viafb: clean up virtual memory handling
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / ksm.c
blob37cc37325094b20d3c6153bdc27314d3c81398c9
1 /*
2 * Memory merging support.
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
14 * This work is licensed under the terms of the GNU GPL, version 2.
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/mmu_notifier.h>
33 #include <linux/ksm.h>
35 #include <asm/tlbflush.h>
38 * A few notes about the KSM scanning process,
39 * to make it easier to understand the data structures below:
41 * In order to reduce excessive scanning, KSM sorts the memory pages by their
42 * contents into a data structure that holds pointers to the pages' locations.
44 * Since the contents of the pages may change at any moment, KSM cannot just
45 * insert the pages into a normal sorted tree and expect it to find anything.
46 * Therefore KSM uses two data structures - the stable and the unstable tree.
48 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
49 * by their contents. Because each such page is write-protected, searching on
50 * this tree is fully assured to be working (except when pages are unmapped),
51 * and therefore this tree is called the stable tree.
53 * In addition to the stable tree, KSM uses a second data structure called the
54 * unstable tree: this tree holds pointers to pages which have been found to
55 * be "unchanged for a period of time". The unstable tree sorts these pages
56 * by their contents, but since they are not write-protected, KSM cannot rely
57 * upon the unstable tree to work correctly - the unstable tree is liable to
58 * be corrupted as its contents are modified, and so it is called unstable.
60 * KSM solves this problem by several techniques:
62 * 1) The unstable tree is flushed every time KSM completes scanning all
63 * memory areas, and then the tree is rebuilt again from the beginning.
64 * 2) KSM will only insert into the unstable tree, pages whose hash value
65 * has not changed since the previous scan of all memory areas.
66 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
67 * colors of the nodes and not on their contents, assuring that even when
68 * the tree gets "corrupted" it won't get out of balance, so scanning time
69 * remains the same (also, searching and inserting nodes in an rbtree uses
70 * the same algorithm, so we have no overhead when we flush and rebuild).
71 * 4) KSM never flushes the stable tree, which means that even if it were to
72 * take 10 attempts to find a page in the unstable tree, once it is found,
73 * it is secured in the stable tree. (When we scan a new page, we first
74 * compare it against the stable tree, and then against the unstable tree.)
77 /**
78 * struct mm_slot - ksm information per mm that is being scanned
79 * @link: link to the mm_slots hash list
80 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
81 * @rmap_list: head for this mm_slot's list of rmap_items
82 * @mm: the mm that this information is valid for
84 struct mm_slot {
85 struct hlist_node link;
86 struct list_head mm_list;
87 struct list_head rmap_list;
88 struct mm_struct *mm;
91 /**
92 * struct ksm_scan - cursor for scanning
93 * @mm_slot: the current mm_slot we are scanning
94 * @address: the next address inside that to be scanned
95 * @rmap_item: the current rmap that we are scanning inside the rmap_list
96 * @seqnr: count of completed full scans (needed when removing unstable node)
98 * There is only the one ksm_scan instance of this cursor structure.
100 struct ksm_scan {
101 struct mm_slot *mm_slot;
102 unsigned long address;
103 struct rmap_item *rmap_item;
104 unsigned long seqnr;
108 * struct rmap_item - reverse mapping item for virtual addresses
109 * @link: link into mm_slot's rmap_list (rmap_list is per mm)
110 * @mm: the memory structure this rmap_item is pointing into
111 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
112 * @oldchecksum: previous checksum of the page at that virtual address
113 * @node: rb_node of this rmap_item in either unstable or stable tree
114 * @next: next rmap_item hanging off the same node of the stable tree
115 * @prev: previous rmap_item hanging off the same node of the stable tree
117 struct rmap_item {
118 struct list_head link;
119 struct mm_struct *mm;
120 unsigned long address; /* + low bits used for flags below */
121 union {
122 unsigned int oldchecksum; /* when unstable */
123 struct rmap_item *next; /* when stable */
125 union {
126 struct rb_node node; /* when tree node */
127 struct rmap_item *prev; /* in stable list */
131 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
132 #define NODE_FLAG 0x100 /* is a node of unstable or stable tree */
133 #define STABLE_FLAG 0x200 /* is a node or list item of stable tree */
135 /* The stable and unstable tree heads */
136 static struct rb_root root_stable_tree = RB_ROOT;
137 static struct rb_root root_unstable_tree = RB_ROOT;
139 #define MM_SLOTS_HASH_HEADS 1024
140 static struct hlist_head *mm_slots_hash;
142 static struct mm_slot ksm_mm_head = {
143 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
145 static struct ksm_scan ksm_scan = {
146 .mm_slot = &ksm_mm_head,
149 static struct kmem_cache *rmap_item_cache;
150 static struct kmem_cache *mm_slot_cache;
152 /* The number of nodes in the stable tree */
153 static unsigned long ksm_pages_shared;
155 /* The number of page slots additionally sharing those nodes */
156 static unsigned long ksm_pages_sharing;
158 /* The number of nodes in the unstable tree */
159 static unsigned long ksm_pages_unshared;
161 /* The number of rmap_items in use: to calculate pages_volatile */
162 static unsigned long ksm_rmap_items;
164 /* Limit on the number of unswappable pages used */
165 static unsigned long ksm_max_kernel_pages = 2000;
167 /* Number of pages ksmd should scan in one batch */
168 static unsigned int ksm_thread_pages_to_scan = 200;
170 /* Milliseconds ksmd should sleep between batches */
171 static unsigned int ksm_thread_sleep_millisecs = 20;
173 #define KSM_RUN_STOP 0
174 #define KSM_RUN_MERGE 1
175 #define KSM_RUN_UNMERGE 2
176 static unsigned int ksm_run = KSM_RUN_MERGE;
178 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
179 static DEFINE_MUTEX(ksm_thread_mutex);
180 static DEFINE_SPINLOCK(ksm_mmlist_lock);
182 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
183 sizeof(struct __struct), __alignof__(struct __struct),\
184 (__flags), NULL)
186 static int __init ksm_slab_init(void)
188 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
189 if (!rmap_item_cache)
190 goto out;
192 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
193 if (!mm_slot_cache)
194 goto out_free;
196 return 0;
198 out_free:
199 kmem_cache_destroy(rmap_item_cache);
200 out:
201 return -ENOMEM;
204 static void __init ksm_slab_free(void)
206 kmem_cache_destroy(mm_slot_cache);
207 kmem_cache_destroy(rmap_item_cache);
208 mm_slot_cache = NULL;
211 static inline struct rmap_item *alloc_rmap_item(void)
213 struct rmap_item *rmap_item;
215 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
216 if (rmap_item)
217 ksm_rmap_items++;
218 return rmap_item;
221 static inline void free_rmap_item(struct rmap_item *rmap_item)
223 ksm_rmap_items--;
224 rmap_item->mm = NULL; /* debug safety */
225 kmem_cache_free(rmap_item_cache, rmap_item);
228 static inline struct mm_slot *alloc_mm_slot(void)
230 if (!mm_slot_cache) /* initialization failed */
231 return NULL;
232 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
235 static inline void free_mm_slot(struct mm_slot *mm_slot)
237 kmem_cache_free(mm_slot_cache, mm_slot);
240 static int __init mm_slots_hash_init(void)
242 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
243 GFP_KERNEL);
244 if (!mm_slots_hash)
245 return -ENOMEM;
246 return 0;
249 static void __init mm_slots_hash_free(void)
251 kfree(mm_slots_hash);
254 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
256 struct mm_slot *mm_slot;
257 struct hlist_head *bucket;
258 struct hlist_node *node;
260 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
261 % MM_SLOTS_HASH_HEADS];
262 hlist_for_each_entry(mm_slot, node, bucket, link) {
263 if (mm == mm_slot->mm)
264 return mm_slot;
266 return NULL;
269 static void insert_to_mm_slots_hash(struct mm_struct *mm,
270 struct mm_slot *mm_slot)
272 struct hlist_head *bucket;
274 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
275 % MM_SLOTS_HASH_HEADS];
276 mm_slot->mm = mm;
277 INIT_LIST_HEAD(&mm_slot->rmap_list);
278 hlist_add_head(&mm_slot->link, bucket);
281 static inline int in_stable_tree(struct rmap_item *rmap_item)
283 return rmap_item->address & STABLE_FLAG;
287 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
288 * page tables after it has passed through ksm_exit() - which, if necessary,
289 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
290 * a special flag: they can just back out as soon as mm_users goes to zero.
291 * ksm_test_exit() is used throughout to make this test for exit: in some
292 * places for correctness, in some places just to avoid unnecessary work.
294 static inline bool ksm_test_exit(struct mm_struct *mm)
296 return atomic_read(&mm->mm_users) == 0;
300 * We use break_ksm to break COW on a ksm page: it's a stripped down
302 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
303 * put_page(page);
305 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
306 * in case the application has unmapped and remapped mm,addr meanwhile.
307 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
308 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
310 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
312 struct page *page;
313 int ret = 0;
315 do {
316 cond_resched();
317 page = follow_page(vma, addr, FOLL_GET);
318 if (!page)
319 break;
320 if (PageKsm(page))
321 ret = handle_mm_fault(vma->vm_mm, vma, addr,
322 FAULT_FLAG_WRITE);
323 else
324 ret = VM_FAULT_WRITE;
325 put_page(page);
326 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
328 * We must loop because handle_mm_fault() may back out if there's
329 * any difficulty e.g. if pte accessed bit gets updated concurrently.
331 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
332 * COW has been broken, even if the vma does not permit VM_WRITE;
333 * but note that a concurrent fault might break PageKsm for us.
335 * VM_FAULT_SIGBUS could occur if we race with truncation of the
336 * backing file, which also invalidates anonymous pages: that's
337 * okay, that truncation will have unmapped the PageKsm for us.
339 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
340 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
341 * current task has TIF_MEMDIE set, and will be OOM killed on return
342 * to user; and ksmd, having no mm, would never be chosen for that.
344 * But if the mm is in a limited mem_cgroup, then the fault may fail
345 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
346 * even ksmd can fail in this way - though it's usually breaking ksm
347 * just to undo a merge it made a moment before, so unlikely to oom.
349 * That's a pity: we might therefore have more kernel pages allocated
350 * than we're counting as nodes in the stable tree; but ksm_do_scan
351 * will retry to break_cow on each pass, so should recover the page
352 * in due course. The important thing is to not let VM_MERGEABLE
353 * be cleared while any such pages might remain in the area.
355 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
358 static void break_cow(struct mm_struct *mm, unsigned long addr)
360 struct vm_area_struct *vma;
362 down_read(&mm->mmap_sem);
363 if (ksm_test_exit(mm))
364 goto out;
365 vma = find_vma(mm, addr);
366 if (!vma || vma->vm_start > addr)
367 goto out;
368 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
369 goto out;
370 break_ksm(vma, addr);
371 out:
372 up_read(&mm->mmap_sem);
375 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
377 struct mm_struct *mm = rmap_item->mm;
378 unsigned long addr = rmap_item->address;
379 struct vm_area_struct *vma;
380 struct page *page;
382 down_read(&mm->mmap_sem);
383 if (ksm_test_exit(mm))
384 goto out;
385 vma = find_vma(mm, addr);
386 if (!vma || vma->vm_start > addr)
387 goto out;
388 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
389 goto out;
391 page = follow_page(vma, addr, FOLL_GET);
392 if (!page)
393 goto out;
394 if (PageAnon(page)) {
395 flush_anon_page(vma, page, addr);
396 flush_dcache_page(page);
397 } else {
398 put_page(page);
399 out: page = NULL;
401 up_read(&mm->mmap_sem);
402 return page;
406 * get_ksm_page: checks if the page at the virtual address in rmap_item
407 * is still PageKsm, in which case we can trust the content of the page,
408 * and it returns the gotten page; but NULL if the page has been zapped.
410 static struct page *get_ksm_page(struct rmap_item *rmap_item)
412 struct page *page;
414 page = get_mergeable_page(rmap_item);
415 if (page && !PageKsm(page)) {
416 put_page(page);
417 page = NULL;
419 return page;
423 * Removing rmap_item from stable or unstable tree.
424 * This function will clean the information from the stable/unstable tree.
426 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
428 if (in_stable_tree(rmap_item)) {
429 struct rmap_item *next_item = rmap_item->next;
431 if (rmap_item->address & NODE_FLAG) {
432 if (next_item) {
433 rb_replace_node(&rmap_item->node,
434 &next_item->node,
435 &root_stable_tree);
436 next_item->address |= NODE_FLAG;
437 ksm_pages_sharing--;
438 } else {
439 rb_erase(&rmap_item->node, &root_stable_tree);
440 ksm_pages_shared--;
442 } else {
443 struct rmap_item *prev_item = rmap_item->prev;
445 BUG_ON(prev_item->next != rmap_item);
446 prev_item->next = next_item;
447 if (next_item) {
448 BUG_ON(next_item->prev != rmap_item);
449 next_item->prev = rmap_item->prev;
451 ksm_pages_sharing--;
454 rmap_item->next = NULL;
456 } else if (rmap_item->address & NODE_FLAG) {
457 unsigned char age;
459 * Usually ksmd can and must skip the rb_erase, because
460 * root_unstable_tree was already reset to RB_ROOT.
461 * But be careful when an mm is exiting: do the rb_erase
462 * if this rmap_item was inserted by this scan, rather
463 * than left over from before.
465 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
466 BUG_ON(age > 1);
467 if (!age)
468 rb_erase(&rmap_item->node, &root_unstable_tree);
469 ksm_pages_unshared--;
472 rmap_item->address &= PAGE_MASK;
474 cond_resched(); /* we're called from many long loops */
477 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
478 struct list_head *cur)
480 struct rmap_item *rmap_item;
482 while (cur != &mm_slot->rmap_list) {
483 rmap_item = list_entry(cur, struct rmap_item, link);
484 cur = cur->next;
485 remove_rmap_item_from_tree(rmap_item);
486 list_del(&rmap_item->link);
487 free_rmap_item(rmap_item);
492 * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
493 * than check every pte of a given vma, the locking doesn't quite work for
494 * that - an rmap_item is assigned to the stable tree after inserting ksm
495 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
496 * rmap_items from parent to child at fork time (so as not to waste time
497 * if exit comes before the next scan reaches it).
499 * Similarly, although we'd like to remove rmap_items (so updating counts
500 * and freeing memory) when unmerging an area, it's easier to leave that
501 * to the next pass of ksmd - consider, for example, how ksmd might be
502 * in cmp_and_merge_page on one of the rmap_items we would be removing.
504 static int unmerge_ksm_pages(struct vm_area_struct *vma,
505 unsigned long start, unsigned long end)
507 unsigned long addr;
508 int err = 0;
510 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
511 if (ksm_test_exit(vma->vm_mm))
512 break;
513 if (signal_pending(current))
514 err = -ERESTARTSYS;
515 else
516 err = break_ksm(vma, addr);
518 return err;
521 #ifdef CONFIG_SYSFS
523 * Only called through the sysfs control interface:
525 static int unmerge_and_remove_all_rmap_items(void)
527 struct mm_slot *mm_slot;
528 struct mm_struct *mm;
529 struct vm_area_struct *vma;
530 int err = 0;
532 spin_lock(&ksm_mmlist_lock);
533 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
534 struct mm_slot, mm_list);
535 spin_unlock(&ksm_mmlist_lock);
537 for (mm_slot = ksm_scan.mm_slot;
538 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
539 mm = mm_slot->mm;
540 down_read(&mm->mmap_sem);
541 for (vma = mm->mmap; vma; vma = vma->vm_next) {
542 if (ksm_test_exit(mm))
543 break;
544 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
545 continue;
546 err = unmerge_ksm_pages(vma,
547 vma->vm_start, vma->vm_end);
548 if (err)
549 goto error;
552 remove_trailing_rmap_items(mm_slot, mm_slot->rmap_list.next);
554 spin_lock(&ksm_mmlist_lock);
555 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
556 struct mm_slot, mm_list);
557 if (ksm_test_exit(mm)) {
558 hlist_del(&mm_slot->link);
559 list_del(&mm_slot->mm_list);
560 spin_unlock(&ksm_mmlist_lock);
562 free_mm_slot(mm_slot);
563 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
564 up_read(&mm->mmap_sem);
565 mmdrop(mm);
566 } else {
567 spin_unlock(&ksm_mmlist_lock);
568 up_read(&mm->mmap_sem);
572 ksm_scan.seqnr = 0;
573 return 0;
575 error:
576 up_read(&mm->mmap_sem);
577 spin_lock(&ksm_mmlist_lock);
578 ksm_scan.mm_slot = &ksm_mm_head;
579 spin_unlock(&ksm_mmlist_lock);
580 return err;
582 #endif /* CONFIG_SYSFS */
584 static u32 calc_checksum(struct page *page)
586 u32 checksum;
587 void *addr = kmap_atomic(page, KM_USER0);
588 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
589 kunmap_atomic(addr, KM_USER0);
590 return checksum;
593 static int memcmp_pages(struct page *page1, struct page *page2)
595 char *addr1, *addr2;
596 int ret;
598 addr1 = kmap_atomic(page1, KM_USER0);
599 addr2 = kmap_atomic(page2, KM_USER1);
600 ret = memcmp(addr1, addr2, PAGE_SIZE);
601 kunmap_atomic(addr2, KM_USER1);
602 kunmap_atomic(addr1, KM_USER0);
603 return ret;
606 static inline int pages_identical(struct page *page1, struct page *page2)
608 return !memcmp_pages(page1, page2);
611 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
612 pte_t *orig_pte)
614 struct mm_struct *mm = vma->vm_mm;
615 unsigned long addr;
616 pte_t *ptep;
617 spinlock_t *ptl;
618 int swapped;
619 int err = -EFAULT;
621 addr = page_address_in_vma(page, vma);
622 if (addr == -EFAULT)
623 goto out;
625 ptep = page_check_address(page, mm, addr, &ptl, 0);
626 if (!ptep)
627 goto out;
629 if (pte_write(*ptep)) {
630 pte_t entry;
632 swapped = PageSwapCache(page);
633 flush_cache_page(vma, addr, page_to_pfn(page));
635 * Ok this is tricky, when get_user_pages_fast() run it doesnt
636 * take any lock, therefore the check that we are going to make
637 * with the pagecount against the mapcount is racey and
638 * O_DIRECT can happen right after the check.
639 * So we clear the pte and flush the tlb before the check
640 * this assure us that no O_DIRECT can happen after the check
641 * or in the middle of the check.
643 entry = ptep_clear_flush(vma, addr, ptep);
645 * Check that no O_DIRECT or similar I/O is in progress on the
646 * page
648 if ((page_mapcount(page) + 2 + swapped) != page_count(page)) {
649 set_pte_at_notify(mm, addr, ptep, entry);
650 goto out_unlock;
652 entry = pte_wrprotect(entry);
653 set_pte_at_notify(mm, addr, ptep, entry);
655 *orig_pte = *ptep;
656 err = 0;
658 out_unlock:
659 pte_unmap_unlock(ptep, ptl);
660 out:
661 return err;
665 * replace_page - replace page in vma by new ksm page
666 * @vma: vma that holds the pte pointing to oldpage
667 * @oldpage: the page we are replacing by newpage
668 * @newpage: the ksm page we replace oldpage by
669 * @orig_pte: the original value of the pte
671 * Returns 0 on success, -EFAULT on failure.
673 static int replace_page(struct vm_area_struct *vma, struct page *oldpage,
674 struct page *newpage, pte_t orig_pte)
676 struct mm_struct *mm = vma->vm_mm;
677 pgd_t *pgd;
678 pud_t *pud;
679 pmd_t *pmd;
680 pte_t *ptep;
681 spinlock_t *ptl;
682 unsigned long addr;
683 pgprot_t prot;
684 int err = -EFAULT;
686 prot = vm_get_page_prot(vma->vm_flags & ~VM_WRITE);
688 addr = page_address_in_vma(oldpage, vma);
689 if (addr == -EFAULT)
690 goto out;
692 pgd = pgd_offset(mm, addr);
693 if (!pgd_present(*pgd))
694 goto out;
696 pud = pud_offset(pgd, addr);
697 if (!pud_present(*pud))
698 goto out;
700 pmd = pmd_offset(pud, addr);
701 if (!pmd_present(*pmd))
702 goto out;
704 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
705 if (!pte_same(*ptep, orig_pte)) {
706 pte_unmap_unlock(ptep, ptl);
707 goto out;
710 get_page(newpage);
711 page_add_ksm_rmap(newpage);
713 flush_cache_page(vma, addr, pte_pfn(*ptep));
714 ptep_clear_flush(vma, addr, ptep);
715 set_pte_at_notify(mm, addr, ptep, mk_pte(newpage, prot));
717 page_remove_rmap(oldpage);
718 put_page(oldpage);
720 pte_unmap_unlock(ptep, ptl);
721 err = 0;
722 out:
723 return err;
727 * try_to_merge_one_page - take two pages and merge them into one
728 * @vma: the vma that hold the pte pointing into oldpage
729 * @oldpage: the page that we want to replace with newpage
730 * @newpage: the page that we want to map instead of oldpage
732 * Note:
733 * oldpage should be a PageAnon page, while newpage should be a PageKsm page,
734 * or a newly allocated kernel page which page_add_ksm_rmap will make PageKsm.
736 * This function returns 0 if the pages were merged, -EFAULT otherwise.
738 static int try_to_merge_one_page(struct vm_area_struct *vma,
739 struct page *oldpage,
740 struct page *newpage)
742 pte_t orig_pte = __pte(0);
743 int err = -EFAULT;
745 if (!(vma->vm_flags & VM_MERGEABLE))
746 goto out;
748 if (!PageAnon(oldpage))
749 goto out;
751 get_page(newpage);
752 get_page(oldpage);
755 * We need the page lock to read a stable PageSwapCache in
756 * write_protect_page(). We use trylock_page() instead of
757 * lock_page() because we don't want to wait here - we
758 * prefer to continue scanning and merging different pages,
759 * then come back to this page when it is unlocked.
761 if (!trylock_page(oldpage))
762 goto out_putpage;
764 * If this anonymous page is mapped only here, its pte may need
765 * to be write-protected. If it's mapped elsewhere, all of its
766 * ptes are necessarily already write-protected. But in either
767 * case, we need to lock and check page_count is not raised.
769 if (write_protect_page(vma, oldpage, &orig_pte)) {
770 unlock_page(oldpage);
771 goto out_putpage;
773 unlock_page(oldpage);
775 if (pages_identical(oldpage, newpage))
776 err = replace_page(vma, oldpage, newpage, orig_pte);
778 out_putpage:
779 put_page(oldpage);
780 put_page(newpage);
781 out:
782 return err;
786 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
787 * but no new kernel page is allocated: kpage must already be a ksm page.
789 static int try_to_merge_with_ksm_page(struct mm_struct *mm1,
790 unsigned long addr1,
791 struct page *page1,
792 struct page *kpage)
794 struct vm_area_struct *vma;
795 int err = -EFAULT;
797 down_read(&mm1->mmap_sem);
798 if (ksm_test_exit(mm1))
799 goto out;
801 vma = find_vma(mm1, addr1);
802 if (!vma || vma->vm_start > addr1)
803 goto out;
805 err = try_to_merge_one_page(vma, page1, kpage);
806 out:
807 up_read(&mm1->mmap_sem);
808 return err;
812 * try_to_merge_two_pages - take two identical pages and prepare them
813 * to be merged into one page.
815 * This function returns 0 if we successfully mapped two identical pages
816 * into one page, -EFAULT otherwise.
818 * Note that this function allocates a new kernel page: if one of the pages
819 * is already a ksm page, try_to_merge_with_ksm_page should be used.
821 static int try_to_merge_two_pages(struct mm_struct *mm1, unsigned long addr1,
822 struct page *page1, struct mm_struct *mm2,
823 unsigned long addr2, struct page *page2)
825 struct vm_area_struct *vma;
826 struct page *kpage;
827 int err = -EFAULT;
830 * The number of nodes in the stable tree
831 * is the number of kernel pages that we hold.
833 if (ksm_max_kernel_pages &&
834 ksm_max_kernel_pages <= ksm_pages_shared)
835 return err;
837 kpage = alloc_page(GFP_HIGHUSER);
838 if (!kpage)
839 return err;
841 down_read(&mm1->mmap_sem);
842 if (ksm_test_exit(mm1)) {
843 up_read(&mm1->mmap_sem);
844 goto out;
846 vma = find_vma(mm1, addr1);
847 if (!vma || vma->vm_start > addr1) {
848 up_read(&mm1->mmap_sem);
849 goto out;
852 copy_user_highpage(kpage, page1, addr1, vma);
853 err = try_to_merge_one_page(vma, page1, kpage);
854 up_read(&mm1->mmap_sem);
856 if (!err) {
857 err = try_to_merge_with_ksm_page(mm2, addr2, page2, kpage);
859 * If that fails, we have a ksm page with only one pte
860 * pointing to it: so break it.
862 if (err)
863 break_cow(mm1, addr1);
865 out:
866 put_page(kpage);
867 return err;
871 * stable_tree_search - search page inside the stable tree
872 * @page: the page that we are searching identical pages to.
873 * @page2: pointer into identical page that we are holding inside the stable
874 * tree that we have found.
875 * @rmap_item: the reverse mapping item
877 * This function checks if there is a page inside the stable tree
878 * with identical content to the page that we are scanning right now.
880 * This function return rmap_item pointer to the identical item if found,
881 * NULL otherwise.
883 static struct rmap_item *stable_tree_search(struct page *page,
884 struct page **page2,
885 struct rmap_item *rmap_item)
887 struct rb_node *node = root_stable_tree.rb_node;
889 while (node) {
890 struct rmap_item *tree_rmap_item, *next_rmap_item;
891 int ret;
893 tree_rmap_item = rb_entry(node, struct rmap_item, node);
894 while (tree_rmap_item) {
895 BUG_ON(!in_stable_tree(tree_rmap_item));
896 cond_resched();
897 page2[0] = get_ksm_page(tree_rmap_item);
898 if (page2[0])
899 break;
900 next_rmap_item = tree_rmap_item->next;
901 remove_rmap_item_from_tree(tree_rmap_item);
902 tree_rmap_item = next_rmap_item;
904 if (!tree_rmap_item)
905 return NULL;
907 ret = memcmp_pages(page, page2[0]);
909 if (ret < 0) {
910 put_page(page2[0]);
911 node = node->rb_left;
912 } else if (ret > 0) {
913 put_page(page2[0]);
914 node = node->rb_right;
915 } else {
916 return tree_rmap_item;
920 return NULL;
924 * stable_tree_insert - insert rmap_item pointing to new ksm page
925 * into the stable tree.
927 * @page: the page that we are searching identical page to inside the stable
928 * tree.
929 * @rmap_item: pointer to the reverse mapping item.
931 * This function returns rmap_item if success, NULL otherwise.
933 static struct rmap_item *stable_tree_insert(struct page *page,
934 struct rmap_item *rmap_item)
936 struct rb_node **new = &root_stable_tree.rb_node;
937 struct rb_node *parent = NULL;
939 while (*new) {
940 struct rmap_item *tree_rmap_item, *next_rmap_item;
941 struct page *tree_page;
942 int ret;
944 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
945 while (tree_rmap_item) {
946 BUG_ON(!in_stable_tree(tree_rmap_item));
947 cond_resched();
948 tree_page = get_ksm_page(tree_rmap_item);
949 if (tree_page)
950 break;
951 next_rmap_item = tree_rmap_item->next;
952 remove_rmap_item_from_tree(tree_rmap_item);
953 tree_rmap_item = next_rmap_item;
955 if (!tree_rmap_item)
956 return NULL;
958 ret = memcmp_pages(page, tree_page);
959 put_page(tree_page);
961 parent = *new;
962 if (ret < 0)
963 new = &parent->rb_left;
964 else if (ret > 0)
965 new = &parent->rb_right;
966 else {
968 * It is not a bug that stable_tree_search() didn't
969 * find this node: because at that time our page was
970 * not yet write-protected, so may have changed since.
972 return NULL;
976 rmap_item->address |= NODE_FLAG | STABLE_FLAG;
977 rmap_item->next = NULL;
978 rb_link_node(&rmap_item->node, parent, new);
979 rb_insert_color(&rmap_item->node, &root_stable_tree);
981 ksm_pages_shared++;
982 return rmap_item;
986 * unstable_tree_search_insert - search and insert items into the unstable tree.
988 * @page: the page that we are going to search for identical page or to insert
989 * into the unstable tree
990 * @page2: pointer into identical page that was found inside the unstable tree
991 * @rmap_item: the reverse mapping item of page
993 * This function searches for a page in the unstable tree identical to the
994 * page currently being scanned; and if no identical page is found in the
995 * tree, we insert rmap_item as a new object into the unstable tree.
997 * This function returns pointer to rmap_item found to be identical
998 * to the currently scanned page, NULL otherwise.
1000 * This function does both searching and inserting, because they share
1001 * the same walking algorithm in an rbtree.
1003 static struct rmap_item *unstable_tree_search_insert(struct page *page,
1004 struct page **page2,
1005 struct rmap_item *rmap_item)
1007 struct rb_node **new = &root_unstable_tree.rb_node;
1008 struct rb_node *parent = NULL;
1010 while (*new) {
1011 struct rmap_item *tree_rmap_item;
1012 int ret;
1014 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1015 page2[0] = get_mergeable_page(tree_rmap_item);
1016 if (!page2[0])
1017 return NULL;
1020 * Don't substitute an unswappable ksm page
1021 * just for one good swappable forked page.
1023 if (page == page2[0]) {
1024 put_page(page2[0]);
1025 return NULL;
1028 ret = memcmp_pages(page, page2[0]);
1030 parent = *new;
1031 if (ret < 0) {
1032 put_page(page2[0]);
1033 new = &parent->rb_left;
1034 } else if (ret > 0) {
1035 put_page(page2[0]);
1036 new = &parent->rb_right;
1037 } else {
1038 return tree_rmap_item;
1042 rmap_item->address |= NODE_FLAG;
1043 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1044 rb_link_node(&rmap_item->node, parent, new);
1045 rb_insert_color(&rmap_item->node, &root_unstable_tree);
1047 ksm_pages_unshared++;
1048 return NULL;
1052 * stable_tree_append - add another rmap_item to the linked list of
1053 * rmap_items hanging off a given node of the stable tree, all sharing
1054 * the same ksm page.
1056 static void stable_tree_append(struct rmap_item *rmap_item,
1057 struct rmap_item *tree_rmap_item)
1059 rmap_item->next = tree_rmap_item->next;
1060 rmap_item->prev = tree_rmap_item;
1062 if (tree_rmap_item->next)
1063 tree_rmap_item->next->prev = rmap_item;
1065 tree_rmap_item->next = rmap_item;
1066 rmap_item->address |= STABLE_FLAG;
1068 ksm_pages_sharing++;
1072 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1073 * if not, compare checksum to previous and if it's the same, see if page can
1074 * be inserted into the unstable tree, or merged with a page already there and
1075 * both transferred to the stable tree.
1077 * @page: the page that we are searching identical page to.
1078 * @rmap_item: the reverse mapping into the virtual address of this page
1080 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1082 struct page *page2[1];
1083 struct rmap_item *tree_rmap_item;
1084 unsigned int checksum;
1085 int err;
1087 if (in_stable_tree(rmap_item))
1088 remove_rmap_item_from_tree(rmap_item);
1090 /* We first start with searching the page inside the stable tree */
1091 tree_rmap_item = stable_tree_search(page, page2, rmap_item);
1092 if (tree_rmap_item) {
1093 if (page == page2[0]) /* forked */
1094 err = 0;
1095 else
1096 err = try_to_merge_with_ksm_page(rmap_item->mm,
1097 rmap_item->address,
1098 page, page2[0]);
1099 put_page(page2[0]);
1101 if (!err) {
1103 * The page was successfully merged:
1104 * add its rmap_item to the stable tree.
1106 stable_tree_append(rmap_item, tree_rmap_item);
1108 return;
1112 * A ksm page might have got here by fork, but its other
1113 * references have already been removed from the stable tree.
1114 * Or it might be left over from a break_ksm which failed
1115 * when the mem_cgroup had reached its limit: try again now.
1117 if (PageKsm(page))
1118 break_cow(rmap_item->mm, rmap_item->address);
1121 * In case the hash value of the page was changed from the last time we
1122 * have calculated it, this page to be changed frequely, therefore we
1123 * don't want to insert it to the unstable tree, and we don't want to
1124 * waste our time to search if there is something identical to it there.
1126 checksum = calc_checksum(page);
1127 if (rmap_item->oldchecksum != checksum) {
1128 rmap_item->oldchecksum = checksum;
1129 return;
1132 tree_rmap_item = unstable_tree_search_insert(page, page2, rmap_item);
1133 if (tree_rmap_item) {
1134 err = try_to_merge_two_pages(rmap_item->mm,
1135 rmap_item->address, page,
1136 tree_rmap_item->mm,
1137 tree_rmap_item->address, page2[0]);
1139 * As soon as we merge this page, we want to remove the
1140 * rmap_item of the page we have merged with from the unstable
1141 * tree, and insert it instead as new node in the stable tree.
1143 if (!err) {
1144 rb_erase(&tree_rmap_item->node, &root_unstable_tree);
1145 tree_rmap_item->address &= ~NODE_FLAG;
1146 ksm_pages_unshared--;
1149 * If we fail to insert the page into the stable tree,
1150 * we will have 2 virtual addresses that are pointing
1151 * to a ksm page left outside the stable tree,
1152 * in which case we need to break_cow on both.
1154 if (stable_tree_insert(page2[0], tree_rmap_item))
1155 stable_tree_append(rmap_item, tree_rmap_item);
1156 else {
1157 break_cow(tree_rmap_item->mm,
1158 tree_rmap_item->address);
1159 break_cow(rmap_item->mm, rmap_item->address);
1163 put_page(page2[0]);
1167 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1168 struct list_head *cur,
1169 unsigned long addr)
1171 struct rmap_item *rmap_item;
1173 while (cur != &mm_slot->rmap_list) {
1174 rmap_item = list_entry(cur, struct rmap_item, link);
1175 if ((rmap_item->address & PAGE_MASK) == addr) {
1176 if (!in_stable_tree(rmap_item))
1177 remove_rmap_item_from_tree(rmap_item);
1178 return rmap_item;
1180 if (rmap_item->address > addr)
1181 break;
1182 cur = cur->next;
1183 remove_rmap_item_from_tree(rmap_item);
1184 list_del(&rmap_item->link);
1185 free_rmap_item(rmap_item);
1188 rmap_item = alloc_rmap_item();
1189 if (rmap_item) {
1190 /* It has already been zeroed */
1191 rmap_item->mm = mm_slot->mm;
1192 rmap_item->address = addr;
1193 list_add_tail(&rmap_item->link, cur);
1195 return rmap_item;
1198 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1200 struct mm_struct *mm;
1201 struct mm_slot *slot;
1202 struct vm_area_struct *vma;
1203 struct rmap_item *rmap_item;
1205 if (list_empty(&ksm_mm_head.mm_list))
1206 return NULL;
1208 slot = ksm_scan.mm_slot;
1209 if (slot == &ksm_mm_head) {
1210 root_unstable_tree = RB_ROOT;
1212 spin_lock(&ksm_mmlist_lock);
1213 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1214 ksm_scan.mm_slot = slot;
1215 spin_unlock(&ksm_mmlist_lock);
1216 next_mm:
1217 ksm_scan.address = 0;
1218 ksm_scan.rmap_item = list_entry(&slot->rmap_list,
1219 struct rmap_item, link);
1222 mm = slot->mm;
1223 down_read(&mm->mmap_sem);
1224 if (ksm_test_exit(mm))
1225 vma = NULL;
1226 else
1227 vma = find_vma(mm, ksm_scan.address);
1229 for (; vma; vma = vma->vm_next) {
1230 if (!(vma->vm_flags & VM_MERGEABLE))
1231 continue;
1232 if (ksm_scan.address < vma->vm_start)
1233 ksm_scan.address = vma->vm_start;
1234 if (!vma->anon_vma)
1235 ksm_scan.address = vma->vm_end;
1237 while (ksm_scan.address < vma->vm_end) {
1238 if (ksm_test_exit(mm))
1239 break;
1240 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1241 if (*page && PageAnon(*page)) {
1242 flush_anon_page(vma, *page, ksm_scan.address);
1243 flush_dcache_page(*page);
1244 rmap_item = get_next_rmap_item(slot,
1245 ksm_scan.rmap_item->link.next,
1246 ksm_scan.address);
1247 if (rmap_item) {
1248 ksm_scan.rmap_item = rmap_item;
1249 ksm_scan.address += PAGE_SIZE;
1250 } else
1251 put_page(*page);
1252 up_read(&mm->mmap_sem);
1253 return rmap_item;
1255 if (*page)
1256 put_page(*page);
1257 ksm_scan.address += PAGE_SIZE;
1258 cond_resched();
1262 if (ksm_test_exit(mm)) {
1263 ksm_scan.address = 0;
1264 ksm_scan.rmap_item = list_entry(&slot->rmap_list,
1265 struct rmap_item, link);
1268 * Nuke all the rmap_items that are above this current rmap:
1269 * because there were no VM_MERGEABLE vmas with such addresses.
1271 remove_trailing_rmap_items(slot, ksm_scan.rmap_item->link.next);
1273 spin_lock(&ksm_mmlist_lock);
1274 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1275 struct mm_slot, mm_list);
1276 if (ksm_scan.address == 0) {
1278 * We've completed a full scan of all vmas, holding mmap_sem
1279 * throughout, and found no VM_MERGEABLE: so do the same as
1280 * __ksm_exit does to remove this mm from all our lists now.
1281 * This applies either when cleaning up after __ksm_exit
1282 * (but beware: we can reach here even before __ksm_exit),
1283 * or when all VM_MERGEABLE areas have been unmapped (and
1284 * mmap_sem then protects against race with MADV_MERGEABLE).
1286 hlist_del(&slot->link);
1287 list_del(&slot->mm_list);
1288 spin_unlock(&ksm_mmlist_lock);
1290 free_mm_slot(slot);
1291 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1292 up_read(&mm->mmap_sem);
1293 mmdrop(mm);
1294 } else {
1295 spin_unlock(&ksm_mmlist_lock);
1296 up_read(&mm->mmap_sem);
1299 /* Repeat until we've completed scanning the whole list */
1300 slot = ksm_scan.mm_slot;
1301 if (slot != &ksm_mm_head)
1302 goto next_mm;
1304 ksm_scan.seqnr++;
1305 return NULL;
1309 * ksm_do_scan - the ksm scanner main worker function.
1310 * @scan_npages - number of pages we want to scan before we return.
1312 static void ksm_do_scan(unsigned int scan_npages)
1314 struct rmap_item *rmap_item;
1315 struct page *page;
1317 while (scan_npages--) {
1318 cond_resched();
1319 rmap_item = scan_get_next_rmap_item(&page);
1320 if (!rmap_item)
1321 return;
1322 if (!PageKsm(page) || !in_stable_tree(rmap_item))
1323 cmp_and_merge_page(page, rmap_item);
1324 else if (page_mapcount(page) == 1) {
1326 * Replace now-unshared ksm page by ordinary page.
1328 break_cow(rmap_item->mm, rmap_item->address);
1329 remove_rmap_item_from_tree(rmap_item);
1330 rmap_item->oldchecksum = calc_checksum(page);
1332 put_page(page);
1336 static int ksmd_should_run(void)
1338 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1341 static int ksm_scan_thread(void *nothing)
1343 set_user_nice(current, 5);
1345 while (!kthread_should_stop()) {
1346 mutex_lock(&ksm_thread_mutex);
1347 if (ksmd_should_run())
1348 ksm_do_scan(ksm_thread_pages_to_scan);
1349 mutex_unlock(&ksm_thread_mutex);
1351 if (ksmd_should_run()) {
1352 schedule_timeout_interruptible(
1353 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1354 } else {
1355 wait_event_interruptible(ksm_thread_wait,
1356 ksmd_should_run() || kthread_should_stop());
1359 return 0;
1362 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1363 unsigned long end, int advice, unsigned long *vm_flags)
1365 struct mm_struct *mm = vma->vm_mm;
1366 int err;
1368 switch (advice) {
1369 case MADV_MERGEABLE:
1371 * Be somewhat over-protective for now!
1373 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1374 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1375 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
1376 VM_MIXEDMAP | VM_SAO))
1377 return 0; /* just ignore the advice */
1379 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1380 err = __ksm_enter(mm);
1381 if (err)
1382 return err;
1385 *vm_flags |= VM_MERGEABLE;
1386 break;
1388 case MADV_UNMERGEABLE:
1389 if (!(*vm_flags & VM_MERGEABLE))
1390 return 0; /* just ignore the advice */
1392 if (vma->anon_vma) {
1393 err = unmerge_ksm_pages(vma, start, end);
1394 if (err)
1395 return err;
1398 *vm_flags &= ~VM_MERGEABLE;
1399 break;
1402 return 0;
1405 int __ksm_enter(struct mm_struct *mm)
1407 struct mm_slot *mm_slot;
1408 int needs_wakeup;
1410 mm_slot = alloc_mm_slot();
1411 if (!mm_slot)
1412 return -ENOMEM;
1414 /* Check ksm_run too? Would need tighter locking */
1415 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1417 spin_lock(&ksm_mmlist_lock);
1418 insert_to_mm_slots_hash(mm, mm_slot);
1420 * Insert just behind the scanning cursor, to let the area settle
1421 * down a little; when fork is followed by immediate exec, we don't
1422 * want ksmd to waste time setting up and tearing down an rmap_list.
1424 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1425 spin_unlock(&ksm_mmlist_lock);
1427 set_bit(MMF_VM_MERGEABLE, &mm->flags);
1428 atomic_inc(&mm->mm_count);
1430 if (needs_wakeup)
1431 wake_up_interruptible(&ksm_thread_wait);
1433 return 0;
1436 void __ksm_exit(struct mm_struct *mm)
1438 struct mm_slot *mm_slot;
1439 int easy_to_free = 0;
1442 * This process is exiting: if it's straightforward (as is the
1443 * case when ksmd was never running), free mm_slot immediately.
1444 * But if it's at the cursor or has rmap_items linked to it, use
1445 * mmap_sem to synchronize with any break_cows before pagetables
1446 * are freed, and leave the mm_slot on the list for ksmd to free.
1447 * Beware: ksm may already have noticed it exiting and freed the slot.
1450 spin_lock(&ksm_mmlist_lock);
1451 mm_slot = get_mm_slot(mm);
1452 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1453 if (list_empty(&mm_slot->rmap_list)) {
1454 hlist_del(&mm_slot->link);
1455 list_del(&mm_slot->mm_list);
1456 easy_to_free = 1;
1457 } else {
1458 list_move(&mm_slot->mm_list,
1459 &ksm_scan.mm_slot->mm_list);
1462 spin_unlock(&ksm_mmlist_lock);
1464 if (easy_to_free) {
1465 free_mm_slot(mm_slot);
1466 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1467 mmdrop(mm);
1468 } else if (mm_slot) {
1469 down_write(&mm->mmap_sem);
1470 up_write(&mm->mmap_sem);
1474 #ifdef CONFIG_SYSFS
1476 * This all compiles without CONFIG_SYSFS, but is a waste of space.
1479 #define KSM_ATTR_RO(_name) \
1480 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1481 #define KSM_ATTR(_name) \
1482 static struct kobj_attribute _name##_attr = \
1483 __ATTR(_name, 0644, _name##_show, _name##_store)
1485 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1486 struct kobj_attribute *attr, char *buf)
1488 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1491 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1492 struct kobj_attribute *attr,
1493 const char *buf, size_t count)
1495 unsigned long msecs;
1496 int err;
1498 err = strict_strtoul(buf, 10, &msecs);
1499 if (err || msecs > UINT_MAX)
1500 return -EINVAL;
1502 ksm_thread_sleep_millisecs = msecs;
1504 return count;
1506 KSM_ATTR(sleep_millisecs);
1508 static ssize_t pages_to_scan_show(struct kobject *kobj,
1509 struct kobj_attribute *attr, char *buf)
1511 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1514 static ssize_t pages_to_scan_store(struct kobject *kobj,
1515 struct kobj_attribute *attr,
1516 const char *buf, size_t count)
1518 int err;
1519 unsigned long nr_pages;
1521 err = strict_strtoul(buf, 10, &nr_pages);
1522 if (err || nr_pages > UINT_MAX)
1523 return -EINVAL;
1525 ksm_thread_pages_to_scan = nr_pages;
1527 return count;
1529 KSM_ATTR(pages_to_scan);
1531 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1532 char *buf)
1534 return sprintf(buf, "%u\n", ksm_run);
1537 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1538 const char *buf, size_t count)
1540 int err;
1541 unsigned long flags;
1543 err = strict_strtoul(buf, 10, &flags);
1544 if (err || flags > UINT_MAX)
1545 return -EINVAL;
1546 if (flags > KSM_RUN_UNMERGE)
1547 return -EINVAL;
1550 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1551 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1552 * breaking COW to free the unswappable pages_shared (but leaves
1553 * mm_slots on the list for when ksmd may be set running again).
1556 mutex_lock(&ksm_thread_mutex);
1557 if (ksm_run != flags) {
1558 ksm_run = flags;
1559 if (flags & KSM_RUN_UNMERGE) {
1560 current->flags |= PF_OOM_ORIGIN;
1561 err = unmerge_and_remove_all_rmap_items();
1562 current->flags &= ~PF_OOM_ORIGIN;
1563 if (err) {
1564 ksm_run = KSM_RUN_STOP;
1565 count = err;
1569 mutex_unlock(&ksm_thread_mutex);
1571 if (flags & KSM_RUN_MERGE)
1572 wake_up_interruptible(&ksm_thread_wait);
1574 return count;
1576 KSM_ATTR(run);
1578 static ssize_t max_kernel_pages_store(struct kobject *kobj,
1579 struct kobj_attribute *attr,
1580 const char *buf, size_t count)
1582 int err;
1583 unsigned long nr_pages;
1585 err = strict_strtoul(buf, 10, &nr_pages);
1586 if (err)
1587 return -EINVAL;
1589 ksm_max_kernel_pages = nr_pages;
1591 return count;
1594 static ssize_t max_kernel_pages_show(struct kobject *kobj,
1595 struct kobj_attribute *attr, char *buf)
1597 return sprintf(buf, "%lu\n", ksm_max_kernel_pages);
1599 KSM_ATTR(max_kernel_pages);
1601 static ssize_t pages_shared_show(struct kobject *kobj,
1602 struct kobj_attribute *attr, char *buf)
1604 return sprintf(buf, "%lu\n", ksm_pages_shared);
1606 KSM_ATTR_RO(pages_shared);
1608 static ssize_t pages_sharing_show(struct kobject *kobj,
1609 struct kobj_attribute *attr, char *buf)
1611 return sprintf(buf, "%lu\n", ksm_pages_sharing);
1613 KSM_ATTR_RO(pages_sharing);
1615 static ssize_t pages_unshared_show(struct kobject *kobj,
1616 struct kobj_attribute *attr, char *buf)
1618 return sprintf(buf, "%lu\n", ksm_pages_unshared);
1620 KSM_ATTR_RO(pages_unshared);
1622 static ssize_t pages_volatile_show(struct kobject *kobj,
1623 struct kobj_attribute *attr, char *buf)
1625 long ksm_pages_volatile;
1627 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1628 - ksm_pages_sharing - ksm_pages_unshared;
1630 * It was not worth any locking to calculate that statistic,
1631 * but it might therefore sometimes be negative: conceal that.
1633 if (ksm_pages_volatile < 0)
1634 ksm_pages_volatile = 0;
1635 return sprintf(buf, "%ld\n", ksm_pages_volatile);
1637 KSM_ATTR_RO(pages_volatile);
1639 static ssize_t full_scans_show(struct kobject *kobj,
1640 struct kobj_attribute *attr, char *buf)
1642 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1644 KSM_ATTR_RO(full_scans);
1646 static struct attribute *ksm_attrs[] = {
1647 &sleep_millisecs_attr.attr,
1648 &pages_to_scan_attr.attr,
1649 &run_attr.attr,
1650 &max_kernel_pages_attr.attr,
1651 &pages_shared_attr.attr,
1652 &pages_sharing_attr.attr,
1653 &pages_unshared_attr.attr,
1654 &pages_volatile_attr.attr,
1655 &full_scans_attr.attr,
1656 NULL,
1659 static struct attribute_group ksm_attr_group = {
1660 .attrs = ksm_attrs,
1661 .name = "ksm",
1663 #endif /* CONFIG_SYSFS */
1665 static int __init ksm_init(void)
1667 struct task_struct *ksm_thread;
1668 int err;
1670 err = ksm_slab_init();
1671 if (err)
1672 goto out;
1674 err = mm_slots_hash_init();
1675 if (err)
1676 goto out_free1;
1678 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1679 if (IS_ERR(ksm_thread)) {
1680 printk(KERN_ERR "ksm: creating kthread failed\n");
1681 err = PTR_ERR(ksm_thread);
1682 goto out_free2;
1685 #ifdef CONFIG_SYSFS
1686 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1687 if (err) {
1688 printk(KERN_ERR "ksm: register sysfs failed\n");
1689 kthread_stop(ksm_thread);
1690 goto out_free2;
1692 #endif /* CONFIG_SYSFS */
1694 return 0;
1696 out_free2:
1697 mm_slots_hash_free();
1698 out_free1:
1699 ksm_slab_free();
1700 out:
1701 return err;
1703 module_init(ksm_init)