation point
4050 * might try to populate it.
4052 * We atomically detach the top of branch from the tree, store the
4053 * block number of its root in *@top, pointers to buffer_heads of
4054 * partially truncated blocks - in @chain[].bh and pointers to
4055 * their last elements that should not be removed - in
4056 * @chain[].p. Return value is the pointer to last filled element
4057 * of @chain.
4059 * The work left to caller to do the actual freeing of subtrees:
4060 * a) free the subtree starting from *@top
4061 * b) free the subtrees whose roots are stored in
4062 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4063 * c) free the subtrees growing from the inode past the @chain[0].
4064 * (no partially truncated stuff there). */
4066 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4067 ext4_lblk_t offsets[4], Indirect chain[4],
4068 __le32 *top)
4070 Indirect *partial, *p;
4071 int k, err;
4073 *top = 0;
4074 /* Make k index the deepest non-null offest + 1 */
4075 for (k = depth; k > 1 && !offsets[k-1]; k--)
4077 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4078 /* Writer: pointers */
4079 if (!partial)
4080 partial = chain + k-1;
4082 * If the branch acquired continuation since we've looked at it -
4083 * fine, it should all survive and (new) top doesn't belong to us.
4085 if (!partial->key && *partial->p)
4086 /* Writer: end */
4087 goto no_top;
4088 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4091 * OK, we've found the last block that must survive. The rest of our
4092 * branch should be detached before unlocking. However, if that rest
4093 * of branch is all ours and does not grow immediately from the inode
4094 * it's easier to cheat and just decrement partial->p.
4096 if (p == chain + k - 1 && p > chain) {
4097 p->p--;
4098 } else {
4099 *top = *p->p;
4100 /* Nope, don't do this in ext4. Must leave the tree intact */
4101 #if 0
4102 *p->p = 0;
4103 #endif
4105 /* Writer: end */
4107 while (partial > p) {
4108 brelse(partial->bh);
4109 partial--;
4111 no_top:
4112 return partial;
4116 * Zero a number of block pointers in either an inode or an indirect block.
4117 * If we restart the transaction we must again get write access to the
4118 * indirect block for further modification.
4120 * We release `count' blocks on disk, but (last - first) may be greater
4121 * than `count' because there can be holes in there.
4123 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4124 struct buffer_head *bh,
4125 ext4_fsblk_t block_to_free,
4126 unsigned long count, __le32 *first,
4127 __le32 *last)
4129 __le32 *p;
4130 int is_metadata = S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode);
4132 if (try_to_extend_transaction(handle, inode)) {
4133 if (bh) {
4134 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4135 ext4_handle_dirty_metadata(handle, inode, bh);
4137 ext4_mark_inode_dirty(handle, inode);
4138 ext4_truncate_restart_trans(handle, inode,
4139 blocks_for_truncate(inode));
4140 if (bh) {
4141 BUFFER_TRACE(bh, "retaking write access");
4142 ext4_journal_get_write_access(handle, bh);
4147 * Any buffers which are on the journal will be in memory. We
4148 * find them on the hash table so jbd2_journal_revoke() will
4149 * run jbd2_journal_forget() on them. We've already detached
4150 * each block from the file, so bforget() in
4151 * jbd2_journal_forget() should be safe.
4153 * AKPM: turn on bforget in jbd2_journal_forget()!!!
4155 for (p = first; p < last; p++) {
4156 u32 nr = le32_to_cpu(*p);
4157 if (nr) {
4158 struct buffer_head *tbh;
4160 *p = 0;
4161 tbh = sb_find_get_block(inode->i_sb, nr);
4162 ext4_forget(handle, is_metadata, inode, tbh, nr);
4166 ext4_free_blocks(handle, inode, block_to_free, count, is_metadata);
4170 * ext4_free_data - free a list of data blocks
4171 * @handle: handle for this transaction
4172 * @inode: inode we are dealing with
4173 * @this_bh: indirect buffer_head which contains *@first and *@last
4174 * @first: array of block numbers
4175 * @last: points immediately past the end of array
4177 * We are freeing all blocks refered from that array (numbers are stored as
4178 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4180 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4181 * blocks are contiguous then releasing them at one time will only affect one
4182 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4183 * actually use a lot of journal space.
4185 * @this_bh will be %NULL if @first and @last point into the inode's direct
4186 * block pointers.
4188 static void ext4_free_data(handle_t *handle, struct inode *inode,
4189 struct buffer_head *this_bh,
4190 __le32 *first, __le32 *last)
4192 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4193 unsigned long count = 0; /* Number of blocks in the run */
4194 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4195 corresponding to
4196 block_to_free */
4197 ext4_fsblk_t nr; /* Current block # */
4198 __le32 *p; /* Pointer into inode/ind
4199 for current block */
4200 int err;
4202 if (this_bh) { /* For indirect block */
4203 BUFFER_TRACE(this_bh, "get_write_access");
4204 err = ext4_journal_get_write_access(handle, this_bh);
4205 /* Important: if we can't update the indirect pointers
4206 * to the blocks, we can't free them. */
4207 if (err)
4208 return;
4211 for (p = first; p < last; p++) {
4212 nr = le32_to_cpu(*p);
4213 if (nr) {
4214 /* accumulate blocks to free if they're contiguous */
4215 if (count == 0) {
4216 block_to_free = nr;
4217 block_to_free_p = p;
4218 count = 1;
4219 } else if (nr == block_to_free + count) {
4220 count++;
4221 } else {
4222 ext4_clear_blocks(handle, inode, this_bh,
4223 block_to_free,
4224 count, block_to_free_p, p);
4225 block_to_free = nr;
4226 block_to_free_p = p;
4227 count = 1;
4232 if (count > 0)
4233 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4234 count, block_to_free_p, p);
4236 if (this_bh) {
4237 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4240 * The buffer head should have an attached journal head at this
4241 * point. However, if the data is corrupted and an indirect
4242 * block pointed to itself, it would have been detached when
4243 * the block was cleared. Check for this instead of OOPSing.
4245 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4246 ext4_handle_dirty_metadata(handle, inode, this_bh);
4247 else
4248 ext4_error(inode->i_sb, __func__,
4249 "circular indirect block detected, "
4250 "inode=%lu, block=%llu",
4251 inode->i_ino,
4252 (unsigned long long) this_bh->b_blocknr);
4257 * ext4_free_branches - free an array of branches
4258 * @handle: JBD handle for this transaction
4259 * @inode: inode we are dealing with
4260 * @parent_bh: the buffer_head which contains *@first and *@last
4261 * @first: array of block numbers
4262 * @last: pointer immediately past the end of array
4263 * @depth: depth of the branches to free
4265 * We are freeing all blocks refered from these branches (numbers are
4266 * stored as little-endian 32-bit) and updating @inode->i_blocks
4267 * appropriately.
4269 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4270 struct buffer_head *parent_bh,
4271 __le32 *first, __le32 *last, int depth)
4273 ext4_fsblk_t nr;
4274 __le32 *p;
4276 if (ext4_handle_is_aborted(handle))
4277 return;
4279 if (depth--) {
4280 struct buffer_head *bh;
4281 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4282 p = last;
4283 while (--p >= first) {
4284 nr = le32_to_cpu(*p);
4285 if (!nr)
4286 continue; /* A hole */
4288 /* Go read the buffer for the next level down */
4289 bh = sb_bread(inode->i_sb, nr);
4292 * A read failure? Report error and clear slot
4293 * (should be rare).
4295 if (!bh) {
4296 ext4_error(inode->i_sb, "ext4_free_branches",
4297 "Read failure, inode=%lu, block=%llu",
4298 inode->i_ino, nr);
4299 continue;
4302 /* This zaps the entire block. Bottom up. */
4303 BUFFER_TRACE(bh, "free child branches");
4304 ext4_free_branches(handle, inode, bh,
4305 (__le32 *) bh->b_data,
4306 (__le32 *) bh->b_data + addr_per_block,
4307 depth);
4310 * We've probably journalled the indirect block several
4311 * times during the truncate. But it's no longer
4312 * needed and we now drop it from the transaction via
4313 * jbd2_journal_revoke().
4315 * That's easy if it's exclusively part of this
4316 * transaction. But if it's part of the committing
4317 * transaction then jbd2_journal_forget() will simply
4318 * brelse() it. That means that if the underlying
4319 * block is reallocated in ext4_get_block(),
4320 * unmap_underlying_metadata() will find this block
4321 * and will try to get rid of it. damn, damn.
4323 * If this block has already been committed to the
4324 * journal, a revoke record will be written. And
4325 * revoke records must be emitted *before* clearing
4326 * this block's bit in the bitmaps.
4328 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4331 * Everything below this this pointer has been
4332 * released. Now let this top-of-subtree go.
4334 * We want the freeing of this indirect block to be
4335 * atomic in the journal with the updating of the
4336 * bitmap block which owns it. So make some room in
4337 * the journal.
4339 * We zero the parent pointer *after* freeing its
4340 * pointee in the bitmaps, so if extend_transaction()
4341 * for some reason fails to put the bitmap changes and
4342 * the release into the same transaction, recovery
4343 * will merely complain about releasing a free block,
4344 * rather than leaking blocks.
4346 if (ext4_handle_is_aborted(handle))
4347 return;
4348 if (try_to_extend_transaction(handle, inode)) {
4349 ext4_mark_inode_dirty(handle, inode);
4350 ext4_truncate_restart_trans(handle, inode,
4351 blocks_for_truncate(inode));
4354 ext4_free_blocks(handle, inode, nr, 1, 1);
4356 if (parent_bh) {
4358 * The block which we have just freed is
4359 * pointed to by an indirect block: journal it
4361 BUFFER_TRACE(parent_bh, "get_write_access");
4362 if (!ext4_journal_get_write_access(handle,
4363 parent_bh)){
4364 *p = 0;
4365 BUFFER_TRACE(parent_bh,
4366 "call ext4_handle_dirty_metadata");
4367 ext4_handle_dirty_metadata(handle,
4368 inode,
4369 parent_bh);
4373 } else {
4374 /* We have reached the bottom of the tree. */
4375 BUFFER_TRACE(parent_bh, "free data blocks");
4376 ext4_free_data(handle, inode, parent_bh, first, last);
4380 int ext4_can_truncate(struct inode *inode)
4382 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4383 return 0;
4384 if (S_ISREG(inode->i_mode))
4385 return 1;
4386 if (S_ISDIR(inode->i_mode))
4387 return 1;
4388 if (S_ISLNK(inode->i_mode))
4389 return !ext4_inode_is_fast_symlink(inode);
4390 return 0;
4394 * ext4_truncate()
4396 * We block out ext4_get_block() block instantiations across the entire
4397 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4398 * simultaneously on behalf of the same inode.
4400 * As we work through the truncate and commmit bits of it to the journal there
4401 * is one core, guiding principle: the file's tree must always be consistent on
4402 * disk. We must be able to restart the truncate after a crash.
4404 * The file's tree may be transiently inconsistent in memory (although it
4405 * probably isn't), but whenever we close off and commit a journal transaction,
4406 * the contents of (the filesystem + the journal) must be consistent and
4407 * restartable. It's pretty simple, really: bottom up, right to left (although
4408 * left-to-right works OK too).
4410 * Note that at recovery time, journal replay occurs *before* the restart of
4411 * truncate against the orphan inode list.
4413 * The committed inode has the new, desired i_size (which is the same as
4414 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4415 * that this inode's truncate did not complete and it will again call
4416 * ext4_truncate() to have another go. So there will be instantiated blocks
4417 * to the right of the truncation point in a crashed ext4 filesystem. But
4418 * that's fine - as long as they are linked from the inode, the post-crash
4419 * ext4_truncate() run will find them and release them.
4421 void ext4_truncate(struct inode *inode)
4423 handle_t *handle;
4424 struct ext4_inode_info *ei = EXT4_I(inode);
4425 __le32 *i_data = ei->i_data;
4426 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4427 struct address_space *mapping = inode->i_mapping;
4428 ext4_lblk_t offsets[4];
4429 Indirect chain[4];
4430 Indirect *partial;
4431 __le32 nr = 0;
4432 int n;
4433 ext4_lblk_t last_block;
4434 unsigned blocksize = inode->i_sb->s_blocksize;
4436 if (!ext4_can_truncate(inode))
4437 return;
4439 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4440 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4442 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4443 ext4_ext_truncate(inode);
4444 return;
4447 handle = start_transaction(inode);
4448 if (IS_ERR(handle))
4449 return; /* AKPM: return what? */
4451 last_block = (inode->i_size + blocksize-1)
4452 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4454 if (inode->i_size & (blocksize - 1))
4455 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4456 goto out_stop;
4458 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4459 if (n == 0)
4460 goto out_stop; /* error */
4463 * OK. This truncate is going to happen. We add the inode to the
4464 * orphan list, so that if this truncate spans multiple transactions,
4465 * and we crash, we will resume the truncate when the filesystem
4466 * recovers. It also marks the inode dirty, to catch the new size.
4468 * Implication: the file must always be in a sane, consistent
4469 * truncatable state while each transaction commits.
4471 if (ext4_orphan_add(handle, inode))
4472 goto out_stop;
4475 * From here we block out all ext4_get_block() callers who want to
4476 * modify the block allocation tree.
4478 down_write(&ei->i_data_sem);
4480 ext4_discard_preallocations(inode);
4483 * The orphan list entry will now protect us from any crash which
4484 * occurs before the truncate completes, so it is now safe to propagate
4485 * the new, shorter inode size (held for now in i_size) into the
4486 * on-disk inode. We do this via i_disksize, which is the value which
4487 * ext4 *really* writes onto the disk inode.
4489 ei->i_disksize = inode->i_size;
4491 if (n == 1) { /* direct blocks */
4492 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4493 i_data + EXT4_NDIR_BLOCKS);
4494 goto do_indirects;
4497 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4498 /* Kill the top of shared branch (not detached) */
4499 if (nr) {
4500 if (partial == chain) {
4501 /* Shared branch grows from the inode */
4502 ext4_free_branches(handle, inode, NULL,
4503 &nr, &nr+1, (chain+n-1) - partial);
4504 *partial->p = 0;
4506 * We mark the inode dirty prior to restart,
4507 * and prior to stop. No need for it here.
4509 } else {
4510 /* Shared branch grows from an indirect block */
4511 BUFFER_TRACE(partial->bh, "get_write_access");
4512 ext4_free_branches(handle, inode, partial->bh,
4513 partial->p,
4514 partial->p+1, (chain+n-1) - partial);
4517 /* Clear the ends of indirect blocks on the shared branch */
4518 while (partial > chain) {
4519 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4520 (__le32*)partial->bh->b_data+addr_per_block,
4521 (chain+n-1) - partial);
4522 BUFFER_TRACE(partial->bh, "call brelse");
4523 brelse(partial->bh);
4524 partial--;
4526 do_indirects:
4527 /* Kill the remaining (whole) subtrees */
4528 switch (offsets[0]) {
4529 default:
4530 nr = i_data[EXT4_IND_BLOCK];
4531 if (nr) {
4532 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4533 i_data[EXT4_IND_BLOCK] = 0;
4535 case EXT4_IND_BLOCK:
4536 nr = i_data[EXT4_DIND_BLOCK];
4537 if (nr) {
4538 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4539 i_data[EXT4_DIND_BLOCK] = 0;
4541 case EXT4_DIND_BLOCK:
4542 nr = i_data[EXT4_TIND_BLOCK];
4543 if (nr) {
4544 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4545 i_data[EXT4_TIND_BLOCK] = 0;
4547 case EXT4_TIND_BLOCK:
4551 up_write(&ei->i_data_sem);
4552 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4553 ext4_mark_inode_dirty(handle, inode);
4556 * In a multi-transaction truncate, we only make the final transaction
4557 * synchronous
4559 if (IS_SYNC(inode))
4560 ext4_handle_sync(handle);
4561 out_stop:
4563 * If this was a simple ftruncate(), and the file will remain alive
4564 * then we need to clear up the orphan record which we created above.
4565 * However, if this was a real unlink then we were called by
4566 * ext4_delete_inode(), and we allow that function to clean up the
4567 * orphan info for us.
4569 if (inode->i_nlink)
4570 ext4_orphan_del(handle, inode);
4572 ext4_journal_stop(handle);
4576 * ext4_get_inode_loc returns with an extra refcount against the inode's
4577 * underlying buffer_head on success. If 'in_mem' is true, we have all
4578 * data in memory that is needed to recreate the on-disk version of this
4579 * inode.
4581 static int __ext4_get_inode_loc(struct inode *inode,
4582 struct ext4_iloc *iloc, int in_mem)
4584 struct ext4_group_desc *gdp;
4585 struct buffer_head *bh;
4586 struct super_block *sb = inode->i_sb;
4587 ext4_fsblk_t block;
4588 int inodes_per_block, inode_offset;
4590 iloc->bh = NULL;
4591 if (!ext4_valid_inum(sb, inode->i_ino))
4592 return -EIO;
4594 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4595 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4596 if (!gdp)
4597 return -EIO;
4600 * Figure out the offset within the block group inode table
4602 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4603 inode_offset = ((inode->i_ino - 1) %
4604 EXT4_INODES_PER_GROUP(sb));
4605 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4606 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4608 bh = sb_getblk(sb, block);
4609 if (!bh) {
4610 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4611 "inode block - inode=%lu, block=%llu",
4612 inode->i_ino, block);
4613 return -EIO;
4615 if (!buffer_uptodate(bh)) {
4616 lock_buffer(bh);
4619 * If the buffer has the write error flag, we have failed
4620 * to write out another inode in the same block. In this
4621 * case, we don't have to read the block because we may
4622 * read the old inode data successfully.
4624 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4625 set_buffer_uptodate(bh);
4627 if (buffer_uptodate(bh)) {
4628 /* someone brought it uptodate while we waited */
4629 unlock_buffer(bh);
4630 goto has_buffer;
4634 * If we have all information of the inode in memory and this
4635 * is the only valid inode in the block, we need not read the
4636 * block.
4638 if (in_mem) {
4639 struct buffer_head *bitmap_bh;
4640 int i, start;
4642 start = inode_offset & ~(inodes_per_block - 1);
4644 /* Is the inode bitmap in cache? */
4645 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4646 if (!bitmap_bh)
4647 goto make_io;
4650 * If the inode bitmap isn't in cache then the
4651 * optimisation may end up performing two reads instead
4652 * of one, so skip it.
4654 if (!buffer_uptodate(bitmap_bh)) {
4655 brelse(bitmap_bh);
4656 goto make_io;
4658 for (i = start; i < start + inodes_per_block; i++) {
4659 if (i == inode_offset)
4660 continue;
4661 if (ext4_test_bit(i, bitmap_bh->b_data))
4662 break;
4664 brelse(bitmap_bh);
4665 if (i == start + inodes_per_block) {
4666 /* all other inodes are free, so skip I/O */
4667 memset(bh->b_data, 0, bh->b_size);
4668 set_buffer_uptodate(bh);
4669 unlock_buffer(bh);
4670 goto has_buffer;
4674 make_io:
4676 * If we need to do any I/O, try to pre-readahead extra
4677 * blocks from the inode table.
4679 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4680 ext4_fsblk_t b, end, table;
4681 unsigned num;
4683 table = ext4_inode_table(sb, gdp);
4684 /* s_inode_readahead_blks is always a power of 2 */
4685 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4686 if (table > b)
4687 b = table;
4688 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4689 num = EXT4_INODES_PER_GROUP(sb);
4690 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4691 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4692 num -= ext4_itable_unused_count(sb, gdp);
4693 table += num / inodes_per_block;
4694 if (end > table)
4695 end = table;
4696 while (b <= end)
4697 sb_breadahead(sb, b++);
4701 * There are other valid inodes in the buffer, this inode
4702 * has in-inode xattrs, or we don't have this inode in memory.
4703 * Read the block from disk.
4705 get_bh(bh);
4706 bh->b_end_io = end_buffer_read_sync;
4707 submit_bh(READ_META, bh);
4708 wait_on_buffer(bh);
4709 if (!buffer_uptodate(bh)) {
4710 ext4_error(sb, __func__,
4711 "unable to read inode block - inode=%lu, "
4712 "block=%llu", inode->i_ino, block);
4713 brelse(bh);
4714 return -EIO;
4717 has_buffer:
4718 iloc->bh = bh;
4719 return 0;
4722 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4724 /* We have all inode data except xattrs in memory here. */
4725 return __ext4_get_inode_loc(inode, iloc,
4726 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4729 void ext4_set_inode_flags(struct inode *inode)
4731 unsigned int flags = EXT4_I(inode)->i_flags;
4733 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4734 if (flags & EXT4_SYNC_FL)
4735 inode->i_flags |= S_SYNC;
4736 if (flags & EXT4_APPEND_FL)
4737 inode->i_flags |= S_APPEND;
4738 if (flags & EXT4_IMMUTABLE_FL)
4739 inode->i_flags |= S_IMMUTABLE;
4740 if (flags & EXT4_NOATIME_FL)
4741 inode->i_flags |= S_NOATIME;
4742 if (flags & EXT4_DIRSYNC_FL)
4743 inode->i_flags |= S_DIRSYNC;
4746 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4747 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4749 unsigned int flags = ei->vfs_inode.i_flags;
4751 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4752 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4753 if (flags & S_SYNC)
4754 ei->i_flags |= EXT4_SYNC_FL;
4755 if (flags & S_APPEND)
4756 ei->i_flags |= EXT4_APPEND_FL;
4757 if (flags & S_IMMUTABLE)
4758 ei->i_flags |= EXT4_IMMUTABLE_FL;
4759 if (flags & S_NOATIME)
4760 ei->i_flags |= EXT4_NOATIME_FL;
4761 if (flags & S_DIRSYNC)
4762 ei->i_flags |= EXT4_DIRSYNC_FL;
4765 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4766 struct ext4_inode_info *ei)
4768 blkcnt_t i_blocks ;
4769 struct inode *inode = &(ei->vfs_inode);
4770 struct super_block *sb = inode->i_sb;
4772 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4773 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4774 /* we are using combined 48 bit field */
4775 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4776 le32_to_cpu(raw_inode->i_blocks_lo);
4777 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4778 /* i_blocks represent file system block size */
4779 return i_blocks << (inode->i_blkbits - 9);
4780 } else {
4781 return i_blocks;
4783 } else {
4784 return le32_to_cpu(raw_inode->i_blocks_lo);
4788 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4790 struct ext4_iloc iloc;
4791 struct ext4_inode *raw_inode;
4792 struct ext4_inode_info *ei;
4793 struct inode *inode;
4794 journal_t *journal = EXT4_SB(sb)->s_journal;
4795 long ret;
4796 int block;
4798 inode = iget_locked(sb, ino);
4799 if (!inode)
4800 return ERR_PTR(-ENOMEM);
4801 if (!(inode->i_state & I_NEW))
4802 return inode;
4804 ei = EXT4_I(inode);
4805 iloc.bh = 0;
4807 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4808 if (ret < 0)
4809 goto bad_inode;
4810 raw_inode = ext4_raw_inode(&iloc);
4811 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4812 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4813 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4814 if (!(test_opt(inode->i_sb, NO_UID32))) {
4815 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4816 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4818 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4820 ei->i_state = 0;
4821 ei->i_dir_start_lookup = 0;
4822 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4823 /* We now have enough fields to check if the inode was active or not.
4824 * This is needed because nfsd might try to access dead inodes
4825 * the test is that same one that e2fsck uses
4826 * NeilBrown 1999oct15
4828 if (inode->i_nlink == 0) {
4829 if (inode->i_mode == 0 ||
4830 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4831 /* this inode is deleted */
4832 ret = -ESTALE;
4833 goto bad_inode;
4835 /* The only unlinked inodes we let through here have
4836 * valid i_mode and are being read by the orphan
4837 * recovery code: that's fine, we're about to complete
4838 * the process of deleting those. */
4840 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4841 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4842 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4843 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4844 ei->i_file_acl |=
4845 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4846 inode->i_size = ext4_isize(raw_inode);
4847 ei->i_disksize = inode->i_size;
4848 #ifdef CONFIG_QUOTA
4849 ei->i_reserved_quota = 0;
4850 #endif
4851 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4852 ei->i_block_group = iloc.block_group;
4853 ei->i_last_alloc_group = ~0;
4855 * NOTE! The in-memory inode i_data array is in little-endian order
4856 * even on big-endian machines: we do NOT byteswap the block numbers!
4858 for (block = 0; block < EXT4_N_BLOCKS; block++)
4859 ei->i_data[block] = raw_inode->i_block[block];
4860 INIT_LIST_HEAD(&ei->i_orphan);
4863 * Set transaction id's of transactions that have to be committed
4864 * to finish f[data]sync. We set them to currently running transaction
4865 * as we cannot be sure that the inode or some of its metadata isn't
4866 * part of the transaction - the inode could have been reclaimed and
4867 * now it is reread from disk.
4869 if (journal) {
4870 transaction_t *transaction;
4871 tid_t tid;
4873 spin_lock(&journal->j_state_lock);
4874 if (journal->j_running_transaction)
4875 transaction = journal->j_running_transaction;
4876 else
4877 transaction = journal->j_committing_transaction;
4878 if (transaction)
4879 tid = transaction->t_tid;
4880 else
4881 tid = journal->j_commit_sequence;
4882 spin_unlock(&journal->j_state_lock);
4883 ei->i_sync_tid = tid;
4884 ei->i_datasync_tid = tid;
4887 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4888 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4889 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4890 EXT4_INODE_SIZE(inode->i_sb)) {
4891 ret = -EIO;
4892 goto bad_inode;
4894 if (ei->i_extra_isize == 0) {
4895 /* The extra space is currently unused. Use it. */
4896 ei->i_extra_isize = sizeof(struct ext4_inode) -
4897 EXT4_GOOD_OLD_INODE_SIZE;
4898 } else {
4899 __le32 *magic = (void *)raw_inode +
4900 EXT4_GOOD_OLD_INODE_SIZE +
4901 ei->i_extra_isize;
4902 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4903 ei->i_state |= EXT4_STATE_XATTR;
4905 } else
4906 ei->i_extra_isize = 0;
4908 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4909 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4910 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4911 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4913 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4914 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4915 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4916 inode->i_version |=
4917 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4920 ret = 0;
4921 if (ei->i_file_acl &&
4922 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4923 ext4_error(sb, __func__,
4924 "bad extended attribute block %llu in inode #%lu",
4925 ei->i_file_acl, inode->i_ino);
4926 ret = -EIO;
4927 goto bad_inode;
4928 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4929 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4930 (S_ISLNK(inode->i_mode) &&
4931 !ext4_inode_is_fast_symlink(inode)))
4932 /* Validate extent which is part of inode */
4933 ret = ext4_ext_check_inode(inode);
4934 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4935 (S_ISLNK(inode->i_mode) &&
4936 !ext4_inode_is_fast_symlink(inode))) {
4937 /* Validate block references which are part of inode */
4938 ret = ext4_check_inode_blockref(inode);
4940 if (ret)
4941 goto bad_inode;
4943 if (S_ISREG(inode->i_mode)) {
4944 inode->i_op = &ext4_file_inode_operations;
4945 inode->i_fop = &ext4_file_operations;
4946 ext4_set_aops(inode);
4947 } else if (S_ISDIR(inode->i_mode)) {
4948 inode->i_op = &ext4_dir_inode_operations;
4949 inode->i_fop = &ext4_dir_operations;
4950 } else if (S_ISLNK(inode->i_mode)) {
4951 if (ext4_inode_is_fast_symlink(inode)) {
4952 inode->i_op = &ext4_fast_symlink_inode_operations;
4953 nd_terminate_link(ei->i_data, inode->i_size,
4954 sizeof(ei->i_data) - 1);
4955 } else {
4956 inode->i_op = &ext4_symlink_inode_operations;
4957 ext4_set_aops(inode);
4959 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4960 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4961 inode->i_op = &ext4_special_inode_operations;
4962 if (raw_inode->i_block[0])
4963 init_special_inode(inode, inode->i_mode,
4964 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4965 else
4966 init_special_inode(inode, inode->i_mode,
4967 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4968 } else {
4969 ret = -EIO;
4970 ext4_error(inode->i_sb, __func__,
4971 "bogus i_mode (%o) for inode=%lu",
4972 inode->i_mode, inode->i_ino);
4973 goto bad_inode;
4975 brelse(iloc.bh);
4976 ext4_set_inode_flags(inode);
4977 unlock_new_inode(inode);
4978 return inode;
4980 bad_inode:
4981 brelse(iloc.bh);
4982 iget_failed(inode);
4983 return ERR_PTR(ret);
4986 static int ext4_inode_blocks_set(handle_t *handle,
4987 struct ext4_inode *raw_inode,
4988 struct ext4_inode_info *ei)
4990 struct inode *inode = &(ei->vfs_inode);
4991 u64 i_blocks = inode->i_blocks;
4992 struct super_block *sb = inode->i_sb;
4994 if (i_blocks <= ~0U) {
4996 * i_blocks can be represnted in a 32 bit variable
4997 * as multiple of 512 bytes
4999 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5000 raw_inode->i_blocks_high = 0;
5001 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5002 return 0;
5004 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5005 return -EFBIG;
5007 if (i_blocks <= 0xffffffffffffULL) {
5009 * i_blocks can be represented in a 48 bit variable
5010 * as multiple of 512 bytes
5012 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5013 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5014 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5015 } else {
5016 ei->i_flags |= EXT4_HUGE_FILE_FL;
5017 /* i_block is stored in file system block size */
5018 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5019 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5020 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5022 return 0;
5026 * Post the struct inode info into an on-disk inode location in the
5027 * buffer-cache. This gobbles the caller's reference to the
5028 * buffer_head in the inode location struct.
5030 * The caller must have write access to iloc->bh.
5032 static int ext4_do_update_inode(handle_t *handle,
5033 struct inode *inode,
5034 struct ext4_iloc *iloc)
5036 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5037 struct ext4_inode_info *ei = EXT4_I(inode);
5038 struct buffer_head *bh = iloc->bh;
5039 int err = 0, rc, block;
5041 /* For fields not not tracking in the in-memory inode,
5042 * initialise them to zero for new inodes. */
5043 if (ei->i_state & EXT4_STATE_NEW)
5044 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5046 ext4_get_inode_flags(ei);
5047 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5048 if (!(test_opt(inode->i_sb, NO_UID32))) {
5049 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5050 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5052 * Fix up interoperability with old kernels. Otherwise, old inodes get
5053 * re-used with the upper 16 bits of the uid/gid intact
5055 if (!ei->i_dtime) {
5056 raw_inode->i_uid_high =
5057 cpu_to_le16(high_16_bits(inode->i_uid));
5058 raw_inode->i_gid_high =
5059 cpu_to_le16(high_16_bits(inode->i_gid));
5060 } else {
5061 raw_inode->i_uid_high = 0;
5062 raw_inode->i_gid_high = 0;
5064 } else {
5065 raw_inode->i_uid_low =
5066 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5067 raw_inode->i_gid_low =
5068 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5069 raw_inode->i_uid_high = 0;
5070 raw_inode->i_gid_high = 0;
5072 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5074 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5075 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5076 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5077 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5079 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5080 goto out_brelse;
5081 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5082 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5083 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5084 cpu_to_le32(EXT4_OS_HURD))
5085 raw_inode->i_file_acl_high =
5086 cpu_to_le16(ei->i_file_acl >> 32);
5087 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5088 ext4_isize_set(raw_inode, ei->i_disksize);
5089 if (ei->i_disksize > 0x7fffffffULL) {
5090 struct super_block *sb = inode->i_sb;
5091 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5092 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5093 EXT4_SB(sb)->s_es->s_rev_level ==
5094 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5095 /* If this is the first large file
5096 * created, add a flag to the superblock.
5098 err = ext4_journal_get_write_access(handle,
5099 EXT4_SB(sb)->s_sbh);
5100 if (err)
5101 goto out_brelse;
5102 ext4_update_dynamic_rev(sb);
5103 EXT4_SET_RO_COMPAT_FEATURE(sb,
5104 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5105 sb->s_dirt = 1;
5106 ext4_handle_sync(handle);
5107 err = ext4_handle_dirty_metadata(handle, inode,
5108 EXT4_SB(sb)->s_sbh);
5111 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5112 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5113 if (old_valid_dev(inode->i_rdev)) {
5114 raw_inode->i_block[0] =
5115 cpu_to_le32(old_encode_dev(inode->i_rdev));
5116 raw_inode->i_block[1] = 0;
5117 } else {
5118 raw_inode->i_block[0] = 0;
5119 raw_inode->i_block[1] =
5120 cpu_to_le32(new_encode_dev(inode->i_rdev));
5121 raw_inode->i_block[2] = 0;
5123 } else
5124 for (block = 0; block < EXT4_N_BLOCKS; block++)
5125 raw_inode->i_block[block] = ei->i_data[block];
5127 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5128 if (ei->i_extra_isize) {
5129 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5130 raw_inode->i_version_hi =
5131 cpu_to_le32(inode->i_version >> 32);
5132 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5135 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5136 rc = ext4_handle_dirty_metadata(handle, inode, bh);
5137 if (!err)
5138 err = rc;
5139 ei->i_state &= ~EXT4_STATE_NEW;
5141 ext4_update_inode_fsync_trans(handle, inode, 0);
5142 out_brelse:
5143 brelse(bh);
5144 ext4_std_error(inode->i_sb, err);
5145 return err;
5149 * ext4_write_inode()
5151 * We are called from a few places:
5153 * - Within generic_file_write() for O_SYNC files.
5154 * Here, there will be no transaction running. We wait for any running
5155 * trasnaction to commit.
5157 * - Within sys_sync(), kupdate and such.
5158 * We wait on commit, if tol to.
5160 * - Within prune_icache() (PF_MEMALLOC == true)
5161 * Here we simply return. We can't afford to block kswapd on the
5162 * journal commit.
5164 * In all cases it is actually safe for us to return without doing anything,
5165 * because the inode has been copied into a raw inode buffer in
5166 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5167 * knfsd.
5169 * Note that we are absolutely dependent upon all inode dirtiers doing the
5170 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5171 * which we are interested.
5173 * It would be a bug for them to not do this. The code:
5175 * mark_inode_dirty(inode)
5176 * stuff();
5177 * inode->i_size = expr;
5179 * is in error because a kswapd-driven write_inode() could occur while
5180 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5181 * will no longer be on the superblock's dirty inode list.
5183 int ext4_write_inode(struct inode *inode, int wait)
5185 int err;
5187 if (current->flags & PF_MEMALLOC)
5188 return 0;
5190 if (EXT4_SB(inode->i_sb)->s_journal) {
5191 if (ext4_journal_current_handle()) {
5192 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5193 dump_stack();
5194 return -EIO;
5197 if (!wait)
5198 return 0;
5200 err = ext4_force_commit(inode->i_sb);
5201 } else {
5202 struct ext4_iloc iloc;
5204 err = ext4_get_inode_loc(inode, &iloc);
5205 if (err)
5206 return err;
5207 if (wait)
5208 sync_dirty_buffer(iloc.bh);
5209 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5210 ext4_error(inode->i_sb, __func__,
5211 "IO error syncing inode, "
5212 "inode=%lu, block=%llu",
5213 inode->i_ino,
5214 (unsigned long long)iloc.bh->b_blocknr);
5215 err = -EIO;
5218 return err;
5222 * ext4_setattr()
5224 * Called from notify_change.
5226 * We want to trap VFS attempts to truncate the file as soon as
5227 * possible. In particular, we want to make sure that when the VFS
5228 * shrinks i_size, we put the inode on the orphan list and modify
5229 * i_disksize immediately, so that during the subsequent flushing of
5230 * dirty pages and freeing of disk blocks, we can guarantee that any
5231 * commit will leave the blocks being flushed in an unused state on
5232 * disk. (On recovery, the inode will get truncated and the blocks will
5233 * be freed, so we have a strong guarantee that no future commit will
5234 * leave these blocks visible to the user.)
5236 * Another thing we have to assure is that if we are in ordered mode
5237 * and inode is still attached to the committing transaction, we must
5238 * we start writeout of all the dirty pages which are being truncated.
5239 * This way we are sure that all the data written in the previous
5240 * transaction are already on disk (truncate waits for pages under
5241 * writeback).
5243 * Called with inode->i_mutex down.
5245 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5247 struct inode *inode = dentry->d_inode;
5248 int error, rc = 0;
5249 const unsigned int ia_valid = attr->ia_valid;
5251 error = inode_change_ok(inode, attr);
5252 if (error)
5253 return error;
5255 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5256 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5257 handle_t *handle;
5259 /* (user+group)*(old+new) structure, inode write (sb,
5260 * inode block, ? - but truncate inode update has it) */
5261 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5262 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5263 if (IS_ERR(handle)) {
5264 error = PTR_ERR(handle);
5265 goto err_out;
5267 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5268 if (error) {
5269 ext4_journal_stop(handle);
5270 return error;
5272 /* Update corresponding info in inode so that everything is in
5273 * one transaction */
5274 if (attr->ia_valid & ATTR_UID)
5275 inode->i_uid = attr->ia_uid;
5276 if (attr->ia_valid & ATTR_GID)
5277 inode->i_gid = attr->ia_gid;
5278 error = ext4_mark_inode_dirty(handle, inode);
5279 ext4_journal_stop(handle);
5282 if (attr->ia_valid & ATTR_SIZE) {
5283 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5284 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5286 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5287 error = -EFBIG;
5288 goto err_out;
5293 if (S_ISREG(inode->i_mode) &&
5294 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5295 handle_t *handle;
5297 handle = ext4_journal_start(inode, 3);
5298 if (IS_ERR(handle)) {
5299 error = PTR_ERR(handle);
5300 goto err_out;
5303 error = ext4_orphan_add(handle, inode);
5304 EXT4_I(inode)->i_disksize = attr->ia_size;
5305 rc = ext4_mark_inode_dirty(handle, inode);
5306 if (!error)
5307 error = rc;
5308 ext4_journal_stop(handle);
5310 if (ext4_should_order_data(inode)) {
5311 error = ext4_begin_ordered_truncate(inode,
5312 attr->ia_size);
5313 if (error) {
5314 /* Do as much error cleanup as possible */
5315 handle = ext4_journal_start(inode, 3);
5316 if (IS_ERR(handle)) {
5317 ext4_orphan_del(NULL, inode);
5318 goto err_out;
5320 ext4_orphan_del(handle, inode);
5321 ext4_journal_stop(handle);
5322 goto err_out;
5327 rc = inode_setattr(inode, attr);
5329 /* If inode_setattr's call to ext4_truncate failed to get a
5330 * transaction handle at all, we need to clean up the in-core
5331 * orphan list manually. */
5332 if (inode->i_nlink)
5333 ext4_orphan_del(NULL, inode);
5335 if (!rc && (ia_valid & ATTR_MODE))
5336 rc = ext4_acl_chmod(inode);
5338 err_out:
5339 ext4_std_error(inode->i_sb, error);
5340 if (!error)
5341 error = rc;
5342 return error;
5345 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5346 struct kstat *stat)
5348 struct inode *inode;
5349 unsigned long delalloc_blocks;
5351 inode = dentry->d_inode;
5352 generic_fillattr(inode, stat);
5355 * We can't update i_blocks if the block allocation is delayed
5356 * otherwise in the case of system crash before the real block
5357 * allocation is done, we will have i_blocks inconsistent with
5358 * on-disk file blocks.
5359 * We always keep i_blocks updated together with real
5360 * allocation. But to not confuse with user, stat
5361 * will return the blocks that include the delayed allocation
5362 * blocks for this file.
5364 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5365 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5366 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5368 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5369 return 0;
5372 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5373 int chunk)
5375 int indirects;
5377 /* if nrblocks are contiguous */
5378 if (chunk) {
5380 * With N contiguous data blocks, it need at most
5381 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5382 * 2 dindirect blocks
5383 * 1 tindirect block
5385 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5386 return indirects + 3;
5389 * if nrblocks are not contiguous, worse case, each block touch
5390 * a indirect block, and each indirect block touch a double indirect
5391 * block, plus a triple indirect block
5393 indirects = nrblocks * 2 + 1;
5394 return indirects;
5397 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5399 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5400 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5401 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5405 * Account for index blocks, block groups bitmaps and block group
5406 * descriptor blocks if modify datablocks and index blocks
5407 * worse case, the indexs blocks spread over different block groups
5409 * If datablocks are discontiguous, they are possible to spread over
5410 * different block groups too. If they are contiugous, with flexbg,
5411 * they could still across block group boundary.
5413 * Also account for superblock, inode, quota and xattr blocks
5415 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5417 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5418 int gdpblocks;
5419 int idxblocks;
5420 int ret = 0;
5423 * How many index blocks need to touch to modify nrblocks?
5424 * The "Chunk" flag indicating whether the nrblocks is
5425 * physically contiguous on disk
5427 * For Direct IO and fallocate, they calls get_block to allocate
5428 * one single extent at a time, so they could set the "Chunk" flag
5430 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5432 ret = idxblocks;
5435 * Now let's see how many group bitmaps and group descriptors need
5436 * to account
5438 groups = idxblocks;
5439 if (chunk)
5440 groups += 1;
5441 else
5442 groups += nrblocks;
5444 gdpblocks = groups;
5445 if (groups > ngroups)
5446 groups = ngroups;
5447 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5448 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5450 /* bitmaps and block group descriptor blocks */
5451 ret += groups + gdpblocks;
5453 /* Blocks for super block, inode, quota and xattr blocks */
5454 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5456 return ret;
5460 * Calulate the total number of credits to reserve to fit
5461 * the modification of a single pages into a single transaction,
5462 * which may include multiple chunks of block allocations.
5464 * This could be called via ext4_write_begin()
5466 * We need to consider the worse case, when
5467 * one new block per extent.
5469 int ext4_writepage_trans_blocks(struct inode *inode)
5471 int bpp = ext4_journal_blocks_per_page(inode);
5472 int ret;
5474 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5476 /* Account for data blocks for journalled mode */
5477 if (ext4_should_journal_data(inode))
5478 ret += bpp;
5479 return ret;
5483 * Calculate the journal credits for a chunk of data modification.
5485 * This is called from DIO, fallocate or whoever calling
5486 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5488 * journal buffers for data blocks are not included here, as DIO
5489 * and fallocate do no need to journal data buffers.
5491 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5493 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5497 * The caller must have previously called ext4_reserve_inode_write().
5498 * Give this, we know that the caller already has write access to iloc->bh.
5500 int ext4_mark_iloc_dirty(handle_t *handle,
5501 struct inode *inode, struct ext4_iloc *iloc)
5503 int err = 0;
5505 if (test_opt(inode->i_sb, I_VERSION))
5506 inode_inc_iversion(inode);
5508 /* the do_update_inode consumes one bh->b_count */
5509 get_bh(iloc->bh);
5511 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5512 err = ext4_do_update_inode(handle, inode, iloc);
5513 put_bh(iloc->bh);
5514 return err;
5518 * On success, We end up with an outstanding reference count against
5519 * iloc->bh. This _must_ be cleaned up later.
5523 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5524 struct ext4_iloc *iloc)
5526 int err;
5528 err = ext4_get_inode_loc(inode, iloc);
5529 if (!err) {
5530 BUFFER_TRACE(iloc->bh, "get_write_access");
5531 err = ext4_journal_get_write_access(handle, iloc->bh);
5532 if (err) {
5533 brelse(iloc->bh);
5534 iloc->bh = NULL;
5537 ext4_std_error(inode->i_sb, err);
5538 return err;
5542 * Expand an inode by new_extra_isize bytes.
5543 * Returns 0 on success or negative error number on failure.
5545 static int ext4_expand_extra_isize(struct inode *inode,
5546 unsigned int new_extra_isize,
5547 struct ext4_iloc iloc,
5548 handle_t *handle)
5550 struct ext4_inode *raw_inode;
5551 struct ext4_xattr_ibody_header *header;
5552 struct ext4_xattr_entry *entry;
5554 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5555 return 0;
5557 raw_inode = ext4_raw_inode(&iloc);
5559 header = IHDR(inode, raw_inode);
5560 entry = IFIRST(header);
5562 /* No extended attributes present */
5563 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5564 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5565 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5566 new_extra_isize);
5567 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5568 return 0;
5571 /* try to expand with EAs present */
5572 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5573 raw_inode, handle);
5577 * What we do here is to mark the in-core inode as clean with respect to inode
5578 * dirtiness (it may still be data-dirty).
5579 * This means that the in-core inode may be reaped by prune_icache
5580 * without having to perform any I/O. This is a very good thing,
5581 * because *any* task may call prune_icache - even ones which
5582 * have a transaction open against a different journal.
5584 * Is this cheating? Not really. Sure, we haven't written the
5585 * inode out, but prune_icache isn't a user-visible syncing function.
5586 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5587 * we start and wait on commits.
5589 * Is this efficient/effective? Well, we're being nice to the system
5590 * by cleaning up our inodes proactively so they can be reaped
5591 * without I/O. But we are potentially leaving up to five seconds'
5592 * worth of inodes floating about which prune_icache wants us to
5593 * write out. One way to fix that would be to get prune_icache()
5594 * to do a write_super() to free up some memory. It has the desired
5595 * effect.
5597 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5599 struct ext4_iloc iloc;
5600 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5601 static unsigned int mnt_count;
5602 int err, ret;
5604 might_sleep();
5605 err = ext4_reserve_inode_write(handle, inode, &iloc);
5606 if (ext4_handle_valid(handle) &&
5607 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5608 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5610 * We need extra buffer credits since we may write into EA block
5611 * with this same handle. If journal_extend fails, then it will
5612 * only result in a minor loss of functionality for that inode.
5613 * If this is felt to be critical, then e2fsck should be run to
5614 * force a large enough s_min_extra_isize.
5616 if ((jbd2_journal_extend(handle,
5617 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5618 ret = ext4_expand_extra_isize(inode,
5619 sbi->s_want_extra_isize,
5620 iloc, handle);
5621 if (ret) {
5622 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5623 if (mnt_count !=
5624 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5625 ext4_warning(inode->i_sb, __func__,
5626 "Unable to expand inode %lu. Delete"
5627 " some EAs or run e2fsck.",
5628 inode->i_ino);
5629 mnt_count =
5630 le16_to_cpu(sbi->s_es->s_mnt_count);
5635 if (!err)
5636 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5637 return err;
5641 * ext4_dirty_inode() is called from __mark_inode_dirty()
5643 * We're really interested in the case where a file is being extended.
5644 * i_size has been changed by generic_commit_write() and we thus need
5645 * to include the updated inode in the current transaction.
5647 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5648 * are allocated to the file.
5650 * If the inode is marked synchronous, we don't honour that here - doing
5651 * so would cause a commit on atime updates, which we don't bother doing.
5652 * We handle synchronous inodes at the highest possible level.
5654 void ext4_dirty_inode(struct inode *inode)
5656 handle_t *handle;
5658 handle = ext4_journal_start(inode, 2);
5659 if (IS_ERR(handle))
5660 goto out;
5662 ext4_mark_inode_dirty(handle, inode);
5664 ext4_journal_stop(handle);
5665 out:
5666 return;
5669 #if 0
5671 * Bind an inode's backing buffer_head into this transaction, to prevent
5672 * it from being flushed to disk early. Unlike
5673 * ext4_reserve_inode_write, this leaves behind no bh reference and
5674 * returns no iloc structure, so the caller needs to repeat the iloc
5675 * lookup to mark the inode dirty later.
5677 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5679 struct ext4_iloc iloc;
5681 int err = 0;
5682 if (handle) {
5683 err = ext4_get_inode_loc(inode, &iloc);
5684 if (!err) {
5685 BUFFER_TRACE(iloc.bh, "get_write_access");
5686 err = jbd2_journal_get_write_access(handle, iloc.bh);
5687 if (!err)
5688 err = ext4_handle_dirty_metadata(handle,
5689 inode,
5690 iloc.bh);
5691 brelse(iloc.bh);
5694 ext4_std_error(inode->i_sb, err);
5695 return err;
5697 #endif
5699 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5701 journal_t *journal;
5702 handle_t *handle;
5703 int err;
5706 * We have to be very careful here: changing a data block's
5707 * journaling status dynamically is dangerous. If we write a
5708 * data block to the journal, change the status and then delete
5709 * that block, we risk forgetting to revoke the old log record
5710 * from the journal and so a subsequent replay can corrupt data.
5711 * So, first we make sure that the journal is empty and that
5712 * nobody is changing anything.
5715 journal = EXT4_JOURNAL(inode);
5716 if (!journal)
5717 return 0;
5718 if (is_journal_aborted(journal))
5719 return -EROFS;
5721 jbd2_journal_lock_updates(journal);
5722 jbd2_journal_flush(journal);
5725 * OK, there are no updates running now, and all cached data is
5726 * synced to disk. We are now in a completely consistent state
5727 * which doesn't have anything in the journal, and we know that
5728 * no filesystem updates are running, so it is safe to modify
5729 * the inode's in-core data-journaling state flag now.
5732 if (val)
5733 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5734 else
5735 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5736 ext4_set_aops(inode);
5738 jbd2_journal_unlock_updates(journal);
5740 /* Finally we can mark the inode as dirty. */
5742 handle = ext4_journal_start(inode, 1);
5743 if (IS_ERR(handle))
5744 return PTR_ERR(handle);
5746 err = ext4_mark_inode_dirty(handle, inode);
5747 ext4_handle_sync(handle);
5748 ext4_journal_stop(handle);
5749 ext4_std_error(inode->i_sb, err);
5751 return err;
5754 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5756 return !buffer_mapped(bh);
5759 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5761 struct page *page = vmf->page;
5762 loff_t size;
5763 unsigned long len;
5764 int ret = -EINVAL;
5765 void *fsdata;
5766 struct file *file = vma->vm_file;
5767 struct inode *inode = file->f_path.dentry->d_inode;
5768 struct address_space *mapping = inode->i_mapping;
5771 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5772 * get i_mutex because we are already holding mmap_sem.
5774 down_read(&inode->i_alloc_sem);
5775 size = i_size_read(inode);
5776 if (page->mapping != mapping || size <= page_offset(page)
5777 || !PageUptodate(page)) {
5778 /* page got truncated from under us? */
5779 goto out_unlock;
5781 ret = 0;
5782 if (PageMappedToDisk(page))
5783 goto out_unlock;
5785 if (page->index == size >> PAGE_CACHE_SHIFT)
5786 len = size & ~PAGE_CACHE_MASK;
5787 else
5788 len = PAGE_CACHE_SIZE;
5790 lock_page(page);
5792 * return if we have all the buffers mapped. This avoid
5793 * the need to call write_begin/write_end which does a
5794 * journal_start/journal_stop which can block and take
5795 * long time
5797 if (page_has_buffers(page)) {
5798 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5799 ext4_bh_unmapped)) {
5800 unlock_page(page);
5801 goto out_unlock;
5804 unlock_page(page);
5806 * OK, we need to fill the hole... Do write_begin write_end
5807 * to do block allocation/reservation.We are not holding
5808 * inode.i__mutex here. That allow * parallel write_begin,
5809 * write_end call. lock_page prevent this from happening
5810 * on the same page though
5812 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5813 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5814 if (ret < 0)
5815 goto out_unlock;
5816 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5817 len, len, page, fsdata);
5818 if (ret < 0)
5819 goto out_unlock;
5820 ret = 0;
5821 out_unlock:
5822 if (ret)
5823 ret = VM_FAULT_SIGBUS;
5824 up_read(&inode->i_alloc_sem);
5825 return ret;