Merge branch 'wireless-next-2.6' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / jbd2 / journal.c
blob9e4686900f18fe8216d9d792d5ff8ce359ff9c95
1 /*
2 * linux/fs/jbd2/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
51 #include <asm/uaccess.h>
52 #include <asm/page.h>
53 #include <asm/system.h>
55 EXPORT_SYMBOL(jbd2_journal_extend);
56 EXPORT_SYMBOL(jbd2_journal_stop);
57 EXPORT_SYMBOL(jbd2_journal_lock_updates);
58 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
59 EXPORT_SYMBOL(jbd2_journal_get_write_access);
60 EXPORT_SYMBOL(jbd2_journal_get_create_access);
61 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
62 EXPORT_SYMBOL(jbd2_journal_set_triggers);
63 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
64 EXPORT_SYMBOL(jbd2_journal_release_buffer);
65 EXPORT_SYMBOL(jbd2_journal_forget);
66 #if 0
67 EXPORT_SYMBOL(journal_sync_buffer);
68 #endif
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_update_format);
75 EXPORT_SYMBOL(jbd2_journal_check_used_features);
76 EXPORT_SYMBOL(jbd2_journal_check_available_features);
77 EXPORT_SYMBOL(jbd2_journal_set_features);
78 EXPORT_SYMBOL(jbd2_journal_load);
79 EXPORT_SYMBOL(jbd2_journal_destroy);
80 EXPORT_SYMBOL(jbd2_journal_abort);
81 EXPORT_SYMBOL(jbd2_journal_errno);
82 EXPORT_SYMBOL(jbd2_journal_ack_err);
83 EXPORT_SYMBOL(jbd2_journal_clear_err);
84 EXPORT_SYMBOL(jbd2_log_wait_commit);
85 EXPORT_SYMBOL(jbd2_log_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_start_commit);
87 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
88 EXPORT_SYMBOL(jbd2_journal_wipe);
89 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
90 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
91 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
92 EXPORT_SYMBOL(jbd2_journal_force_commit);
93 EXPORT_SYMBOL(jbd2_journal_file_inode);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
99 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
100 static void __journal_abort_soft (journal_t *journal, int errno);
101 static int jbd2_journal_create_slab(size_t slab_size);
104 * Helper function used to manage commit timeouts
107 static void commit_timeout(unsigned long __data)
109 struct task_struct * p = (struct task_struct *) __data;
111 wake_up_process(p);
115 * kjournald2: The main thread function used to manage a logging device
116 * journal.
118 * This kernel thread is responsible for two things:
120 * 1) COMMIT: Every so often we need to commit the current state of the
121 * filesystem to disk. The journal thread is responsible for writing
122 * all of the metadata buffers to disk.
124 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
125 * of the data in that part of the log has been rewritten elsewhere on
126 * the disk. Flushing these old buffers to reclaim space in the log is
127 * known as checkpointing, and this thread is responsible for that job.
130 static int kjournald2(void *arg)
132 journal_t *journal = arg;
133 transaction_t *transaction;
136 * Set up an interval timer which can be used to trigger a commit wakeup
137 * after the commit interval expires
139 setup_timer(&journal->j_commit_timer, commit_timeout,
140 (unsigned long)current);
142 /* Record that the journal thread is running */
143 journal->j_task = current;
144 wake_up(&journal->j_wait_done_commit);
147 * And now, wait forever for commit wakeup events.
149 write_lock(&journal->j_state_lock);
151 loop:
152 if (journal->j_flags & JBD2_UNMOUNT)
153 goto end_loop;
155 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
156 journal->j_commit_sequence, journal->j_commit_request);
158 if (journal->j_commit_sequence != journal->j_commit_request) {
159 jbd_debug(1, "OK, requests differ\n");
160 write_unlock(&journal->j_state_lock);
161 del_timer_sync(&journal->j_commit_timer);
162 jbd2_journal_commit_transaction(journal);
163 write_lock(&journal->j_state_lock);
164 goto loop;
167 wake_up(&journal->j_wait_done_commit);
168 if (freezing(current)) {
170 * The simpler the better. Flushing journal isn't a
171 * good idea, because that depends on threads that may
172 * be already stopped.
174 jbd_debug(1, "Now suspending kjournald2\n");
175 write_unlock(&journal->j_state_lock);
176 refrigerator();
177 write_lock(&journal->j_state_lock);
178 } else {
180 * We assume on resume that commits are already there,
181 * so we don't sleep
183 DEFINE_WAIT(wait);
184 int should_sleep = 1;
186 prepare_to_wait(&journal->j_wait_commit, &wait,
187 TASK_INTERRUPTIBLE);
188 if (journal->j_commit_sequence != journal->j_commit_request)
189 should_sleep = 0;
190 transaction = journal->j_running_transaction;
191 if (transaction && time_after_eq(jiffies,
192 transaction->t_expires))
193 should_sleep = 0;
194 if (journal->j_flags & JBD2_UNMOUNT)
195 should_sleep = 0;
196 if (should_sleep) {
197 write_unlock(&journal->j_state_lock);
198 schedule();
199 write_lock(&journal->j_state_lock);
201 finish_wait(&journal->j_wait_commit, &wait);
204 jbd_debug(1, "kjournald2 wakes\n");
207 * Were we woken up by a commit wakeup event?
209 transaction = journal->j_running_transaction;
210 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
211 journal->j_commit_request = transaction->t_tid;
212 jbd_debug(1, "woke because of timeout\n");
214 goto loop;
216 end_loop:
217 write_unlock(&journal->j_state_lock);
218 del_timer_sync(&journal->j_commit_timer);
219 journal->j_task = NULL;
220 wake_up(&journal->j_wait_done_commit);
221 jbd_debug(1, "Journal thread exiting.\n");
222 return 0;
225 static int jbd2_journal_start_thread(journal_t *journal)
227 struct task_struct *t;
229 t = kthread_run(kjournald2, journal, "jbd2/%s",
230 journal->j_devname);
231 if (IS_ERR(t))
232 return PTR_ERR(t);
234 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
235 return 0;
238 static void journal_kill_thread(journal_t *journal)
240 write_lock(&journal->j_state_lock);
241 journal->j_flags |= JBD2_UNMOUNT;
243 while (journal->j_task) {
244 wake_up(&journal->j_wait_commit);
245 write_unlock(&journal->j_state_lock);
246 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
247 write_lock(&journal->j_state_lock);
249 write_unlock(&journal->j_state_lock);
253 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
255 * Writes a metadata buffer to a given disk block. The actual IO is not
256 * performed but a new buffer_head is constructed which labels the data
257 * to be written with the correct destination disk block.
259 * Any magic-number escaping which needs to be done will cause a
260 * copy-out here. If the buffer happens to start with the
261 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
262 * magic number is only written to the log for descripter blocks. In
263 * this case, we copy the data and replace the first word with 0, and we
264 * return a result code which indicates that this buffer needs to be
265 * marked as an escaped buffer in the corresponding log descriptor
266 * block. The missing word can then be restored when the block is read
267 * during recovery.
269 * If the source buffer has already been modified by a new transaction
270 * since we took the last commit snapshot, we use the frozen copy of
271 * that data for IO. If we end up using the existing buffer_head's data
272 * for the write, then we *have* to lock the buffer to prevent anyone
273 * else from using and possibly modifying it while the IO is in
274 * progress.
276 * The function returns a pointer to the buffer_heads to be used for IO.
278 * We assume that the journal has already been locked in this function.
280 * Return value:
281 * <0: Error
282 * >=0: Finished OK
284 * On success:
285 * Bit 0 set == escape performed on the data
286 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
289 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
290 struct journal_head *jh_in,
291 struct journal_head **jh_out,
292 unsigned long long blocknr)
294 int need_copy_out = 0;
295 int done_copy_out = 0;
296 int do_escape = 0;
297 char *mapped_data;
298 struct buffer_head *new_bh;
299 struct journal_head *new_jh;
300 struct page *new_page;
301 unsigned int new_offset;
302 struct buffer_head *bh_in = jh2bh(jh_in);
303 journal_t *journal = transaction->t_journal;
306 * The buffer really shouldn't be locked: only the current committing
307 * transaction is allowed to write it, so nobody else is allowed
308 * to do any IO.
310 * akpm: except if we're journalling data, and write() output is
311 * also part of a shared mapping, and another thread has
312 * decided to launch a writepage() against this buffer.
314 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
316 retry_alloc:
317 new_bh = alloc_buffer_head(GFP_NOFS);
318 if (!new_bh) {
320 * Failure is not an option, but __GFP_NOFAIL is going
321 * away; so we retry ourselves here.
323 congestion_wait(BLK_RW_ASYNC, HZ/50);
324 goto retry_alloc;
327 /* keep subsequent assertions sane */
328 new_bh->b_state = 0;
329 init_buffer(new_bh, NULL, NULL);
330 atomic_set(&new_bh->b_count, 1);
331 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
334 * If a new transaction has already done a buffer copy-out, then
335 * we use that version of the data for the commit.
337 jbd_lock_bh_state(bh_in);
338 repeat:
339 if (jh_in->b_frozen_data) {
340 done_copy_out = 1;
341 new_page = virt_to_page(jh_in->b_frozen_data);
342 new_offset = offset_in_page(jh_in->b_frozen_data);
343 } else {
344 new_page = jh2bh(jh_in)->b_page;
345 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
348 mapped_data = kmap_atomic(new_page, KM_USER0);
350 * Fire data frozen trigger if data already wasn't frozen. Do this
351 * before checking for escaping, as the trigger may modify the magic
352 * offset. If a copy-out happens afterwards, it will have the correct
353 * data in the buffer.
355 if (!done_copy_out)
356 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
357 jh_in->b_triggers);
360 * Check for escaping
362 if (*((__be32 *)(mapped_data + new_offset)) ==
363 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
364 need_copy_out = 1;
365 do_escape = 1;
367 kunmap_atomic(mapped_data, KM_USER0);
370 * Do we need to do a data copy?
372 if (need_copy_out && !done_copy_out) {
373 char *tmp;
375 jbd_unlock_bh_state(bh_in);
376 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
377 if (!tmp) {
378 jbd2_journal_put_journal_head(new_jh);
379 return -ENOMEM;
381 jbd_lock_bh_state(bh_in);
382 if (jh_in->b_frozen_data) {
383 jbd2_free(tmp, bh_in->b_size);
384 goto repeat;
387 jh_in->b_frozen_data = tmp;
388 mapped_data = kmap_atomic(new_page, KM_USER0);
389 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
390 kunmap_atomic(mapped_data, KM_USER0);
392 new_page = virt_to_page(tmp);
393 new_offset = offset_in_page(tmp);
394 done_copy_out = 1;
397 * This isn't strictly necessary, as we're using frozen
398 * data for the escaping, but it keeps consistency with
399 * b_frozen_data usage.
401 jh_in->b_frozen_triggers = jh_in->b_triggers;
405 * Did we need to do an escaping? Now we've done all the
406 * copying, we can finally do so.
408 if (do_escape) {
409 mapped_data = kmap_atomic(new_page, KM_USER0);
410 *((unsigned int *)(mapped_data + new_offset)) = 0;
411 kunmap_atomic(mapped_data, KM_USER0);
414 set_bh_page(new_bh, new_page, new_offset);
415 new_jh->b_transaction = NULL;
416 new_bh->b_size = jh2bh(jh_in)->b_size;
417 new_bh->b_bdev = transaction->t_journal->j_dev;
418 new_bh->b_blocknr = blocknr;
419 set_buffer_mapped(new_bh);
420 set_buffer_dirty(new_bh);
422 *jh_out = new_jh;
425 * The to-be-written buffer needs to get moved to the io queue,
426 * and the original buffer whose contents we are shadowing or
427 * copying is moved to the transaction's shadow queue.
429 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
430 spin_lock(&journal->j_list_lock);
431 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
432 spin_unlock(&journal->j_list_lock);
433 jbd_unlock_bh_state(bh_in);
435 JBUFFER_TRACE(new_jh, "file as BJ_IO");
436 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
438 return do_escape | (done_copy_out << 1);
442 * Allocation code for the journal file. Manage the space left in the
443 * journal, so that we can begin checkpointing when appropriate.
447 * __jbd2_log_space_left: Return the number of free blocks left in the journal.
449 * Called with the journal already locked.
451 * Called under j_state_lock
454 int __jbd2_log_space_left(journal_t *journal)
456 int left = journal->j_free;
458 /* assert_spin_locked(&journal->j_state_lock); */
461 * Be pessimistic here about the number of those free blocks which
462 * might be required for log descriptor control blocks.
465 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
467 left -= MIN_LOG_RESERVED_BLOCKS;
469 if (left <= 0)
470 return 0;
471 left -= (left >> 3);
472 return left;
476 * Called under j_state_lock. Returns true if a transaction commit was started.
478 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
481 * Are we already doing a recent enough commit?
483 if (!tid_geq(journal->j_commit_request, target)) {
485 * We want a new commit: OK, mark the request and wakeup the
486 * commit thread. We do _not_ do the commit ourselves.
489 journal->j_commit_request = target;
490 jbd_debug(1, "JBD: requesting commit %d/%d\n",
491 journal->j_commit_request,
492 journal->j_commit_sequence);
493 wake_up(&journal->j_wait_commit);
494 return 1;
496 return 0;
499 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
501 int ret;
503 write_lock(&journal->j_state_lock);
504 ret = __jbd2_log_start_commit(journal, tid);
505 write_unlock(&journal->j_state_lock);
506 return ret;
510 * Force and wait upon a commit if the calling process is not within
511 * transaction. This is used for forcing out undo-protected data which contains
512 * bitmaps, when the fs is running out of space.
514 * We can only force the running transaction if we don't have an active handle;
515 * otherwise, we will deadlock.
517 * Returns true if a transaction was started.
519 int jbd2_journal_force_commit_nested(journal_t *journal)
521 transaction_t *transaction = NULL;
522 tid_t tid;
524 read_lock(&journal->j_state_lock);
525 if (journal->j_running_transaction && !current->journal_info) {
526 transaction = journal->j_running_transaction;
527 __jbd2_log_start_commit(journal, transaction->t_tid);
528 } else if (journal->j_committing_transaction)
529 transaction = journal->j_committing_transaction;
531 if (!transaction) {
532 read_unlock(&journal->j_state_lock);
533 return 0; /* Nothing to retry */
536 tid = transaction->t_tid;
537 read_unlock(&journal->j_state_lock);
538 jbd2_log_wait_commit(journal, tid);
539 return 1;
543 * Start a commit of the current running transaction (if any). Returns true
544 * if a transaction is going to be committed (or is currently already
545 * committing), and fills its tid in at *ptid
547 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
549 int ret = 0;
551 write_lock(&journal->j_state_lock);
552 if (journal->j_running_transaction) {
553 tid_t tid = journal->j_running_transaction->t_tid;
555 __jbd2_log_start_commit(journal, tid);
556 /* There's a running transaction and we've just made sure
557 * it's commit has been scheduled. */
558 if (ptid)
559 *ptid = tid;
560 ret = 1;
561 } else if (journal->j_committing_transaction) {
563 * If ext3_write_super() recently started a commit, then we
564 * have to wait for completion of that transaction
566 if (ptid)
567 *ptid = journal->j_committing_transaction->t_tid;
568 ret = 1;
570 write_unlock(&journal->j_state_lock);
571 return ret;
575 * Wait for a specified commit to complete.
576 * The caller may not hold the journal lock.
578 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
580 int err = 0;
582 read_lock(&journal->j_state_lock);
583 #ifdef CONFIG_JBD2_DEBUG
584 if (!tid_geq(journal->j_commit_request, tid)) {
585 printk(KERN_EMERG
586 "%s: error: j_commit_request=%d, tid=%d\n",
587 __func__, journal->j_commit_request, tid);
589 #endif
590 while (tid_gt(tid, journal->j_commit_sequence)) {
591 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
592 tid, journal->j_commit_sequence);
593 wake_up(&journal->j_wait_commit);
594 read_unlock(&journal->j_state_lock);
595 wait_event(journal->j_wait_done_commit,
596 !tid_gt(tid, journal->j_commit_sequence));
597 read_lock(&journal->j_state_lock);
599 read_unlock(&journal->j_state_lock);
601 if (unlikely(is_journal_aborted(journal))) {
602 printk(KERN_EMERG "journal commit I/O error\n");
603 err = -EIO;
605 return err;
609 * Log buffer allocation routines:
612 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
614 unsigned long blocknr;
616 write_lock(&journal->j_state_lock);
617 J_ASSERT(journal->j_free > 1);
619 blocknr = journal->j_head;
620 journal->j_head++;
621 journal->j_free--;
622 if (journal->j_head == journal->j_last)
623 journal->j_head = journal->j_first;
624 write_unlock(&journal->j_state_lock);
625 return jbd2_journal_bmap(journal, blocknr, retp);
629 * Conversion of logical to physical block numbers for the journal
631 * On external journals the journal blocks are identity-mapped, so
632 * this is a no-op. If needed, we can use j_blk_offset - everything is
633 * ready.
635 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
636 unsigned long long *retp)
638 int err = 0;
639 unsigned long long ret;
641 if (journal->j_inode) {
642 ret = bmap(journal->j_inode, blocknr);
643 if (ret)
644 *retp = ret;
645 else {
646 printk(KERN_ALERT "%s: journal block not found "
647 "at offset %lu on %s\n",
648 __func__, blocknr, journal->j_devname);
649 err = -EIO;
650 __journal_abort_soft(journal, err);
652 } else {
653 *retp = blocknr; /* +journal->j_blk_offset */
655 return err;
659 * We play buffer_head aliasing tricks to write data/metadata blocks to
660 * the journal without copying their contents, but for journal
661 * descriptor blocks we do need to generate bona fide buffers.
663 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
664 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
665 * But we don't bother doing that, so there will be coherency problems with
666 * mmaps of blockdevs which hold live JBD-controlled filesystems.
668 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
670 struct buffer_head *bh;
671 unsigned long long blocknr;
672 int err;
674 err = jbd2_journal_next_log_block(journal, &blocknr);
676 if (err)
677 return NULL;
679 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
680 if (!bh)
681 return NULL;
682 lock_buffer(bh);
683 memset(bh->b_data, 0, journal->j_blocksize);
684 set_buffer_uptodate(bh);
685 unlock_buffer(bh);
686 BUFFER_TRACE(bh, "return this buffer");
687 return jbd2_journal_add_journal_head(bh);
690 struct jbd2_stats_proc_session {
691 journal_t *journal;
692 struct transaction_stats_s *stats;
693 int start;
694 int max;
697 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
699 return *pos ? NULL : SEQ_START_TOKEN;
702 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
704 return NULL;
707 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
709 struct jbd2_stats_proc_session *s = seq->private;
711 if (v != SEQ_START_TOKEN)
712 return 0;
713 seq_printf(seq, "%lu transaction, each up to %u blocks\n",
714 s->stats->ts_tid,
715 s->journal->j_max_transaction_buffers);
716 if (s->stats->ts_tid == 0)
717 return 0;
718 seq_printf(seq, "average: \n %ums waiting for transaction\n",
719 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
720 seq_printf(seq, " %ums running transaction\n",
721 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
722 seq_printf(seq, " %ums transaction was being locked\n",
723 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
724 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
725 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
726 seq_printf(seq, " %ums logging transaction\n",
727 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
728 seq_printf(seq, " %lluus average transaction commit time\n",
729 div_u64(s->journal->j_average_commit_time, 1000));
730 seq_printf(seq, " %lu handles per transaction\n",
731 s->stats->run.rs_handle_count / s->stats->ts_tid);
732 seq_printf(seq, " %lu blocks per transaction\n",
733 s->stats->run.rs_blocks / s->stats->ts_tid);
734 seq_printf(seq, " %lu logged blocks per transaction\n",
735 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
736 return 0;
739 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
743 static const struct seq_operations jbd2_seq_info_ops = {
744 .start = jbd2_seq_info_start,
745 .next = jbd2_seq_info_next,
746 .stop = jbd2_seq_info_stop,
747 .show = jbd2_seq_info_show,
750 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
752 journal_t *journal = PDE(inode)->data;
753 struct jbd2_stats_proc_session *s;
754 int rc, size;
756 s = kmalloc(sizeof(*s), GFP_KERNEL);
757 if (s == NULL)
758 return -ENOMEM;
759 size = sizeof(struct transaction_stats_s);
760 s->stats = kmalloc(size, GFP_KERNEL);
761 if (s->stats == NULL) {
762 kfree(s);
763 return -ENOMEM;
765 spin_lock(&journal->j_history_lock);
766 memcpy(s->stats, &journal->j_stats, size);
767 s->journal = journal;
768 spin_unlock(&journal->j_history_lock);
770 rc = seq_open(file, &jbd2_seq_info_ops);
771 if (rc == 0) {
772 struct seq_file *m = file->private_data;
773 m->private = s;
774 } else {
775 kfree(s->stats);
776 kfree(s);
778 return rc;
782 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
784 struct seq_file *seq = file->private_data;
785 struct jbd2_stats_proc_session *s = seq->private;
786 kfree(s->stats);
787 kfree(s);
788 return seq_release(inode, file);
791 static const struct file_operations jbd2_seq_info_fops = {
792 .owner = THIS_MODULE,
793 .open = jbd2_seq_info_open,
794 .read = seq_read,
795 .llseek = seq_lseek,
796 .release = jbd2_seq_info_release,
799 static struct proc_dir_entry *proc_jbd2_stats;
801 static void jbd2_stats_proc_init(journal_t *journal)
803 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
804 if (journal->j_proc_entry) {
805 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
806 &jbd2_seq_info_fops, journal);
810 static void jbd2_stats_proc_exit(journal_t *journal)
812 remove_proc_entry("info", journal->j_proc_entry);
813 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
817 * Management for journal control blocks: functions to create and
818 * destroy journal_t structures, and to initialise and read existing
819 * journal blocks from disk. */
821 /* First: create and setup a journal_t object in memory. We initialise
822 * very few fields yet: that has to wait until we have created the
823 * journal structures from from scratch, or loaded them from disk. */
825 static journal_t * journal_init_common (void)
827 journal_t *journal;
828 int err;
830 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
831 if (!journal)
832 return NULL;
834 init_waitqueue_head(&journal->j_wait_transaction_locked);
835 init_waitqueue_head(&journal->j_wait_logspace);
836 init_waitqueue_head(&journal->j_wait_done_commit);
837 init_waitqueue_head(&journal->j_wait_checkpoint);
838 init_waitqueue_head(&journal->j_wait_commit);
839 init_waitqueue_head(&journal->j_wait_updates);
840 mutex_init(&journal->j_barrier);
841 mutex_init(&journal->j_checkpoint_mutex);
842 spin_lock_init(&journal->j_revoke_lock);
843 spin_lock_init(&journal->j_list_lock);
844 rwlock_init(&journal->j_state_lock);
846 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
847 journal->j_min_batch_time = 0;
848 journal->j_max_batch_time = 15000; /* 15ms */
850 /* The journal is marked for error until we succeed with recovery! */
851 journal->j_flags = JBD2_ABORT;
853 /* Set up a default-sized revoke table for the new mount. */
854 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
855 if (err) {
856 kfree(journal);
857 return NULL;
860 spin_lock_init(&journal->j_history_lock);
862 return journal;
865 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
867 * Create a journal structure assigned some fixed set of disk blocks to
868 * the journal. We don't actually touch those disk blocks yet, but we
869 * need to set up all of the mapping information to tell the journaling
870 * system where the journal blocks are.
875 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
876 * @bdev: Block device on which to create the journal
877 * @fs_dev: Device which hold journalled filesystem for this journal.
878 * @start: Block nr Start of journal.
879 * @len: Length of the journal in blocks.
880 * @blocksize: blocksize of journalling device
882 * Returns: a newly created journal_t *
884 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
885 * range of blocks on an arbitrary block device.
888 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
889 struct block_device *fs_dev,
890 unsigned long long start, int len, int blocksize)
892 journal_t *journal = journal_init_common();
893 struct buffer_head *bh;
894 char *p;
895 int n;
897 if (!journal)
898 return NULL;
900 /* journal descriptor can store up to n blocks -bzzz */
901 journal->j_blocksize = blocksize;
902 journal->j_dev = bdev;
903 journal->j_fs_dev = fs_dev;
904 journal->j_blk_offset = start;
905 journal->j_maxlen = len;
906 bdevname(journal->j_dev, journal->j_devname);
907 p = journal->j_devname;
908 while ((p = strchr(p, '/')))
909 *p = '!';
910 jbd2_stats_proc_init(journal);
911 n = journal->j_blocksize / sizeof(journal_block_tag_t);
912 journal->j_wbufsize = n;
913 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
914 if (!journal->j_wbuf) {
915 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
916 __func__);
917 goto out_err;
920 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
921 if (!bh) {
922 printk(KERN_ERR
923 "%s: Cannot get buffer for journal superblock\n",
924 __func__);
925 goto out_err;
927 journal->j_sb_buffer = bh;
928 journal->j_superblock = (journal_superblock_t *)bh->b_data;
930 return journal;
931 out_err:
932 kfree(journal->j_wbuf);
933 jbd2_stats_proc_exit(journal);
934 kfree(journal);
935 return NULL;
939 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
940 * @inode: An inode to create the journal in
942 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
943 * the journal. The inode must exist already, must support bmap() and
944 * must have all data blocks preallocated.
946 journal_t * jbd2_journal_init_inode (struct inode *inode)
948 struct buffer_head *bh;
949 journal_t *journal = journal_init_common();
950 char *p;
951 int err;
952 int n;
953 unsigned long long blocknr;
955 if (!journal)
956 return NULL;
958 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
959 journal->j_inode = inode;
960 bdevname(journal->j_dev, journal->j_devname);
961 p = journal->j_devname;
962 while ((p = strchr(p, '/')))
963 *p = '!';
964 p = journal->j_devname + strlen(journal->j_devname);
965 sprintf(p, "-%lu", journal->j_inode->i_ino);
966 jbd_debug(1,
967 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
968 journal, inode->i_sb->s_id, inode->i_ino,
969 (long long) inode->i_size,
970 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
972 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
973 journal->j_blocksize = inode->i_sb->s_blocksize;
974 jbd2_stats_proc_init(journal);
976 /* journal descriptor can store up to n blocks -bzzz */
977 n = journal->j_blocksize / sizeof(journal_block_tag_t);
978 journal->j_wbufsize = n;
979 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
980 if (!journal->j_wbuf) {
981 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
982 __func__);
983 goto out_err;
986 err = jbd2_journal_bmap(journal, 0, &blocknr);
987 /* If that failed, give up */
988 if (err) {
989 printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
990 __func__);
991 goto out_err;
994 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
995 if (!bh) {
996 printk(KERN_ERR
997 "%s: Cannot get buffer for journal superblock\n",
998 __func__);
999 goto out_err;
1001 journal->j_sb_buffer = bh;
1002 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1004 return journal;
1005 out_err:
1006 kfree(journal->j_wbuf);
1007 jbd2_stats_proc_exit(journal);
1008 kfree(journal);
1009 return NULL;
1013 * If the journal init or create aborts, we need to mark the journal
1014 * superblock as being NULL to prevent the journal destroy from writing
1015 * back a bogus superblock.
1017 static void journal_fail_superblock (journal_t *journal)
1019 struct buffer_head *bh = journal->j_sb_buffer;
1020 brelse(bh);
1021 journal->j_sb_buffer = NULL;
1025 * Given a journal_t structure, initialise the various fields for
1026 * startup of a new journaling session. We use this both when creating
1027 * a journal, and after recovering an old journal to reset it for
1028 * subsequent use.
1031 static int journal_reset(journal_t *journal)
1033 journal_superblock_t *sb = journal->j_superblock;
1034 unsigned long long first, last;
1036 first = be32_to_cpu(sb->s_first);
1037 last = be32_to_cpu(sb->s_maxlen);
1038 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1039 printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n",
1040 first, last);
1041 journal_fail_superblock(journal);
1042 return -EINVAL;
1045 journal->j_first = first;
1046 journal->j_last = last;
1048 journal->j_head = first;
1049 journal->j_tail = first;
1050 journal->j_free = last - first;
1052 journal->j_tail_sequence = journal->j_transaction_sequence;
1053 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1054 journal->j_commit_request = journal->j_commit_sequence;
1056 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1058 /* Add the dynamic fields and write it to disk. */
1059 jbd2_journal_update_superblock(journal, 1);
1060 return jbd2_journal_start_thread(journal);
1064 * void jbd2_journal_update_superblock() - Update journal sb on disk.
1065 * @journal: The journal to update.
1066 * @wait: Set to '0' if you don't want to wait for IO completion.
1068 * Update a journal's dynamic superblock fields and write it to disk,
1069 * optionally waiting for the IO to complete.
1071 void jbd2_journal_update_superblock(journal_t *journal, int wait)
1073 journal_superblock_t *sb = journal->j_superblock;
1074 struct buffer_head *bh = journal->j_sb_buffer;
1077 * As a special case, if the on-disk copy is already marked as needing
1078 * no recovery (s_start == 0) and there are no outstanding transactions
1079 * in the filesystem, then we can safely defer the superblock update
1080 * until the next commit by setting JBD2_FLUSHED. This avoids
1081 * attempting a write to a potential-readonly device.
1083 if (sb->s_start == 0 && journal->j_tail_sequence ==
1084 journal->j_transaction_sequence) {
1085 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1086 "(start %ld, seq %d, errno %d)\n",
1087 journal->j_tail, journal->j_tail_sequence,
1088 journal->j_errno);
1089 goto out;
1092 if (buffer_write_io_error(bh)) {
1094 * Oh, dear. A previous attempt to write the journal
1095 * superblock failed. This could happen because the
1096 * USB device was yanked out. Or it could happen to
1097 * be a transient write error and maybe the block will
1098 * be remapped. Nothing we can do but to retry the
1099 * write and hope for the best.
1101 printk(KERN_ERR "JBD2: previous I/O error detected "
1102 "for journal superblock update for %s.\n",
1103 journal->j_devname);
1104 clear_buffer_write_io_error(bh);
1105 set_buffer_uptodate(bh);
1108 read_lock(&journal->j_state_lock);
1109 jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
1110 journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1112 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1113 sb->s_start = cpu_to_be32(journal->j_tail);
1114 sb->s_errno = cpu_to_be32(journal->j_errno);
1115 read_unlock(&journal->j_state_lock);
1117 BUFFER_TRACE(bh, "marking dirty");
1118 mark_buffer_dirty(bh);
1119 if (wait) {
1120 sync_dirty_buffer(bh);
1121 if (buffer_write_io_error(bh)) {
1122 printk(KERN_ERR "JBD2: I/O error detected "
1123 "when updating journal superblock for %s.\n",
1124 journal->j_devname);
1125 clear_buffer_write_io_error(bh);
1126 set_buffer_uptodate(bh);
1128 } else
1129 write_dirty_buffer(bh, WRITE);
1131 out:
1132 /* If we have just flushed the log (by marking s_start==0), then
1133 * any future commit will have to be careful to update the
1134 * superblock again to re-record the true start of the log. */
1136 write_lock(&journal->j_state_lock);
1137 if (sb->s_start)
1138 journal->j_flags &= ~JBD2_FLUSHED;
1139 else
1140 journal->j_flags |= JBD2_FLUSHED;
1141 write_unlock(&journal->j_state_lock);
1145 * Read the superblock for a given journal, performing initial
1146 * validation of the format.
1149 static int journal_get_superblock(journal_t *journal)
1151 struct buffer_head *bh;
1152 journal_superblock_t *sb;
1153 int err = -EIO;
1155 bh = journal->j_sb_buffer;
1157 J_ASSERT(bh != NULL);
1158 if (!buffer_uptodate(bh)) {
1159 ll_rw_block(READ, 1, &bh);
1160 wait_on_buffer(bh);
1161 if (!buffer_uptodate(bh)) {
1162 printk (KERN_ERR
1163 "JBD: IO error reading journal superblock\n");
1164 goto out;
1168 sb = journal->j_superblock;
1170 err = -EINVAL;
1172 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1173 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1174 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1175 goto out;
1178 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1179 case JBD2_SUPERBLOCK_V1:
1180 journal->j_format_version = 1;
1181 break;
1182 case JBD2_SUPERBLOCK_V2:
1183 journal->j_format_version = 2;
1184 break;
1185 default:
1186 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1187 goto out;
1190 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1191 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1192 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1193 printk (KERN_WARNING "JBD: journal file too short\n");
1194 goto out;
1197 return 0;
1199 out:
1200 journal_fail_superblock(journal);
1201 return err;
1205 * Load the on-disk journal superblock and read the key fields into the
1206 * journal_t.
1209 static int load_superblock(journal_t *journal)
1211 int err;
1212 journal_superblock_t *sb;
1214 err = journal_get_superblock(journal);
1215 if (err)
1216 return err;
1218 sb = journal->j_superblock;
1220 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1221 journal->j_tail = be32_to_cpu(sb->s_start);
1222 journal->j_first = be32_to_cpu(sb->s_first);
1223 journal->j_last = be32_to_cpu(sb->s_maxlen);
1224 journal->j_errno = be32_to_cpu(sb->s_errno);
1226 return 0;
1231 * int jbd2_journal_load() - Read journal from disk.
1232 * @journal: Journal to act on.
1234 * Given a journal_t structure which tells us which disk blocks contain
1235 * a journal, read the journal from disk to initialise the in-memory
1236 * structures.
1238 int jbd2_journal_load(journal_t *journal)
1240 int err;
1241 journal_superblock_t *sb;
1243 err = load_superblock(journal);
1244 if (err)
1245 return err;
1247 sb = journal->j_superblock;
1248 /* If this is a V2 superblock, then we have to check the
1249 * features flags on it. */
1251 if (journal->j_format_version >= 2) {
1252 if ((sb->s_feature_ro_compat &
1253 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1254 (sb->s_feature_incompat &
1255 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1256 printk (KERN_WARNING
1257 "JBD: Unrecognised features on journal\n");
1258 return -EINVAL;
1263 * Create a slab for this blocksize
1265 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1266 if (err)
1267 return err;
1269 /* Let the recovery code check whether it needs to recover any
1270 * data from the journal. */
1271 if (jbd2_journal_recover(journal))
1272 goto recovery_error;
1274 if (journal->j_failed_commit) {
1275 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1276 "is corrupt.\n", journal->j_failed_commit,
1277 journal->j_devname);
1278 return -EIO;
1281 /* OK, we've finished with the dynamic journal bits:
1282 * reinitialise the dynamic contents of the superblock in memory
1283 * and reset them on disk. */
1284 if (journal_reset(journal))
1285 goto recovery_error;
1287 journal->j_flags &= ~JBD2_ABORT;
1288 journal->j_flags |= JBD2_LOADED;
1289 return 0;
1291 recovery_error:
1292 printk (KERN_WARNING "JBD: recovery failed\n");
1293 return -EIO;
1297 * void jbd2_journal_destroy() - Release a journal_t structure.
1298 * @journal: Journal to act on.
1300 * Release a journal_t structure once it is no longer in use by the
1301 * journaled object.
1302 * Return <0 if we couldn't clean up the journal.
1304 int jbd2_journal_destroy(journal_t *journal)
1306 int err = 0;
1308 /* Wait for the commit thread to wake up and die. */
1309 journal_kill_thread(journal);
1311 /* Force a final log commit */
1312 if (journal->j_running_transaction)
1313 jbd2_journal_commit_transaction(journal);
1315 /* Force any old transactions to disk */
1317 /* Totally anal locking here... */
1318 spin_lock(&journal->j_list_lock);
1319 while (journal->j_checkpoint_transactions != NULL) {
1320 spin_unlock(&journal->j_list_lock);
1321 mutex_lock(&journal->j_checkpoint_mutex);
1322 jbd2_log_do_checkpoint(journal);
1323 mutex_unlock(&journal->j_checkpoint_mutex);
1324 spin_lock(&journal->j_list_lock);
1327 J_ASSERT(journal->j_running_transaction == NULL);
1328 J_ASSERT(journal->j_committing_transaction == NULL);
1329 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1330 spin_unlock(&journal->j_list_lock);
1332 if (journal->j_sb_buffer) {
1333 if (!is_journal_aborted(journal)) {
1334 /* We can now mark the journal as empty. */
1335 journal->j_tail = 0;
1336 journal->j_tail_sequence =
1337 ++journal->j_transaction_sequence;
1338 jbd2_journal_update_superblock(journal, 1);
1339 } else {
1340 err = -EIO;
1342 brelse(journal->j_sb_buffer);
1345 if (journal->j_proc_entry)
1346 jbd2_stats_proc_exit(journal);
1347 if (journal->j_inode)
1348 iput(journal->j_inode);
1349 if (journal->j_revoke)
1350 jbd2_journal_destroy_revoke(journal);
1351 kfree(journal->j_wbuf);
1352 kfree(journal);
1354 return err;
1359 *int jbd2_journal_check_used_features () - Check if features specified are used.
1360 * @journal: Journal to check.
1361 * @compat: bitmask of compatible features
1362 * @ro: bitmask of features that force read-only mount
1363 * @incompat: bitmask of incompatible features
1365 * Check whether the journal uses all of a given set of
1366 * features. Return true (non-zero) if it does.
1369 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1370 unsigned long ro, unsigned long incompat)
1372 journal_superblock_t *sb;
1374 if (!compat && !ro && !incompat)
1375 return 1;
1376 /* Load journal superblock if it is not loaded yet. */
1377 if (journal->j_format_version == 0 &&
1378 journal_get_superblock(journal) != 0)
1379 return 0;
1380 if (journal->j_format_version == 1)
1381 return 0;
1383 sb = journal->j_superblock;
1385 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1386 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1387 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1388 return 1;
1390 return 0;
1394 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1395 * @journal: Journal to check.
1396 * @compat: bitmask of compatible features
1397 * @ro: bitmask of features that force read-only mount
1398 * @incompat: bitmask of incompatible features
1400 * Check whether the journaling code supports the use of
1401 * all of a given set of features on this journal. Return true
1402 * (non-zero) if it can. */
1404 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1405 unsigned long ro, unsigned long incompat)
1407 if (!compat && !ro && !incompat)
1408 return 1;
1410 /* We can support any known requested features iff the
1411 * superblock is in version 2. Otherwise we fail to support any
1412 * extended sb features. */
1414 if (journal->j_format_version != 2)
1415 return 0;
1417 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1418 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1419 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1420 return 1;
1422 return 0;
1426 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1427 * @journal: Journal to act on.
1428 * @compat: bitmask of compatible features
1429 * @ro: bitmask of features that force read-only mount
1430 * @incompat: bitmask of incompatible features
1432 * Mark a given journal feature as present on the
1433 * superblock. Returns true if the requested features could be set.
1437 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1438 unsigned long ro, unsigned long incompat)
1440 journal_superblock_t *sb;
1442 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1443 return 1;
1445 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1446 return 0;
1448 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1449 compat, ro, incompat);
1451 sb = journal->j_superblock;
1453 sb->s_feature_compat |= cpu_to_be32(compat);
1454 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1455 sb->s_feature_incompat |= cpu_to_be32(incompat);
1457 return 1;
1461 * jbd2_journal_clear_features () - Clear a given journal feature in the
1462 * superblock
1463 * @journal: Journal to act on.
1464 * @compat: bitmask of compatible features
1465 * @ro: bitmask of features that force read-only mount
1466 * @incompat: bitmask of incompatible features
1468 * Clear a given journal feature as present on the
1469 * superblock.
1471 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1472 unsigned long ro, unsigned long incompat)
1474 journal_superblock_t *sb;
1476 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1477 compat, ro, incompat);
1479 sb = journal->j_superblock;
1481 sb->s_feature_compat &= ~cpu_to_be32(compat);
1482 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1483 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1485 EXPORT_SYMBOL(jbd2_journal_clear_features);
1488 * int jbd2_journal_update_format () - Update on-disk journal structure.
1489 * @journal: Journal to act on.
1491 * Given an initialised but unloaded journal struct, poke about in the
1492 * on-disk structure to update it to the most recent supported version.
1494 int jbd2_journal_update_format (journal_t *journal)
1496 journal_superblock_t *sb;
1497 int err;
1499 err = journal_get_superblock(journal);
1500 if (err)
1501 return err;
1503 sb = journal->j_superblock;
1505 switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1506 case JBD2_SUPERBLOCK_V2:
1507 return 0;
1508 case JBD2_SUPERBLOCK_V1:
1509 return journal_convert_superblock_v1(journal, sb);
1510 default:
1511 break;
1513 return -EINVAL;
1516 static int journal_convert_superblock_v1(journal_t *journal,
1517 journal_superblock_t *sb)
1519 int offset, blocksize;
1520 struct buffer_head *bh;
1522 printk(KERN_WARNING
1523 "JBD: Converting superblock from version 1 to 2.\n");
1525 /* Pre-initialise new fields to zero */
1526 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1527 blocksize = be32_to_cpu(sb->s_blocksize);
1528 memset(&sb->s_feature_compat, 0, blocksize-offset);
1530 sb->s_nr_users = cpu_to_be32(1);
1531 sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1532 journal->j_format_version = 2;
1534 bh = journal->j_sb_buffer;
1535 BUFFER_TRACE(bh, "marking dirty");
1536 mark_buffer_dirty(bh);
1537 sync_dirty_buffer(bh);
1538 return 0;
1543 * int jbd2_journal_flush () - Flush journal
1544 * @journal: Journal to act on.
1546 * Flush all data for a given journal to disk and empty the journal.
1547 * Filesystems can use this when remounting readonly to ensure that
1548 * recovery does not need to happen on remount.
1551 int jbd2_journal_flush(journal_t *journal)
1553 int err = 0;
1554 transaction_t *transaction = NULL;
1555 unsigned long old_tail;
1557 write_lock(&journal->j_state_lock);
1559 /* Force everything buffered to the log... */
1560 if (journal->j_running_transaction) {
1561 transaction = journal->j_running_transaction;
1562 __jbd2_log_start_commit(journal, transaction->t_tid);
1563 } else if (journal->j_committing_transaction)
1564 transaction = journal->j_committing_transaction;
1566 /* Wait for the log commit to complete... */
1567 if (transaction) {
1568 tid_t tid = transaction->t_tid;
1570 write_unlock(&journal->j_state_lock);
1571 jbd2_log_wait_commit(journal, tid);
1572 } else {
1573 write_unlock(&journal->j_state_lock);
1576 /* ...and flush everything in the log out to disk. */
1577 spin_lock(&journal->j_list_lock);
1578 while (!err && journal->j_checkpoint_transactions != NULL) {
1579 spin_unlock(&journal->j_list_lock);
1580 mutex_lock(&journal->j_checkpoint_mutex);
1581 err = jbd2_log_do_checkpoint(journal);
1582 mutex_unlock(&journal->j_checkpoint_mutex);
1583 spin_lock(&journal->j_list_lock);
1585 spin_unlock(&journal->j_list_lock);
1587 if (is_journal_aborted(journal))
1588 return -EIO;
1590 jbd2_cleanup_journal_tail(journal);
1592 /* Finally, mark the journal as really needing no recovery.
1593 * This sets s_start==0 in the underlying superblock, which is
1594 * the magic code for a fully-recovered superblock. Any future
1595 * commits of data to the journal will restore the current
1596 * s_start value. */
1597 write_lock(&journal->j_state_lock);
1598 old_tail = journal->j_tail;
1599 journal->j_tail = 0;
1600 write_unlock(&journal->j_state_lock);
1601 jbd2_journal_update_superblock(journal, 1);
1602 write_lock(&journal->j_state_lock);
1603 journal->j_tail = old_tail;
1605 J_ASSERT(!journal->j_running_transaction);
1606 J_ASSERT(!journal->j_committing_transaction);
1607 J_ASSERT(!journal->j_checkpoint_transactions);
1608 J_ASSERT(journal->j_head == journal->j_tail);
1609 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1610 write_unlock(&journal->j_state_lock);
1611 return 0;
1615 * int jbd2_journal_wipe() - Wipe journal contents
1616 * @journal: Journal to act on.
1617 * @write: flag (see below)
1619 * Wipe out all of the contents of a journal, safely. This will produce
1620 * a warning if the journal contains any valid recovery information.
1621 * Must be called between journal_init_*() and jbd2_journal_load().
1623 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1624 * we merely suppress recovery.
1627 int jbd2_journal_wipe(journal_t *journal, int write)
1629 int err = 0;
1631 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1633 err = load_superblock(journal);
1634 if (err)
1635 return err;
1637 if (!journal->j_tail)
1638 goto no_recovery;
1640 printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1641 write ? "Clearing" : "Ignoring");
1643 err = jbd2_journal_skip_recovery(journal);
1644 if (write)
1645 jbd2_journal_update_superblock(journal, 1);
1647 no_recovery:
1648 return err;
1652 * Journal abort has very specific semantics, which we describe
1653 * for journal abort.
1655 * Two internal functions, which provide abort to the jbd layer
1656 * itself are here.
1660 * Quick version for internal journal use (doesn't lock the journal).
1661 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1662 * and don't attempt to make any other journal updates.
1664 void __jbd2_journal_abort_hard(journal_t *journal)
1666 transaction_t *transaction;
1668 if (journal->j_flags & JBD2_ABORT)
1669 return;
1671 printk(KERN_ERR "Aborting journal on device %s.\n",
1672 journal->j_devname);
1674 write_lock(&journal->j_state_lock);
1675 journal->j_flags |= JBD2_ABORT;
1676 transaction = journal->j_running_transaction;
1677 if (transaction)
1678 __jbd2_log_start_commit(journal, transaction->t_tid);
1679 write_unlock(&journal->j_state_lock);
1682 /* Soft abort: record the abort error status in the journal superblock,
1683 * but don't do any other IO. */
1684 static void __journal_abort_soft (journal_t *journal, int errno)
1686 if (journal->j_flags & JBD2_ABORT)
1687 return;
1689 if (!journal->j_errno)
1690 journal->j_errno = errno;
1692 __jbd2_journal_abort_hard(journal);
1694 if (errno)
1695 jbd2_journal_update_superblock(journal, 1);
1699 * void jbd2_journal_abort () - Shutdown the journal immediately.
1700 * @journal: the journal to shutdown.
1701 * @errno: an error number to record in the journal indicating
1702 * the reason for the shutdown.
1704 * Perform a complete, immediate shutdown of the ENTIRE
1705 * journal (not of a single transaction). This operation cannot be
1706 * undone without closing and reopening the journal.
1708 * The jbd2_journal_abort function is intended to support higher level error
1709 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1710 * mode.
1712 * Journal abort has very specific semantics. Any existing dirty,
1713 * unjournaled buffers in the main filesystem will still be written to
1714 * disk by bdflush, but the journaling mechanism will be suspended
1715 * immediately and no further transaction commits will be honoured.
1717 * Any dirty, journaled buffers will be written back to disk without
1718 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1719 * filesystem, but we _do_ attempt to leave as much data as possible
1720 * behind for fsck to use for cleanup.
1722 * Any attempt to get a new transaction handle on a journal which is in
1723 * ABORT state will just result in an -EROFS error return. A
1724 * jbd2_journal_stop on an existing handle will return -EIO if we have
1725 * entered abort state during the update.
1727 * Recursive transactions are not disturbed by journal abort until the
1728 * final jbd2_journal_stop, which will receive the -EIO error.
1730 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1731 * which will be recorded (if possible) in the journal superblock. This
1732 * allows a client to record failure conditions in the middle of a
1733 * transaction without having to complete the transaction to record the
1734 * failure to disk. ext3_error, for example, now uses this
1735 * functionality.
1737 * Errors which originate from within the journaling layer will NOT
1738 * supply an errno; a null errno implies that absolutely no further
1739 * writes are done to the journal (unless there are any already in
1740 * progress).
1744 void jbd2_journal_abort(journal_t *journal, int errno)
1746 __journal_abort_soft(journal, errno);
1750 * int jbd2_journal_errno () - returns the journal's error state.
1751 * @journal: journal to examine.
1753 * This is the errno number set with jbd2_journal_abort(), the last
1754 * time the journal was mounted - if the journal was stopped
1755 * without calling abort this will be 0.
1757 * If the journal has been aborted on this mount time -EROFS will
1758 * be returned.
1760 int jbd2_journal_errno(journal_t *journal)
1762 int err;
1764 read_lock(&journal->j_state_lock);
1765 if (journal->j_flags & JBD2_ABORT)
1766 err = -EROFS;
1767 else
1768 err = journal->j_errno;
1769 read_unlock(&journal->j_state_lock);
1770 return err;
1774 * int jbd2_journal_clear_err () - clears the journal's error state
1775 * @journal: journal to act on.
1777 * An error must be cleared or acked to take a FS out of readonly
1778 * mode.
1780 int jbd2_journal_clear_err(journal_t *journal)
1782 int err = 0;
1784 write_lock(&journal->j_state_lock);
1785 if (journal->j_flags & JBD2_ABORT)
1786 err = -EROFS;
1787 else
1788 journal->j_errno = 0;
1789 write_unlock(&journal->j_state_lock);
1790 return err;
1794 * void jbd2_journal_ack_err() - Ack journal err.
1795 * @journal: journal to act on.
1797 * An error must be cleared or acked to take a FS out of readonly
1798 * mode.
1800 void jbd2_journal_ack_err(journal_t *journal)
1802 write_lock(&journal->j_state_lock);
1803 if (journal->j_errno)
1804 journal->j_flags |= JBD2_ACK_ERR;
1805 write_unlock(&journal->j_state_lock);
1808 int jbd2_journal_blocks_per_page(struct inode *inode)
1810 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1814 * helper functions to deal with 32 or 64bit block numbers.
1816 size_t journal_tag_bytes(journal_t *journal)
1818 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1819 return JBD2_TAG_SIZE64;
1820 else
1821 return JBD2_TAG_SIZE32;
1825 * JBD memory management
1827 * These functions are used to allocate block-sized chunks of memory
1828 * used for making copies of buffer_head data. Very often it will be
1829 * page-sized chunks of data, but sometimes it will be in
1830 * sub-page-size chunks. (For example, 16k pages on Power systems
1831 * with a 4k block file system.) For blocks smaller than a page, we
1832 * use a SLAB allocator. There are slab caches for each block size,
1833 * which are allocated at mount time, if necessary, and we only free
1834 * (all of) the slab caches when/if the jbd2 module is unloaded. For
1835 * this reason we don't need to a mutex to protect access to
1836 * jbd2_slab[] allocating or releasing memory; only in
1837 * jbd2_journal_create_slab().
1839 #define JBD2_MAX_SLABS 8
1840 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
1842 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
1843 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
1844 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
1848 static void jbd2_journal_destroy_slabs(void)
1850 int i;
1852 for (i = 0; i < JBD2_MAX_SLABS; i++) {
1853 if (jbd2_slab[i])
1854 kmem_cache_destroy(jbd2_slab[i]);
1855 jbd2_slab[i] = NULL;
1859 static int jbd2_journal_create_slab(size_t size)
1861 static DEFINE_MUTEX(jbd2_slab_create_mutex);
1862 int i = order_base_2(size) - 10;
1863 size_t slab_size;
1865 if (size == PAGE_SIZE)
1866 return 0;
1868 if (i >= JBD2_MAX_SLABS)
1869 return -EINVAL;
1871 if (unlikely(i < 0))
1872 i = 0;
1873 mutex_lock(&jbd2_slab_create_mutex);
1874 if (jbd2_slab[i]) {
1875 mutex_unlock(&jbd2_slab_create_mutex);
1876 return 0; /* Already created */
1879 slab_size = 1 << (i+10);
1880 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
1881 slab_size, 0, NULL);
1882 mutex_unlock(&jbd2_slab_create_mutex);
1883 if (!jbd2_slab[i]) {
1884 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
1885 return -ENOMEM;
1887 return 0;
1890 static struct kmem_cache *get_slab(size_t size)
1892 int i = order_base_2(size) - 10;
1894 BUG_ON(i >= JBD2_MAX_SLABS);
1895 if (unlikely(i < 0))
1896 i = 0;
1897 BUG_ON(jbd2_slab[i] == NULL);
1898 return jbd2_slab[i];
1901 void *jbd2_alloc(size_t size, gfp_t flags)
1903 void *ptr;
1905 BUG_ON(size & (size-1)); /* Must be a power of 2 */
1907 flags |= __GFP_REPEAT;
1908 if (size == PAGE_SIZE)
1909 ptr = (void *)__get_free_pages(flags, 0);
1910 else if (size > PAGE_SIZE) {
1911 int order = get_order(size);
1913 if (order < 3)
1914 ptr = (void *)__get_free_pages(flags, order);
1915 else
1916 ptr = vmalloc(size);
1917 } else
1918 ptr = kmem_cache_alloc(get_slab(size), flags);
1920 /* Check alignment; SLUB has gotten this wrong in the past,
1921 * and this can lead to user data corruption! */
1922 BUG_ON(((unsigned long) ptr) & (size-1));
1924 return ptr;
1927 void jbd2_free(void *ptr, size_t size)
1929 if (size == PAGE_SIZE) {
1930 free_pages((unsigned long)ptr, 0);
1931 return;
1933 if (size > PAGE_SIZE) {
1934 int order = get_order(size);
1936 if (order < 3)
1937 free_pages((unsigned long)ptr, order);
1938 else
1939 vfree(ptr);
1940 return;
1942 kmem_cache_free(get_slab(size), ptr);
1946 * Journal_head storage management
1948 static struct kmem_cache *jbd2_journal_head_cache;
1949 #ifdef CONFIG_JBD2_DEBUG
1950 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1951 #endif
1953 static int journal_init_jbd2_journal_head_cache(void)
1955 int retval;
1957 J_ASSERT(jbd2_journal_head_cache == NULL);
1958 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1959 sizeof(struct journal_head),
1960 0, /* offset */
1961 SLAB_TEMPORARY, /* flags */
1962 NULL); /* ctor */
1963 retval = 0;
1964 if (!jbd2_journal_head_cache) {
1965 retval = -ENOMEM;
1966 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1968 return retval;
1971 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1973 if (jbd2_journal_head_cache) {
1974 kmem_cache_destroy(jbd2_journal_head_cache);
1975 jbd2_journal_head_cache = NULL;
1980 * journal_head splicing and dicing
1982 static struct journal_head *journal_alloc_journal_head(void)
1984 struct journal_head *ret;
1986 #ifdef CONFIG_JBD2_DEBUG
1987 atomic_inc(&nr_journal_heads);
1988 #endif
1989 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1990 if (!ret) {
1991 jbd_debug(1, "out of memory for journal_head\n");
1992 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
1993 while (!ret) {
1994 yield();
1995 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1998 return ret;
2001 static void journal_free_journal_head(struct journal_head *jh)
2003 #ifdef CONFIG_JBD2_DEBUG
2004 atomic_dec(&nr_journal_heads);
2005 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2006 #endif
2007 kmem_cache_free(jbd2_journal_head_cache, jh);
2011 * A journal_head is attached to a buffer_head whenever JBD has an
2012 * interest in the buffer.
2014 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2015 * is set. This bit is tested in core kernel code where we need to take
2016 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2017 * there.
2019 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2021 * When a buffer has its BH_JBD bit set it is immune from being released by
2022 * core kernel code, mainly via ->b_count.
2024 * A journal_head may be detached from its buffer_head when the journal_head's
2025 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
2026 * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
2027 * journal_head can be dropped if needed.
2029 * Various places in the kernel want to attach a journal_head to a buffer_head
2030 * _before_ attaching the journal_head to a transaction. To protect the
2031 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2032 * journal_head's b_jcount refcount by one. The caller must call
2033 * jbd2_journal_put_journal_head() to undo this.
2035 * So the typical usage would be:
2037 * (Attach a journal_head if needed. Increments b_jcount)
2038 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2039 * ...
2040 * jh->b_transaction = xxx;
2041 * jbd2_journal_put_journal_head(jh);
2043 * Now, the journal_head's b_jcount is zero, but it is safe from being released
2044 * because it has a non-zero b_transaction.
2048 * Give a buffer_head a journal_head.
2050 * Doesn't need the journal lock.
2051 * May sleep.
2053 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2055 struct journal_head *jh;
2056 struct journal_head *new_jh = NULL;
2058 repeat:
2059 if (!buffer_jbd(bh)) {
2060 new_jh = journal_alloc_journal_head();
2061 memset(new_jh, 0, sizeof(*new_jh));
2064 jbd_lock_bh_journal_head(bh);
2065 if (buffer_jbd(bh)) {
2066 jh = bh2jh(bh);
2067 } else {
2068 J_ASSERT_BH(bh,
2069 (atomic_read(&bh->b_count) > 0) ||
2070 (bh->b_page && bh->b_page->mapping));
2072 if (!new_jh) {
2073 jbd_unlock_bh_journal_head(bh);
2074 goto repeat;
2077 jh = new_jh;
2078 new_jh = NULL; /* We consumed it */
2079 set_buffer_jbd(bh);
2080 bh->b_private = jh;
2081 jh->b_bh = bh;
2082 get_bh(bh);
2083 BUFFER_TRACE(bh, "added journal_head");
2085 jh->b_jcount++;
2086 jbd_unlock_bh_journal_head(bh);
2087 if (new_jh)
2088 journal_free_journal_head(new_jh);
2089 return bh->b_private;
2093 * Grab a ref against this buffer_head's journal_head. If it ended up not
2094 * having a journal_head, return NULL
2096 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2098 struct journal_head *jh = NULL;
2100 jbd_lock_bh_journal_head(bh);
2101 if (buffer_jbd(bh)) {
2102 jh = bh2jh(bh);
2103 jh->b_jcount++;
2105 jbd_unlock_bh_journal_head(bh);
2106 return jh;
2109 static void __journal_remove_journal_head(struct buffer_head *bh)
2111 struct journal_head *jh = bh2jh(bh);
2113 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2115 get_bh(bh);
2116 if (jh->b_jcount == 0) {
2117 if (jh->b_transaction == NULL &&
2118 jh->b_next_transaction == NULL &&
2119 jh->b_cp_transaction == NULL) {
2120 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2121 J_ASSERT_BH(bh, buffer_jbd(bh));
2122 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2123 BUFFER_TRACE(bh, "remove journal_head");
2124 if (jh->b_frozen_data) {
2125 printk(KERN_WARNING "%s: freeing "
2126 "b_frozen_data\n",
2127 __func__);
2128 jbd2_free(jh->b_frozen_data, bh->b_size);
2130 if (jh->b_committed_data) {
2131 printk(KERN_WARNING "%s: freeing "
2132 "b_committed_data\n",
2133 __func__);
2134 jbd2_free(jh->b_committed_data, bh->b_size);
2136 bh->b_private = NULL;
2137 jh->b_bh = NULL; /* debug, really */
2138 clear_buffer_jbd(bh);
2139 __brelse(bh);
2140 journal_free_journal_head(jh);
2141 } else {
2142 BUFFER_TRACE(bh, "journal_head was locked");
2148 * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
2149 * and has a zero b_jcount then remove and release its journal_head. If we did
2150 * see that the buffer is not used by any transaction we also "logically"
2151 * decrement ->b_count.
2153 * We in fact take an additional increment on ->b_count as a convenience,
2154 * because the caller usually wants to do additional things with the bh
2155 * after calling here.
2156 * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
2157 * time. Once the caller has run __brelse(), the buffer is eligible for
2158 * reaping by try_to_free_buffers().
2160 void jbd2_journal_remove_journal_head(struct buffer_head *bh)
2162 jbd_lock_bh_journal_head(bh);
2163 __journal_remove_journal_head(bh);
2164 jbd_unlock_bh_journal_head(bh);
2168 * Drop a reference on the passed journal_head. If it fell to zero then try to
2169 * release the journal_head from the buffer_head.
2171 void jbd2_journal_put_journal_head(struct journal_head *jh)
2173 struct buffer_head *bh = jh2bh(jh);
2175 jbd_lock_bh_journal_head(bh);
2176 J_ASSERT_JH(jh, jh->b_jcount > 0);
2177 --jh->b_jcount;
2178 if (!jh->b_jcount && !jh->b_transaction) {
2179 __journal_remove_journal_head(bh);
2180 __brelse(bh);
2182 jbd_unlock_bh_journal_head(bh);
2186 * Initialize jbd inode head
2188 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2190 jinode->i_transaction = NULL;
2191 jinode->i_next_transaction = NULL;
2192 jinode->i_vfs_inode = inode;
2193 jinode->i_flags = 0;
2194 INIT_LIST_HEAD(&jinode->i_list);
2198 * Function to be called before we start removing inode from memory (i.e.,
2199 * clear_inode() is a fine place to be called from). It removes inode from
2200 * transaction's lists.
2202 void jbd2_journal_release_jbd_inode(journal_t *journal,
2203 struct jbd2_inode *jinode)
2205 if (!journal)
2206 return;
2207 restart:
2208 spin_lock(&journal->j_list_lock);
2209 /* Is commit writing out inode - we have to wait */
2210 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2211 wait_queue_head_t *wq;
2212 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2213 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2214 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2215 spin_unlock(&journal->j_list_lock);
2216 schedule();
2217 finish_wait(wq, &wait.wait);
2218 goto restart;
2221 if (jinode->i_transaction) {
2222 list_del(&jinode->i_list);
2223 jinode->i_transaction = NULL;
2225 spin_unlock(&journal->j_list_lock);
2229 * debugfs tunables
2231 #ifdef CONFIG_JBD2_DEBUG
2232 u8 jbd2_journal_enable_debug __read_mostly;
2233 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2235 #define JBD2_DEBUG_NAME "jbd2-debug"
2237 static struct dentry *jbd2_debugfs_dir;
2238 static struct dentry *jbd2_debug;
2240 static void __init jbd2_create_debugfs_entry(void)
2242 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2243 if (jbd2_debugfs_dir)
2244 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2245 S_IRUGO | S_IWUSR,
2246 jbd2_debugfs_dir,
2247 &jbd2_journal_enable_debug);
2250 static void __exit jbd2_remove_debugfs_entry(void)
2252 debugfs_remove(jbd2_debug);
2253 debugfs_remove(jbd2_debugfs_dir);
2256 #else
2258 static void __init jbd2_create_debugfs_entry(void)
2262 static void __exit jbd2_remove_debugfs_entry(void)
2266 #endif
2268 #ifdef CONFIG_PROC_FS
2270 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2272 static void __init jbd2_create_jbd_stats_proc_entry(void)
2274 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2277 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2279 if (proc_jbd2_stats)
2280 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2283 #else
2285 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2286 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2288 #endif
2290 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2292 static int __init journal_init_handle_cache(void)
2294 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2295 if (jbd2_handle_cache == NULL) {
2296 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2297 return -ENOMEM;
2299 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2300 if (jbd2_inode_cache == NULL) {
2301 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2302 kmem_cache_destroy(jbd2_handle_cache);
2303 return -ENOMEM;
2305 return 0;
2308 static void jbd2_journal_destroy_handle_cache(void)
2310 if (jbd2_handle_cache)
2311 kmem_cache_destroy(jbd2_handle_cache);
2312 if (jbd2_inode_cache)
2313 kmem_cache_destroy(jbd2_inode_cache);
2318 * Module startup and shutdown
2321 static int __init journal_init_caches(void)
2323 int ret;
2325 ret = jbd2_journal_init_revoke_caches();
2326 if (ret == 0)
2327 ret = journal_init_jbd2_journal_head_cache();
2328 if (ret == 0)
2329 ret = journal_init_handle_cache();
2330 return ret;
2333 static void jbd2_journal_destroy_caches(void)
2335 jbd2_journal_destroy_revoke_caches();
2336 jbd2_journal_destroy_jbd2_journal_head_cache();
2337 jbd2_journal_destroy_handle_cache();
2338 jbd2_journal_destroy_slabs();
2341 static int __init journal_init(void)
2343 int ret;
2345 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2347 ret = journal_init_caches();
2348 if (ret == 0) {
2349 jbd2_create_debugfs_entry();
2350 jbd2_create_jbd_stats_proc_entry();
2351 } else {
2352 jbd2_journal_destroy_caches();
2354 return ret;
2357 static void __exit journal_exit(void)
2359 #ifdef CONFIG_JBD2_DEBUG
2360 int n = atomic_read(&nr_journal_heads);
2361 if (n)
2362 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2363 #endif
2364 jbd2_remove_debugfs_entry();
2365 jbd2_remove_jbd_stats_proc_entry();
2366 jbd2_journal_destroy_caches();
2370 * jbd2_dev_to_name is a utility function used by the jbd2 and ext4
2371 * tracing infrastructure to map a dev_t to a device name.
2373 * The caller should use rcu_read_lock() in order to make sure the
2374 * device name stays valid until its done with it. We use
2375 * rcu_read_lock() as well to make sure we're safe in case the caller
2376 * gets sloppy, and because rcu_read_lock() is cheap and can be safely
2377 * nested.
2379 struct devname_cache {
2380 struct rcu_head rcu;
2381 dev_t device;
2382 char devname[BDEVNAME_SIZE];
2384 #define CACHE_SIZE_BITS 6
2385 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS];
2386 static DEFINE_SPINLOCK(devname_cache_lock);
2388 static void free_devcache(struct rcu_head *rcu)
2390 kfree(rcu);
2393 const char *jbd2_dev_to_name(dev_t device)
2395 int i = hash_32(device, CACHE_SIZE_BITS);
2396 char *ret;
2397 struct block_device *bd;
2398 static struct devname_cache *new_dev;
2400 rcu_read_lock();
2401 if (devcache[i] && devcache[i]->device == device) {
2402 ret = devcache[i]->devname;
2403 rcu_read_unlock();
2404 return ret;
2406 rcu_read_unlock();
2408 new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL);
2409 if (!new_dev)
2410 return "NODEV-ALLOCFAILURE"; /* Something non-NULL */
2411 spin_lock(&devname_cache_lock);
2412 if (devcache[i]) {
2413 if (devcache[i]->device == device) {
2414 kfree(new_dev);
2415 ret = devcache[i]->devname;
2416 spin_unlock(&devname_cache_lock);
2417 return ret;
2419 call_rcu(&devcache[i]->rcu, free_devcache);
2421 devcache[i] = new_dev;
2422 devcache[i]->device = device;
2423 bd = bdget(device);
2424 if (bd) {
2425 bdevname(bd, devcache[i]->devname);
2426 bdput(bd);
2427 } else
2428 __bdevname(device, devcache[i]->devname);
2429 ret = devcache[i]->devname;
2430 spin_unlock(&devname_cache_lock);
2431 return ret;
2433 EXPORT_SYMBOL(jbd2_dev_to_name);
2435 MODULE_LICENSE("GPL");
2436 module_init(journal_init);
2437 module_exit(journal_exit);