dm: rename suspended_bdev to bdev
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / dm.c
blob1cfd9b72403ddaa044762fc015897da829b2d4be
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
9 #include "dm-uevent.h"
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
23 #include <trace/events/block.h>
25 #define DM_MSG_PREFIX "core"
27 static const char *_name = DM_NAME;
29 static unsigned int major = 0;
30 static unsigned int _major = 0;
32 static DEFINE_SPINLOCK(_minor_lock);
34 * For bio-based dm.
35 * One of these is allocated per bio.
37 struct dm_io {
38 struct mapped_device *md;
39 int error;
40 atomic_t io_count;
41 struct bio *bio;
42 unsigned long start_time;
46 * For bio-based dm.
47 * One of these is allocated per target within a bio. Hopefully
48 * this will be simplified out one day.
50 struct dm_target_io {
51 struct dm_io *io;
52 struct dm_target *ti;
53 union map_info info;
57 * For request-based dm.
58 * One of these is allocated per request.
60 struct dm_rq_target_io {
61 struct mapped_device *md;
62 struct dm_target *ti;
63 struct request *orig, clone;
64 int error;
65 union map_info info;
69 * For request-based dm.
70 * One of these is allocated per bio.
72 struct dm_rq_clone_bio_info {
73 struct bio *orig;
74 struct request *rq;
77 union map_info *dm_get_mapinfo(struct bio *bio)
79 if (bio && bio->bi_private)
80 return &((struct dm_target_io *)bio->bi_private)->info;
81 return NULL;
84 #define MINOR_ALLOCED ((void *)-1)
87 * Bits for the md->flags field.
89 #define DMF_BLOCK_IO_FOR_SUSPEND 0
90 #define DMF_SUSPENDED 1
91 #define DMF_FROZEN 2
92 #define DMF_FREEING 3
93 #define DMF_DELETING 4
94 #define DMF_NOFLUSH_SUSPENDING 5
95 #define DMF_QUEUE_IO_TO_THREAD 6
98 * Work processed by per-device workqueue.
100 struct mapped_device {
101 struct rw_semaphore io_lock;
102 struct mutex suspend_lock;
103 rwlock_t map_lock;
104 atomic_t holders;
105 atomic_t open_count;
107 unsigned long flags;
109 struct request_queue *queue;
110 struct gendisk *disk;
111 char name[16];
113 void *interface_ptr;
116 * A list of ios that arrived while we were suspended.
118 atomic_t pending;
119 wait_queue_head_t wait;
120 struct work_struct work;
121 struct bio_list deferred;
122 spinlock_t deferred_lock;
125 * An error from the barrier request currently being processed.
127 int barrier_error;
130 * Processing queue (flush/barriers)
132 struct workqueue_struct *wq;
135 * The current mapping.
137 struct dm_table *map;
140 * io objects are allocated from here.
142 mempool_t *io_pool;
143 mempool_t *tio_pool;
145 struct bio_set *bs;
148 * Event handling.
150 atomic_t event_nr;
151 wait_queue_head_t eventq;
152 atomic_t uevent_seq;
153 struct list_head uevent_list;
154 spinlock_t uevent_lock; /* Protect access to uevent_list */
157 * freeze/thaw support require holding onto a super block
159 struct super_block *frozen_sb;
160 struct block_device *bdev;
162 /* forced geometry settings */
163 struct hd_geometry geometry;
165 /* sysfs handle */
166 struct kobject kobj;
169 #define MIN_IOS 256
170 static struct kmem_cache *_io_cache;
171 static struct kmem_cache *_tio_cache;
172 static struct kmem_cache *_rq_tio_cache;
173 static struct kmem_cache *_rq_bio_info_cache;
175 static int __init local_init(void)
177 int r = -ENOMEM;
179 /* allocate a slab for the dm_ios */
180 _io_cache = KMEM_CACHE(dm_io, 0);
181 if (!_io_cache)
182 return r;
184 /* allocate a slab for the target ios */
185 _tio_cache = KMEM_CACHE(dm_target_io, 0);
186 if (!_tio_cache)
187 goto out_free_io_cache;
189 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
190 if (!_rq_tio_cache)
191 goto out_free_tio_cache;
193 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
194 if (!_rq_bio_info_cache)
195 goto out_free_rq_tio_cache;
197 r = dm_uevent_init();
198 if (r)
199 goto out_free_rq_bio_info_cache;
201 _major = major;
202 r = register_blkdev(_major, _name);
203 if (r < 0)
204 goto out_uevent_exit;
206 if (!_major)
207 _major = r;
209 return 0;
211 out_uevent_exit:
212 dm_uevent_exit();
213 out_free_rq_bio_info_cache:
214 kmem_cache_destroy(_rq_bio_info_cache);
215 out_free_rq_tio_cache:
216 kmem_cache_destroy(_rq_tio_cache);
217 out_free_tio_cache:
218 kmem_cache_destroy(_tio_cache);
219 out_free_io_cache:
220 kmem_cache_destroy(_io_cache);
222 return r;
225 static void local_exit(void)
227 kmem_cache_destroy(_rq_bio_info_cache);
228 kmem_cache_destroy(_rq_tio_cache);
229 kmem_cache_destroy(_tio_cache);
230 kmem_cache_destroy(_io_cache);
231 unregister_blkdev(_major, _name);
232 dm_uevent_exit();
234 _major = 0;
236 DMINFO("cleaned up");
239 static int (*_inits[])(void) __initdata = {
240 local_init,
241 dm_target_init,
242 dm_linear_init,
243 dm_stripe_init,
244 dm_kcopyd_init,
245 dm_interface_init,
248 static void (*_exits[])(void) = {
249 local_exit,
250 dm_target_exit,
251 dm_linear_exit,
252 dm_stripe_exit,
253 dm_kcopyd_exit,
254 dm_interface_exit,
257 static int __init dm_init(void)
259 const int count = ARRAY_SIZE(_inits);
261 int r, i;
263 for (i = 0; i < count; i++) {
264 r = _inits[i]();
265 if (r)
266 goto bad;
269 return 0;
271 bad:
272 while (i--)
273 _exits[i]();
275 return r;
278 static void __exit dm_exit(void)
280 int i = ARRAY_SIZE(_exits);
282 while (i--)
283 _exits[i]();
287 * Block device functions
289 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
291 struct mapped_device *md;
293 spin_lock(&_minor_lock);
295 md = bdev->bd_disk->private_data;
296 if (!md)
297 goto out;
299 if (test_bit(DMF_FREEING, &md->flags) ||
300 test_bit(DMF_DELETING, &md->flags)) {
301 md = NULL;
302 goto out;
305 dm_get(md);
306 atomic_inc(&md->open_count);
308 out:
309 spin_unlock(&_minor_lock);
311 return md ? 0 : -ENXIO;
314 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
316 struct mapped_device *md = disk->private_data;
317 atomic_dec(&md->open_count);
318 dm_put(md);
319 return 0;
322 int dm_open_count(struct mapped_device *md)
324 return atomic_read(&md->open_count);
328 * Guarantees nothing is using the device before it's deleted.
330 int dm_lock_for_deletion(struct mapped_device *md)
332 int r = 0;
334 spin_lock(&_minor_lock);
336 if (dm_open_count(md))
337 r = -EBUSY;
338 else
339 set_bit(DMF_DELETING, &md->flags);
341 spin_unlock(&_minor_lock);
343 return r;
346 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
348 struct mapped_device *md = bdev->bd_disk->private_data;
350 return dm_get_geometry(md, geo);
353 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
354 unsigned int cmd, unsigned long arg)
356 struct mapped_device *md = bdev->bd_disk->private_data;
357 struct dm_table *map = dm_get_table(md);
358 struct dm_target *tgt;
359 int r = -ENOTTY;
361 if (!map || !dm_table_get_size(map))
362 goto out;
364 /* We only support devices that have a single target */
365 if (dm_table_get_num_targets(map) != 1)
366 goto out;
368 tgt = dm_table_get_target(map, 0);
370 if (dm_suspended(md)) {
371 r = -EAGAIN;
372 goto out;
375 if (tgt->type->ioctl)
376 r = tgt->type->ioctl(tgt, cmd, arg);
378 out:
379 dm_table_put(map);
381 return r;
384 static struct dm_io *alloc_io(struct mapped_device *md)
386 return mempool_alloc(md->io_pool, GFP_NOIO);
389 static void free_io(struct mapped_device *md, struct dm_io *io)
391 mempool_free(io, md->io_pool);
394 static struct dm_target_io *alloc_tio(struct mapped_device *md)
396 return mempool_alloc(md->tio_pool, GFP_NOIO);
399 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
401 mempool_free(tio, md->tio_pool);
404 static void start_io_acct(struct dm_io *io)
406 struct mapped_device *md = io->md;
407 int cpu;
409 io->start_time = jiffies;
411 cpu = part_stat_lock();
412 part_round_stats(cpu, &dm_disk(md)->part0);
413 part_stat_unlock();
414 dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
417 static void end_io_acct(struct dm_io *io)
419 struct mapped_device *md = io->md;
420 struct bio *bio = io->bio;
421 unsigned long duration = jiffies - io->start_time;
422 int pending, cpu;
423 int rw = bio_data_dir(bio);
425 cpu = part_stat_lock();
426 part_round_stats(cpu, &dm_disk(md)->part0);
427 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
428 part_stat_unlock();
431 * After this is decremented the bio must not be touched if it is
432 * a barrier.
434 dm_disk(md)->part0.in_flight = pending =
435 atomic_dec_return(&md->pending);
437 /* nudge anyone waiting on suspend queue */
438 if (!pending)
439 wake_up(&md->wait);
443 * Add the bio to the list of deferred io.
445 static void queue_io(struct mapped_device *md, struct bio *bio)
447 down_write(&md->io_lock);
449 spin_lock_irq(&md->deferred_lock);
450 bio_list_add(&md->deferred, bio);
451 spin_unlock_irq(&md->deferred_lock);
453 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
454 queue_work(md->wq, &md->work);
456 up_write(&md->io_lock);
460 * Everyone (including functions in this file), should use this
461 * function to access the md->map field, and make sure they call
462 * dm_table_put() when finished.
464 struct dm_table *dm_get_table(struct mapped_device *md)
466 struct dm_table *t;
468 read_lock(&md->map_lock);
469 t = md->map;
470 if (t)
471 dm_table_get(t);
472 read_unlock(&md->map_lock);
474 return t;
478 * Get the geometry associated with a dm device
480 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
482 *geo = md->geometry;
484 return 0;
488 * Set the geometry of a device.
490 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
492 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
494 if (geo->start > sz) {
495 DMWARN("Start sector is beyond the geometry limits.");
496 return -EINVAL;
499 md->geometry = *geo;
501 return 0;
504 /*-----------------------------------------------------------------
505 * CRUD START:
506 * A more elegant soln is in the works that uses the queue
507 * merge fn, unfortunately there are a couple of changes to
508 * the block layer that I want to make for this. So in the
509 * interests of getting something for people to use I give
510 * you this clearly demarcated crap.
511 *---------------------------------------------------------------*/
513 static int __noflush_suspending(struct mapped_device *md)
515 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
519 * Decrements the number of outstanding ios that a bio has been
520 * cloned into, completing the original io if necc.
522 static void dec_pending(struct dm_io *io, int error)
524 unsigned long flags;
525 int io_error;
526 struct bio *bio;
527 struct mapped_device *md = io->md;
529 /* Push-back supersedes any I/O errors */
530 if (error && !(io->error > 0 && __noflush_suspending(md)))
531 io->error = error;
533 if (atomic_dec_and_test(&io->io_count)) {
534 if (io->error == DM_ENDIO_REQUEUE) {
536 * Target requested pushing back the I/O.
538 spin_lock_irqsave(&md->deferred_lock, flags);
539 if (__noflush_suspending(md))
540 bio_list_add_head(&md->deferred, io->bio);
541 else
542 /* noflush suspend was interrupted. */
543 io->error = -EIO;
544 spin_unlock_irqrestore(&md->deferred_lock, flags);
547 io_error = io->error;
548 bio = io->bio;
550 if (bio_barrier(bio)) {
552 * There can be just one barrier request so we use
553 * a per-device variable for error reporting.
554 * Note that you can't touch the bio after end_io_acct
556 md->barrier_error = io_error;
557 end_io_acct(io);
558 } else {
559 end_io_acct(io);
561 if (io_error != DM_ENDIO_REQUEUE) {
562 trace_block_bio_complete(md->queue, bio);
564 bio_endio(bio, io_error);
568 free_io(md, io);
572 static void clone_endio(struct bio *bio, int error)
574 int r = 0;
575 struct dm_target_io *tio = bio->bi_private;
576 struct dm_io *io = tio->io;
577 struct mapped_device *md = tio->io->md;
578 dm_endio_fn endio = tio->ti->type->end_io;
580 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
581 error = -EIO;
583 if (endio) {
584 r = endio(tio->ti, bio, error, &tio->info);
585 if (r < 0 || r == DM_ENDIO_REQUEUE)
587 * error and requeue request are handled
588 * in dec_pending().
590 error = r;
591 else if (r == DM_ENDIO_INCOMPLETE)
592 /* The target will handle the io */
593 return;
594 else if (r) {
595 DMWARN("unimplemented target endio return value: %d", r);
596 BUG();
601 * Store md for cleanup instead of tio which is about to get freed.
603 bio->bi_private = md->bs;
605 free_tio(md, tio);
606 bio_put(bio);
607 dec_pending(io, error);
610 static sector_t max_io_len(struct mapped_device *md,
611 sector_t sector, struct dm_target *ti)
613 sector_t offset = sector - ti->begin;
614 sector_t len = ti->len - offset;
617 * Does the target need to split even further ?
619 if (ti->split_io) {
620 sector_t boundary;
621 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
622 - offset;
623 if (len > boundary)
624 len = boundary;
627 return len;
630 static void __map_bio(struct dm_target *ti, struct bio *clone,
631 struct dm_target_io *tio)
633 int r;
634 sector_t sector;
635 struct mapped_device *md;
638 * Sanity checks.
640 BUG_ON(!clone->bi_size);
642 clone->bi_end_io = clone_endio;
643 clone->bi_private = tio;
646 * Map the clone. If r == 0 we don't need to do
647 * anything, the target has assumed ownership of
648 * this io.
650 atomic_inc(&tio->io->io_count);
651 sector = clone->bi_sector;
652 r = ti->type->map(ti, clone, &tio->info);
653 if (r == DM_MAPIO_REMAPPED) {
654 /* the bio has been remapped so dispatch it */
656 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
657 tio->io->bio->bi_bdev->bd_dev, sector);
659 generic_make_request(clone);
660 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
661 /* error the io and bail out, or requeue it if needed */
662 md = tio->io->md;
663 dec_pending(tio->io, r);
665 * Store bio_set for cleanup.
667 clone->bi_private = md->bs;
668 bio_put(clone);
669 free_tio(md, tio);
670 } else if (r) {
671 DMWARN("unimplemented target map return value: %d", r);
672 BUG();
676 struct clone_info {
677 struct mapped_device *md;
678 struct dm_table *map;
679 struct bio *bio;
680 struct dm_io *io;
681 sector_t sector;
682 sector_t sector_count;
683 unsigned short idx;
686 static void dm_bio_destructor(struct bio *bio)
688 struct bio_set *bs = bio->bi_private;
690 bio_free(bio, bs);
694 * Creates a little bio that is just does part of a bvec.
696 static struct bio *split_bvec(struct bio *bio, sector_t sector,
697 unsigned short idx, unsigned int offset,
698 unsigned int len, struct bio_set *bs)
700 struct bio *clone;
701 struct bio_vec *bv = bio->bi_io_vec + idx;
703 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
704 clone->bi_destructor = dm_bio_destructor;
705 *clone->bi_io_vec = *bv;
707 clone->bi_sector = sector;
708 clone->bi_bdev = bio->bi_bdev;
709 clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
710 clone->bi_vcnt = 1;
711 clone->bi_size = to_bytes(len);
712 clone->bi_io_vec->bv_offset = offset;
713 clone->bi_io_vec->bv_len = clone->bi_size;
714 clone->bi_flags |= 1 << BIO_CLONED;
716 if (bio_integrity(bio)) {
717 bio_integrity_clone(clone, bio, GFP_NOIO);
718 bio_integrity_trim(clone,
719 bio_sector_offset(bio, idx, offset), len);
722 return clone;
726 * Creates a bio that consists of range of complete bvecs.
728 static struct bio *clone_bio(struct bio *bio, sector_t sector,
729 unsigned short idx, unsigned short bv_count,
730 unsigned int len, struct bio_set *bs)
732 struct bio *clone;
734 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
735 __bio_clone(clone, bio);
736 clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
737 clone->bi_destructor = dm_bio_destructor;
738 clone->bi_sector = sector;
739 clone->bi_idx = idx;
740 clone->bi_vcnt = idx + bv_count;
741 clone->bi_size = to_bytes(len);
742 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
744 if (bio_integrity(bio)) {
745 bio_integrity_clone(clone, bio, GFP_NOIO);
747 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
748 bio_integrity_trim(clone,
749 bio_sector_offset(bio, idx, 0), len);
752 return clone;
755 static int __clone_and_map(struct clone_info *ci)
757 struct bio *clone, *bio = ci->bio;
758 struct dm_target *ti;
759 sector_t len = 0, max;
760 struct dm_target_io *tio;
762 ti = dm_table_find_target(ci->map, ci->sector);
763 if (!dm_target_is_valid(ti))
764 return -EIO;
766 max = max_io_len(ci->md, ci->sector, ti);
769 * Allocate a target io object.
771 tio = alloc_tio(ci->md);
772 tio->io = ci->io;
773 tio->ti = ti;
774 memset(&tio->info, 0, sizeof(tio->info));
776 if (ci->sector_count <= max) {
778 * Optimise for the simple case where we can do all of
779 * the remaining io with a single clone.
781 clone = clone_bio(bio, ci->sector, ci->idx,
782 bio->bi_vcnt - ci->idx, ci->sector_count,
783 ci->md->bs);
784 __map_bio(ti, clone, tio);
785 ci->sector_count = 0;
787 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
789 * There are some bvecs that don't span targets.
790 * Do as many of these as possible.
792 int i;
793 sector_t remaining = max;
794 sector_t bv_len;
796 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
797 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
799 if (bv_len > remaining)
800 break;
802 remaining -= bv_len;
803 len += bv_len;
806 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
807 ci->md->bs);
808 __map_bio(ti, clone, tio);
810 ci->sector += len;
811 ci->sector_count -= len;
812 ci->idx = i;
814 } else {
816 * Handle a bvec that must be split between two or more targets.
818 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
819 sector_t remaining = to_sector(bv->bv_len);
820 unsigned int offset = 0;
822 do {
823 if (offset) {
824 ti = dm_table_find_target(ci->map, ci->sector);
825 if (!dm_target_is_valid(ti))
826 return -EIO;
828 max = max_io_len(ci->md, ci->sector, ti);
830 tio = alloc_tio(ci->md);
831 tio->io = ci->io;
832 tio->ti = ti;
833 memset(&tio->info, 0, sizeof(tio->info));
836 len = min(remaining, max);
838 clone = split_bvec(bio, ci->sector, ci->idx,
839 bv->bv_offset + offset, len,
840 ci->md->bs);
842 __map_bio(ti, clone, tio);
844 ci->sector += len;
845 ci->sector_count -= len;
846 offset += to_bytes(len);
847 } while (remaining -= len);
849 ci->idx++;
852 return 0;
856 * Split the bio into several clones and submit it to targets.
858 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
860 struct clone_info ci;
861 int error = 0;
863 ci.map = dm_get_table(md);
864 if (unlikely(!ci.map)) {
865 if (!bio_barrier(bio))
866 bio_io_error(bio);
867 else
868 md->barrier_error = -EIO;
869 return;
872 ci.md = md;
873 ci.bio = bio;
874 ci.io = alloc_io(md);
875 ci.io->error = 0;
876 atomic_set(&ci.io->io_count, 1);
877 ci.io->bio = bio;
878 ci.io->md = md;
879 ci.sector = bio->bi_sector;
880 ci.sector_count = bio_sectors(bio);
881 ci.idx = bio->bi_idx;
883 start_io_acct(ci.io);
884 while (ci.sector_count && !error)
885 error = __clone_and_map(&ci);
887 /* drop the extra reference count */
888 dec_pending(ci.io, error);
889 dm_table_put(ci.map);
891 /*-----------------------------------------------------------------
892 * CRUD END
893 *---------------------------------------------------------------*/
895 static int dm_merge_bvec(struct request_queue *q,
896 struct bvec_merge_data *bvm,
897 struct bio_vec *biovec)
899 struct mapped_device *md = q->queuedata;
900 struct dm_table *map = dm_get_table(md);
901 struct dm_target *ti;
902 sector_t max_sectors;
903 int max_size = 0;
905 if (unlikely(!map))
906 goto out;
908 ti = dm_table_find_target(map, bvm->bi_sector);
909 if (!dm_target_is_valid(ti))
910 goto out_table;
913 * Find maximum amount of I/O that won't need splitting
915 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
916 (sector_t) BIO_MAX_SECTORS);
917 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
918 if (max_size < 0)
919 max_size = 0;
922 * merge_bvec_fn() returns number of bytes
923 * it can accept at this offset
924 * max is precomputed maximal io size
926 if (max_size && ti->type->merge)
927 max_size = ti->type->merge(ti, bvm, biovec, max_size);
929 * If the target doesn't support merge method and some of the devices
930 * provided their merge_bvec method (we know this by looking at
931 * queue_max_hw_sectors), then we can't allow bios with multiple vector
932 * entries. So always set max_size to 0, and the code below allows
933 * just one page.
935 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
937 max_size = 0;
939 out_table:
940 dm_table_put(map);
942 out:
944 * Always allow an entire first page
946 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
947 max_size = biovec->bv_len;
949 return max_size;
953 * The request function that just remaps the bio built up by
954 * dm_merge_bvec.
956 static int dm_request(struct request_queue *q, struct bio *bio)
958 int rw = bio_data_dir(bio);
959 struct mapped_device *md = q->queuedata;
960 int cpu;
962 down_read(&md->io_lock);
964 cpu = part_stat_lock();
965 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
966 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
967 part_stat_unlock();
970 * If we're suspended or the thread is processing barriers
971 * we have to queue this io for later.
973 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
974 unlikely(bio_barrier(bio))) {
975 up_read(&md->io_lock);
977 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
978 bio_rw(bio) == READA) {
979 bio_io_error(bio);
980 return 0;
983 queue_io(md, bio);
985 return 0;
988 __split_and_process_bio(md, bio);
989 up_read(&md->io_lock);
990 return 0;
993 static void dm_unplug_all(struct request_queue *q)
995 struct mapped_device *md = q->queuedata;
996 struct dm_table *map = dm_get_table(md);
998 if (map) {
999 dm_table_unplug_all(map);
1000 dm_table_put(map);
1004 static int dm_any_congested(void *congested_data, int bdi_bits)
1006 int r = bdi_bits;
1007 struct mapped_device *md = congested_data;
1008 struct dm_table *map;
1010 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1011 map = dm_get_table(md);
1012 if (map) {
1013 r = dm_table_any_congested(map, bdi_bits);
1014 dm_table_put(map);
1018 return r;
1021 /*-----------------------------------------------------------------
1022 * An IDR is used to keep track of allocated minor numbers.
1023 *---------------------------------------------------------------*/
1024 static DEFINE_IDR(_minor_idr);
1026 static void free_minor(int minor)
1028 spin_lock(&_minor_lock);
1029 idr_remove(&_minor_idr, minor);
1030 spin_unlock(&_minor_lock);
1034 * See if the device with a specific minor # is free.
1036 static int specific_minor(int minor)
1038 int r, m;
1040 if (minor >= (1 << MINORBITS))
1041 return -EINVAL;
1043 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1044 if (!r)
1045 return -ENOMEM;
1047 spin_lock(&_minor_lock);
1049 if (idr_find(&_minor_idr, minor)) {
1050 r = -EBUSY;
1051 goto out;
1054 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1055 if (r)
1056 goto out;
1058 if (m != minor) {
1059 idr_remove(&_minor_idr, m);
1060 r = -EBUSY;
1061 goto out;
1064 out:
1065 spin_unlock(&_minor_lock);
1066 return r;
1069 static int next_free_minor(int *minor)
1071 int r, m;
1073 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1074 if (!r)
1075 return -ENOMEM;
1077 spin_lock(&_minor_lock);
1079 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1080 if (r)
1081 goto out;
1083 if (m >= (1 << MINORBITS)) {
1084 idr_remove(&_minor_idr, m);
1085 r = -ENOSPC;
1086 goto out;
1089 *minor = m;
1091 out:
1092 spin_unlock(&_minor_lock);
1093 return r;
1096 static struct block_device_operations dm_blk_dops;
1098 static void dm_wq_work(struct work_struct *work);
1101 * Allocate and initialise a blank device with a given minor.
1103 static struct mapped_device *alloc_dev(int minor)
1105 int r;
1106 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1107 void *old_md;
1109 if (!md) {
1110 DMWARN("unable to allocate device, out of memory.");
1111 return NULL;
1114 if (!try_module_get(THIS_MODULE))
1115 goto bad_module_get;
1117 /* get a minor number for the dev */
1118 if (minor == DM_ANY_MINOR)
1119 r = next_free_minor(&minor);
1120 else
1121 r = specific_minor(minor);
1122 if (r < 0)
1123 goto bad_minor;
1125 init_rwsem(&md->io_lock);
1126 mutex_init(&md->suspend_lock);
1127 spin_lock_init(&md->deferred_lock);
1128 rwlock_init(&md->map_lock);
1129 atomic_set(&md->holders, 1);
1130 atomic_set(&md->open_count, 0);
1131 atomic_set(&md->event_nr, 0);
1132 atomic_set(&md->uevent_seq, 0);
1133 INIT_LIST_HEAD(&md->uevent_list);
1134 spin_lock_init(&md->uevent_lock);
1136 md->queue = blk_alloc_queue(GFP_KERNEL);
1137 if (!md->queue)
1138 goto bad_queue;
1140 md->queue->queuedata = md;
1141 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1142 md->queue->backing_dev_info.congested_data = md;
1143 blk_queue_make_request(md->queue, dm_request);
1144 blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN, NULL);
1145 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1146 md->queue->unplug_fn = dm_unplug_all;
1147 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1149 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1150 if (!md->io_pool)
1151 goto bad_io_pool;
1153 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1154 if (!md->tio_pool)
1155 goto bad_tio_pool;
1157 md->bs = bioset_create(16, 0);
1158 if (!md->bs)
1159 goto bad_no_bioset;
1161 md->disk = alloc_disk(1);
1162 if (!md->disk)
1163 goto bad_disk;
1165 atomic_set(&md->pending, 0);
1166 init_waitqueue_head(&md->wait);
1167 INIT_WORK(&md->work, dm_wq_work);
1168 init_waitqueue_head(&md->eventq);
1170 md->disk->major = _major;
1171 md->disk->first_minor = minor;
1172 md->disk->fops = &dm_blk_dops;
1173 md->disk->queue = md->queue;
1174 md->disk->private_data = md;
1175 sprintf(md->disk->disk_name, "dm-%d", minor);
1176 add_disk(md->disk);
1177 format_dev_t(md->name, MKDEV(_major, minor));
1179 md->wq = create_singlethread_workqueue("kdmflush");
1180 if (!md->wq)
1181 goto bad_thread;
1183 /* Populate the mapping, nobody knows we exist yet */
1184 spin_lock(&_minor_lock);
1185 old_md = idr_replace(&_minor_idr, md, minor);
1186 spin_unlock(&_minor_lock);
1188 BUG_ON(old_md != MINOR_ALLOCED);
1190 return md;
1192 bad_thread:
1193 put_disk(md->disk);
1194 bad_disk:
1195 bioset_free(md->bs);
1196 bad_no_bioset:
1197 mempool_destroy(md->tio_pool);
1198 bad_tio_pool:
1199 mempool_destroy(md->io_pool);
1200 bad_io_pool:
1201 blk_cleanup_queue(md->queue);
1202 bad_queue:
1203 free_minor(minor);
1204 bad_minor:
1205 module_put(THIS_MODULE);
1206 bad_module_get:
1207 kfree(md);
1208 return NULL;
1211 static void unlock_fs(struct mapped_device *md);
1213 static void free_dev(struct mapped_device *md)
1215 int minor = MINOR(disk_devt(md->disk));
1217 if (md->bdev) {
1218 unlock_fs(md);
1219 bdput(md->bdev);
1221 destroy_workqueue(md->wq);
1222 mempool_destroy(md->tio_pool);
1223 mempool_destroy(md->io_pool);
1224 bioset_free(md->bs);
1225 blk_integrity_unregister(md->disk);
1226 del_gendisk(md->disk);
1227 free_minor(minor);
1229 spin_lock(&_minor_lock);
1230 md->disk->private_data = NULL;
1231 spin_unlock(&_minor_lock);
1233 put_disk(md->disk);
1234 blk_cleanup_queue(md->queue);
1235 module_put(THIS_MODULE);
1236 kfree(md);
1240 * Bind a table to the device.
1242 static void event_callback(void *context)
1244 unsigned long flags;
1245 LIST_HEAD(uevents);
1246 struct mapped_device *md = (struct mapped_device *) context;
1248 spin_lock_irqsave(&md->uevent_lock, flags);
1249 list_splice_init(&md->uevent_list, &uevents);
1250 spin_unlock_irqrestore(&md->uevent_lock, flags);
1252 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1254 atomic_inc(&md->event_nr);
1255 wake_up(&md->eventq);
1258 static void __set_size(struct mapped_device *md, sector_t size)
1260 set_capacity(md->disk, size);
1262 mutex_lock(&md->bdev->bd_inode->i_mutex);
1263 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1264 mutex_unlock(&md->bdev->bd_inode->i_mutex);
1267 static int __bind(struct mapped_device *md, struct dm_table *t)
1269 struct request_queue *q = md->queue;
1270 sector_t size;
1272 size = dm_table_get_size(t);
1275 * Wipe any geometry if the size of the table changed.
1277 if (size != get_capacity(md->disk))
1278 memset(&md->geometry, 0, sizeof(md->geometry));
1280 if (md->bdev)
1281 __set_size(md, size);
1283 if (!size) {
1284 dm_table_destroy(t);
1285 return 0;
1288 dm_table_event_callback(t, event_callback, md);
1290 write_lock(&md->map_lock);
1291 md->map = t;
1292 dm_table_set_restrictions(t, q);
1293 write_unlock(&md->map_lock);
1295 return 0;
1298 static void __unbind(struct mapped_device *md)
1300 struct dm_table *map = md->map;
1302 if (!map)
1303 return;
1305 dm_table_event_callback(map, NULL, NULL);
1306 write_lock(&md->map_lock);
1307 md->map = NULL;
1308 write_unlock(&md->map_lock);
1309 dm_table_destroy(map);
1313 * Constructor for a new device.
1315 int dm_create(int minor, struct mapped_device **result)
1317 struct mapped_device *md;
1319 md = alloc_dev(minor);
1320 if (!md)
1321 return -ENXIO;
1323 dm_sysfs_init(md);
1325 *result = md;
1326 return 0;
1329 static struct mapped_device *dm_find_md(dev_t dev)
1331 struct mapped_device *md;
1332 unsigned minor = MINOR(dev);
1334 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1335 return NULL;
1337 spin_lock(&_minor_lock);
1339 md = idr_find(&_minor_idr, minor);
1340 if (md && (md == MINOR_ALLOCED ||
1341 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1342 test_bit(DMF_FREEING, &md->flags))) {
1343 md = NULL;
1344 goto out;
1347 out:
1348 spin_unlock(&_minor_lock);
1350 return md;
1353 struct mapped_device *dm_get_md(dev_t dev)
1355 struct mapped_device *md = dm_find_md(dev);
1357 if (md)
1358 dm_get(md);
1360 return md;
1363 void *dm_get_mdptr(struct mapped_device *md)
1365 return md->interface_ptr;
1368 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1370 md->interface_ptr = ptr;
1373 void dm_get(struct mapped_device *md)
1375 atomic_inc(&md->holders);
1378 const char *dm_device_name(struct mapped_device *md)
1380 return md->name;
1382 EXPORT_SYMBOL_GPL(dm_device_name);
1384 void dm_put(struct mapped_device *md)
1386 struct dm_table *map;
1388 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1390 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1391 map = dm_get_table(md);
1392 idr_replace(&_minor_idr, MINOR_ALLOCED,
1393 MINOR(disk_devt(dm_disk(md))));
1394 set_bit(DMF_FREEING, &md->flags);
1395 spin_unlock(&_minor_lock);
1396 if (!dm_suspended(md)) {
1397 dm_table_presuspend_targets(map);
1398 dm_table_postsuspend_targets(map);
1400 dm_sysfs_exit(md);
1401 dm_table_put(map);
1402 __unbind(md);
1403 free_dev(md);
1406 EXPORT_SYMBOL_GPL(dm_put);
1408 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
1410 int r = 0;
1411 DECLARE_WAITQUEUE(wait, current);
1413 dm_unplug_all(md->queue);
1415 add_wait_queue(&md->wait, &wait);
1417 while (1) {
1418 set_current_state(interruptible);
1420 smp_mb();
1421 if (!atomic_read(&md->pending))
1422 break;
1424 if (interruptible == TASK_INTERRUPTIBLE &&
1425 signal_pending(current)) {
1426 r = -EINTR;
1427 break;
1430 io_schedule();
1432 set_current_state(TASK_RUNNING);
1434 remove_wait_queue(&md->wait, &wait);
1436 return r;
1439 static int dm_flush(struct mapped_device *md)
1441 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
1442 return 0;
1445 static void process_barrier(struct mapped_device *md, struct bio *bio)
1447 int error = dm_flush(md);
1449 if (unlikely(error)) {
1450 bio_endio(bio, error);
1451 return;
1453 if (bio_empty_barrier(bio)) {
1454 bio_endio(bio, 0);
1455 return;
1458 __split_and_process_bio(md, bio);
1460 error = dm_flush(md);
1462 if (!error && md->barrier_error)
1463 error = md->barrier_error;
1465 if (md->barrier_error != DM_ENDIO_REQUEUE)
1466 bio_endio(bio, error);
1470 * Process the deferred bios
1472 static void dm_wq_work(struct work_struct *work)
1474 struct mapped_device *md = container_of(work, struct mapped_device,
1475 work);
1476 struct bio *c;
1478 down_write(&md->io_lock);
1480 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1481 spin_lock_irq(&md->deferred_lock);
1482 c = bio_list_pop(&md->deferred);
1483 spin_unlock_irq(&md->deferred_lock);
1485 if (!c) {
1486 clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1487 break;
1490 up_write(&md->io_lock);
1492 if (bio_barrier(c))
1493 process_barrier(md, c);
1494 else
1495 __split_and_process_bio(md, c);
1497 down_write(&md->io_lock);
1500 up_write(&md->io_lock);
1503 static void dm_queue_flush(struct mapped_device *md)
1505 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1506 smp_mb__after_clear_bit();
1507 queue_work(md->wq, &md->work);
1511 * Swap in a new table (destroying old one).
1513 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1515 int r = -EINVAL;
1517 mutex_lock(&md->suspend_lock);
1519 /* device must be suspended */
1520 if (!dm_suspended(md))
1521 goto out;
1523 /* without bdev, the device size cannot be changed */
1524 if (!md->bdev)
1525 if (get_capacity(md->disk) != dm_table_get_size(table))
1526 goto out;
1528 __unbind(md);
1529 r = __bind(md, table);
1531 out:
1532 mutex_unlock(&md->suspend_lock);
1533 return r;
1537 * Functions to lock and unlock any filesystem running on the
1538 * device.
1540 static int lock_fs(struct mapped_device *md)
1542 int r;
1544 WARN_ON(md->frozen_sb);
1546 md->frozen_sb = freeze_bdev(md->bdev);
1547 if (IS_ERR(md->frozen_sb)) {
1548 r = PTR_ERR(md->frozen_sb);
1549 md->frozen_sb = NULL;
1550 return r;
1553 set_bit(DMF_FROZEN, &md->flags);
1555 /* don't bdput right now, we don't want the bdev
1556 * to go away while it is locked.
1558 return 0;
1561 static void unlock_fs(struct mapped_device *md)
1563 if (!test_bit(DMF_FROZEN, &md->flags))
1564 return;
1566 thaw_bdev(md->bdev, md->frozen_sb);
1567 md->frozen_sb = NULL;
1568 clear_bit(DMF_FROZEN, &md->flags);
1572 * We need to be able to change a mapping table under a mounted
1573 * filesystem. For example we might want to move some data in
1574 * the background. Before the table can be swapped with
1575 * dm_bind_table, dm_suspend must be called to flush any in
1576 * flight bios and ensure that any further io gets deferred.
1578 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1580 struct dm_table *map = NULL;
1581 int r = 0;
1582 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1583 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1585 mutex_lock(&md->suspend_lock);
1587 if (dm_suspended(md)) {
1588 r = -EINVAL;
1589 goto out_unlock;
1592 map = dm_get_table(md);
1595 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1596 * This flag is cleared before dm_suspend returns.
1598 if (noflush)
1599 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1601 /* This does not get reverted if there's an error later. */
1602 dm_table_presuspend_targets(map);
1604 /* bdget() can stall if the pending I/Os are not flushed */
1605 if (!noflush) {
1606 md->bdev = bdget_disk(md->disk, 0);
1607 if (!md->bdev) {
1608 DMWARN("bdget failed in dm_suspend");
1609 r = -ENOMEM;
1610 goto out;
1614 * Flush I/O to the device. noflush supersedes do_lockfs,
1615 * because lock_fs() needs to flush I/Os.
1617 if (do_lockfs) {
1618 r = lock_fs(md);
1619 if (r)
1620 goto out;
1625 * Here we must make sure that no processes are submitting requests
1626 * to target drivers i.e. no one may be executing
1627 * __split_and_process_bio. This is called from dm_request and
1628 * dm_wq_work.
1630 * To get all processes out of __split_and_process_bio in dm_request,
1631 * we take the write lock. To prevent any process from reentering
1632 * __split_and_process_bio from dm_request, we set
1633 * DMF_QUEUE_IO_TO_THREAD.
1635 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
1636 * and call flush_workqueue(md->wq). flush_workqueue will wait until
1637 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
1638 * further calls to __split_and_process_bio from dm_wq_work.
1640 down_write(&md->io_lock);
1641 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1642 set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1643 up_write(&md->io_lock);
1645 flush_workqueue(md->wq);
1648 * At this point no more requests are entering target request routines.
1649 * We call dm_wait_for_completion to wait for all existing requests
1650 * to finish.
1652 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
1654 down_write(&md->io_lock);
1655 if (noflush)
1656 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1657 up_write(&md->io_lock);
1659 /* were we interrupted ? */
1660 if (r < 0) {
1661 dm_queue_flush(md);
1663 unlock_fs(md);
1664 goto out; /* pushback list is already flushed, so skip flush */
1668 * If dm_wait_for_completion returned 0, the device is completely
1669 * quiescent now. There is no request-processing activity. All new
1670 * requests are being added to md->deferred list.
1673 dm_table_postsuspend_targets(map);
1675 set_bit(DMF_SUSPENDED, &md->flags);
1677 out:
1678 if (r && md->bdev) {
1679 bdput(md->bdev);
1680 md->bdev = NULL;
1683 dm_table_put(map);
1685 out_unlock:
1686 mutex_unlock(&md->suspend_lock);
1687 return r;
1690 int dm_resume(struct mapped_device *md)
1692 int r = -EINVAL;
1693 struct dm_table *map = NULL;
1695 mutex_lock(&md->suspend_lock);
1696 if (!dm_suspended(md))
1697 goto out;
1699 map = dm_get_table(md);
1700 if (!map || !dm_table_get_size(map))
1701 goto out;
1703 r = dm_table_resume_targets(map);
1704 if (r)
1705 goto out;
1707 dm_queue_flush(md);
1709 unlock_fs(md);
1711 if (md->bdev) {
1712 bdput(md->bdev);
1713 md->bdev = NULL;
1716 clear_bit(DMF_SUSPENDED, &md->flags);
1718 dm_table_unplug_all(map);
1720 dm_kobject_uevent(md);
1722 r = 0;
1724 out:
1725 dm_table_put(map);
1726 mutex_unlock(&md->suspend_lock);
1728 return r;
1731 /*-----------------------------------------------------------------
1732 * Event notification.
1733 *---------------------------------------------------------------*/
1734 void dm_kobject_uevent(struct mapped_device *md)
1736 kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1739 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1741 return atomic_add_return(1, &md->uevent_seq);
1744 uint32_t dm_get_event_nr(struct mapped_device *md)
1746 return atomic_read(&md->event_nr);
1749 int dm_wait_event(struct mapped_device *md, int event_nr)
1751 return wait_event_interruptible(md->eventq,
1752 (event_nr != atomic_read(&md->event_nr)));
1755 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1757 unsigned long flags;
1759 spin_lock_irqsave(&md->uevent_lock, flags);
1760 list_add(elist, &md->uevent_list);
1761 spin_unlock_irqrestore(&md->uevent_lock, flags);
1765 * The gendisk is only valid as long as you have a reference
1766 * count on 'md'.
1768 struct gendisk *dm_disk(struct mapped_device *md)
1770 return md->disk;
1773 struct kobject *dm_kobject(struct mapped_device *md)
1775 return &md->kobj;
1779 * struct mapped_device should not be exported outside of dm.c
1780 * so use this check to verify that kobj is part of md structure
1782 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
1784 struct mapped_device *md;
1786 md = container_of(kobj, struct mapped_device, kobj);
1787 if (&md->kobj != kobj)
1788 return NULL;
1790 if (test_bit(DMF_FREEING, &md->flags) ||
1791 test_bit(DMF_DELETING, &md->flags))
1792 return NULL;
1794 dm_get(md);
1795 return md;
1798 int dm_suspended(struct mapped_device *md)
1800 return test_bit(DMF_SUSPENDED, &md->flags);
1803 int dm_noflush_suspending(struct dm_target *ti)
1805 struct mapped_device *md = dm_table_get_md(ti->table);
1806 int r = __noflush_suspending(md);
1808 dm_put(md);
1810 return r;
1812 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1814 static struct block_device_operations dm_blk_dops = {
1815 .open = dm_blk_open,
1816 .release = dm_blk_close,
1817 .ioctl = dm_blk_ioctl,
1818 .getgeo = dm_blk_getgeo,
1819 .owner = THIS_MODULE
1822 EXPORT_SYMBOL(dm_get_mapinfo);
1825 * module hooks
1827 module_init(dm_init);
1828 module_exit(dm_exit);
1830 module_param(major, uint, 0);
1831 MODULE_PARM_DESC(major, "The major number of the device mapper");
1832 MODULE_DESCRIPTION(DM_NAME " driver");
1833 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1834 MODULE_LICENSE("GPL");