2 * linux/fs/ext4/super.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
19 #include <linux/module.h>
20 #include <linux/string.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
48 #include "ext4_extents.h"
49 #include "ext4_jbd2.h"
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
57 static struct proc_dir_entry
*ext4_proc_root
;
58 static struct kset
*ext4_kset
;
59 static struct ext4_lazy_init
*ext4_li_info
;
60 static struct mutex ext4_li_mtx
;
61 static struct ext4_features
*ext4_feat
;
63 static int ext4_load_journal(struct super_block
*, struct ext4_super_block
*,
64 unsigned long journal_devnum
);
65 static int ext4_show_options(struct seq_file
*seq
, struct dentry
*root
);
66 static int ext4_commit_super(struct super_block
*sb
, int sync
);
67 static void ext4_mark_recovery_complete(struct super_block
*sb
,
68 struct ext4_super_block
*es
);
69 static void ext4_clear_journal_err(struct super_block
*sb
,
70 struct ext4_super_block
*es
);
71 static int ext4_sync_fs(struct super_block
*sb
, int wait
);
72 static const char *ext4_decode_error(struct super_block
*sb
, int errno
,
74 static int ext4_remount(struct super_block
*sb
, int *flags
, char *data
);
75 static int ext4_statfs(struct dentry
*dentry
, struct kstatfs
*buf
);
76 static int ext4_unfreeze(struct super_block
*sb
);
77 static void ext4_write_super(struct super_block
*sb
);
78 static int ext4_freeze(struct super_block
*sb
);
79 static struct dentry
*ext4_mount(struct file_system_type
*fs_type
, int flags
,
80 const char *dev_name
, void *data
);
81 static inline int ext2_feature_set_ok(struct super_block
*sb
);
82 static inline int ext3_feature_set_ok(struct super_block
*sb
);
83 static int ext4_feature_set_ok(struct super_block
*sb
, int readonly
);
84 static void ext4_destroy_lazyinit_thread(void);
85 static void ext4_unregister_li_request(struct super_block
*sb
);
86 static void ext4_clear_request_list(void);
88 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
89 static struct file_system_type ext2_fs_type
= {
93 .kill_sb
= kill_block_super
,
94 .fs_flags
= FS_REQUIRES_DEV
,
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
98 #define IS_EXT2_SB(sb) (0)
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type
= {
104 .owner
= THIS_MODULE
,
107 .kill_sb
= kill_block_super
,
108 .fs_flags
= FS_REQUIRES_DEV
,
110 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
112 #define IS_EXT3_SB(sb) (0)
115 void *ext4_kvmalloc(size_t size
, gfp_t flags
)
119 ret
= kmalloc(size
, flags
);
121 ret
= __vmalloc(size
, flags
, PAGE_KERNEL
);
125 void *ext4_kvzalloc(size_t size
, gfp_t flags
)
129 ret
= kzalloc(size
, flags
);
131 ret
= __vmalloc(size
, flags
| __GFP_ZERO
, PAGE_KERNEL
);
135 void ext4_kvfree(void *ptr
)
137 if (is_vmalloc_addr(ptr
))
144 ext4_fsblk_t
ext4_block_bitmap(struct super_block
*sb
,
145 struct ext4_group_desc
*bg
)
147 return le32_to_cpu(bg
->bg_block_bitmap_lo
) |
148 (EXT4_DESC_SIZE(sb
) >= EXT4_MIN_DESC_SIZE_64BIT
?
149 (ext4_fsblk_t
)le32_to_cpu(bg
->bg_block_bitmap_hi
) << 32 : 0);
152 ext4_fsblk_t
ext4_inode_bitmap(struct super_block
*sb
,
153 struct ext4_group_desc
*bg
)
155 return le32_to_cpu(bg
->bg_inode_bitmap_lo
) |
156 (EXT4_DESC_SIZE(sb
) >= EXT4_MIN_DESC_SIZE_64BIT
?
157 (ext4_fsblk_t
)le32_to_cpu(bg
->bg_inode_bitmap_hi
) << 32 : 0);
160 ext4_fsblk_t
ext4_inode_table(struct super_block
*sb
,
161 struct ext4_group_desc
*bg
)
163 return le32_to_cpu(bg
->bg_inode_table_lo
) |
164 (EXT4_DESC_SIZE(sb
) >= EXT4_MIN_DESC_SIZE_64BIT
?
165 (ext4_fsblk_t
)le32_to_cpu(bg
->bg_inode_table_hi
) << 32 : 0);
168 __u32
ext4_free_group_clusters(struct super_block
*sb
,
169 struct ext4_group_desc
*bg
)
171 return le16_to_cpu(bg
->bg_free_blocks_count_lo
) |
172 (EXT4_DESC_SIZE(sb
) >= EXT4_MIN_DESC_SIZE_64BIT
?
173 (__u32
)le16_to_cpu(bg
->bg_free_blocks_count_hi
) << 16 : 0);
176 __u32
ext4_free_inodes_count(struct super_block
*sb
,
177 struct ext4_group_desc
*bg
)
179 return le16_to_cpu(bg
->bg_free_inodes_count_lo
) |
180 (EXT4_DESC_SIZE(sb
) >= EXT4_MIN_DESC_SIZE_64BIT
?
181 (__u32
)le16_to_cpu(bg
->bg_free_inodes_count_hi
) << 16 : 0);
184 __u32
ext4_used_dirs_count(struct super_block
*sb
,
185 struct ext4_group_desc
*bg
)
187 return le16_to_cpu(bg
->bg_used_dirs_count_lo
) |
188 (EXT4_DESC_SIZE(sb
) >= EXT4_MIN_DESC_SIZE_64BIT
?
189 (__u32
)le16_to_cpu(bg
->bg_used_dirs_count_hi
) << 16 : 0);
192 __u32
ext4_itable_unused_count(struct super_block
*sb
,
193 struct ext4_group_desc
*bg
)
195 return le16_to_cpu(bg
->bg_itable_unused_lo
) |
196 (EXT4_DESC_SIZE(sb
) >= EXT4_MIN_DESC_SIZE_64BIT
?
197 (__u32
)le16_to_cpu(bg
->bg_itable_unused_hi
) << 16 : 0);
200 void ext4_block_bitmap_set(struct super_block
*sb
,
201 struct ext4_group_desc
*bg
, ext4_fsblk_t blk
)
203 bg
->bg_block_bitmap_lo
= cpu_to_le32((u32
)blk
);
204 if (EXT4_DESC_SIZE(sb
) >= EXT4_MIN_DESC_SIZE_64BIT
)
205 bg
->bg_block_bitmap_hi
= cpu_to_le32(blk
>> 32);
208 void ext4_inode_bitmap_set(struct super_block
*sb
,
209 struct ext4_group_desc
*bg
, ext4_fsblk_t blk
)
211 bg
->bg_inode_bitmap_lo
= cpu_to_le32((u32
)blk
);
212 if (EXT4_DESC_SIZE(sb
) >= EXT4_MIN_DESC_SIZE_64BIT
)
213 bg
->bg_inode_bitmap_hi
= cpu_to_le32(blk
>> 32);
216 void ext4_inode_table_set(struct super_block
*sb
,
217 struct ext4_group_desc
*bg
, ext4_fsblk_t blk
)
219 bg
->bg_inode_table_lo
= cpu_to_le32((u32
)blk
);
220 if (EXT4_DESC_SIZE(sb
) >= EXT4_MIN_DESC_SIZE_64BIT
)
221 bg
->bg_inode_table_hi
= cpu_to_le32(blk
>> 32);
224 void ext4_free_group_clusters_set(struct super_block
*sb
,
225 struct ext4_group_desc
*bg
, __u32 count
)
227 bg
->bg_free_blocks_count_lo
= cpu_to_le16((__u16
)count
);
228 if (EXT4_DESC_SIZE(sb
) >= EXT4_MIN_DESC_SIZE_64BIT
)
229 bg
->bg_free_blocks_count_hi
= cpu_to_le16(count
>> 16);
232 void ext4_free_inodes_set(struct super_block
*sb
,
233 struct ext4_group_desc
*bg
, __u32 count
)
235 bg
->bg_free_inodes_count_lo
= cpu_to_le16((__u16
)count
);
236 if (EXT4_DESC_SIZE(sb
) >= EXT4_MIN_DESC_SIZE_64BIT
)
237 bg
->bg_free_inodes_count_hi
= cpu_to_le16(count
>> 16);
240 void ext4_used_dirs_set(struct super_block
*sb
,
241 struct ext4_group_desc
*bg
, __u32 count
)
243 bg
->bg_used_dirs_count_lo
= cpu_to_le16((__u16
)count
);
244 if (EXT4_DESC_SIZE(sb
) >= EXT4_MIN_DESC_SIZE_64BIT
)
245 bg
->bg_used_dirs_count_hi
= cpu_to_le16(count
>> 16);
248 void ext4_itable_unused_set(struct super_block
*sb
,
249 struct ext4_group_desc
*bg
, __u32 count
)
251 bg
->bg_itable_unused_lo
= cpu_to_le16((__u16
)count
);
252 if (EXT4_DESC_SIZE(sb
) >= EXT4_MIN_DESC_SIZE_64BIT
)
253 bg
->bg_itable_unused_hi
= cpu_to_le16(count
>> 16);
257 /* Just increment the non-pointer handle value */
258 static handle_t
*ext4_get_nojournal(void)
260 handle_t
*handle
= current
->journal_info
;
261 unsigned long ref_cnt
= (unsigned long)handle
;
263 BUG_ON(ref_cnt
>= EXT4_NOJOURNAL_MAX_REF_COUNT
);
266 handle
= (handle_t
*)ref_cnt
;
268 current
->journal_info
= handle
;
273 /* Decrement the non-pointer handle value */
274 static void ext4_put_nojournal(handle_t
*handle
)
276 unsigned long ref_cnt
= (unsigned long)handle
;
278 BUG_ON(ref_cnt
== 0);
281 handle
= (handle_t
*)ref_cnt
;
283 current
->journal_info
= handle
;
287 * Wrappers for jbd2_journal_start/end.
289 * The only special thing we need to do here is to make sure that all
290 * journal_end calls result in the superblock being marked dirty, so
291 * that sync() will call the filesystem's write_super callback if
294 * To avoid j_barrier hold in userspace when a user calls freeze(),
295 * ext4 prevents a new handle from being started by s_frozen, which
296 * is in an upper layer.
298 handle_t
*ext4_journal_start_sb(struct super_block
*sb
, int nblocks
)
303 trace_ext4_journal_start(sb
, nblocks
, _RET_IP_
);
304 if (sb
->s_flags
& MS_RDONLY
)
305 return ERR_PTR(-EROFS
);
307 journal
= EXT4_SB(sb
)->s_journal
;
308 handle
= ext4_journal_current_handle();
311 * If a handle has been started, it should be allowed to
312 * finish, otherwise deadlock could happen between freeze
313 * and others(e.g. truncate) due to the restart of the
314 * journal handle if the filesystem is forzen and active
315 * handles are not stopped.
318 vfs_check_frozen(sb
, SB_FREEZE_TRANS
);
321 return ext4_get_nojournal();
323 * Special case here: if the journal has aborted behind our
324 * backs (eg. EIO in the commit thread), then we still need to
325 * take the FS itself readonly cleanly.
327 if (is_journal_aborted(journal
)) {
328 ext4_abort(sb
, "Detected aborted journal");
329 return ERR_PTR(-EROFS
);
331 return jbd2_journal_start(journal
, nblocks
);
335 * The only special thing we need to do here is to make sure that all
336 * jbd2_journal_stop calls result in the superblock being marked dirty, so
337 * that sync() will call the filesystem's write_super callback if
340 int __ext4_journal_stop(const char *where
, unsigned int line
, handle_t
*handle
)
342 struct super_block
*sb
;
346 if (!ext4_handle_valid(handle
)) {
347 ext4_put_nojournal(handle
);
350 sb
= handle
->h_transaction
->t_journal
->j_private
;
352 rc
= jbd2_journal_stop(handle
);
357 __ext4_std_error(sb
, where
, line
, err
);
361 void ext4_journal_abort_handle(const char *caller
, unsigned int line
,
362 const char *err_fn
, struct buffer_head
*bh
,
363 handle_t
*handle
, int err
)
366 const char *errstr
= ext4_decode_error(NULL
, err
, nbuf
);
368 BUG_ON(!ext4_handle_valid(handle
));
371 BUFFER_TRACE(bh
, "abort");
376 if (is_handle_aborted(handle
))
379 printk(KERN_ERR
"EXT4-fs: %s:%d: aborting transaction: %s in %s\n",
380 caller
, line
, errstr
, err_fn
);
382 jbd2_journal_abort_handle(handle
);
385 static void __save_error_info(struct super_block
*sb
, const char *func
,
388 struct ext4_super_block
*es
= EXT4_SB(sb
)->s_es
;
390 EXT4_SB(sb
)->s_mount_state
|= EXT4_ERROR_FS
;
391 es
->s_state
|= cpu_to_le16(EXT4_ERROR_FS
);
392 es
->s_last_error_time
= cpu_to_le32(get_seconds());
393 strncpy(es
->s_last_error_func
, func
, sizeof(es
->s_last_error_func
));
394 es
->s_last_error_line
= cpu_to_le32(line
);
395 if (!es
->s_first_error_time
) {
396 es
->s_first_error_time
= es
->s_last_error_time
;
397 strncpy(es
->s_first_error_func
, func
,
398 sizeof(es
->s_first_error_func
));
399 es
->s_first_error_line
= cpu_to_le32(line
);
400 es
->s_first_error_ino
= es
->s_last_error_ino
;
401 es
->s_first_error_block
= es
->s_last_error_block
;
404 * Start the daily error reporting function if it hasn't been
407 if (!es
->s_error_count
)
408 mod_timer(&EXT4_SB(sb
)->s_err_report
, jiffies
+ 24*60*60*HZ
);
409 es
->s_error_count
= cpu_to_le32(le32_to_cpu(es
->s_error_count
) + 1);
412 static void save_error_info(struct super_block
*sb
, const char *func
,
415 __save_error_info(sb
, func
, line
);
416 ext4_commit_super(sb
, 1);
420 * The del_gendisk() function uninitializes the disk-specific data
421 * structures, including the bdi structure, without telling anyone
422 * else. Once this happens, any attempt to call mark_buffer_dirty()
423 * (for example, by ext4_commit_super), will cause a kernel OOPS.
424 * This is a kludge to prevent these oops until we can put in a proper
425 * hook in del_gendisk() to inform the VFS and file system layers.
427 static int block_device_ejected(struct super_block
*sb
)
429 struct inode
*bd_inode
= sb
->s_bdev
->bd_inode
;
430 struct backing_dev_info
*bdi
= bd_inode
->i_mapping
->backing_dev_info
;
432 return bdi
->dev
== NULL
;
435 static void ext4_journal_commit_callback(journal_t
*journal
, transaction_t
*txn
)
437 struct super_block
*sb
= journal
->j_private
;
438 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
439 int error
= is_journal_aborted(journal
);
440 struct ext4_journal_cb_entry
*jce
, *tmp
;
442 spin_lock(&sbi
->s_md_lock
);
443 list_for_each_entry_safe(jce
, tmp
, &txn
->t_private_list
, jce_list
) {
444 list_del_init(&jce
->jce_list
);
445 spin_unlock(&sbi
->s_md_lock
);
446 jce
->jce_func(sb
, jce
, error
);
447 spin_lock(&sbi
->s_md_lock
);
449 spin_unlock(&sbi
->s_md_lock
);
452 /* Deal with the reporting of failure conditions on a filesystem such as
453 * inconsistencies detected or read IO failures.
455 * On ext2, we can store the error state of the filesystem in the
456 * superblock. That is not possible on ext4, because we may have other
457 * write ordering constraints on the superblock which prevent us from
458 * writing it out straight away; and given that the journal is about to
459 * be aborted, we can't rely on the current, or future, transactions to
460 * write out the superblock safely.
462 * We'll just use the jbd2_journal_abort() error code to record an error in
463 * the journal instead. On recovery, the journal will complain about
464 * that error until we've noted it down and cleared it.
467 static void ext4_handle_error(struct super_block
*sb
)
469 if (sb
->s_flags
& MS_RDONLY
)
472 if (!test_opt(sb
, ERRORS_CONT
)) {
473 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
475 EXT4_SB(sb
)->s_mount_flags
|= EXT4_MF_FS_ABORTED
;
477 jbd2_journal_abort(journal
, -EIO
);
479 if (test_opt(sb
, ERRORS_RO
)) {
480 ext4_msg(sb
, KERN_CRIT
, "Remounting filesystem read-only");
481 sb
->s_flags
|= MS_RDONLY
;
483 if (test_opt(sb
, ERRORS_PANIC
))
484 panic("EXT4-fs (device %s): panic forced after error\n",
488 void __ext4_error(struct super_block
*sb
, const char *function
,
489 unsigned int line
, const char *fmt
, ...)
491 struct va_format vaf
;
497 printk(KERN_CRIT
"EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
498 sb
->s_id
, function
, line
, current
->comm
, &vaf
);
501 ext4_handle_error(sb
);
504 void ext4_error_inode(struct inode
*inode
, const char *function
,
505 unsigned int line
, ext4_fsblk_t block
,
506 const char *fmt
, ...)
509 struct va_format vaf
;
510 struct ext4_super_block
*es
= EXT4_SB(inode
->i_sb
)->s_es
;
512 es
->s_last_error_ino
= cpu_to_le32(inode
->i_ino
);
513 es
->s_last_error_block
= cpu_to_le64(block
);
514 save_error_info(inode
->i_sb
, function
, line
);
519 printk(KERN_CRIT
"EXT4-fs error (device %s): %s:%d: "
520 "inode #%lu: block %llu: comm %s: %pV\n",
521 inode
->i_sb
->s_id
, function
, line
, inode
->i_ino
,
522 block
, current
->comm
, &vaf
);
524 printk(KERN_CRIT
"EXT4-fs error (device %s): %s:%d: "
525 "inode #%lu: comm %s: %pV\n",
526 inode
->i_sb
->s_id
, function
, line
, inode
->i_ino
,
527 current
->comm
, &vaf
);
530 ext4_handle_error(inode
->i_sb
);
533 void ext4_error_file(struct file
*file
, const char *function
,
534 unsigned int line
, ext4_fsblk_t block
,
535 const char *fmt
, ...)
538 struct va_format vaf
;
539 struct ext4_super_block
*es
;
540 struct inode
*inode
= file
->f_dentry
->d_inode
;
541 char pathname
[80], *path
;
543 es
= EXT4_SB(inode
->i_sb
)->s_es
;
544 es
->s_last_error_ino
= cpu_to_le32(inode
->i_ino
);
545 save_error_info(inode
->i_sb
, function
, line
);
546 path
= d_path(&(file
->f_path
), pathname
, sizeof(pathname
));
554 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
555 "block %llu: comm %s: path %s: %pV\n",
556 inode
->i_sb
->s_id
, function
, line
, inode
->i_ino
,
557 block
, current
->comm
, path
, &vaf
);
560 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
561 "comm %s: path %s: %pV\n",
562 inode
->i_sb
->s_id
, function
, line
, inode
->i_ino
,
563 current
->comm
, path
, &vaf
);
566 ext4_handle_error(inode
->i_sb
);
569 static const char *ext4_decode_error(struct super_block
*sb
, int errno
,
576 errstr
= "IO failure";
579 errstr
= "Out of memory";
582 if (!sb
|| (EXT4_SB(sb
)->s_journal
&&
583 EXT4_SB(sb
)->s_journal
->j_flags
& JBD2_ABORT
))
584 errstr
= "Journal has aborted";
586 errstr
= "Readonly filesystem";
589 /* If the caller passed in an extra buffer for unknown
590 * errors, textualise them now. Else we just return
593 /* Check for truncated error codes... */
594 if (snprintf(nbuf
, 16, "error %d", -errno
) >= 0)
603 /* __ext4_std_error decodes expected errors from journaling functions
604 * automatically and invokes the appropriate error response. */
606 void __ext4_std_error(struct super_block
*sb
, const char *function
,
607 unsigned int line
, int errno
)
612 /* Special case: if the error is EROFS, and we're not already
613 * inside a transaction, then there's really no point in logging
615 if (errno
== -EROFS
&& journal_current_handle() == NULL
&&
616 (sb
->s_flags
& MS_RDONLY
))
619 errstr
= ext4_decode_error(sb
, errno
, nbuf
);
620 printk(KERN_CRIT
"EXT4-fs error (device %s) in %s:%d: %s\n",
621 sb
->s_id
, function
, line
, errstr
);
622 save_error_info(sb
, function
, line
);
624 ext4_handle_error(sb
);
628 * ext4_abort is a much stronger failure handler than ext4_error. The
629 * abort function may be used to deal with unrecoverable failures such
630 * as journal IO errors or ENOMEM at a critical moment in log management.
632 * We unconditionally force the filesystem into an ABORT|READONLY state,
633 * unless the error response on the fs has been set to panic in which
634 * case we take the easy way out and panic immediately.
637 void __ext4_abort(struct super_block
*sb
, const char *function
,
638 unsigned int line
, const char *fmt
, ...)
642 save_error_info(sb
, function
, line
);
644 printk(KERN_CRIT
"EXT4-fs error (device %s): %s:%d: ", sb
->s_id
,
650 if ((sb
->s_flags
& MS_RDONLY
) == 0) {
651 ext4_msg(sb
, KERN_CRIT
, "Remounting filesystem read-only");
652 sb
->s_flags
|= MS_RDONLY
;
653 EXT4_SB(sb
)->s_mount_flags
|= EXT4_MF_FS_ABORTED
;
654 if (EXT4_SB(sb
)->s_journal
)
655 jbd2_journal_abort(EXT4_SB(sb
)->s_journal
, -EIO
);
656 save_error_info(sb
, function
, line
);
658 if (test_opt(sb
, ERRORS_PANIC
))
659 panic("EXT4-fs panic from previous error\n");
662 void ext4_msg(struct super_block
*sb
, const char *prefix
, const char *fmt
, ...)
664 struct va_format vaf
;
670 printk("%sEXT4-fs (%s): %pV\n", prefix
, sb
->s_id
, &vaf
);
674 void __ext4_warning(struct super_block
*sb
, const char *function
,
675 unsigned int line
, const char *fmt
, ...)
677 struct va_format vaf
;
683 printk(KERN_WARNING
"EXT4-fs warning (device %s): %s:%d: %pV\n",
684 sb
->s_id
, function
, line
, &vaf
);
688 void __ext4_grp_locked_error(const char *function
, unsigned int line
,
689 struct super_block
*sb
, ext4_group_t grp
,
690 unsigned long ino
, ext4_fsblk_t block
,
691 const char *fmt
, ...)
695 struct va_format vaf
;
697 struct ext4_super_block
*es
= EXT4_SB(sb
)->s_es
;
699 es
->s_last_error_ino
= cpu_to_le32(ino
);
700 es
->s_last_error_block
= cpu_to_le64(block
);
701 __save_error_info(sb
, function
, line
);
707 printk(KERN_CRIT
"EXT4-fs error (device %s): %s:%d: group %u, ",
708 sb
->s_id
, function
, line
, grp
);
710 printk(KERN_CONT
"inode %lu: ", ino
);
712 printk(KERN_CONT
"block %llu:", (unsigned long long) block
);
713 printk(KERN_CONT
"%pV\n", &vaf
);
716 if (test_opt(sb
, ERRORS_CONT
)) {
717 ext4_commit_super(sb
, 0);
721 ext4_unlock_group(sb
, grp
);
722 ext4_handle_error(sb
);
724 * We only get here in the ERRORS_RO case; relocking the group
725 * may be dangerous, but nothing bad will happen since the
726 * filesystem will have already been marked read/only and the
727 * journal has been aborted. We return 1 as a hint to callers
728 * who might what to use the return value from
729 * ext4_grp_locked_error() to distinguish between the
730 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
731 * aggressively from the ext4 function in question, with a
732 * more appropriate error code.
734 ext4_lock_group(sb
, grp
);
738 void ext4_update_dynamic_rev(struct super_block
*sb
)
740 struct ext4_super_block
*es
= EXT4_SB(sb
)->s_es
;
742 if (le32_to_cpu(es
->s_rev_level
) > EXT4_GOOD_OLD_REV
)
746 "updating to rev %d because of new feature flag, "
747 "running e2fsck is recommended",
750 es
->s_first_ino
= cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO
);
751 es
->s_inode_size
= cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE
);
752 es
->s_rev_level
= cpu_to_le32(EXT4_DYNAMIC_REV
);
753 /* leave es->s_feature_*compat flags alone */
754 /* es->s_uuid will be set by e2fsck if empty */
757 * The rest of the superblock fields should be zero, and if not it
758 * means they are likely already in use, so leave them alone. We
759 * can leave it up to e2fsck to clean up any inconsistencies there.
764 * Open the external journal device
766 static struct block_device
*ext4_blkdev_get(dev_t dev
, struct super_block
*sb
)
768 struct block_device
*bdev
;
769 char b
[BDEVNAME_SIZE
];
771 bdev
= blkdev_get_by_dev(dev
, FMODE_READ
|FMODE_WRITE
|FMODE_EXCL
, sb
);
777 ext4_msg(sb
, KERN_ERR
, "failed to open journal device %s: %ld",
778 __bdevname(dev
, b
), PTR_ERR(bdev
));
783 * Release the journal device
785 static int ext4_blkdev_put(struct block_device
*bdev
)
787 return blkdev_put(bdev
, FMODE_READ
|FMODE_WRITE
|FMODE_EXCL
);
790 static int ext4_blkdev_remove(struct ext4_sb_info
*sbi
)
792 struct block_device
*bdev
;
795 bdev
= sbi
->journal_bdev
;
797 ret
= ext4_blkdev_put(bdev
);
798 sbi
->journal_bdev
= NULL
;
803 static inline struct inode
*orphan_list_entry(struct list_head
*l
)
805 return &list_entry(l
, struct ext4_inode_info
, i_orphan
)->vfs_inode
;
808 static void dump_orphan_list(struct super_block
*sb
, struct ext4_sb_info
*sbi
)
812 ext4_msg(sb
, KERN_ERR
, "sb orphan head is %d",
813 le32_to_cpu(sbi
->s_es
->s_last_orphan
));
815 printk(KERN_ERR
"sb_info orphan list:\n");
816 list_for_each(l
, &sbi
->s_orphan
) {
817 struct inode
*inode
= orphan_list_entry(l
);
819 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
820 inode
->i_sb
->s_id
, inode
->i_ino
, inode
,
821 inode
->i_mode
, inode
->i_nlink
,
826 static void ext4_put_super(struct super_block
*sb
)
828 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
829 struct ext4_super_block
*es
= sbi
->s_es
;
832 ext4_unregister_li_request(sb
);
833 dquot_disable(sb
, -1, DQUOT_USAGE_ENABLED
| DQUOT_LIMITS_ENABLED
);
835 flush_workqueue(sbi
->dio_unwritten_wq
);
836 destroy_workqueue(sbi
->dio_unwritten_wq
);
839 if (sbi
->s_journal
) {
840 err
= jbd2_journal_destroy(sbi
->s_journal
);
841 sbi
->s_journal
= NULL
;
843 ext4_abort(sb
, "Couldn't clean up the journal");
846 del_timer(&sbi
->s_err_report
);
847 ext4_release_system_zone(sb
);
849 ext4_ext_release(sb
);
850 ext4_xattr_put_super(sb
);
852 if (!(sb
->s_flags
& MS_RDONLY
)) {
853 EXT4_CLEAR_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_RECOVER
);
854 es
->s_state
= cpu_to_le16(sbi
->s_mount_state
);
856 if (sb
->s_dirt
|| !(sb
->s_flags
& MS_RDONLY
))
857 ext4_commit_super(sb
, 1);
860 remove_proc_entry("options", sbi
->s_proc
);
861 remove_proc_entry(sb
->s_id
, ext4_proc_root
);
863 kobject_del(&sbi
->s_kobj
);
865 for (i
= 0; i
< sbi
->s_gdb_count
; i
++)
866 brelse(sbi
->s_group_desc
[i
]);
867 ext4_kvfree(sbi
->s_group_desc
);
868 ext4_kvfree(sbi
->s_flex_groups
);
869 percpu_counter_destroy(&sbi
->s_freeclusters_counter
);
870 percpu_counter_destroy(&sbi
->s_freeinodes_counter
);
871 percpu_counter_destroy(&sbi
->s_dirs_counter
);
872 percpu_counter_destroy(&sbi
->s_dirtyclusters_counter
);
875 for (i
= 0; i
< MAXQUOTAS
; i
++)
876 kfree(sbi
->s_qf_names
[i
]);
879 /* Debugging code just in case the in-memory inode orphan list
880 * isn't empty. The on-disk one can be non-empty if we've
881 * detected an error and taken the fs readonly, but the
882 * in-memory list had better be clean by this point. */
883 if (!list_empty(&sbi
->s_orphan
))
884 dump_orphan_list(sb
, sbi
);
885 J_ASSERT(list_empty(&sbi
->s_orphan
));
887 invalidate_bdev(sb
->s_bdev
);
888 if (sbi
->journal_bdev
&& sbi
->journal_bdev
!= sb
->s_bdev
) {
890 * Invalidate the journal device's buffers. We don't want them
891 * floating about in memory - the physical journal device may
892 * hotswapped, and it breaks the `ro-after' testing code.
894 sync_blockdev(sbi
->journal_bdev
);
895 invalidate_bdev(sbi
->journal_bdev
);
896 ext4_blkdev_remove(sbi
);
899 kthread_stop(sbi
->s_mmp_tsk
);
900 sb
->s_fs_info
= NULL
;
902 * Now that we are completely done shutting down the
903 * superblock, we need to actually destroy the kobject.
906 kobject_put(&sbi
->s_kobj
);
907 wait_for_completion(&sbi
->s_kobj_unregister
);
908 kfree(sbi
->s_blockgroup_lock
);
912 static struct kmem_cache
*ext4_inode_cachep
;
915 * Called inside transaction, so use GFP_NOFS
917 static struct inode
*ext4_alloc_inode(struct super_block
*sb
)
919 struct ext4_inode_info
*ei
;
921 ei
= kmem_cache_alloc(ext4_inode_cachep
, GFP_NOFS
);
925 ei
->vfs_inode
.i_version
= 1;
926 ei
->vfs_inode
.i_data
.writeback_index
= 0;
927 memset(&ei
->i_cached_extent
, 0, sizeof(struct ext4_ext_cache
));
928 INIT_LIST_HEAD(&ei
->i_prealloc_list
);
929 spin_lock_init(&ei
->i_prealloc_lock
);
930 ei
->i_reserved_data_blocks
= 0;
931 ei
->i_reserved_meta_blocks
= 0;
932 ei
->i_allocated_meta_blocks
= 0;
933 ei
->i_da_metadata_calc_len
= 0;
934 spin_lock_init(&(ei
->i_block_reservation_lock
));
936 ei
->i_reserved_quota
= 0;
939 INIT_LIST_HEAD(&ei
->i_completed_io_list
);
940 spin_lock_init(&ei
->i_completed_io_lock
);
941 ei
->cur_aio_dio
= NULL
;
943 ei
->i_datasync_tid
= 0;
944 atomic_set(&ei
->i_ioend_count
, 0);
945 atomic_set(&ei
->i_aiodio_unwritten
, 0);
947 return &ei
->vfs_inode
;
950 static int ext4_drop_inode(struct inode
*inode
)
952 int drop
= generic_drop_inode(inode
);
954 trace_ext4_drop_inode(inode
, drop
);
958 static void ext4_i_callback(struct rcu_head
*head
)
960 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
961 kmem_cache_free(ext4_inode_cachep
, EXT4_I(inode
));
964 static void ext4_destroy_inode(struct inode
*inode
)
966 if (!list_empty(&(EXT4_I(inode
)->i_orphan
))) {
967 ext4_msg(inode
->i_sb
, KERN_ERR
,
968 "Inode %lu (%p): orphan list check failed!",
969 inode
->i_ino
, EXT4_I(inode
));
970 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
, 16, 4,
971 EXT4_I(inode
), sizeof(struct ext4_inode_info
),
975 call_rcu(&inode
->i_rcu
, ext4_i_callback
);
978 static void init_once(void *foo
)
980 struct ext4_inode_info
*ei
= (struct ext4_inode_info
*) foo
;
982 INIT_LIST_HEAD(&ei
->i_orphan
);
983 #ifdef CONFIG_EXT4_FS_XATTR
984 init_rwsem(&ei
->xattr_sem
);
986 init_rwsem(&ei
->i_data_sem
);
987 inode_init_once(&ei
->vfs_inode
);
990 static int init_inodecache(void)
992 ext4_inode_cachep
= kmem_cache_create("ext4_inode_cache",
993 sizeof(struct ext4_inode_info
),
994 0, (SLAB_RECLAIM_ACCOUNT
|
997 if (ext4_inode_cachep
== NULL
)
1002 static void destroy_inodecache(void)
1004 kmem_cache_destroy(ext4_inode_cachep
);
1007 void ext4_clear_inode(struct inode
*inode
)
1009 invalidate_inode_buffers(inode
);
1010 end_writeback(inode
);
1012 ext4_discard_preallocations(inode
);
1013 if (EXT4_I(inode
)->jinode
) {
1014 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode
),
1015 EXT4_I(inode
)->jinode
);
1016 jbd2_free_inode(EXT4_I(inode
)->jinode
);
1017 EXT4_I(inode
)->jinode
= NULL
;
1021 static struct inode
*ext4_nfs_get_inode(struct super_block
*sb
,
1022 u64 ino
, u32 generation
)
1024 struct inode
*inode
;
1026 if (ino
< EXT4_FIRST_INO(sb
) && ino
!= EXT4_ROOT_INO
)
1027 return ERR_PTR(-ESTALE
);
1028 if (ino
> le32_to_cpu(EXT4_SB(sb
)->s_es
->s_inodes_count
))
1029 return ERR_PTR(-ESTALE
);
1031 /* iget isn't really right if the inode is currently unallocated!!
1033 * ext4_read_inode will return a bad_inode if the inode had been
1034 * deleted, so we should be safe.
1036 * Currently we don't know the generation for parent directory, so
1037 * a generation of 0 means "accept any"
1039 inode
= ext4_iget(sb
, ino
);
1041 return ERR_CAST(inode
);
1042 if (generation
&& inode
->i_generation
!= generation
) {
1044 return ERR_PTR(-ESTALE
);
1050 static struct dentry
*ext4_fh_to_dentry(struct super_block
*sb
, struct fid
*fid
,
1051 int fh_len
, int fh_type
)
1053 return generic_fh_to_dentry(sb
, fid
, fh_len
, fh_type
,
1054 ext4_nfs_get_inode
);
1057 static struct dentry
*ext4_fh_to_parent(struct super_block
*sb
, struct fid
*fid
,
1058 int fh_len
, int fh_type
)
1060 return generic_fh_to_parent(sb
, fid
, fh_len
, fh_type
,
1061 ext4_nfs_get_inode
);
1065 * Try to release metadata pages (indirect blocks, directories) which are
1066 * mapped via the block device. Since these pages could have journal heads
1067 * which would prevent try_to_free_buffers() from freeing them, we must use
1068 * jbd2 layer's try_to_free_buffers() function to release them.
1070 static int bdev_try_to_free_page(struct super_block
*sb
, struct page
*page
,
1073 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
1075 WARN_ON(PageChecked(page
));
1076 if (!page_has_buffers(page
))
1079 return jbd2_journal_try_to_free_buffers(journal
, page
,
1080 wait
& ~__GFP_WAIT
);
1081 return try_to_free_buffers(page
);
1085 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1086 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1088 static int ext4_write_dquot(struct dquot
*dquot
);
1089 static int ext4_acquire_dquot(struct dquot
*dquot
);
1090 static int ext4_release_dquot(struct dquot
*dquot
);
1091 static int ext4_mark_dquot_dirty(struct dquot
*dquot
);
1092 static int ext4_write_info(struct super_block
*sb
, int type
);
1093 static int ext4_quota_on(struct super_block
*sb
, int type
, int format_id
,
1095 static int ext4_quota_off(struct super_block
*sb
, int type
);
1096 static int ext4_quota_on_mount(struct super_block
*sb
, int type
);
1097 static ssize_t
ext4_quota_read(struct super_block
*sb
, int type
, char *data
,
1098 size_t len
, loff_t off
);
1099 static ssize_t
ext4_quota_write(struct super_block
*sb
, int type
,
1100 const char *data
, size_t len
, loff_t off
);
1102 static const struct dquot_operations ext4_quota_operations
= {
1103 .get_reserved_space
= ext4_get_reserved_space
,
1104 .write_dquot
= ext4_write_dquot
,
1105 .acquire_dquot
= ext4_acquire_dquot
,
1106 .release_dquot
= ext4_release_dquot
,
1107 .mark_dirty
= ext4_mark_dquot_dirty
,
1108 .write_info
= ext4_write_info
,
1109 .alloc_dquot
= dquot_alloc
,
1110 .destroy_dquot
= dquot_destroy
,
1113 static const struct quotactl_ops ext4_qctl_operations
= {
1114 .quota_on
= ext4_quota_on
,
1115 .quota_off
= ext4_quota_off
,
1116 .quota_sync
= dquot_quota_sync
,
1117 .get_info
= dquot_get_dqinfo
,
1118 .set_info
= dquot_set_dqinfo
,
1119 .get_dqblk
= dquot_get_dqblk
,
1120 .set_dqblk
= dquot_set_dqblk
1124 static const struct super_operations ext4_sops
= {
1125 .alloc_inode
= ext4_alloc_inode
,
1126 .destroy_inode
= ext4_destroy_inode
,
1127 .write_inode
= ext4_write_inode
,
1128 .dirty_inode
= ext4_dirty_inode
,
1129 .drop_inode
= ext4_drop_inode
,
1130 .evict_inode
= ext4_evict_inode
,
1131 .put_super
= ext4_put_super
,
1132 .sync_fs
= ext4_sync_fs
,
1133 .freeze_fs
= ext4_freeze
,
1134 .unfreeze_fs
= ext4_unfreeze
,
1135 .statfs
= ext4_statfs
,
1136 .remount_fs
= ext4_remount
,
1137 .show_options
= ext4_show_options
,
1139 .quota_read
= ext4_quota_read
,
1140 .quota_write
= ext4_quota_write
,
1142 .bdev_try_to_free_page
= bdev_try_to_free_page
,
1145 static const struct super_operations ext4_nojournal_sops
= {
1146 .alloc_inode
= ext4_alloc_inode
,
1147 .destroy_inode
= ext4_destroy_inode
,
1148 .write_inode
= ext4_write_inode
,
1149 .dirty_inode
= ext4_dirty_inode
,
1150 .drop_inode
= ext4_drop_inode
,
1151 .evict_inode
= ext4_evict_inode
,
1152 .write_super
= ext4_write_super
,
1153 .put_super
= ext4_put_super
,
1154 .statfs
= ext4_statfs
,
1155 .remount_fs
= ext4_remount
,
1156 .show_options
= ext4_show_options
,
1158 .quota_read
= ext4_quota_read
,
1159 .quota_write
= ext4_quota_write
,
1161 .bdev_try_to_free_page
= bdev_try_to_free_page
,
1164 static const struct export_operations ext4_export_ops
= {
1165 .fh_to_dentry
= ext4_fh_to_dentry
,
1166 .fh_to_parent
= ext4_fh_to_parent
,
1167 .get_parent
= ext4_get_parent
,
1171 Opt_bsd_df
, Opt_minix_df
, Opt_grpid
, Opt_nogrpid
,
1172 Opt_resgid
, Opt_resuid
, Opt_sb
, Opt_err_cont
, Opt_err_panic
, Opt_err_ro
,
1173 Opt_nouid32
, Opt_debug
, Opt_removed
,
1174 Opt_user_xattr
, Opt_nouser_xattr
, Opt_acl
, Opt_noacl
,
1175 Opt_auto_da_alloc
, Opt_noauto_da_alloc
, Opt_noload
,
1176 Opt_commit
, Opt_min_batch_time
, Opt_max_batch_time
,
1177 Opt_journal_dev
, Opt_journal_checksum
, Opt_journal_async_commit
,
1178 Opt_abort
, Opt_data_journal
, Opt_data_ordered
, Opt_data_writeback
,
1179 Opt_data_err_abort
, Opt_data_err_ignore
,
1180 Opt_usrjquota
, Opt_grpjquota
, Opt_offusrjquota
, Opt_offgrpjquota
,
1181 Opt_jqfmt_vfsold
, Opt_jqfmt_vfsv0
, Opt_jqfmt_vfsv1
, Opt_quota
,
1182 Opt_noquota
, Opt_barrier
, Opt_nobarrier
, Opt_err
,
1183 Opt_usrquota
, Opt_grpquota
, Opt_i_version
,
1184 Opt_stripe
, Opt_delalloc
, Opt_nodelalloc
, Opt_mblk_io_submit
,
1185 Opt_nomblk_io_submit
, Opt_block_validity
, Opt_noblock_validity
,
1186 Opt_inode_readahead_blks
, Opt_journal_ioprio
,
1187 Opt_dioread_nolock
, Opt_dioread_lock
,
1188 Opt_discard
, Opt_nodiscard
, Opt_init_itable
, Opt_noinit_itable
,
1191 static const match_table_t tokens
= {
1192 {Opt_bsd_df
, "bsddf"},
1193 {Opt_minix_df
, "minixdf"},
1194 {Opt_grpid
, "grpid"},
1195 {Opt_grpid
, "bsdgroups"},
1196 {Opt_nogrpid
, "nogrpid"},
1197 {Opt_nogrpid
, "sysvgroups"},
1198 {Opt_resgid
, "resgid=%u"},
1199 {Opt_resuid
, "resuid=%u"},
1201 {Opt_err_cont
, "errors=continue"},
1202 {Opt_err_panic
, "errors=panic"},
1203 {Opt_err_ro
, "errors=remount-ro"},
1204 {Opt_nouid32
, "nouid32"},
1205 {Opt_debug
, "debug"},
1206 {Opt_removed
, "oldalloc"},
1207 {Opt_removed
, "orlov"},
1208 {Opt_user_xattr
, "user_xattr"},
1209 {Opt_nouser_xattr
, "nouser_xattr"},
1211 {Opt_noacl
, "noacl"},
1212 {Opt_noload
, "norecovery"},
1213 {Opt_noload
, "noload"},
1214 {Opt_removed
, "nobh"},
1215 {Opt_removed
, "bh"},
1216 {Opt_commit
, "commit=%u"},
1217 {Opt_min_batch_time
, "min_batch_time=%u"},
1218 {Opt_max_batch_time
, "max_batch_time=%u"},
1219 {Opt_journal_dev
, "journal_dev=%u"},
1220 {Opt_journal_checksum
, "journal_checksum"},
1221 {Opt_journal_async_commit
, "journal_async_commit"},
1222 {Opt_abort
, "abort"},
1223 {Opt_data_journal
, "data=journal"},
1224 {Opt_data_ordered
, "data=ordered"},
1225 {Opt_data_writeback
, "data=writeback"},
1226 {Opt_data_err_abort
, "data_err=abort"},
1227 {Opt_data_err_ignore
, "data_err=ignore"},
1228 {Opt_offusrjquota
, "usrjquota="},
1229 {Opt_usrjquota
, "usrjquota=%s"},
1230 {Opt_offgrpjquota
, "grpjquota="},
1231 {Opt_grpjquota
, "grpjquota=%s"},
1232 {Opt_jqfmt_vfsold
, "jqfmt=vfsold"},
1233 {Opt_jqfmt_vfsv0
, "jqfmt=vfsv0"},
1234 {Opt_jqfmt_vfsv1
, "jqfmt=vfsv1"},
1235 {Opt_grpquota
, "grpquota"},
1236 {Opt_noquota
, "noquota"},
1237 {Opt_quota
, "quota"},
1238 {Opt_usrquota
, "usrquota"},
1239 {Opt_barrier
, "barrier=%u"},
1240 {Opt_barrier
, "barrier"},
1241 {Opt_nobarrier
, "nobarrier"},
1242 {Opt_i_version
, "i_version"},
1243 {Opt_stripe
, "stripe=%u"},
1244 {Opt_delalloc
, "delalloc"},
1245 {Opt_nodelalloc
, "nodelalloc"},
1246 {Opt_mblk_io_submit
, "mblk_io_submit"},
1247 {Opt_nomblk_io_submit
, "nomblk_io_submit"},
1248 {Opt_block_validity
, "block_validity"},
1249 {Opt_noblock_validity
, "noblock_validity"},
1250 {Opt_inode_readahead_blks
, "inode_readahead_blks=%u"},
1251 {Opt_journal_ioprio
, "journal_ioprio=%u"},
1252 {Opt_auto_da_alloc
, "auto_da_alloc=%u"},
1253 {Opt_auto_da_alloc
, "auto_da_alloc"},
1254 {Opt_noauto_da_alloc
, "noauto_da_alloc"},
1255 {Opt_dioread_nolock
, "dioread_nolock"},
1256 {Opt_dioread_lock
, "dioread_lock"},
1257 {Opt_discard
, "discard"},
1258 {Opt_nodiscard
, "nodiscard"},
1259 {Opt_init_itable
, "init_itable=%u"},
1260 {Opt_init_itable
, "init_itable"},
1261 {Opt_noinit_itable
, "noinit_itable"},
1262 {Opt_removed
, "check=none"}, /* mount option from ext2/3 */
1263 {Opt_removed
, "nocheck"}, /* mount option from ext2/3 */
1264 {Opt_removed
, "reservation"}, /* mount option from ext2/3 */
1265 {Opt_removed
, "noreservation"}, /* mount option from ext2/3 */
1266 {Opt_removed
, "journal=%u"}, /* mount option from ext2/3 */
1270 static ext4_fsblk_t
get_sb_block(void **data
)
1272 ext4_fsblk_t sb_block
;
1273 char *options
= (char *) *data
;
1275 if (!options
|| strncmp(options
, "sb=", 3) != 0)
1276 return 1; /* Default location */
1279 /* TODO: use simple_strtoll with >32bit ext4 */
1280 sb_block
= simple_strtoul(options
, &options
, 0);
1281 if (*options
&& *options
!= ',') {
1282 printk(KERN_ERR
"EXT4-fs: Invalid sb specification: %s\n",
1286 if (*options
== ',')
1288 *data
= (void *) options
;
1293 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1294 static char deprecated_msg
[] = "Mount option \"%s\" will be removed by %s\n"
1295 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1298 static int set_qf_name(struct super_block
*sb
, int qtype
, substring_t
*args
)
1300 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1303 if (sb_any_quota_loaded(sb
) &&
1304 !sbi
->s_qf_names
[qtype
]) {
1305 ext4_msg(sb
, KERN_ERR
,
1306 "Cannot change journaled "
1307 "quota options when quota turned on");
1310 qname
= match_strdup(args
);
1312 ext4_msg(sb
, KERN_ERR
,
1313 "Not enough memory for storing quotafile name");
1316 if (sbi
->s_qf_names
[qtype
] &&
1317 strcmp(sbi
->s_qf_names
[qtype
], qname
)) {
1318 ext4_msg(sb
, KERN_ERR
,
1319 "%s quota file already specified", QTYPE2NAME(qtype
));
1323 sbi
->s_qf_names
[qtype
] = qname
;
1324 if (strchr(sbi
->s_qf_names
[qtype
], '/')) {
1325 ext4_msg(sb
, KERN_ERR
,
1326 "quotafile must be on filesystem root");
1327 kfree(sbi
->s_qf_names
[qtype
]);
1328 sbi
->s_qf_names
[qtype
] = NULL
;
1335 static int clear_qf_name(struct super_block
*sb
, int qtype
)
1338 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1340 if (sb_any_quota_loaded(sb
) &&
1341 sbi
->s_qf_names
[qtype
]) {
1342 ext4_msg(sb
, KERN_ERR
, "Cannot change journaled quota options"
1343 " when quota turned on");
1347 * The space will be released later when all options are confirmed
1350 sbi
->s_qf_names
[qtype
] = NULL
;
1355 #define MOPT_SET 0x0001
1356 #define MOPT_CLEAR 0x0002
1357 #define MOPT_NOSUPPORT 0x0004
1358 #define MOPT_EXPLICIT 0x0008
1359 #define MOPT_CLEAR_ERR 0x0010
1360 #define MOPT_GTE0 0x0020
1363 #define MOPT_QFMT 0x0040
1365 #define MOPT_Q MOPT_NOSUPPORT
1366 #define MOPT_QFMT MOPT_NOSUPPORT
1368 #define MOPT_DATAJ 0x0080
1370 static const struct mount_opts
{
1374 } ext4_mount_opts
[] = {
1375 {Opt_minix_df
, EXT4_MOUNT_MINIX_DF
, MOPT_SET
},
1376 {Opt_bsd_df
, EXT4_MOUNT_MINIX_DF
, MOPT_CLEAR
},
1377 {Opt_grpid
, EXT4_MOUNT_GRPID
, MOPT_SET
},
1378 {Opt_nogrpid
, EXT4_MOUNT_GRPID
, MOPT_CLEAR
},
1379 {Opt_mblk_io_submit
, EXT4_MOUNT_MBLK_IO_SUBMIT
, MOPT_SET
},
1380 {Opt_nomblk_io_submit
, EXT4_MOUNT_MBLK_IO_SUBMIT
, MOPT_CLEAR
},
1381 {Opt_block_validity
, EXT4_MOUNT_BLOCK_VALIDITY
, MOPT_SET
},
1382 {Opt_noblock_validity
, EXT4_MOUNT_BLOCK_VALIDITY
, MOPT_CLEAR
},
1383 {Opt_dioread_nolock
, EXT4_MOUNT_DIOREAD_NOLOCK
, MOPT_SET
},
1384 {Opt_dioread_lock
, EXT4_MOUNT_DIOREAD_NOLOCK
, MOPT_CLEAR
},
1385 {Opt_discard
, EXT4_MOUNT_DISCARD
, MOPT_SET
},
1386 {Opt_nodiscard
, EXT4_MOUNT_DISCARD
, MOPT_CLEAR
},
1387 {Opt_delalloc
, EXT4_MOUNT_DELALLOC
, MOPT_SET
| MOPT_EXPLICIT
},
1388 {Opt_nodelalloc
, EXT4_MOUNT_DELALLOC
, MOPT_CLEAR
| MOPT_EXPLICIT
},
1389 {Opt_journal_checksum
, EXT4_MOUNT_JOURNAL_CHECKSUM
, MOPT_SET
},
1390 {Opt_journal_async_commit
, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT
|
1391 EXT4_MOUNT_JOURNAL_CHECKSUM
), MOPT_SET
},
1392 {Opt_noload
, EXT4_MOUNT_NOLOAD
, MOPT_SET
},
1393 {Opt_err_panic
, EXT4_MOUNT_ERRORS_PANIC
, MOPT_SET
| MOPT_CLEAR_ERR
},
1394 {Opt_err_ro
, EXT4_MOUNT_ERRORS_RO
, MOPT_SET
| MOPT_CLEAR_ERR
},
1395 {Opt_err_cont
, EXT4_MOUNT_ERRORS_CONT
, MOPT_SET
| MOPT_CLEAR_ERR
},
1396 {Opt_data_err_abort
, EXT4_MOUNT_DATA_ERR_ABORT
, MOPT_SET
},
1397 {Opt_data_err_ignore
, EXT4_MOUNT_DATA_ERR_ABORT
, MOPT_CLEAR
},
1398 {Opt_barrier
, EXT4_MOUNT_BARRIER
, MOPT_SET
},
1399 {Opt_nobarrier
, EXT4_MOUNT_BARRIER
, MOPT_CLEAR
},
1400 {Opt_noauto_da_alloc
, EXT4_MOUNT_NO_AUTO_DA_ALLOC
, MOPT_SET
},
1401 {Opt_auto_da_alloc
, EXT4_MOUNT_NO_AUTO_DA_ALLOC
, MOPT_CLEAR
},
1402 {Opt_noinit_itable
, EXT4_MOUNT_INIT_INODE_TABLE
, MOPT_CLEAR
},
1403 {Opt_commit
, 0, MOPT_GTE0
},
1404 {Opt_max_batch_time
, 0, MOPT_GTE0
},
1405 {Opt_min_batch_time
, 0, MOPT_GTE0
},
1406 {Opt_inode_readahead_blks
, 0, MOPT_GTE0
},
1407 {Opt_init_itable
, 0, MOPT_GTE0
},
1408 {Opt_stripe
, 0, MOPT_GTE0
},
1409 {Opt_data_journal
, EXT4_MOUNT_JOURNAL_DATA
, MOPT_DATAJ
},
1410 {Opt_data_ordered
, EXT4_MOUNT_ORDERED_DATA
, MOPT_DATAJ
},
1411 {Opt_data_writeback
, EXT4_MOUNT_WRITEBACK_DATA
, MOPT_DATAJ
},
1412 #ifdef CONFIG_EXT4_FS_XATTR
1413 {Opt_user_xattr
, EXT4_MOUNT_XATTR_USER
, MOPT_SET
},
1414 {Opt_nouser_xattr
, EXT4_MOUNT_XATTR_USER
, MOPT_CLEAR
},
1416 {Opt_user_xattr
, 0, MOPT_NOSUPPORT
},
1417 {Opt_nouser_xattr
, 0, MOPT_NOSUPPORT
},
1419 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1420 {Opt_acl
, EXT4_MOUNT_POSIX_ACL
, MOPT_SET
},
1421 {Opt_noacl
, EXT4_MOUNT_POSIX_ACL
, MOPT_CLEAR
},
1423 {Opt_acl
, 0, MOPT_NOSUPPORT
},
1424 {Opt_noacl
, 0, MOPT_NOSUPPORT
},
1426 {Opt_nouid32
, EXT4_MOUNT_NO_UID32
, MOPT_SET
},
1427 {Opt_debug
, EXT4_MOUNT_DEBUG
, MOPT_SET
},
1428 {Opt_quota
, EXT4_MOUNT_QUOTA
| EXT4_MOUNT_USRQUOTA
, MOPT_SET
| MOPT_Q
},
1429 {Opt_usrquota
, EXT4_MOUNT_QUOTA
| EXT4_MOUNT_USRQUOTA
,
1431 {Opt_grpquota
, EXT4_MOUNT_QUOTA
| EXT4_MOUNT_GRPQUOTA
,
1433 {Opt_noquota
, (EXT4_MOUNT_QUOTA
| EXT4_MOUNT_USRQUOTA
|
1434 EXT4_MOUNT_GRPQUOTA
), MOPT_CLEAR
| MOPT_Q
},
1435 {Opt_usrjquota
, 0, MOPT_Q
},
1436 {Opt_grpjquota
, 0, MOPT_Q
},
1437 {Opt_offusrjquota
, 0, MOPT_Q
},
1438 {Opt_offgrpjquota
, 0, MOPT_Q
},
1439 {Opt_jqfmt_vfsold
, QFMT_VFS_OLD
, MOPT_QFMT
},
1440 {Opt_jqfmt_vfsv0
, QFMT_VFS_V0
, MOPT_QFMT
},
1441 {Opt_jqfmt_vfsv1
, QFMT_VFS_V1
, MOPT_QFMT
},
1445 static int handle_mount_opt(struct super_block
*sb
, char *opt
, int token
,
1446 substring_t
*args
, unsigned long *journal_devnum
,
1447 unsigned int *journal_ioprio
, int is_remount
)
1449 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1450 const struct mount_opts
*m
;
1454 if (token
== Opt_usrjquota
)
1455 return set_qf_name(sb
, USRQUOTA
, &args
[0]);
1456 else if (token
== Opt_grpjquota
)
1457 return set_qf_name(sb
, GRPQUOTA
, &args
[0]);
1458 else if (token
== Opt_offusrjquota
)
1459 return clear_qf_name(sb
, USRQUOTA
);
1460 else if (token
== Opt_offgrpjquota
)
1461 return clear_qf_name(sb
, GRPQUOTA
);
1463 if (args
->from
&& match_int(args
, &arg
))
1467 case Opt_nouser_xattr
:
1468 ext4_msg(sb
, KERN_WARNING
, deprecated_msg
, opt
, "3.5");
1471 return 1; /* handled by get_sb_block() */
1473 ext4_msg(sb
, KERN_WARNING
,
1474 "Ignoring removed %s option", opt
);
1477 sbi
->s_resuid
= arg
;
1480 sbi
->s_resgid
= arg
;
1483 sbi
->s_mount_flags
|= EXT4_MF_FS_ABORTED
;
1486 sb
->s_flags
|= MS_I_VERSION
;
1488 case Opt_journal_dev
:
1490 ext4_msg(sb
, KERN_ERR
,
1491 "Cannot specify journal on remount");
1494 *journal_devnum
= arg
;
1496 case Opt_journal_ioprio
:
1497 if (arg
< 0 || arg
> 7)
1499 *journal_ioprio
= IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE
, arg
);
1503 for (m
= ext4_mount_opts
; m
->token
!= Opt_err
; m
++) {
1504 if (token
!= m
->token
)
1506 if (args
->from
&& (m
->flags
& MOPT_GTE0
) && (arg
< 0))
1508 if (m
->flags
& MOPT_EXPLICIT
)
1509 set_opt2(sb
, EXPLICIT_DELALLOC
);
1510 if (m
->flags
& MOPT_CLEAR_ERR
)
1511 clear_opt(sb
, ERRORS_MASK
);
1512 if (token
== Opt_noquota
&& sb_any_quota_loaded(sb
)) {
1513 ext4_msg(sb
, KERN_ERR
, "Cannot change quota "
1514 "options when quota turned on");
1518 if (m
->flags
& MOPT_NOSUPPORT
) {
1519 ext4_msg(sb
, KERN_ERR
, "%s option not supported", opt
);
1520 } else if (token
== Opt_commit
) {
1522 arg
= JBD2_DEFAULT_MAX_COMMIT_AGE
;
1523 sbi
->s_commit_interval
= HZ
* arg
;
1524 } else if (token
== Opt_max_batch_time
) {
1526 arg
= EXT4_DEF_MAX_BATCH_TIME
;
1527 sbi
->s_max_batch_time
= arg
;
1528 } else if (token
== Opt_min_batch_time
) {
1529 sbi
->s_min_batch_time
= arg
;
1530 } else if (token
== Opt_inode_readahead_blks
) {
1531 if (arg
> (1 << 30))
1533 if (arg
&& !is_power_of_2(arg
)) {
1534 ext4_msg(sb
, KERN_ERR
,
1535 "EXT4-fs: inode_readahead_blks"
1536 " must be a power of 2");
1539 sbi
->s_inode_readahead_blks
= arg
;
1540 } else if (token
== Opt_init_itable
) {
1541 set_opt(sb
, INIT_INODE_TABLE
);
1543 arg
= EXT4_DEF_LI_WAIT_MULT
;
1544 sbi
->s_li_wait_mult
= arg
;
1545 } else if (token
== Opt_stripe
) {
1546 sbi
->s_stripe
= arg
;
1547 } else if (m
->flags
& MOPT_DATAJ
) {
1549 if (!sbi
->s_journal
)
1550 ext4_msg(sb
, KERN_WARNING
, "Remounting file system with no journal so ignoring journalled data option");
1551 else if (test_opt(sb
, DATA_FLAGS
) !=
1553 ext4_msg(sb
, KERN_ERR
,
1554 "Cannot change data mode on remount");
1558 clear_opt(sb
, DATA_FLAGS
);
1559 sbi
->s_mount_opt
|= m
->mount_opt
;
1562 } else if (m
->flags
& MOPT_QFMT
) {
1563 if (sb_any_quota_loaded(sb
) &&
1564 sbi
->s_jquota_fmt
!= m
->mount_opt
) {
1565 ext4_msg(sb
, KERN_ERR
, "Cannot "
1566 "change journaled quota options "
1567 "when quota turned on");
1570 sbi
->s_jquota_fmt
= m
->mount_opt
;
1575 if (m
->flags
& MOPT_CLEAR
)
1577 else if (unlikely(!(m
->flags
& MOPT_SET
))) {
1578 ext4_msg(sb
, KERN_WARNING
,
1579 "buggy handling of option %s", opt
);
1584 sbi
->s_mount_opt
|= m
->mount_opt
;
1586 sbi
->s_mount_opt
&= ~m
->mount_opt
;
1590 ext4_msg(sb
, KERN_ERR
, "Unrecognized mount option \"%s\" "
1591 "or missing value", opt
);
1595 static int parse_options(char *options
, struct super_block
*sb
,
1596 unsigned long *journal_devnum
,
1597 unsigned int *journal_ioprio
,
1601 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1604 substring_t args
[MAX_OPT_ARGS
];
1610 while ((p
= strsep(&options
, ",")) != NULL
) {
1614 * Initialize args struct so we know whether arg was
1615 * found; some options take optional arguments.
1617 args
[0].to
= args
[0].from
= 0;
1618 token
= match_token(p
, tokens
, args
);
1619 if (handle_mount_opt(sb
, p
, token
, args
, journal_devnum
,
1620 journal_ioprio
, is_remount
) < 0)
1624 if (sbi
->s_qf_names
[USRQUOTA
] || sbi
->s_qf_names
[GRPQUOTA
]) {
1625 if (test_opt(sb
, USRQUOTA
) && sbi
->s_qf_names
[USRQUOTA
])
1626 clear_opt(sb
, USRQUOTA
);
1628 if (test_opt(sb
, GRPQUOTA
) && sbi
->s_qf_names
[GRPQUOTA
])
1629 clear_opt(sb
, GRPQUOTA
);
1631 if (test_opt(sb
, GRPQUOTA
) || test_opt(sb
, USRQUOTA
)) {
1632 ext4_msg(sb
, KERN_ERR
, "old and new quota "
1637 if (!sbi
->s_jquota_fmt
) {
1638 ext4_msg(sb
, KERN_ERR
, "journaled quota format "
1643 if (sbi
->s_jquota_fmt
) {
1644 ext4_msg(sb
, KERN_ERR
, "journaled quota format "
1645 "specified with no journaling "
1654 static inline void ext4_show_quota_options(struct seq_file
*seq
,
1655 struct super_block
*sb
)
1657 #if defined(CONFIG_QUOTA)
1658 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1660 if (sbi
->s_jquota_fmt
) {
1663 switch (sbi
->s_jquota_fmt
) {
1674 seq_printf(seq
, ",jqfmt=%s", fmtname
);
1677 if (sbi
->s_qf_names
[USRQUOTA
])
1678 seq_printf(seq
, ",usrjquota=%s", sbi
->s_qf_names
[USRQUOTA
]);
1680 if (sbi
->s_qf_names
[GRPQUOTA
])
1681 seq_printf(seq
, ",grpjquota=%s", sbi
->s_qf_names
[GRPQUOTA
]);
1683 if (test_opt(sb
, USRQUOTA
))
1684 seq_puts(seq
, ",usrquota");
1686 if (test_opt(sb
, GRPQUOTA
))
1687 seq_puts(seq
, ",grpquota");
1691 static const char *token2str(int token
)
1693 static const struct match_token
*t
;
1695 for (t
= tokens
; t
->token
!= Opt_err
; t
++)
1696 if (t
->token
== token
&& !strchr(t
->pattern
, '='))
1703 * - it's set to a non-default value OR
1704 * - if the per-sb default is different from the global default
1706 static int _ext4_show_options(struct seq_file
*seq
, struct super_block
*sb
,
1709 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1710 struct ext4_super_block
*es
= sbi
->s_es
;
1711 int def_errors
, def_mount_opt
= nodefs
? 0 : sbi
->s_def_mount_opt
;
1712 const struct mount_opts
*m
;
1713 char sep
= nodefs
? '\n' : ',';
1715 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1716 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1718 if (sbi
->s_sb_block
!= 1)
1719 SEQ_OPTS_PRINT("sb=%llu", sbi
->s_sb_block
);
1721 for (m
= ext4_mount_opts
; m
->token
!= Opt_err
; m
++) {
1722 int want_set
= m
->flags
& MOPT_SET
;
1723 if (((m
->flags
& (MOPT_SET
|MOPT_CLEAR
)) == 0) ||
1724 (m
->flags
& MOPT_CLEAR_ERR
))
1726 if (!(m
->mount_opt
& (sbi
->s_mount_opt
^ def_mount_opt
)))
1727 continue; /* skip if same as the default */
1729 (sbi
->s_mount_opt
& m
->mount_opt
) != m
->mount_opt
) ||
1730 (!want_set
&& (sbi
->s_mount_opt
& m
->mount_opt
)))
1731 continue; /* select Opt_noFoo vs Opt_Foo */
1732 SEQ_OPTS_PRINT("%s", token2str(m
->token
));
1735 if (nodefs
|| sbi
->s_resuid
!= EXT4_DEF_RESUID
||
1736 le16_to_cpu(es
->s_def_resuid
) != EXT4_DEF_RESUID
)
1737 SEQ_OPTS_PRINT("resuid=%u", sbi
->s_resuid
);
1738 if (nodefs
|| sbi
->s_resgid
!= EXT4_DEF_RESGID
||
1739 le16_to_cpu(es
->s_def_resgid
) != EXT4_DEF_RESGID
)
1740 SEQ_OPTS_PRINT("resgid=%u", sbi
->s_resgid
);
1741 def_errors
= nodefs
? -1 : le16_to_cpu(es
->s_errors
);
1742 if (test_opt(sb
, ERRORS_RO
) && def_errors
!= EXT4_ERRORS_RO
)
1743 SEQ_OPTS_PUTS("errors=remount-ro");
1744 if (test_opt(sb
, ERRORS_CONT
) && def_errors
!= EXT4_ERRORS_CONTINUE
)
1745 SEQ_OPTS_PUTS("errors=continue");
1746 if (test_opt(sb
, ERRORS_PANIC
) && def_errors
!= EXT4_ERRORS_PANIC
)
1747 SEQ_OPTS_PUTS("errors=panic");
1748 if (nodefs
|| sbi
->s_commit_interval
!= JBD2_DEFAULT_MAX_COMMIT_AGE
*HZ
)
1749 SEQ_OPTS_PRINT("commit=%lu", sbi
->s_commit_interval
/ HZ
);
1750 if (nodefs
|| sbi
->s_min_batch_time
!= EXT4_DEF_MIN_BATCH_TIME
)
1751 SEQ_OPTS_PRINT("min_batch_time=%u", sbi
->s_min_batch_time
);
1752 if (nodefs
|| sbi
->s_max_batch_time
!= EXT4_DEF_MAX_BATCH_TIME
)
1753 SEQ_OPTS_PRINT("max_batch_time=%u", sbi
->s_max_batch_time
);
1754 if (sb
->s_flags
& MS_I_VERSION
)
1755 SEQ_OPTS_PUTS("i_version");
1756 if (nodefs
|| sbi
->s_stripe
)
1757 SEQ_OPTS_PRINT("stripe=%lu", sbi
->s_stripe
);
1758 if (EXT4_MOUNT_DATA_FLAGS
& (sbi
->s_mount_opt
^ def_mount_opt
)) {
1759 if (test_opt(sb
, DATA_FLAGS
) == EXT4_MOUNT_JOURNAL_DATA
)
1760 SEQ_OPTS_PUTS("data=journal");
1761 else if (test_opt(sb
, DATA_FLAGS
) == EXT4_MOUNT_ORDERED_DATA
)
1762 SEQ_OPTS_PUTS("data=ordered");
1763 else if (test_opt(sb
, DATA_FLAGS
) == EXT4_MOUNT_WRITEBACK_DATA
)
1764 SEQ_OPTS_PUTS("data=writeback");
1767 sbi
->s_inode_readahead_blks
!= EXT4_DEF_INODE_READAHEAD_BLKS
)
1768 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1769 sbi
->s_inode_readahead_blks
);
1771 if (nodefs
|| (test_opt(sb
, INIT_INODE_TABLE
) &&
1772 (sbi
->s_li_wait_mult
!= EXT4_DEF_LI_WAIT_MULT
)))
1773 SEQ_OPTS_PRINT("init_itable=%u", sbi
->s_li_wait_mult
);
1775 ext4_show_quota_options(seq
, sb
);
1779 static int ext4_show_options(struct seq_file
*seq
, struct dentry
*root
)
1781 return _ext4_show_options(seq
, root
->d_sb
, 0);
1784 static int options_seq_show(struct seq_file
*seq
, void *offset
)
1786 struct super_block
*sb
= seq
->private;
1789 seq_puts(seq
, (sb
->s_flags
& MS_RDONLY
) ? "ro" : "rw");
1790 rc
= _ext4_show_options(seq
, sb
, 1);
1791 seq_puts(seq
, "\n");
1795 static int options_open_fs(struct inode
*inode
, struct file
*file
)
1797 return single_open(file
, options_seq_show
, PDE(inode
)->data
);
1800 static const struct file_operations ext4_seq_options_fops
= {
1801 .owner
= THIS_MODULE
,
1802 .open
= options_open_fs
,
1804 .llseek
= seq_lseek
,
1805 .release
= single_release
,
1808 static int ext4_setup_super(struct super_block
*sb
, struct ext4_super_block
*es
,
1811 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1814 if (le32_to_cpu(es
->s_rev_level
) > EXT4_MAX_SUPP_REV
) {
1815 ext4_msg(sb
, KERN_ERR
, "revision level too high, "
1816 "forcing read-only mode");
1821 if (!(sbi
->s_mount_state
& EXT4_VALID_FS
))
1822 ext4_msg(sb
, KERN_WARNING
, "warning: mounting unchecked fs, "
1823 "running e2fsck is recommended");
1824 else if ((sbi
->s_mount_state
& EXT4_ERROR_FS
))
1825 ext4_msg(sb
, KERN_WARNING
,
1826 "warning: mounting fs with errors, "
1827 "running e2fsck is recommended");
1828 else if ((__s16
) le16_to_cpu(es
->s_max_mnt_count
) > 0 &&
1829 le16_to_cpu(es
->s_mnt_count
) >=
1830 (unsigned short) (__s16
) le16_to_cpu(es
->s_max_mnt_count
))
1831 ext4_msg(sb
, KERN_WARNING
,
1832 "warning: maximal mount count reached, "
1833 "running e2fsck is recommended");
1834 else if (le32_to_cpu(es
->s_checkinterval
) &&
1835 (le32_to_cpu(es
->s_lastcheck
) +
1836 le32_to_cpu(es
->s_checkinterval
) <= get_seconds()))
1837 ext4_msg(sb
, KERN_WARNING
,
1838 "warning: checktime reached, "
1839 "running e2fsck is recommended");
1840 if (!sbi
->s_journal
)
1841 es
->s_state
&= cpu_to_le16(~EXT4_VALID_FS
);
1842 if (!(__s16
) le16_to_cpu(es
->s_max_mnt_count
))
1843 es
->s_max_mnt_count
= cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT
);
1844 le16_add_cpu(&es
->s_mnt_count
, 1);
1845 es
->s_mtime
= cpu_to_le32(get_seconds());
1846 ext4_update_dynamic_rev(sb
);
1848 EXT4_SET_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_RECOVER
);
1850 ext4_commit_super(sb
, 1);
1852 if (test_opt(sb
, DEBUG
))
1853 printk(KERN_INFO
"[EXT4 FS bs=%lu, gc=%u, "
1854 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1856 sbi
->s_groups_count
,
1857 EXT4_BLOCKS_PER_GROUP(sb
),
1858 EXT4_INODES_PER_GROUP(sb
),
1859 sbi
->s_mount_opt
, sbi
->s_mount_opt2
);
1861 cleancache_init_fs(sb
);
1865 static int ext4_fill_flex_info(struct super_block
*sb
)
1867 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1868 struct ext4_group_desc
*gdp
= NULL
;
1869 ext4_group_t flex_group_count
;
1870 ext4_group_t flex_group
;
1871 unsigned int groups_per_flex
= 0;
1875 sbi
->s_log_groups_per_flex
= sbi
->s_es
->s_log_groups_per_flex
;
1876 if (sbi
->s_log_groups_per_flex
< 1 || sbi
->s_log_groups_per_flex
> 31) {
1877 sbi
->s_log_groups_per_flex
= 0;
1880 groups_per_flex
= 1 << sbi
->s_log_groups_per_flex
;
1882 /* We allocate both existing and potentially added groups */
1883 flex_group_count
= ((sbi
->s_groups_count
+ groups_per_flex
- 1) +
1884 ((le16_to_cpu(sbi
->s_es
->s_reserved_gdt_blocks
) + 1) <<
1885 EXT4_DESC_PER_BLOCK_BITS(sb
))) / groups_per_flex
;
1886 size
= flex_group_count
* sizeof(struct flex_groups
);
1887 sbi
->s_flex_groups
= ext4_kvzalloc(size
, GFP_KERNEL
);
1888 if (sbi
->s_flex_groups
== NULL
) {
1889 ext4_msg(sb
, KERN_ERR
, "not enough memory for %u flex groups",
1894 for (i
= 0; i
< sbi
->s_groups_count
; i
++) {
1895 gdp
= ext4_get_group_desc(sb
, i
, NULL
);
1897 flex_group
= ext4_flex_group(sbi
, i
);
1898 atomic_add(ext4_free_inodes_count(sb
, gdp
),
1899 &sbi
->s_flex_groups
[flex_group
].free_inodes
);
1900 atomic_add(ext4_free_group_clusters(sb
, gdp
),
1901 &sbi
->s_flex_groups
[flex_group
].free_clusters
);
1902 atomic_add(ext4_used_dirs_count(sb
, gdp
),
1903 &sbi
->s_flex_groups
[flex_group
].used_dirs
);
1911 __le16
ext4_group_desc_csum(struct ext4_sb_info
*sbi
, __u32 block_group
,
1912 struct ext4_group_desc
*gdp
)
1916 if (sbi
->s_es
->s_feature_ro_compat
&
1917 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM
)) {
1918 int offset
= offsetof(struct ext4_group_desc
, bg_checksum
);
1919 __le32 le_group
= cpu_to_le32(block_group
);
1921 crc
= crc16(~0, sbi
->s_es
->s_uuid
, sizeof(sbi
->s_es
->s_uuid
));
1922 crc
= crc16(crc
, (__u8
*)&le_group
, sizeof(le_group
));
1923 crc
= crc16(crc
, (__u8
*)gdp
, offset
);
1924 offset
+= sizeof(gdp
->bg_checksum
); /* skip checksum */
1925 /* for checksum of struct ext4_group_desc do the rest...*/
1926 if ((sbi
->s_es
->s_feature_incompat
&
1927 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT
)) &&
1928 offset
< le16_to_cpu(sbi
->s_es
->s_desc_size
))
1929 crc
= crc16(crc
, (__u8
*)gdp
+ offset
,
1930 le16_to_cpu(sbi
->s_es
->s_desc_size
) -
1934 return cpu_to_le16(crc
);
1937 int ext4_group_desc_csum_verify(struct ext4_sb_info
*sbi
, __u32 block_group
,
1938 struct ext4_group_desc
*gdp
)
1940 if ((sbi
->s_es
->s_feature_ro_compat
&
1941 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM
)) &&
1942 (gdp
->bg_checksum
!= ext4_group_desc_csum(sbi
, block_group
, gdp
)))
1948 /* Called at mount-time, super-block is locked */
1949 static int ext4_check_descriptors(struct super_block
*sb
,
1950 ext4_group_t
*first_not_zeroed
)
1952 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1953 ext4_fsblk_t first_block
= le32_to_cpu(sbi
->s_es
->s_first_data_block
);
1954 ext4_fsblk_t last_block
;
1955 ext4_fsblk_t block_bitmap
;
1956 ext4_fsblk_t inode_bitmap
;
1957 ext4_fsblk_t inode_table
;
1958 int flexbg_flag
= 0;
1959 ext4_group_t i
, grp
= sbi
->s_groups_count
;
1961 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_FLEX_BG
))
1964 ext4_debug("Checking group descriptors");
1966 for (i
= 0; i
< sbi
->s_groups_count
; i
++) {
1967 struct ext4_group_desc
*gdp
= ext4_get_group_desc(sb
, i
, NULL
);
1969 if (i
== sbi
->s_groups_count
- 1 || flexbg_flag
)
1970 last_block
= ext4_blocks_count(sbi
->s_es
) - 1;
1972 last_block
= first_block
+
1973 (EXT4_BLOCKS_PER_GROUP(sb
) - 1);
1975 if ((grp
== sbi
->s_groups_count
) &&
1976 !(gdp
->bg_flags
& cpu_to_le16(EXT4_BG_INODE_ZEROED
)))
1979 block_bitmap
= ext4_block_bitmap(sb
, gdp
);
1980 if (block_bitmap
< first_block
|| block_bitmap
> last_block
) {
1981 ext4_msg(sb
, KERN_ERR
, "ext4_check_descriptors: "
1982 "Block bitmap for group %u not in group "
1983 "(block %llu)!", i
, block_bitmap
);
1986 inode_bitmap
= ext4_inode_bitmap(sb
, gdp
);
1987 if (inode_bitmap
< first_block
|| inode_bitmap
> last_block
) {
1988 ext4_msg(sb
, KERN_ERR
, "ext4_check_descriptors: "
1989 "Inode bitmap for group %u not in group "
1990 "(block %llu)!", i
, inode_bitmap
);
1993 inode_table
= ext4_inode_table(sb
, gdp
);
1994 if (inode_table
< first_block
||
1995 inode_table
+ sbi
->s_itb_per_group
- 1 > last_block
) {
1996 ext4_msg(sb
, KERN_ERR
, "ext4_check_descriptors: "
1997 "Inode table for group %u not in group "
1998 "(block %llu)!", i
, inode_table
);
2001 ext4_lock_group(sb
, i
);
2002 if (!ext4_group_desc_csum_verify(sbi
, i
, gdp
)) {
2003 ext4_msg(sb
, KERN_ERR
, "ext4_check_descriptors: "
2004 "Checksum for group %u failed (%u!=%u)",
2005 i
, le16_to_cpu(ext4_group_desc_csum(sbi
, i
,
2006 gdp
)), le16_to_cpu(gdp
->bg_checksum
));
2007 if (!(sb
->s_flags
& MS_RDONLY
)) {
2008 ext4_unlock_group(sb
, i
);
2012 ext4_unlock_group(sb
, i
);
2014 first_block
+= EXT4_BLOCKS_PER_GROUP(sb
);
2016 if (NULL
!= first_not_zeroed
)
2017 *first_not_zeroed
= grp
;
2019 ext4_free_blocks_count_set(sbi
->s_es
,
2020 EXT4_C2B(sbi
, ext4_count_free_clusters(sb
)));
2021 sbi
->s_es
->s_free_inodes_count
=cpu_to_le32(ext4_count_free_inodes(sb
));
2025 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2026 * the superblock) which were deleted from all directories, but held open by
2027 * a process at the time of a crash. We walk the list and try to delete these
2028 * inodes at recovery time (only with a read-write filesystem).
2030 * In order to keep the orphan inode chain consistent during traversal (in
2031 * case of crash during recovery), we link each inode into the superblock
2032 * orphan list_head and handle it the same way as an inode deletion during
2033 * normal operation (which journals the operations for us).
2035 * We only do an iget() and an iput() on each inode, which is very safe if we
2036 * accidentally point at an in-use or already deleted inode. The worst that
2037 * can happen in this case is that we get a "bit already cleared" message from
2038 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2039 * e2fsck was run on this filesystem, and it must have already done the orphan
2040 * inode cleanup for us, so we can safely abort without any further action.
2042 static void ext4_orphan_cleanup(struct super_block
*sb
,
2043 struct ext4_super_block
*es
)
2045 unsigned int s_flags
= sb
->s_flags
;
2046 int nr_orphans
= 0, nr_truncates
= 0;
2050 if (!es
->s_last_orphan
) {
2051 jbd_debug(4, "no orphan inodes to clean up\n");
2055 if (bdev_read_only(sb
->s_bdev
)) {
2056 ext4_msg(sb
, KERN_ERR
, "write access "
2057 "unavailable, skipping orphan cleanup");
2061 /* Check if feature set would not allow a r/w mount */
2062 if (!ext4_feature_set_ok(sb
, 0)) {
2063 ext4_msg(sb
, KERN_INFO
, "Skipping orphan cleanup due to "
2064 "unknown ROCOMPAT features");
2068 if (EXT4_SB(sb
)->s_mount_state
& EXT4_ERROR_FS
) {
2069 if (es
->s_last_orphan
)
2070 jbd_debug(1, "Errors on filesystem, "
2071 "clearing orphan list.\n");
2072 es
->s_last_orphan
= 0;
2073 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2077 if (s_flags
& MS_RDONLY
) {
2078 ext4_msg(sb
, KERN_INFO
, "orphan cleanup on readonly fs");
2079 sb
->s_flags
&= ~MS_RDONLY
;
2082 /* Needed for iput() to work correctly and not trash data */
2083 sb
->s_flags
|= MS_ACTIVE
;
2084 /* Turn on quotas so that they are updated correctly */
2085 for (i
= 0; i
< MAXQUOTAS
; i
++) {
2086 if (EXT4_SB(sb
)->s_qf_names
[i
]) {
2087 int ret
= ext4_quota_on_mount(sb
, i
);
2089 ext4_msg(sb
, KERN_ERR
,
2090 "Cannot turn on journaled "
2091 "quota: error %d", ret
);
2096 while (es
->s_last_orphan
) {
2097 struct inode
*inode
;
2099 inode
= ext4_orphan_get(sb
, le32_to_cpu(es
->s_last_orphan
));
2100 if (IS_ERR(inode
)) {
2101 es
->s_last_orphan
= 0;
2105 list_add(&EXT4_I(inode
)->i_orphan
, &EXT4_SB(sb
)->s_orphan
);
2106 dquot_initialize(inode
);
2107 if (inode
->i_nlink
) {
2108 ext4_msg(sb
, KERN_DEBUG
,
2109 "%s: truncating inode %lu to %lld bytes",
2110 __func__
, inode
->i_ino
, inode
->i_size
);
2111 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2112 inode
->i_ino
, inode
->i_size
);
2113 ext4_truncate(inode
);
2116 ext4_msg(sb
, KERN_DEBUG
,
2117 "%s: deleting unreferenced inode %lu",
2118 __func__
, inode
->i_ino
);
2119 jbd_debug(2, "deleting unreferenced inode %lu\n",
2123 iput(inode
); /* The delete magic happens here! */
2126 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2129 ext4_msg(sb
, KERN_INFO
, "%d orphan inode%s deleted",
2130 PLURAL(nr_orphans
));
2132 ext4_msg(sb
, KERN_INFO
, "%d truncate%s cleaned up",
2133 PLURAL(nr_truncates
));
2135 /* Turn quotas off */
2136 for (i
= 0; i
< MAXQUOTAS
; i
++) {
2137 if (sb_dqopt(sb
)->files
[i
])
2138 dquot_quota_off(sb
, i
);
2141 sb
->s_flags
= s_flags
; /* Restore MS_RDONLY status */
2145 * Maximal extent format file size.
2146 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2147 * extent format containers, within a sector_t, and within i_blocks
2148 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2149 * so that won't be a limiting factor.
2151 * However there is other limiting factor. We do store extents in the form
2152 * of starting block and length, hence the resulting length of the extent
2153 * covering maximum file size must fit into on-disk format containers as
2154 * well. Given that length is always by 1 unit bigger than max unit (because
2155 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2157 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2159 static loff_t
ext4_max_size(int blkbits
, int has_huge_files
)
2162 loff_t upper_limit
= MAX_LFS_FILESIZE
;
2164 /* small i_blocks in vfs inode? */
2165 if (!has_huge_files
|| sizeof(blkcnt_t
) < sizeof(u64
)) {
2167 * CONFIG_LBDAF is not enabled implies the inode
2168 * i_block represent total blocks in 512 bytes
2169 * 32 == size of vfs inode i_blocks * 8
2171 upper_limit
= (1LL << 32) - 1;
2173 /* total blocks in file system block size */
2174 upper_limit
>>= (blkbits
- 9);
2175 upper_limit
<<= blkbits
;
2179 * 32-bit extent-start container, ee_block. We lower the maxbytes
2180 * by one fs block, so ee_len can cover the extent of maximum file
2183 res
= (1LL << 32) - 1;
2186 /* Sanity check against vm- & vfs- imposed limits */
2187 if (res
> upper_limit
)
2194 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2195 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2196 * We need to be 1 filesystem block less than the 2^48 sector limit.
2198 static loff_t
ext4_max_bitmap_size(int bits
, int has_huge_files
)
2200 loff_t res
= EXT4_NDIR_BLOCKS
;
2203 /* This is calculated to be the largest file size for a dense, block
2204 * mapped file such that the file's total number of 512-byte sectors,
2205 * including data and all indirect blocks, does not exceed (2^48 - 1).
2207 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2208 * number of 512-byte sectors of the file.
2211 if (!has_huge_files
|| sizeof(blkcnt_t
) < sizeof(u64
)) {
2213 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2214 * the inode i_block field represents total file blocks in
2215 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2217 upper_limit
= (1LL << 32) - 1;
2219 /* total blocks in file system block size */
2220 upper_limit
>>= (bits
- 9);
2224 * We use 48 bit ext4_inode i_blocks
2225 * With EXT4_HUGE_FILE_FL set the i_blocks
2226 * represent total number of blocks in
2227 * file system block size
2229 upper_limit
= (1LL << 48) - 1;
2233 /* indirect blocks */
2235 /* double indirect blocks */
2236 meta_blocks
+= 1 + (1LL << (bits
-2));
2237 /* tripple indirect blocks */
2238 meta_blocks
+= 1 + (1LL << (bits
-2)) + (1LL << (2*(bits
-2)));
2240 upper_limit
-= meta_blocks
;
2241 upper_limit
<<= bits
;
2243 res
+= 1LL << (bits
-2);
2244 res
+= 1LL << (2*(bits
-2));
2245 res
+= 1LL << (3*(bits
-2));
2247 if (res
> upper_limit
)
2250 if (res
> MAX_LFS_FILESIZE
)
2251 res
= MAX_LFS_FILESIZE
;
2256 static ext4_fsblk_t
descriptor_loc(struct super_block
*sb
,
2257 ext4_fsblk_t logical_sb_block
, int nr
)
2259 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2260 ext4_group_t bg
, first_meta_bg
;
2263 first_meta_bg
= le32_to_cpu(sbi
->s_es
->s_first_meta_bg
);
2265 if (!EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_META_BG
) ||
2267 return logical_sb_block
+ nr
+ 1;
2268 bg
= sbi
->s_desc_per_block
* nr
;
2269 if (ext4_bg_has_super(sb
, bg
))
2272 return (has_super
+ ext4_group_first_block_no(sb
, bg
));
2276 * ext4_get_stripe_size: Get the stripe size.
2277 * @sbi: In memory super block info
2279 * If we have specified it via mount option, then
2280 * use the mount option value. If the value specified at mount time is
2281 * greater than the blocks per group use the super block value.
2282 * If the super block value is greater than blocks per group return 0.
2283 * Allocator needs it be less than blocks per group.
2286 static unsigned long ext4_get_stripe_size(struct ext4_sb_info
*sbi
)
2288 unsigned long stride
= le16_to_cpu(sbi
->s_es
->s_raid_stride
);
2289 unsigned long stripe_width
=
2290 le32_to_cpu(sbi
->s_es
->s_raid_stripe_width
);
2293 if (sbi
->s_stripe
&& sbi
->s_stripe
<= sbi
->s_blocks_per_group
)
2294 ret
= sbi
->s_stripe
;
2295 else if (stripe_width
<= sbi
->s_blocks_per_group
)
2297 else if (stride
<= sbi
->s_blocks_per_group
)
2303 * If the stripe width is 1, this makes no sense and
2304 * we set it to 0 to turn off stripe handling code.
2315 struct attribute attr
;
2316 ssize_t (*show
)(struct ext4_attr
*, struct ext4_sb_info
*, char *);
2317 ssize_t (*store
)(struct ext4_attr
*, struct ext4_sb_info
*,
2318 const char *, size_t);
2322 static int parse_strtoul(const char *buf
,
2323 unsigned long max
, unsigned long *value
)
2327 *value
= simple_strtoul(skip_spaces(buf
), &endp
, 0);
2328 endp
= skip_spaces(endp
);
2329 if (*endp
|| *value
> max
)
2335 static ssize_t
delayed_allocation_blocks_show(struct ext4_attr
*a
,
2336 struct ext4_sb_info
*sbi
,
2339 return snprintf(buf
, PAGE_SIZE
, "%llu\n",
2341 percpu_counter_sum(&sbi
->s_dirtyclusters_counter
)));
2344 static ssize_t
session_write_kbytes_show(struct ext4_attr
*a
,
2345 struct ext4_sb_info
*sbi
, char *buf
)
2347 struct super_block
*sb
= sbi
->s_buddy_cache
->i_sb
;
2349 if (!sb
->s_bdev
->bd_part
)
2350 return snprintf(buf
, PAGE_SIZE
, "0\n");
2351 return snprintf(buf
, PAGE_SIZE
, "%lu\n",
2352 (part_stat_read(sb
->s_bdev
->bd_part
, sectors
[1]) -
2353 sbi
->s_sectors_written_start
) >> 1);
2356 static ssize_t
lifetime_write_kbytes_show(struct ext4_attr
*a
,
2357 struct ext4_sb_info
*sbi
, char *buf
)
2359 struct super_block
*sb
= sbi
->s_buddy_cache
->i_sb
;
2361 if (!sb
->s_bdev
->bd_part
)
2362 return snprintf(buf
, PAGE_SIZE
, "0\n");
2363 return snprintf(buf
, PAGE_SIZE
, "%llu\n",
2364 (unsigned long long)(sbi
->s_kbytes_written
+
2365 ((part_stat_read(sb
->s_bdev
->bd_part
, sectors
[1]) -
2366 EXT4_SB(sb
)->s_sectors_written_start
) >> 1)));
2369 static ssize_t
inode_readahead_blks_store(struct ext4_attr
*a
,
2370 struct ext4_sb_info
*sbi
,
2371 const char *buf
, size_t count
)
2375 if (parse_strtoul(buf
, 0x40000000, &t
))
2378 if (t
&& !is_power_of_2(t
))
2381 sbi
->s_inode_readahead_blks
= t
;
2385 static ssize_t
sbi_ui_show(struct ext4_attr
*a
,
2386 struct ext4_sb_info
*sbi
, char *buf
)
2388 unsigned int *ui
= (unsigned int *) (((char *) sbi
) + a
->offset
);
2390 return snprintf(buf
, PAGE_SIZE
, "%u\n", *ui
);
2393 static ssize_t
sbi_ui_store(struct ext4_attr
*a
,
2394 struct ext4_sb_info
*sbi
,
2395 const char *buf
, size_t count
)
2397 unsigned int *ui
= (unsigned int *) (((char *) sbi
) + a
->offset
);
2400 if (parse_strtoul(buf
, 0xffffffff, &t
))
2406 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2407 static struct ext4_attr ext4_attr_##_name = { \
2408 .attr = {.name = __stringify(_name), .mode = _mode }, \
2411 .offset = offsetof(struct ext4_sb_info, _elname), \
2413 #define EXT4_ATTR(name, mode, show, store) \
2414 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2416 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2417 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2418 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2419 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2420 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2421 #define ATTR_LIST(name) &ext4_attr_##name.attr
2423 EXT4_RO_ATTR(delayed_allocation_blocks
);
2424 EXT4_RO_ATTR(session_write_kbytes
);
2425 EXT4_RO_ATTR(lifetime_write_kbytes
);
2426 EXT4_ATTR_OFFSET(inode_readahead_blks
, 0644, sbi_ui_show
,
2427 inode_readahead_blks_store
, s_inode_readahead_blks
);
2428 EXT4_RW_ATTR_SBI_UI(inode_goal
, s_inode_goal
);
2429 EXT4_RW_ATTR_SBI_UI(mb_stats
, s_mb_stats
);
2430 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan
, s_mb_max_to_scan
);
2431 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan
, s_mb_min_to_scan
);
2432 EXT4_RW_ATTR_SBI_UI(mb_order2_req
, s_mb_order2_reqs
);
2433 EXT4_RW_ATTR_SBI_UI(mb_stream_req
, s_mb_stream_request
);
2434 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc
, s_mb_group_prealloc
);
2435 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump
, s_max_writeback_mb_bump
);
2437 static struct attribute
*ext4_attrs
[] = {
2438 ATTR_LIST(delayed_allocation_blocks
),
2439 ATTR_LIST(session_write_kbytes
),
2440 ATTR_LIST(lifetime_write_kbytes
),
2441 ATTR_LIST(inode_readahead_blks
),
2442 ATTR_LIST(inode_goal
),
2443 ATTR_LIST(mb_stats
),
2444 ATTR_LIST(mb_max_to_scan
),
2445 ATTR_LIST(mb_min_to_scan
),
2446 ATTR_LIST(mb_order2_req
),
2447 ATTR_LIST(mb_stream_req
),
2448 ATTR_LIST(mb_group_prealloc
),
2449 ATTR_LIST(max_writeback_mb_bump
),
2453 /* Features this copy of ext4 supports */
2454 EXT4_INFO_ATTR(lazy_itable_init
);
2455 EXT4_INFO_ATTR(batched_discard
);
2457 static struct attribute
*ext4_feat_attrs
[] = {
2458 ATTR_LIST(lazy_itable_init
),
2459 ATTR_LIST(batched_discard
),
2463 static ssize_t
ext4_attr_show(struct kobject
*kobj
,
2464 struct attribute
*attr
, char *buf
)
2466 struct ext4_sb_info
*sbi
= container_of(kobj
, struct ext4_sb_info
,
2468 struct ext4_attr
*a
= container_of(attr
, struct ext4_attr
, attr
);
2470 return a
->show
? a
->show(a
, sbi
, buf
) : 0;
2473 static ssize_t
ext4_attr_store(struct kobject
*kobj
,
2474 struct attribute
*attr
,
2475 const char *buf
, size_t len
)
2477 struct ext4_sb_info
*sbi
= container_of(kobj
, struct ext4_sb_info
,
2479 struct ext4_attr
*a
= container_of(attr
, struct ext4_attr
, attr
);
2481 return a
->store
? a
->store(a
, sbi
, buf
, len
) : 0;
2484 static void ext4_sb_release(struct kobject
*kobj
)
2486 struct ext4_sb_info
*sbi
= container_of(kobj
, struct ext4_sb_info
,
2488 complete(&sbi
->s_kobj_unregister
);
2491 static const struct sysfs_ops ext4_attr_ops
= {
2492 .show
= ext4_attr_show
,
2493 .store
= ext4_attr_store
,
2496 static struct kobj_type ext4_ktype
= {
2497 .default_attrs
= ext4_attrs
,
2498 .sysfs_ops
= &ext4_attr_ops
,
2499 .release
= ext4_sb_release
,
2502 static void ext4_feat_release(struct kobject
*kobj
)
2504 complete(&ext4_feat
->f_kobj_unregister
);
2507 static struct kobj_type ext4_feat_ktype
= {
2508 .default_attrs
= ext4_feat_attrs
,
2509 .sysfs_ops
= &ext4_attr_ops
,
2510 .release
= ext4_feat_release
,
2514 * Check whether this filesystem can be mounted based on
2515 * the features present and the RDONLY/RDWR mount requested.
2516 * Returns 1 if this filesystem can be mounted as requested,
2517 * 0 if it cannot be.
2519 static int ext4_feature_set_ok(struct super_block
*sb
, int readonly
)
2521 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, ~EXT4_FEATURE_INCOMPAT_SUPP
)) {
2522 ext4_msg(sb
, KERN_ERR
,
2523 "Couldn't mount because of "
2524 "unsupported optional features (%x)",
2525 (le32_to_cpu(EXT4_SB(sb
)->s_es
->s_feature_incompat
) &
2526 ~EXT4_FEATURE_INCOMPAT_SUPP
));
2533 /* Check that feature set is OK for a read-write mount */
2534 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
, ~EXT4_FEATURE_RO_COMPAT_SUPP
)) {
2535 ext4_msg(sb
, KERN_ERR
, "couldn't mount RDWR because of "
2536 "unsupported optional features (%x)",
2537 (le32_to_cpu(EXT4_SB(sb
)->s_es
->s_feature_ro_compat
) &
2538 ~EXT4_FEATURE_RO_COMPAT_SUPP
));
2542 * Large file size enabled file system can only be mounted
2543 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2545 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
2546 if (sizeof(blkcnt_t
) < sizeof(u64
)) {
2547 ext4_msg(sb
, KERN_ERR
, "Filesystem with huge files "
2548 "cannot be mounted RDWR without "
2553 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_BIGALLOC
) &&
2554 !EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_EXTENTS
)) {
2555 ext4_msg(sb
, KERN_ERR
,
2556 "Can't support bigalloc feature without "
2557 "extents feature\n");
2564 * This function is called once a day if we have errors logged
2565 * on the file system
2567 static void print_daily_error_info(unsigned long arg
)
2569 struct super_block
*sb
= (struct super_block
*) arg
;
2570 struct ext4_sb_info
*sbi
;
2571 struct ext4_super_block
*es
;
2576 if (es
->s_error_count
)
2577 ext4_msg(sb
, KERN_NOTICE
, "error count: %u",
2578 le32_to_cpu(es
->s_error_count
));
2579 if (es
->s_first_error_time
) {
2580 printk(KERN_NOTICE
"EXT4-fs (%s): initial error at %u: %.*s:%d",
2581 sb
->s_id
, le32_to_cpu(es
->s_first_error_time
),
2582 (int) sizeof(es
->s_first_error_func
),
2583 es
->s_first_error_func
,
2584 le32_to_cpu(es
->s_first_error_line
));
2585 if (es
->s_first_error_ino
)
2586 printk(": inode %u",
2587 le32_to_cpu(es
->s_first_error_ino
));
2588 if (es
->s_first_error_block
)
2589 printk(": block %llu", (unsigned long long)
2590 le64_to_cpu(es
->s_first_error_block
));
2593 if (es
->s_last_error_time
) {
2594 printk(KERN_NOTICE
"EXT4-fs (%s): last error at %u: %.*s:%d",
2595 sb
->s_id
, le32_to_cpu(es
->s_last_error_time
),
2596 (int) sizeof(es
->s_last_error_func
),
2597 es
->s_last_error_func
,
2598 le32_to_cpu(es
->s_last_error_line
));
2599 if (es
->s_last_error_ino
)
2600 printk(": inode %u",
2601 le32_to_cpu(es
->s_last_error_ino
));
2602 if (es
->s_last_error_block
)
2603 printk(": block %llu", (unsigned long long)
2604 le64_to_cpu(es
->s_last_error_block
));
2607 mod_timer(&sbi
->s_err_report
, jiffies
+ 24*60*60*HZ
); /* Once a day */
2610 /* Find next suitable group and run ext4_init_inode_table */
2611 static int ext4_run_li_request(struct ext4_li_request
*elr
)
2613 struct ext4_group_desc
*gdp
= NULL
;
2614 ext4_group_t group
, ngroups
;
2615 struct super_block
*sb
;
2616 unsigned long timeout
= 0;
2620 ngroups
= EXT4_SB(sb
)->s_groups_count
;
2622 for (group
= elr
->lr_next_group
; group
< ngroups
; group
++) {
2623 gdp
= ext4_get_group_desc(sb
, group
, NULL
);
2629 if (!(gdp
->bg_flags
& cpu_to_le16(EXT4_BG_INODE_ZEROED
)))
2633 if (group
== ngroups
)
2638 ret
= ext4_init_inode_table(sb
, group
,
2639 elr
->lr_timeout
? 0 : 1);
2640 if (elr
->lr_timeout
== 0) {
2641 timeout
= (jiffies
- timeout
) *
2642 elr
->lr_sbi
->s_li_wait_mult
;
2643 elr
->lr_timeout
= timeout
;
2645 elr
->lr_next_sched
= jiffies
+ elr
->lr_timeout
;
2646 elr
->lr_next_group
= group
+ 1;
2653 * Remove lr_request from the list_request and free the
2654 * request structure. Should be called with li_list_mtx held
2656 static void ext4_remove_li_request(struct ext4_li_request
*elr
)
2658 struct ext4_sb_info
*sbi
;
2665 list_del(&elr
->lr_request
);
2666 sbi
->s_li_request
= NULL
;
2670 static void ext4_unregister_li_request(struct super_block
*sb
)
2672 mutex_lock(&ext4_li_mtx
);
2673 if (!ext4_li_info
) {
2674 mutex_unlock(&ext4_li_mtx
);
2678 mutex_lock(&ext4_li_info
->li_list_mtx
);
2679 ext4_remove_li_request(EXT4_SB(sb
)->s_li_request
);
2680 mutex_unlock(&ext4_li_info
->li_list_mtx
);
2681 mutex_unlock(&ext4_li_mtx
);
2684 static struct task_struct
*ext4_lazyinit_task
;
2687 * This is the function where ext4lazyinit thread lives. It walks
2688 * through the request list searching for next scheduled filesystem.
2689 * When such a fs is found, run the lazy initialization request
2690 * (ext4_rn_li_request) and keep track of the time spend in this
2691 * function. Based on that time we compute next schedule time of
2692 * the request. When walking through the list is complete, compute
2693 * next waking time and put itself into sleep.
2695 static int ext4_lazyinit_thread(void *arg
)
2697 struct ext4_lazy_init
*eli
= (struct ext4_lazy_init
*)arg
;
2698 struct list_head
*pos
, *n
;
2699 struct ext4_li_request
*elr
;
2700 unsigned long next_wakeup
, cur
;
2702 BUG_ON(NULL
== eli
);
2706 next_wakeup
= MAX_JIFFY_OFFSET
;
2708 mutex_lock(&eli
->li_list_mtx
);
2709 if (list_empty(&eli
->li_request_list
)) {
2710 mutex_unlock(&eli
->li_list_mtx
);
2714 list_for_each_safe(pos
, n
, &eli
->li_request_list
) {
2715 elr
= list_entry(pos
, struct ext4_li_request
,
2718 if (time_after_eq(jiffies
, elr
->lr_next_sched
)) {
2719 if (ext4_run_li_request(elr
) != 0) {
2720 /* error, remove the lazy_init job */
2721 ext4_remove_li_request(elr
);
2726 if (time_before(elr
->lr_next_sched
, next_wakeup
))
2727 next_wakeup
= elr
->lr_next_sched
;
2729 mutex_unlock(&eli
->li_list_mtx
);
2734 if ((time_after_eq(cur
, next_wakeup
)) ||
2735 (MAX_JIFFY_OFFSET
== next_wakeup
)) {
2740 schedule_timeout_interruptible(next_wakeup
- cur
);
2742 if (kthread_should_stop()) {
2743 ext4_clear_request_list();
2750 * It looks like the request list is empty, but we need
2751 * to check it under the li_list_mtx lock, to prevent any
2752 * additions into it, and of course we should lock ext4_li_mtx
2753 * to atomically free the list and ext4_li_info, because at
2754 * this point another ext4 filesystem could be registering
2757 mutex_lock(&ext4_li_mtx
);
2758 mutex_lock(&eli
->li_list_mtx
);
2759 if (!list_empty(&eli
->li_request_list
)) {
2760 mutex_unlock(&eli
->li_list_mtx
);
2761 mutex_unlock(&ext4_li_mtx
);
2764 mutex_unlock(&eli
->li_list_mtx
);
2765 kfree(ext4_li_info
);
2766 ext4_li_info
= NULL
;
2767 mutex_unlock(&ext4_li_mtx
);
2772 static void ext4_clear_request_list(void)
2774 struct list_head
*pos
, *n
;
2775 struct ext4_li_request
*elr
;
2777 mutex_lock(&ext4_li_info
->li_list_mtx
);
2778 list_for_each_safe(pos
, n
, &ext4_li_info
->li_request_list
) {
2779 elr
= list_entry(pos
, struct ext4_li_request
,
2781 ext4_remove_li_request(elr
);
2783 mutex_unlock(&ext4_li_info
->li_list_mtx
);
2786 static int ext4_run_lazyinit_thread(void)
2788 ext4_lazyinit_task
= kthread_run(ext4_lazyinit_thread
,
2789 ext4_li_info
, "ext4lazyinit");
2790 if (IS_ERR(ext4_lazyinit_task
)) {
2791 int err
= PTR_ERR(ext4_lazyinit_task
);
2792 ext4_clear_request_list();
2793 kfree(ext4_li_info
);
2794 ext4_li_info
= NULL
;
2795 printk(KERN_CRIT
"EXT4-fs: error %d creating inode table "
2796 "initialization thread\n",
2800 ext4_li_info
->li_state
|= EXT4_LAZYINIT_RUNNING
;
2805 * Check whether it make sense to run itable init. thread or not.
2806 * If there is at least one uninitialized inode table, return
2807 * corresponding group number, else the loop goes through all
2808 * groups and return total number of groups.
2810 static ext4_group_t
ext4_has_uninit_itable(struct super_block
*sb
)
2812 ext4_group_t group
, ngroups
= EXT4_SB(sb
)->s_groups_count
;
2813 struct ext4_group_desc
*gdp
= NULL
;
2815 for (group
= 0; group
< ngroups
; group
++) {
2816 gdp
= ext4_get_group_desc(sb
, group
, NULL
);
2820 if (!(gdp
->bg_flags
& cpu_to_le16(EXT4_BG_INODE_ZEROED
)))
2827 static int ext4_li_info_new(void)
2829 struct ext4_lazy_init
*eli
= NULL
;
2831 eli
= kzalloc(sizeof(*eli
), GFP_KERNEL
);
2835 INIT_LIST_HEAD(&eli
->li_request_list
);
2836 mutex_init(&eli
->li_list_mtx
);
2838 eli
->li_state
|= EXT4_LAZYINIT_QUIT
;
2845 static struct ext4_li_request
*ext4_li_request_new(struct super_block
*sb
,
2848 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2849 struct ext4_li_request
*elr
;
2852 elr
= kzalloc(sizeof(*elr
), GFP_KERNEL
);
2858 elr
->lr_next_group
= start
;
2861 * Randomize first schedule time of the request to
2862 * spread the inode table initialization requests
2865 get_random_bytes(&rnd
, sizeof(rnd
));
2866 elr
->lr_next_sched
= jiffies
+ (unsigned long)rnd
%
2867 (EXT4_DEF_LI_MAX_START_DELAY
* HZ
);
2872 static int ext4_register_li_request(struct super_block
*sb
,
2873 ext4_group_t first_not_zeroed
)
2875 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2876 struct ext4_li_request
*elr
;
2877 ext4_group_t ngroups
= EXT4_SB(sb
)->s_groups_count
;
2880 if (sbi
->s_li_request
!= NULL
) {
2882 * Reset timeout so it can be computed again, because
2883 * s_li_wait_mult might have changed.
2885 sbi
->s_li_request
->lr_timeout
= 0;
2889 if (first_not_zeroed
== ngroups
||
2890 (sb
->s_flags
& MS_RDONLY
) ||
2891 !test_opt(sb
, INIT_INODE_TABLE
))
2894 elr
= ext4_li_request_new(sb
, first_not_zeroed
);
2898 mutex_lock(&ext4_li_mtx
);
2900 if (NULL
== ext4_li_info
) {
2901 ret
= ext4_li_info_new();
2906 mutex_lock(&ext4_li_info
->li_list_mtx
);
2907 list_add(&elr
->lr_request
, &ext4_li_info
->li_request_list
);
2908 mutex_unlock(&ext4_li_info
->li_list_mtx
);
2910 sbi
->s_li_request
= elr
;
2912 * set elr to NULL here since it has been inserted to
2913 * the request_list and the removal and free of it is
2914 * handled by ext4_clear_request_list from now on.
2918 if (!(ext4_li_info
->li_state
& EXT4_LAZYINIT_RUNNING
)) {
2919 ret
= ext4_run_lazyinit_thread();
2924 mutex_unlock(&ext4_li_mtx
);
2931 * We do not need to lock anything since this is called on
2934 static void ext4_destroy_lazyinit_thread(void)
2937 * If thread exited earlier
2938 * there's nothing to be done.
2940 if (!ext4_li_info
|| !ext4_lazyinit_task
)
2943 kthread_stop(ext4_lazyinit_task
);
2946 static int ext4_fill_super(struct super_block
*sb
, void *data
, int silent
)
2948 char *orig_data
= kstrdup(data
, GFP_KERNEL
);
2949 struct buffer_head
*bh
;
2950 struct ext4_super_block
*es
= NULL
;
2951 struct ext4_sb_info
*sbi
;
2953 ext4_fsblk_t sb_block
= get_sb_block(&data
);
2954 ext4_fsblk_t logical_sb_block
;
2955 unsigned long offset
= 0;
2956 unsigned long journal_devnum
= 0;
2957 unsigned long def_mount_opts
;
2962 int blocksize
, clustersize
;
2963 unsigned int db_count
;
2965 int needs_recovery
, has_huge_files
, has_bigalloc
;
2968 unsigned int journal_ioprio
= DEFAULT_JOURNAL_IOPRIO
;
2969 ext4_group_t first_not_zeroed
;
2971 sbi
= kzalloc(sizeof(*sbi
), GFP_KERNEL
);
2975 sbi
->s_blockgroup_lock
=
2976 kzalloc(sizeof(struct blockgroup_lock
), GFP_KERNEL
);
2977 if (!sbi
->s_blockgroup_lock
) {
2981 sb
->s_fs_info
= sbi
;
2982 sbi
->s_mount_opt
= 0;
2983 sbi
->s_resuid
= EXT4_DEF_RESUID
;
2984 sbi
->s_resgid
= EXT4_DEF_RESGID
;
2985 sbi
->s_inode_readahead_blks
= EXT4_DEF_INODE_READAHEAD_BLKS
;
2986 sbi
->s_sb_block
= sb_block
;
2987 if (sb
->s_bdev
->bd_part
)
2988 sbi
->s_sectors_written_start
=
2989 part_stat_read(sb
->s_bdev
->bd_part
, sectors
[1]);
2991 /* Cleanup superblock name */
2992 for (cp
= sb
->s_id
; (cp
= strchr(cp
, '/'));)
2996 blocksize
= sb_min_blocksize(sb
, EXT4_MIN_BLOCK_SIZE
);
2998 ext4_msg(sb
, KERN_ERR
, "unable to set blocksize");
3003 * The ext4 superblock will not be buffer aligned for other than 1kB
3004 * block sizes. We need to calculate the offset from buffer start.
3006 if (blocksize
!= EXT4_MIN_BLOCK_SIZE
) {
3007 logical_sb_block
= sb_block
* EXT4_MIN_BLOCK_SIZE
;
3008 offset
= do_div(logical_sb_block
, blocksize
);
3010 logical_sb_block
= sb_block
;
3013 if (!(bh
= sb_bread(sb
, logical_sb_block
))) {
3014 ext4_msg(sb
, KERN_ERR
, "unable to read superblock");
3018 * Note: s_es must be initialized as soon as possible because
3019 * some ext4 macro-instructions depend on its value
3021 es
= (struct ext4_super_block
*) (((char *)bh
->b_data
) + offset
);
3023 sb
->s_magic
= le16_to_cpu(es
->s_magic
);
3024 if (sb
->s_magic
!= EXT4_SUPER_MAGIC
)
3026 sbi
->s_kbytes_written
= le64_to_cpu(es
->s_kbytes_written
);
3028 /* Set defaults before we parse the mount options */
3029 def_mount_opts
= le32_to_cpu(es
->s_default_mount_opts
);
3030 set_opt(sb
, INIT_INODE_TABLE
);
3031 if (def_mount_opts
& EXT4_DEFM_DEBUG
)
3033 if (def_mount_opts
& EXT4_DEFM_BSDGROUPS
)
3035 if (def_mount_opts
& EXT4_DEFM_UID16
)
3036 set_opt(sb
, NO_UID32
);
3037 /* xattr user namespace & acls are now defaulted on */
3038 #ifdef CONFIG_EXT4_FS_XATTR
3039 set_opt(sb
, XATTR_USER
);
3041 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3042 set_opt(sb
, POSIX_ACL
);
3044 set_opt(sb
, MBLK_IO_SUBMIT
);
3045 if ((def_mount_opts
& EXT4_DEFM_JMODE
) == EXT4_DEFM_JMODE_DATA
)
3046 set_opt(sb
, JOURNAL_DATA
);
3047 else if ((def_mount_opts
& EXT4_DEFM_JMODE
) == EXT4_DEFM_JMODE_ORDERED
)
3048 set_opt(sb
, ORDERED_DATA
);
3049 else if ((def_mount_opts
& EXT4_DEFM_JMODE
) == EXT4_DEFM_JMODE_WBACK
)
3050 set_opt(sb
, WRITEBACK_DATA
);
3052 if (le16_to_cpu(sbi
->s_es
->s_errors
) == EXT4_ERRORS_PANIC
)
3053 set_opt(sb
, ERRORS_PANIC
);
3054 else if (le16_to_cpu(sbi
->s_es
->s_errors
) == EXT4_ERRORS_CONTINUE
)
3055 set_opt(sb
, ERRORS_CONT
);
3057 set_opt(sb
, ERRORS_RO
);
3058 if (def_mount_opts
& EXT4_DEFM_BLOCK_VALIDITY
)
3059 set_opt(sb
, BLOCK_VALIDITY
);
3060 if (def_mount_opts
& EXT4_DEFM_DISCARD
)
3061 set_opt(sb
, DISCARD
);
3063 sbi
->s_resuid
= le16_to_cpu(es
->s_def_resuid
);
3064 sbi
->s_resgid
= le16_to_cpu(es
->s_def_resgid
);
3065 sbi
->s_commit_interval
= JBD2_DEFAULT_MAX_COMMIT_AGE
* HZ
;
3066 sbi
->s_min_batch_time
= EXT4_DEF_MIN_BATCH_TIME
;
3067 sbi
->s_max_batch_time
= EXT4_DEF_MAX_BATCH_TIME
;
3069 if ((def_mount_opts
& EXT4_DEFM_NOBARRIER
) == 0)
3070 set_opt(sb
, BARRIER
);
3073 * enable delayed allocation by default
3074 * Use -o nodelalloc to turn it off
3076 if (!IS_EXT3_SB(sb
) &&
3077 ((def_mount_opts
& EXT4_DEFM_NODELALLOC
) == 0))
3078 set_opt(sb
, DELALLOC
);
3081 * set default s_li_wait_mult for lazyinit, for the case there is
3082 * no mount option specified.
3084 sbi
->s_li_wait_mult
= EXT4_DEF_LI_WAIT_MULT
;
3086 if (!parse_options((char *) sbi
->s_es
->s_mount_opts
, sb
,
3087 &journal_devnum
, &journal_ioprio
, 0)) {
3088 ext4_msg(sb
, KERN_WARNING
,
3089 "failed to parse options in superblock: %s",
3090 sbi
->s_es
->s_mount_opts
);
3092 sbi
->s_def_mount_opt
= sbi
->s_mount_opt
;
3093 if (!parse_options((char *) data
, sb
, &journal_devnum
,
3094 &journal_ioprio
, 0))
3097 if (test_opt(sb
, DATA_FLAGS
) == EXT4_MOUNT_JOURNAL_DATA
) {
3098 printk_once(KERN_WARNING
"EXT4-fs: Warning: mounting "
3099 "with data=journal disables delayed "
3100 "allocation and O_DIRECT support!\n");
3101 if (test_opt2(sb
, EXPLICIT_DELALLOC
)) {
3102 ext4_msg(sb
, KERN_ERR
, "can't mount with "
3103 "both data=journal and delalloc");
3106 if (test_opt(sb
, DIOREAD_NOLOCK
)) {
3107 ext4_msg(sb
, KERN_ERR
, "can't mount with "
3108 "both data=journal and delalloc");
3111 if (test_opt(sb
, DELALLOC
))
3112 clear_opt(sb
, DELALLOC
);
3115 blocksize
= BLOCK_SIZE
<< le32_to_cpu(es
->s_log_block_size
);
3116 if (test_opt(sb
, DIOREAD_NOLOCK
)) {
3117 if (blocksize
< PAGE_SIZE
) {
3118 ext4_msg(sb
, KERN_ERR
, "can't mount with "
3119 "dioread_nolock if block size != PAGE_SIZE");
3124 sb
->s_flags
= (sb
->s_flags
& ~MS_POSIXACL
) |
3125 (test_opt(sb
, POSIX_ACL
) ? MS_POSIXACL
: 0);
3127 if (le32_to_cpu(es
->s_rev_level
) == EXT4_GOOD_OLD_REV
&&
3128 (EXT4_HAS_COMPAT_FEATURE(sb
, ~0U) ||
3129 EXT4_HAS_RO_COMPAT_FEATURE(sb
, ~0U) ||
3130 EXT4_HAS_INCOMPAT_FEATURE(sb
, ~0U)))
3131 ext4_msg(sb
, KERN_WARNING
,
3132 "feature flags set on rev 0 fs, "
3133 "running e2fsck is recommended");
3135 if (IS_EXT2_SB(sb
)) {
3136 if (ext2_feature_set_ok(sb
))
3137 ext4_msg(sb
, KERN_INFO
, "mounting ext2 file system "
3138 "using the ext4 subsystem");
3140 ext4_msg(sb
, KERN_ERR
, "couldn't mount as ext2 due "
3141 "to feature incompatibilities");
3146 if (IS_EXT3_SB(sb
)) {
3147 if (ext3_feature_set_ok(sb
))
3148 ext4_msg(sb
, KERN_INFO
, "mounting ext3 file system "
3149 "using the ext4 subsystem");
3151 ext4_msg(sb
, KERN_ERR
, "couldn't mount as ext3 due "
3152 "to feature incompatibilities");
3158 * Check feature flags regardless of the revision level, since we
3159 * previously didn't change the revision level when setting the flags,
3160 * so there is a chance incompat flags are set on a rev 0 filesystem.
3162 if (!ext4_feature_set_ok(sb
, (sb
->s_flags
& MS_RDONLY
)))
3165 if (blocksize
< EXT4_MIN_BLOCK_SIZE
||
3166 blocksize
> EXT4_MAX_BLOCK_SIZE
) {
3167 ext4_msg(sb
, KERN_ERR
,
3168 "Unsupported filesystem blocksize %d", blocksize
);
3172 if (sb
->s_blocksize
!= blocksize
) {
3173 /* Validate the filesystem blocksize */
3174 if (!sb_set_blocksize(sb
, blocksize
)) {
3175 ext4_msg(sb
, KERN_ERR
, "bad block size %d",
3181 logical_sb_block
= sb_block
* EXT4_MIN_BLOCK_SIZE
;
3182 offset
= do_div(logical_sb_block
, blocksize
);
3183 bh
= sb_bread(sb
, logical_sb_block
);
3185 ext4_msg(sb
, KERN_ERR
,
3186 "Can't read superblock on 2nd try");
3189 es
= (struct ext4_super_block
*)(((char *)bh
->b_data
) + offset
);
3191 if (es
->s_magic
!= cpu_to_le16(EXT4_SUPER_MAGIC
)) {
3192 ext4_msg(sb
, KERN_ERR
,
3193 "Magic mismatch, very weird!");
3198 has_huge_files
= EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3199 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
);
3200 sbi
->s_bitmap_maxbytes
= ext4_max_bitmap_size(sb
->s_blocksize_bits
,
3202 sb
->s_maxbytes
= ext4_max_size(sb
->s_blocksize_bits
, has_huge_files
);
3204 if (le32_to_cpu(es
->s_rev_level
) == EXT4_GOOD_OLD_REV
) {
3205 sbi
->s_inode_size
= EXT4_GOOD_OLD_INODE_SIZE
;
3206 sbi
->s_first_ino
= EXT4_GOOD_OLD_FIRST_INO
;
3208 sbi
->s_inode_size
= le16_to_cpu(es
->s_inode_size
);
3209 sbi
->s_first_ino
= le32_to_cpu(es
->s_first_ino
);
3210 if ((sbi
->s_inode_size
< EXT4_GOOD_OLD_INODE_SIZE
) ||
3211 (!is_power_of_2(sbi
->s_inode_size
)) ||
3212 (sbi
->s_inode_size
> blocksize
)) {
3213 ext4_msg(sb
, KERN_ERR
,
3214 "unsupported inode size: %d",
3218 if (sbi
->s_inode_size
> EXT4_GOOD_OLD_INODE_SIZE
)
3219 sb
->s_time_gran
= 1 << (EXT4_EPOCH_BITS
- 2);
3222 sbi
->s_desc_size
= le16_to_cpu(es
->s_desc_size
);
3223 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
)) {
3224 if (sbi
->s_desc_size
< EXT4_MIN_DESC_SIZE_64BIT
||
3225 sbi
->s_desc_size
> EXT4_MAX_DESC_SIZE
||
3226 !is_power_of_2(sbi
->s_desc_size
)) {
3227 ext4_msg(sb
, KERN_ERR
,
3228 "unsupported descriptor size %lu",
3233 sbi
->s_desc_size
= EXT4_MIN_DESC_SIZE
;
3235 sbi
->s_blocks_per_group
= le32_to_cpu(es
->s_blocks_per_group
);
3236 sbi
->s_inodes_per_group
= le32_to_cpu(es
->s_inodes_per_group
);
3237 if (EXT4_INODE_SIZE(sb
) == 0 || EXT4_INODES_PER_GROUP(sb
) == 0)
3240 sbi
->s_inodes_per_block
= blocksize
/ EXT4_INODE_SIZE(sb
);
3241 if (sbi
->s_inodes_per_block
== 0)
3243 sbi
->s_itb_per_group
= sbi
->s_inodes_per_group
/
3244 sbi
->s_inodes_per_block
;
3245 sbi
->s_desc_per_block
= blocksize
/ EXT4_DESC_SIZE(sb
);
3247 sbi
->s_mount_state
= le16_to_cpu(es
->s_state
);
3248 sbi
->s_addr_per_block_bits
= ilog2(EXT4_ADDR_PER_BLOCK(sb
));
3249 sbi
->s_desc_per_block_bits
= ilog2(EXT4_DESC_PER_BLOCK(sb
));
3251 for (i
= 0; i
< 4; i
++)
3252 sbi
->s_hash_seed
[i
] = le32_to_cpu(es
->s_hash_seed
[i
]);
3253 sbi
->s_def_hash_version
= es
->s_def_hash_version
;
3254 i
= le32_to_cpu(es
->s_flags
);
3255 if (i
& EXT2_FLAGS_UNSIGNED_HASH
)
3256 sbi
->s_hash_unsigned
= 3;
3257 else if ((i
& EXT2_FLAGS_SIGNED_HASH
) == 0) {
3258 #ifdef __CHAR_UNSIGNED__
3259 es
->s_flags
|= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH
);
3260 sbi
->s_hash_unsigned
= 3;
3262 es
->s_flags
|= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH
);
3266 /* Handle clustersize */
3267 clustersize
= BLOCK_SIZE
<< le32_to_cpu(es
->s_log_cluster_size
);
3268 has_bigalloc
= EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3269 EXT4_FEATURE_RO_COMPAT_BIGALLOC
);
3271 if (clustersize
< blocksize
) {
3272 ext4_msg(sb
, KERN_ERR
,
3273 "cluster size (%d) smaller than "
3274 "block size (%d)", clustersize
, blocksize
);
3277 sbi
->s_cluster_bits
= le32_to_cpu(es
->s_log_cluster_size
) -
3278 le32_to_cpu(es
->s_log_block_size
);
3279 sbi
->s_clusters_per_group
=
3280 le32_to_cpu(es
->s_clusters_per_group
);
3281 if (sbi
->s_clusters_per_group
> blocksize
* 8) {
3282 ext4_msg(sb
, KERN_ERR
,
3283 "#clusters per group too big: %lu",
3284 sbi
->s_clusters_per_group
);
3287 if (sbi
->s_blocks_per_group
!=
3288 (sbi
->s_clusters_per_group
* (clustersize
/ blocksize
))) {
3289 ext4_msg(sb
, KERN_ERR
, "blocks per group (%lu) and "
3290 "clusters per group (%lu) inconsistent",
3291 sbi
->s_blocks_per_group
,
3292 sbi
->s_clusters_per_group
);
3296 if (clustersize
!= blocksize
) {
3297 ext4_warning(sb
, "fragment/cluster size (%d) != "
3298 "block size (%d)", clustersize
,
3300 clustersize
= blocksize
;
3302 if (sbi
->s_blocks_per_group
> blocksize
* 8) {
3303 ext4_msg(sb
, KERN_ERR
,
3304 "#blocks per group too big: %lu",
3305 sbi
->s_blocks_per_group
);
3308 sbi
->s_clusters_per_group
= sbi
->s_blocks_per_group
;
3309 sbi
->s_cluster_bits
= 0;
3311 sbi
->s_cluster_ratio
= clustersize
/ blocksize
;
3313 if (sbi
->s_inodes_per_group
> blocksize
* 8) {
3314 ext4_msg(sb
, KERN_ERR
,
3315 "#inodes per group too big: %lu",
3316 sbi
->s_inodes_per_group
);
3321 * Test whether we have more sectors than will fit in sector_t,
3322 * and whether the max offset is addressable by the page cache.
3324 err
= generic_check_addressable(sb
->s_blocksize_bits
,
3325 ext4_blocks_count(es
));
3327 ext4_msg(sb
, KERN_ERR
, "filesystem"
3328 " too large to mount safely on this system");
3329 if (sizeof(sector_t
) < 8)
3330 ext4_msg(sb
, KERN_WARNING
, "CONFIG_LBDAF not enabled");
3335 if (EXT4_BLOCKS_PER_GROUP(sb
) == 0)
3338 /* check blocks count against device size */
3339 blocks_count
= sb
->s_bdev
->bd_inode
->i_size
>> sb
->s_blocksize_bits
;
3340 if (blocks_count
&& ext4_blocks_count(es
) > blocks_count
) {
3341 ext4_msg(sb
, KERN_WARNING
, "bad geometry: block count %llu "
3342 "exceeds size of device (%llu blocks)",
3343 ext4_blocks_count(es
), blocks_count
);
3348 * It makes no sense for the first data block to be beyond the end
3349 * of the filesystem.
3351 if (le32_to_cpu(es
->s_first_data_block
) >= ext4_blocks_count(es
)) {
3352 ext4_msg(sb
, KERN_WARNING
, "bad geometry: first data "
3353 "block %u is beyond end of filesystem (%llu)",
3354 le32_to_cpu(es
->s_first_data_block
),
3355 ext4_blocks_count(es
));
3358 blocks_count
= (ext4_blocks_count(es
) -
3359 le32_to_cpu(es
->s_first_data_block
) +
3360 EXT4_BLOCKS_PER_GROUP(sb
) - 1);
3361 do_div(blocks_count
, EXT4_BLOCKS_PER_GROUP(sb
));
3362 if (blocks_count
> ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb
)) {
3363 ext4_msg(sb
, KERN_WARNING
, "groups count too large: %u "
3364 "(block count %llu, first data block %u, "
3365 "blocks per group %lu)", sbi
->s_groups_count
,
3366 ext4_blocks_count(es
),
3367 le32_to_cpu(es
->s_first_data_block
),
3368 EXT4_BLOCKS_PER_GROUP(sb
));
3371 sbi
->s_groups_count
= blocks_count
;
3372 sbi
->s_blockfile_groups
= min_t(ext4_group_t
, sbi
->s_groups_count
,
3373 (EXT4_MAX_BLOCK_FILE_PHYS
/ EXT4_BLOCKS_PER_GROUP(sb
)));
3374 db_count
= (sbi
->s_groups_count
+ EXT4_DESC_PER_BLOCK(sb
) - 1) /
3375 EXT4_DESC_PER_BLOCK(sb
);
3376 sbi
->s_group_desc
= ext4_kvmalloc(db_count
*
3377 sizeof(struct buffer_head
*),
3379 if (sbi
->s_group_desc
== NULL
) {
3380 ext4_msg(sb
, KERN_ERR
, "not enough memory");
3385 sbi
->s_proc
= proc_mkdir(sb
->s_id
, ext4_proc_root
);
3388 proc_create_data("options", S_IRUGO
, sbi
->s_proc
,
3389 &ext4_seq_options_fops
, sb
);
3391 bgl_lock_init(sbi
->s_blockgroup_lock
);
3393 for (i
= 0; i
< db_count
; i
++) {
3394 block
= descriptor_loc(sb
, logical_sb_block
, i
);
3395 sbi
->s_group_desc
[i
] = sb_bread(sb
, block
);
3396 if (!sbi
->s_group_desc
[i
]) {
3397 ext4_msg(sb
, KERN_ERR
,
3398 "can't read group descriptor %d", i
);
3403 if (!ext4_check_descriptors(sb
, &first_not_zeroed
)) {
3404 ext4_msg(sb
, KERN_ERR
, "group descriptors corrupted!");
3407 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_FLEX_BG
))
3408 if (!ext4_fill_flex_info(sb
)) {
3409 ext4_msg(sb
, KERN_ERR
,
3410 "unable to initialize "
3411 "flex_bg meta info!");
3415 sbi
->s_gdb_count
= db_count
;
3416 get_random_bytes(&sbi
->s_next_generation
, sizeof(u32
));
3417 spin_lock_init(&sbi
->s_next_gen_lock
);
3419 init_timer(&sbi
->s_err_report
);
3420 sbi
->s_err_report
.function
= print_daily_error_info
;
3421 sbi
->s_err_report
.data
= (unsigned long) sb
;
3423 err
= percpu_counter_init(&sbi
->s_freeclusters_counter
,
3424 ext4_count_free_clusters(sb
));
3426 err
= percpu_counter_init(&sbi
->s_freeinodes_counter
,
3427 ext4_count_free_inodes(sb
));
3430 err
= percpu_counter_init(&sbi
->s_dirs_counter
,
3431 ext4_count_dirs(sb
));
3434 err
= percpu_counter_init(&sbi
->s_dirtyclusters_counter
, 0);
3437 ext4_msg(sb
, KERN_ERR
, "insufficient memory");
3441 sbi
->s_stripe
= ext4_get_stripe_size(sbi
);
3442 sbi
->s_max_writeback_mb_bump
= 128;
3445 * set up enough so that it can read an inode
3447 if (!test_opt(sb
, NOLOAD
) &&
3448 EXT4_HAS_COMPAT_FEATURE(sb
, EXT4_FEATURE_COMPAT_HAS_JOURNAL
))
3449 sb
->s_op
= &ext4_sops
;
3451 sb
->s_op
= &ext4_nojournal_sops
;
3452 sb
->s_export_op
= &ext4_export_ops
;
3453 sb
->s_xattr
= ext4_xattr_handlers
;
3455 sb
->s_qcop
= &ext4_qctl_operations
;
3456 sb
->dq_op
= &ext4_quota_operations
;
3458 memcpy(sb
->s_uuid
, es
->s_uuid
, sizeof(es
->s_uuid
));
3460 INIT_LIST_HEAD(&sbi
->s_orphan
); /* unlinked but open files */
3461 mutex_init(&sbi
->s_orphan_lock
);
3462 sbi
->s_resize_flags
= 0;
3466 needs_recovery
= (es
->s_last_orphan
!= 0 ||
3467 EXT4_HAS_INCOMPAT_FEATURE(sb
,
3468 EXT4_FEATURE_INCOMPAT_RECOVER
));
3470 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_MMP
) &&
3471 !(sb
->s_flags
& MS_RDONLY
))
3472 if (ext4_multi_mount_protect(sb
, le64_to_cpu(es
->s_mmp_block
)))
3476 * The first inode we look at is the journal inode. Don't try
3477 * root first: it may be modified in the journal!
3479 if (!test_opt(sb
, NOLOAD
) &&
3480 EXT4_HAS_COMPAT_FEATURE(sb
, EXT4_FEATURE_COMPAT_HAS_JOURNAL
)) {
3481 if (ext4_load_journal(sb
, es
, journal_devnum
))
3483 } else if (test_opt(sb
, NOLOAD
) && !(sb
->s_flags
& MS_RDONLY
) &&
3484 EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_RECOVER
)) {
3485 ext4_msg(sb
, KERN_ERR
, "required journal recovery "
3486 "suppressed and not mounted read-only");
3487 goto failed_mount_wq
;
3489 clear_opt(sb
, DATA_FLAGS
);
3490 sbi
->s_journal
= NULL
;
3495 if (ext4_blocks_count(es
) > 0xffffffffULL
&&
3496 !jbd2_journal_set_features(EXT4_SB(sb
)->s_journal
, 0, 0,
3497 JBD2_FEATURE_INCOMPAT_64BIT
)) {
3498 ext4_msg(sb
, KERN_ERR
, "Failed to set 64-bit journal feature");
3499 goto failed_mount_wq
;
3502 if (test_opt(sb
, JOURNAL_ASYNC_COMMIT
)) {
3503 jbd2_journal_set_features(sbi
->s_journal
,
3504 JBD2_FEATURE_COMPAT_CHECKSUM
, 0,
3505 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT
);
3506 } else if (test_opt(sb
, JOURNAL_CHECKSUM
)) {
3507 jbd2_journal_set_features(sbi
->s_journal
,
3508 JBD2_FEATURE_COMPAT_CHECKSUM
, 0, 0);
3509 jbd2_journal_clear_features(sbi
->s_journal
, 0, 0,
3510 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT
);
3512 jbd2_journal_clear_features(sbi
->s_journal
,
3513 JBD2_FEATURE_COMPAT_CHECKSUM
, 0,
3514 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT
);
3517 /* We have now updated the journal if required, so we can
3518 * validate the data journaling mode. */
3519 switch (test_opt(sb
, DATA_FLAGS
)) {
3521 /* No mode set, assume a default based on the journal
3522 * capabilities: ORDERED_DATA if the journal can
3523 * cope, else JOURNAL_DATA
3525 if (jbd2_journal_check_available_features
3526 (sbi
->s_journal
, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE
))
3527 set_opt(sb
, ORDERED_DATA
);
3529 set_opt(sb
, JOURNAL_DATA
);
3532 case EXT4_MOUNT_ORDERED_DATA
:
3533 case EXT4_MOUNT_WRITEBACK_DATA
:
3534 if (!jbd2_journal_check_available_features
3535 (sbi
->s_journal
, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE
)) {
3536 ext4_msg(sb
, KERN_ERR
, "Journal does not support "
3537 "requested data journaling mode");
3538 goto failed_mount_wq
;
3543 set_task_ioprio(sbi
->s_journal
->j_task
, journal_ioprio
);
3545 sbi
->s_journal
->j_commit_callback
= ext4_journal_commit_callback
;
3548 * The journal may have updated the bg summary counts, so we
3549 * need to update the global counters.
3551 percpu_counter_set(&sbi
->s_freeclusters_counter
,
3552 ext4_count_free_clusters(sb
));
3553 percpu_counter_set(&sbi
->s_freeinodes_counter
,
3554 ext4_count_free_inodes(sb
));
3555 percpu_counter_set(&sbi
->s_dirs_counter
,
3556 ext4_count_dirs(sb
));
3557 percpu_counter_set(&sbi
->s_dirtyclusters_counter
, 0);
3561 * The maximum number of concurrent works can be high and
3562 * concurrency isn't really necessary. Limit it to 1.
3564 EXT4_SB(sb
)->dio_unwritten_wq
=
3565 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM
| WQ_UNBOUND
, 1);
3566 if (!EXT4_SB(sb
)->dio_unwritten_wq
) {
3567 printk(KERN_ERR
"EXT4-fs: failed to create DIO workqueue\n");
3568 goto failed_mount_wq
;
3572 * The jbd2_journal_load will have done any necessary log recovery,
3573 * so we can safely mount the rest of the filesystem now.
3576 root
= ext4_iget(sb
, EXT4_ROOT_INO
);
3578 ext4_msg(sb
, KERN_ERR
, "get root inode failed");
3579 ret
= PTR_ERR(root
);
3583 if (!S_ISDIR(root
->i_mode
) || !root
->i_blocks
|| !root
->i_size
) {
3584 ext4_msg(sb
, KERN_ERR
, "corrupt root inode, run e2fsck");
3588 sb
->s_root
= d_make_root(root
);
3590 ext4_msg(sb
, KERN_ERR
, "get root dentry failed");
3595 ext4_setup_super(sb
, es
, sb
->s_flags
& MS_RDONLY
);
3597 /* determine the minimum size of new large inodes, if present */
3598 if (sbi
->s_inode_size
> EXT4_GOOD_OLD_INODE_SIZE
) {
3599 sbi
->s_want_extra_isize
= sizeof(struct ext4_inode
) -
3600 EXT4_GOOD_OLD_INODE_SIZE
;
3601 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3602 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE
)) {
3603 if (sbi
->s_want_extra_isize
<
3604 le16_to_cpu(es
->s_want_extra_isize
))
3605 sbi
->s_want_extra_isize
=
3606 le16_to_cpu(es
->s_want_extra_isize
);
3607 if (sbi
->s_want_extra_isize
<
3608 le16_to_cpu(es
->s_min_extra_isize
))
3609 sbi
->s_want_extra_isize
=
3610 le16_to_cpu(es
->s_min_extra_isize
);
3613 /* Check if enough inode space is available */
3614 if (EXT4_GOOD_OLD_INODE_SIZE
+ sbi
->s_want_extra_isize
>
3615 sbi
->s_inode_size
) {
3616 sbi
->s_want_extra_isize
= sizeof(struct ext4_inode
) -
3617 EXT4_GOOD_OLD_INODE_SIZE
;
3618 ext4_msg(sb
, KERN_INFO
, "required extra inode space not"
3622 err
= ext4_setup_system_zone(sb
);
3624 ext4_msg(sb
, KERN_ERR
, "failed to initialize system "
3626 goto failed_mount4a
;
3630 err
= ext4_mb_init(sb
, needs_recovery
);
3632 ext4_msg(sb
, KERN_ERR
, "failed to initialize mballoc (%d)",
3637 err
= ext4_register_li_request(sb
, first_not_zeroed
);
3641 sbi
->s_kobj
.kset
= ext4_kset
;
3642 init_completion(&sbi
->s_kobj_unregister
);
3643 err
= kobject_init_and_add(&sbi
->s_kobj
, &ext4_ktype
, NULL
,
3648 EXT4_SB(sb
)->s_mount_state
|= EXT4_ORPHAN_FS
;
3649 ext4_orphan_cleanup(sb
, es
);
3650 EXT4_SB(sb
)->s_mount_state
&= ~EXT4_ORPHAN_FS
;
3651 if (needs_recovery
) {
3652 ext4_msg(sb
, KERN_INFO
, "recovery complete");
3653 ext4_mark_recovery_complete(sb
, es
);
3655 if (EXT4_SB(sb
)->s_journal
) {
3656 if (test_opt(sb
, DATA_FLAGS
) == EXT4_MOUNT_JOURNAL_DATA
)
3657 descr
= " journalled data mode";
3658 else if (test_opt(sb
, DATA_FLAGS
) == EXT4_MOUNT_ORDERED_DATA
)
3659 descr
= " ordered data mode";
3661 descr
= " writeback data mode";
3663 descr
= "out journal";
3665 ext4_msg(sb
, KERN_INFO
, "mounted filesystem with%s. "
3666 "Opts: %s%s%s", descr
, sbi
->s_es
->s_mount_opts
,
3667 *sbi
->s_es
->s_mount_opts
? "; " : "", orig_data
);
3669 if (es
->s_error_count
)
3670 mod_timer(&sbi
->s_err_report
, jiffies
+ 300*HZ
); /* 5 minutes */
3677 ext4_msg(sb
, KERN_ERR
, "VFS: Can't find ext4 filesystem");
3681 ext4_unregister_li_request(sb
);
3683 ext4_mb_release(sb
);
3685 ext4_ext_release(sb
);
3686 ext4_release_system_zone(sb
);
3691 ext4_msg(sb
, KERN_ERR
, "mount failed");
3692 destroy_workqueue(EXT4_SB(sb
)->dio_unwritten_wq
);
3694 if (sbi
->s_journal
) {
3695 jbd2_journal_destroy(sbi
->s_journal
);
3696 sbi
->s_journal
= NULL
;
3699 del_timer(&sbi
->s_err_report
);
3700 if (sbi
->s_flex_groups
)
3701 ext4_kvfree(sbi
->s_flex_groups
);
3702 percpu_counter_destroy(&sbi
->s_freeclusters_counter
);
3703 percpu_counter_destroy(&sbi
->s_freeinodes_counter
);
3704 percpu_counter_destroy(&sbi
->s_dirs_counter
);
3705 percpu_counter_destroy(&sbi
->s_dirtyclusters_counter
);
3707 kthread_stop(sbi
->s_mmp_tsk
);
3709 for (i
= 0; i
< db_count
; i
++)
3710 brelse(sbi
->s_group_desc
[i
]);
3711 ext4_kvfree(sbi
->s_group_desc
);
3714 remove_proc_entry("options", sbi
->s_proc
);
3715 remove_proc_entry(sb
->s_id
, ext4_proc_root
);
3718 for (i
= 0; i
< MAXQUOTAS
; i
++)
3719 kfree(sbi
->s_qf_names
[i
]);
3721 ext4_blkdev_remove(sbi
);
3724 sb
->s_fs_info
= NULL
;
3725 kfree(sbi
->s_blockgroup_lock
);
3733 * Setup any per-fs journal parameters now. We'll do this both on
3734 * initial mount, once the journal has been initialised but before we've
3735 * done any recovery; and again on any subsequent remount.
3737 static void ext4_init_journal_params(struct super_block
*sb
, journal_t
*journal
)
3739 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3741 journal
->j_commit_interval
= sbi
->s_commit_interval
;
3742 journal
->j_min_batch_time
= sbi
->s_min_batch_time
;
3743 journal
->j_max_batch_time
= sbi
->s_max_batch_time
;
3745 write_lock(&journal
->j_state_lock
);
3746 if (test_opt(sb
, BARRIER
))
3747 journal
->j_flags
|= JBD2_BARRIER
;
3749 journal
->j_flags
&= ~JBD2_BARRIER
;
3750 if (test_opt(sb
, DATA_ERR_ABORT
))
3751 journal
->j_flags
|= JBD2_ABORT_ON_SYNCDATA_ERR
;
3753 journal
->j_flags
&= ~JBD2_ABORT_ON_SYNCDATA_ERR
;
3754 write_unlock(&journal
->j_state_lock
);
3757 static journal_t
*ext4_get_journal(struct super_block
*sb
,
3758 unsigned int journal_inum
)
3760 struct inode
*journal_inode
;
3763 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb
, EXT4_FEATURE_COMPAT_HAS_JOURNAL
));
3765 /* First, test for the existence of a valid inode on disk. Bad
3766 * things happen if we iget() an unused inode, as the subsequent
3767 * iput() will try to delete it. */
3769 journal_inode
= ext4_iget(sb
, journal_inum
);
3770 if (IS_ERR(journal_inode
)) {
3771 ext4_msg(sb
, KERN_ERR
, "no journal found");
3774 if (!journal_inode
->i_nlink
) {
3775 make_bad_inode(journal_inode
);
3776 iput(journal_inode
);
3777 ext4_msg(sb
, KERN_ERR
, "journal inode is deleted");
3781 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3782 journal_inode
, journal_inode
->i_size
);
3783 if (!S_ISREG(journal_inode
->i_mode
)) {
3784 ext4_msg(sb
, KERN_ERR
, "invalid journal inode");
3785 iput(journal_inode
);
3789 journal
= jbd2_journal_init_inode(journal_inode
);
3791 ext4_msg(sb
, KERN_ERR
, "Could not load journal inode");
3792 iput(journal_inode
);
3795 journal
->j_private
= sb
;
3796 ext4_init_journal_params(sb
, journal
);
3800 static journal_t
*ext4_get_dev_journal(struct super_block
*sb
,
3803 struct buffer_head
*bh
;
3807 int hblock
, blocksize
;
3808 ext4_fsblk_t sb_block
;
3809 unsigned long offset
;
3810 struct ext4_super_block
*es
;
3811 struct block_device
*bdev
;
3813 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb
, EXT4_FEATURE_COMPAT_HAS_JOURNAL
));
3815 bdev
= ext4_blkdev_get(j_dev
, sb
);
3819 blocksize
= sb
->s_blocksize
;
3820 hblock
= bdev_logical_block_size(bdev
);
3821 if (blocksize
< hblock
) {
3822 ext4_msg(sb
, KERN_ERR
,
3823 "blocksize too small for journal device");
3827 sb_block
= EXT4_MIN_BLOCK_SIZE
/ blocksize
;
3828 offset
= EXT4_MIN_BLOCK_SIZE
% blocksize
;
3829 set_blocksize(bdev
, blocksize
);
3830 if (!(bh
= __bread(bdev
, sb_block
, blocksize
))) {
3831 ext4_msg(sb
, KERN_ERR
, "couldn't read superblock of "
3832 "external journal");
3836 es
= (struct ext4_super_block
*) (((char *)bh
->b_data
) + offset
);
3837 if ((le16_to_cpu(es
->s_magic
) != EXT4_SUPER_MAGIC
) ||
3838 !(le32_to_cpu(es
->s_feature_incompat
) &
3839 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV
)) {
3840 ext4_msg(sb
, KERN_ERR
, "external journal has "
3846 if (memcmp(EXT4_SB(sb
)->s_es
->s_journal_uuid
, es
->s_uuid
, 16)) {
3847 ext4_msg(sb
, KERN_ERR
, "journal UUID does not match");
3852 len
= ext4_blocks_count(es
);
3853 start
= sb_block
+ 1;
3854 brelse(bh
); /* we're done with the superblock */
3856 journal
= jbd2_journal_init_dev(bdev
, sb
->s_bdev
,
3857 start
, len
, blocksize
);
3859 ext4_msg(sb
, KERN_ERR
, "failed to create device journal");
3862 journal
->j_private
= sb
;
3863 ll_rw_block(READ
, 1, &journal
->j_sb_buffer
);
3864 wait_on_buffer(journal
->j_sb_buffer
);
3865 if (!buffer_uptodate(journal
->j_sb_buffer
)) {
3866 ext4_msg(sb
, KERN_ERR
, "I/O error on journal device");
3869 if (be32_to_cpu(journal
->j_superblock
->s_nr_users
) != 1) {
3870 ext4_msg(sb
, KERN_ERR
, "External journal has more than one "
3871 "user (unsupported) - %d",
3872 be32_to_cpu(journal
->j_superblock
->s_nr_users
));
3875 EXT4_SB(sb
)->journal_bdev
= bdev
;
3876 ext4_init_journal_params(sb
, journal
);
3880 jbd2_journal_destroy(journal
);
3882 ext4_blkdev_put(bdev
);
3886 static int ext4_load_journal(struct super_block
*sb
,
3887 struct ext4_super_block
*es
,
3888 unsigned long journal_devnum
)
3891 unsigned int journal_inum
= le32_to_cpu(es
->s_journal_inum
);
3894 int really_read_only
;
3896 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb
, EXT4_FEATURE_COMPAT_HAS_JOURNAL
));
3898 if (journal_devnum
&&
3899 journal_devnum
!= le32_to_cpu(es
->s_journal_dev
)) {
3900 ext4_msg(sb
, KERN_INFO
, "external journal device major/minor "
3901 "numbers have changed");
3902 journal_dev
= new_decode_dev(journal_devnum
);
3904 journal_dev
= new_decode_dev(le32_to_cpu(es
->s_journal_dev
));
3906 really_read_only
= bdev_read_only(sb
->s_bdev
);
3909 * Are we loading a blank journal or performing recovery after a
3910 * crash? For recovery, we need to check in advance whether we
3911 * can get read-write access to the device.
3913 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_RECOVER
)) {
3914 if (sb
->s_flags
& MS_RDONLY
) {
3915 ext4_msg(sb
, KERN_INFO
, "INFO: recovery "
3916 "required on readonly filesystem");
3917 if (really_read_only
) {
3918 ext4_msg(sb
, KERN_ERR
, "write access "
3919 "unavailable, cannot proceed");
3922 ext4_msg(sb
, KERN_INFO
, "write access will "
3923 "be enabled during recovery");
3927 if (journal_inum
&& journal_dev
) {
3928 ext4_msg(sb
, KERN_ERR
, "filesystem has both journal "
3929 "and inode journals!");
3934 if (!(journal
= ext4_get_journal(sb
, journal_inum
)))
3937 if (!(journal
= ext4_get_dev_journal(sb
, journal_dev
)))
3941 if (!(journal
->j_flags
& JBD2_BARRIER
))
3942 ext4_msg(sb
, KERN_INFO
, "barriers disabled");
3944 if (!EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_RECOVER
))
3945 err
= jbd2_journal_wipe(journal
, !really_read_only
);
3947 char *save
= kmalloc(EXT4_S_ERR_LEN
, GFP_KERNEL
);
3949 memcpy(save
, ((char *) es
) +
3950 EXT4_S_ERR_START
, EXT4_S_ERR_LEN
);
3951 err
= jbd2_journal_load(journal
);
3953 memcpy(((char *) es
) + EXT4_S_ERR_START
,
3954 save
, EXT4_S_ERR_LEN
);
3959 ext4_msg(sb
, KERN_ERR
, "error loading journal");
3960 jbd2_journal_destroy(journal
);
3964 EXT4_SB(sb
)->s_journal
= journal
;
3965 ext4_clear_journal_err(sb
, es
);
3967 if (!really_read_only
&& journal_devnum
&&
3968 journal_devnum
!= le32_to_cpu(es
->s_journal_dev
)) {
3969 es
->s_journal_dev
= cpu_to_le32(journal_devnum
);
3971 /* Make sure we flush the recovery flag to disk. */
3972 ext4_commit_super(sb
, 1);
3978 static int ext4_commit_super(struct super_block
*sb
, int sync
)
3980 struct ext4_super_block
*es
= EXT4_SB(sb
)->s_es
;
3981 struct buffer_head
*sbh
= EXT4_SB(sb
)->s_sbh
;
3984 if (!sbh
|| block_device_ejected(sb
))
3986 if (buffer_write_io_error(sbh
)) {
3988 * Oh, dear. A previous attempt to write the
3989 * superblock failed. This could happen because the
3990 * USB device was yanked out. Or it could happen to
3991 * be a transient write error and maybe the block will
3992 * be remapped. Nothing we can do but to retry the
3993 * write and hope for the best.
3995 ext4_msg(sb
, KERN_ERR
, "previous I/O error to "
3996 "superblock detected");
3997 clear_buffer_write_io_error(sbh
);
3998 set_buffer_uptodate(sbh
);
4001 * If the file system is mounted read-only, don't update the
4002 * superblock write time. This avoids updating the superblock
4003 * write time when we are mounting the root file system
4004 * read/only but we need to replay the journal; at that point,
4005 * for people who are east of GMT and who make their clock
4006 * tick in localtime for Windows bug-for-bug compatibility,
4007 * the clock is set in the future, and this will cause e2fsck
4008 * to complain and force a full file system check.
4010 if (!(sb
->s_flags
& MS_RDONLY
))
4011 es
->s_wtime
= cpu_to_le32(get_seconds());
4012 if (sb
->s_bdev
->bd_part
)
4013 es
->s_kbytes_written
=
4014 cpu_to_le64(EXT4_SB(sb
)->s_kbytes_written
+
4015 ((part_stat_read(sb
->s_bdev
->bd_part
, sectors
[1]) -
4016 EXT4_SB(sb
)->s_sectors_written_start
) >> 1));
4018 es
->s_kbytes_written
=
4019 cpu_to_le64(EXT4_SB(sb
)->s_kbytes_written
);
4020 ext4_free_blocks_count_set(es
,
4021 EXT4_C2B(EXT4_SB(sb
), percpu_counter_sum_positive(
4022 &EXT4_SB(sb
)->s_freeclusters_counter
)));
4023 es
->s_free_inodes_count
=
4024 cpu_to_le32(percpu_counter_sum_positive(
4025 &EXT4_SB(sb
)->s_freeinodes_counter
));
4027 BUFFER_TRACE(sbh
, "marking dirty");
4028 mark_buffer_dirty(sbh
);
4030 error
= sync_dirty_buffer(sbh
);
4034 error
= buffer_write_io_error(sbh
);
4036 ext4_msg(sb
, KERN_ERR
, "I/O error while writing "
4038 clear_buffer_write_io_error(sbh
);
4039 set_buffer_uptodate(sbh
);
4046 * Have we just finished recovery? If so, and if we are mounting (or
4047 * remounting) the filesystem readonly, then we will end up with a
4048 * consistent fs on disk. Record that fact.
4050 static void ext4_mark_recovery_complete(struct super_block
*sb
,
4051 struct ext4_super_block
*es
)
4053 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
4055 if (!EXT4_HAS_COMPAT_FEATURE(sb
, EXT4_FEATURE_COMPAT_HAS_JOURNAL
)) {
4056 BUG_ON(journal
!= NULL
);
4059 jbd2_journal_lock_updates(journal
);
4060 if (jbd2_journal_flush(journal
) < 0)
4063 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_RECOVER
) &&
4064 sb
->s_flags
& MS_RDONLY
) {
4065 EXT4_CLEAR_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_RECOVER
);
4066 ext4_commit_super(sb
, 1);
4070 jbd2_journal_unlock_updates(journal
);
4074 * If we are mounting (or read-write remounting) a filesystem whose journal
4075 * has recorded an error from a previous lifetime, move that error to the
4076 * main filesystem now.
4078 static void ext4_clear_journal_err(struct super_block
*sb
,
4079 struct ext4_super_block
*es
)
4085 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb
, EXT4_FEATURE_COMPAT_HAS_JOURNAL
));
4087 journal
= EXT4_SB(sb
)->s_journal
;
4090 * Now check for any error status which may have been recorded in the
4091 * journal by a prior ext4_error() or ext4_abort()
4094 j_errno
= jbd2_journal_errno(journal
);
4098 errstr
= ext4_decode_error(sb
, j_errno
, nbuf
);
4099 ext4_warning(sb
, "Filesystem error recorded "
4100 "from previous mount: %s", errstr
);
4101 ext4_warning(sb
, "Marking fs in need of filesystem check.");
4103 EXT4_SB(sb
)->s_mount_state
|= EXT4_ERROR_FS
;
4104 es
->s_state
|= cpu_to_le16(EXT4_ERROR_FS
);
4105 ext4_commit_super(sb
, 1);
4107 jbd2_journal_clear_err(journal
);
4112 * Force the running and committing transactions to commit,
4113 * and wait on the commit.
4115 int ext4_force_commit(struct super_block
*sb
)
4120 if (sb
->s_flags
& MS_RDONLY
)
4123 journal
= EXT4_SB(sb
)->s_journal
;
4125 vfs_check_frozen(sb
, SB_FREEZE_TRANS
);
4126 ret
= ext4_journal_force_commit(journal
);
4132 static void ext4_write_super(struct super_block
*sb
)
4135 ext4_commit_super(sb
, 1);
4139 static int ext4_sync_fs(struct super_block
*sb
, int wait
)
4143 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4145 trace_ext4_sync_fs(sb
, wait
);
4146 flush_workqueue(sbi
->dio_unwritten_wq
);
4147 if (jbd2_journal_start_commit(sbi
->s_journal
, &target
)) {
4149 jbd2_log_wait_commit(sbi
->s_journal
, target
);
4155 * LVM calls this function before a (read-only) snapshot is created. This
4156 * gives us a chance to flush the journal completely and mark the fs clean.
4158 * Note that only this function cannot bring a filesystem to be in a clean
4159 * state independently, because ext4 prevents a new handle from being started
4160 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from
4163 static int ext4_freeze(struct super_block
*sb
)
4168 if (sb
->s_flags
& MS_RDONLY
)
4171 journal
= EXT4_SB(sb
)->s_journal
;
4173 /* Now we set up the journal barrier. */
4174 jbd2_journal_lock_updates(journal
);
4177 * Don't clear the needs_recovery flag if we failed to flush
4180 error
= jbd2_journal_flush(journal
);
4184 /* Journal blocked and flushed, clear needs_recovery flag. */
4185 EXT4_CLEAR_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_RECOVER
);
4186 error
= ext4_commit_super(sb
, 1);
4188 /* we rely on s_frozen to stop further updates */
4189 jbd2_journal_unlock_updates(EXT4_SB(sb
)->s_journal
);
4194 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4195 * flag here, even though the filesystem is not technically dirty yet.
4197 static int ext4_unfreeze(struct super_block
*sb
)
4199 if (sb
->s_flags
& MS_RDONLY
)
4203 /* Reset the needs_recovery flag before the fs is unlocked. */
4204 EXT4_SET_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_RECOVER
);
4205 ext4_commit_super(sb
, 1);
4211 * Structure to save mount options for ext4_remount's benefit
4213 struct ext4_mount_options
{
4214 unsigned long s_mount_opt
;
4215 unsigned long s_mount_opt2
;
4218 unsigned long s_commit_interval
;
4219 u32 s_min_batch_time
, s_max_batch_time
;
4222 char *s_qf_names
[MAXQUOTAS
];
4226 static int ext4_remount(struct super_block
*sb
, int *flags
, char *data
)
4228 struct ext4_super_block
*es
;
4229 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4230 unsigned long old_sb_flags
;
4231 struct ext4_mount_options old_opts
;
4232 int enable_quota
= 0;
4234 unsigned int journal_ioprio
= DEFAULT_JOURNAL_IOPRIO
;
4239 char *orig_data
= kstrdup(data
, GFP_KERNEL
);
4241 /* Store the original options */
4243 old_sb_flags
= sb
->s_flags
;
4244 old_opts
.s_mount_opt
= sbi
->s_mount_opt
;
4245 old_opts
.s_mount_opt2
= sbi
->s_mount_opt2
;
4246 old_opts
.s_resuid
= sbi
->s_resuid
;
4247 old_opts
.s_resgid
= sbi
->s_resgid
;
4248 old_opts
.s_commit_interval
= sbi
->s_commit_interval
;
4249 old_opts
.s_min_batch_time
= sbi
->s_min_batch_time
;
4250 old_opts
.s_max_batch_time
= sbi
->s_max_batch_time
;
4252 old_opts
.s_jquota_fmt
= sbi
->s_jquota_fmt
;
4253 for (i
= 0; i
< MAXQUOTAS
; i
++)
4254 old_opts
.s_qf_names
[i
] = sbi
->s_qf_names
[i
];
4256 if (sbi
->s_journal
&& sbi
->s_journal
->j_task
->io_context
)
4257 journal_ioprio
= sbi
->s_journal
->j_task
->io_context
->ioprio
;
4260 * Allow the "check" option to be passed as a remount option.
4262 if (!parse_options(data
, sb
, NULL
, &journal_ioprio
, 1)) {
4267 if (sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
)
4268 ext4_abort(sb
, "Abort forced by user");
4270 sb
->s_flags
= (sb
->s_flags
& ~MS_POSIXACL
) |
4271 (test_opt(sb
, POSIX_ACL
) ? MS_POSIXACL
: 0);
4275 if (sbi
->s_journal
) {
4276 ext4_init_journal_params(sb
, sbi
->s_journal
);
4277 set_task_ioprio(sbi
->s_journal
->j_task
, journal_ioprio
);
4280 if ((*flags
& MS_RDONLY
) != (sb
->s_flags
& MS_RDONLY
)) {
4281 if (sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
) {
4286 if (*flags
& MS_RDONLY
) {
4287 err
= dquot_suspend(sb
, -1);
4292 * First of all, the unconditional stuff we have to do
4293 * to disable replay of the journal when we next remount
4295 sb
->s_flags
|= MS_RDONLY
;
4298 * OK, test if we are remounting a valid rw partition
4299 * readonly, and if so set the rdonly flag and then
4300 * mark the partition as valid again.
4302 if (!(es
->s_state
& cpu_to_le16(EXT4_VALID_FS
)) &&
4303 (sbi
->s_mount_state
& EXT4_VALID_FS
))
4304 es
->s_state
= cpu_to_le16(sbi
->s_mount_state
);
4307 ext4_mark_recovery_complete(sb
, es
);
4309 /* Make sure we can mount this feature set readwrite */
4310 if (!ext4_feature_set_ok(sb
, 0)) {
4315 * Make sure the group descriptor checksums
4316 * are sane. If they aren't, refuse to remount r/w.
4318 for (g
= 0; g
< sbi
->s_groups_count
; g
++) {
4319 struct ext4_group_desc
*gdp
=
4320 ext4_get_group_desc(sb
, g
, NULL
);
4322 if (!ext4_group_desc_csum_verify(sbi
, g
, gdp
)) {
4323 ext4_msg(sb
, KERN_ERR
,
4324 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4325 g
, le16_to_cpu(ext4_group_desc_csum(sbi
, g
, gdp
)),
4326 le16_to_cpu(gdp
->bg_checksum
));
4333 * If we have an unprocessed orphan list hanging
4334 * around from a previously readonly bdev mount,
4335 * require a full umount/remount for now.
4337 if (es
->s_last_orphan
) {
4338 ext4_msg(sb
, KERN_WARNING
, "Couldn't "
4339 "remount RDWR because of unprocessed "
4340 "orphan inode list. Please "
4341 "umount/remount instead");
4347 * Mounting a RDONLY partition read-write, so reread
4348 * and store the current valid flag. (It may have
4349 * been changed by e2fsck since we originally mounted
4353 ext4_clear_journal_err(sb
, es
);
4354 sbi
->s_mount_state
= le16_to_cpu(es
->s_state
);
4355 if (!ext4_setup_super(sb
, es
, 0))
4356 sb
->s_flags
&= ~MS_RDONLY
;
4357 if (EXT4_HAS_INCOMPAT_FEATURE(sb
,
4358 EXT4_FEATURE_INCOMPAT_MMP
))
4359 if (ext4_multi_mount_protect(sb
,
4360 le64_to_cpu(es
->s_mmp_block
))) {
4369 * Reinitialize lazy itable initialization thread based on
4372 if ((sb
->s_flags
& MS_RDONLY
) || !test_opt(sb
, INIT_INODE_TABLE
))
4373 ext4_unregister_li_request(sb
);
4375 ext4_group_t first_not_zeroed
;
4376 first_not_zeroed
= ext4_has_uninit_itable(sb
);
4377 ext4_register_li_request(sb
, first_not_zeroed
);
4380 ext4_setup_system_zone(sb
);
4381 if (sbi
->s_journal
== NULL
)
4382 ext4_commit_super(sb
, 1);
4385 /* Release old quota file names */
4386 for (i
= 0; i
< MAXQUOTAS
; i
++)
4387 if (old_opts
.s_qf_names
[i
] &&
4388 old_opts
.s_qf_names
[i
] != sbi
->s_qf_names
[i
])
4389 kfree(old_opts
.s_qf_names
[i
]);
4393 dquot_resume(sb
, -1);
4395 ext4_msg(sb
, KERN_INFO
, "re-mounted. Opts: %s", orig_data
);
4400 sb
->s_flags
= old_sb_flags
;
4401 sbi
->s_mount_opt
= old_opts
.s_mount_opt
;
4402 sbi
->s_mount_opt2
= old_opts
.s_mount_opt2
;
4403 sbi
->s_resuid
= old_opts
.s_resuid
;
4404 sbi
->s_resgid
= old_opts
.s_resgid
;
4405 sbi
->s_commit_interval
= old_opts
.s_commit_interval
;
4406 sbi
->s_min_batch_time
= old_opts
.s_min_batch_time
;
4407 sbi
->s_max_batch_time
= old_opts
.s_max_batch_time
;
4409 sbi
->s_jquota_fmt
= old_opts
.s_jquota_fmt
;
4410 for (i
= 0; i
< MAXQUOTAS
; i
++) {
4411 if (sbi
->s_qf_names
[i
] &&
4412 old_opts
.s_qf_names
[i
] != sbi
->s_qf_names
[i
])
4413 kfree(sbi
->s_qf_names
[i
]);
4414 sbi
->s_qf_names
[i
] = old_opts
.s_qf_names
[i
];
4423 * Note: calculating the overhead so we can be compatible with
4424 * historical BSD practice is quite difficult in the face of
4425 * clusters/bigalloc. This is because multiple metadata blocks from
4426 * different block group can end up in the same allocation cluster.
4427 * Calculating the exact overhead in the face of clustered allocation
4428 * requires either O(all block bitmaps) in memory or O(number of block
4429 * groups**2) in time. We will still calculate the superblock for
4430 * older file systems --- and if we come across with a bigalloc file
4431 * system with zero in s_overhead_clusters the estimate will be close to
4432 * correct especially for very large cluster sizes --- but for newer
4433 * file systems, it's better to calculate this figure once at mkfs
4434 * time, and store it in the superblock. If the superblock value is
4435 * present (even for non-bigalloc file systems), we will use it.
4437 static int ext4_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
4439 struct super_block
*sb
= dentry
->d_sb
;
4440 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4441 struct ext4_super_block
*es
= sbi
->s_es
;
4442 struct ext4_group_desc
*gdp
;
4446 if (test_opt(sb
, MINIX_DF
)) {
4447 sbi
->s_overhead_last
= 0;
4448 } else if (es
->s_overhead_clusters
) {
4449 sbi
->s_overhead_last
= le32_to_cpu(es
->s_overhead_clusters
);
4450 } else if (sbi
->s_blocks_last
!= ext4_blocks_count(es
)) {
4451 ext4_group_t i
, ngroups
= ext4_get_groups_count(sb
);
4452 ext4_fsblk_t overhead
= 0;
4455 * Compute the overhead (FS structures). This is constant
4456 * for a given filesystem unless the number of block groups
4457 * changes so we cache the previous value until it does.
4461 * All of the blocks before first_data_block are
4464 overhead
= EXT4_B2C(sbi
, le32_to_cpu(es
->s_first_data_block
));
4467 * Add the overhead found in each block group
4469 for (i
= 0; i
< ngroups
; i
++) {
4470 gdp
= ext4_get_group_desc(sb
, i
, NULL
);
4471 overhead
+= ext4_num_overhead_clusters(sb
, i
, gdp
);
4474 sbi
->s_overhead_last
= overhead
;
4476 sbi
->s_blocks_last
= ext4_blocks_count(es
);
4479 buf
->f_type
= EXT4_SUPER_MAGIC
;
4480 buf
->f_bsize
= sb
->s_blocksize
;
4481 buf
->f_blocks
= (ext4_blocks_count(es
) -
4482 EXT4_C2B(sbi
, sbi
->s_overhead_last
));
4483 bfree
= percpu_counter_sum_positive(&sbi
->s_freeclusters_counter
) -
4484 percpu_counter_sum_positive(&sbi
->s_dirtyclusters_counter
);
4485 /* prevent underflow in case that few free space is available */
4486 buf
->f_bfree
= EXT4_C2B(sbi
, max_t(s64
, bfree
, 0));
4487 buf
->f_bavail
= buf
->f_bfree
- ext4_r_blocks_count(es
);
4488 if (buf
->f_bfree
< ext4_r_blocks_count(es
))
4490 buf
->f_files
= le32_to_cpu(es
->s_inodes_count
);
4491 buf
->f_ffree
= percpu_counter_sum_positive(&sbi
->s_freeinodes_counter
);
4492 buf
->f_namelen
= EXT4_NAME_LEN
;
4493 fsid
= le64_to_cpup((void *)es
->s_uuid
) ^
4494 le64_to_cpup((void *)es
->s_uuid
+ sizeof(u64
));
4495 buf
->f_fsid
.val
[0] = fsid
& 0xFFFFFFFFUL
;
4496 buf
->f_fsid
.val
[1] = (fsid
>> 32) & 0xFFFFFFFFUL
;
4501 /* Helper function for writing quotas on sync - we need to start transaction
4502 * before quota file is locked for write. Otherwise the are possible deadlocks:
4503 * Process 1 Process 2
4504 * ext4_create() quota_sync()
4505 * jbd2_journal_start() write_dquot()
4506 * dquot_initialize() down(dqio_mutex)
4507 * down(dqio_mutex) jbd2_journal_start()
4513 static inline struct inode
*dquot_to_inode(struct dquot
*dquot
)
4515 return sb_dqopt(dquot
->dq_sb
)->files
[dquot
->dq_type
];
4518 static int ext4_write_dquot(struct dquot
*dquot
)
4522 struct inode
*inode
;
4524 inode
= dquot_to_inode(dquot
);
4525 handle
= ext4_journal_start(inode
,
4526 EXT4_QUOTA_TRANS_BLOCKS(dquot
->dq_sb
));
4528 return PTR_ERR(handle
);
4529 ret
= dquot_commit(dquot
);
4530 err
= ext4_journal_stop(handle
);
4536 static int ext4_acquire_dquot(struct dquot
*dquot
)
4541 handle
= ext4_journal_start(dquot_to_inode(dquot
),
4542 EXT4_QUOTA_INIT_BLOCKS(dquot
->dq_sb
));
4544 return PTR_ERR(handle
);
4545 ret
= dquot_acquire(dquot
);
4546 err
= ext4_journal_stop(handle
);
4552 static int ext4_release_dquot(struct dquot
*dquot
)
4557 handle
= ext4_journal_start(dquot_to_inode(dquot
),
4558 EXT4_QUOTA_DEL_BLOCKS(dquot
->dq_sb
));
4559 if (IS_ERR(handle
)) {
4560 /* Release dquot anyway to avoid endless cycle in dqput() */
4561 dquot_release(dquot
);
4562 return PTR_ERR(handle
);
4564 ret
= dquot_release(dquot
);
4565 err
= ext4_journal_stop(handle
);
4571 static int ext4_mark_dquot_dirty(struct dquot
*dquot
)
4573 /* Are we journaling quotas? */
4574 if (EXT4_SB(dquot
->dq_sb
)->s_qf_names
[USRQUOTA
] ||
4575 EXT4_SB(dquot
->dq_sb
)->s_qf_names
[GRPQUOTA
]) {
4576 dquot_mark_dquot_dirty(dquot
);
4577 return ext4_write_dquot(dquot
);
4579 return dquot_mark_dquot_dirty(dquot
);
4583 static int ext4_write_info(struct super_block
*sb
, int type
)
4588 /* Data block + inode block */
4589 handle
= ext4_journal_start(sb
->s_root
->d_inode
, 2);
4591 return PTR_ERR(handle
);
4592 ret
= dquot_commit_info(sb
, type
);
4593 err
= ext4_journal_stop(handle
);
4600 * Turn on quotas during mount time - we need to find
4601 * the quota file and such...
4603 static int ext4_quota_on_mount(struct super_block
*sb
, int type
)
4605 return dquot_quota_on_mount(sb
, EXT4_SB(sb
)->s_qf_names
[type
],
4606 EXT4_SB(sb
)->s_jquota_fmt
, type
);
4610 * Standard function to be called on quota_on
4612 static int ext4_quota_on(struct super_block
*sb
, int type
, int format_id
,
4617 if (!test_opt(sb
, QUOTA
))
4620 /* Quotafile not on the same filesystem? */
4621 if (path
->dentry
->d_sb
!= sb
)
4623 /* Journaling quota? */
4624 if (EXT4_SB(sb
)->s_qf_names
[type
]) {
4625 /* Quotafile not in fs root? */
4626 if (path
->dentry
->d_parent
!= sb
->s_root
)
4627 ext4_msg(sb
, KERN_WARNING
,
4628 "Quota file not on filesystem root. "
4629 "Journaled quota will not work");
4633 * When we journal data on quota file, we have to flush journal to see
4634 * all updates to the file when we bypass pagecache...
4636 if (EXT4_SB(sb
)->s_journal
&&
4637 ext4_should_journal_data(path
->dentry
->d_inode
)) {
4639 * We don't need to lock updates but journal_flush() could
4640 * otherwise be livelocked...
4642 jbd2_journal_lock_updates(EXT4_SB(sb
)->s_journal
);
4643 err
= jbd2_journal_flush(EXT4_SB(sb
)->s_journal
);
4644 jbd2_journal_unlock_updates(EXT4_SB(sb
)->s_journal
);
4649 return dquot_quota_on(sb
, type
, format_id
, path
);
4652 static int ext4_quota_off(struct super_block
*sb
, int type
)
4654 struct inode
*inode
= sb_dqopt(sb
)->files
[type
];
4657 /* Force all delayed allocation blocks to be allocated.
4658 * Caller already holds s_umount sem */
4659 if (test_opt(sb
, DELALLOC
))
4660 sync_filesystem(sb
);
4665 /* Update modification times of quota files when userspace can
4666 * start looking at them */
4667 handle
= ext4_journal_start(inode
, 1);
4670 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
4671 ext4_mark_inode_dirty(handle
, inode
);
4672 ext4_journal_stop(handle
);
4675 return dquot_quota_off(sb
, type
);
4678 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4679 * acquiring the locks... As quota files are never truncated and quota code
4680 * itself serializes the operations (and no one else should touch the files)
4681 * we don't have to be afraid of races */
4682 static ssize_t
ext4_quota_read(struct super_block
*sb
, int type
, char *data
,
4683 size_t len
, loff_t off
)
4685 struct inode
*inode
= sb_dqopt(sb
)->files
[type
];
4686 ext4_lblk_t blk
= off
>> EXT4_BLOCK_SIZE_BITS(sb
);
4688 int offset
= off
& (sb
->s_blocksize
- 1);
4691 struct buffer_head
*bh
;
4692 loff_t i_size
= i_size_read(inode
);
4696 if (off
+len
> i_size
)
4699 while (toread
> 0) {
4700 tocopy
= sb
->s_blocksize
- offset
< toread
?
4701 sb
->s_blocksize
- offset
: toread
;
4702 bh
= ext4_bread(NULL
, inode
, blk
, 0, &err
);
4705 if (!bh
) /* A hole? */
4706 memset(data
, 0, tocopy
);
4708 memcpy(data
, bh
->b_data
+offset
, tocopy
);
4718 /* Write to quotafile (we know the transaction is already started and has
4719 * enough credits) */
4720 static ssize_t
ext4_quota_write(struct super_block
*sb
, int type
,
4721 const char *data
, size_t len
, loff_t off
)
4723 struct inode
*inode
= sb_dqopt(sb
)->files
[type
];
4724 ext4_lblk_t blk
= off
>> EXT4_BLOCK_SIZE_BITS(sb
);
4726 int offset
= off
& (sb
->s_blocksize
- 1);
4727 struct buffer_head
*bh
;
4728 handle_t
*handle
= journal_current_handle();
4730 if (EXT4_SB(sb
)->s_journal
&& !handle
) {
4731 ext4_msg(sb
, KERN_WARNING
, "Quota write (off=%llu, len=%llu)"
4732 " cancelled because transaction is not started",
4733 (unsigned long long)off
, (unsigned long long)len
);
4737 * Since we account only one data block in transaction credits,
4738 * then it is impossible to cross a block boundary.
4740 if (sb
->s_blocksize
- offset
< len
) {
4741 ext4_msg(sb
, KERN_WARNING
, "Quota write (off=%llu, len=%llu)"
4742 " cancelled because not block aligned",
4743 (unsigned long long)off
, (unsigned long long)len
);
4747 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_QUOTA
);
4748 bh
= ext4_bread(handle
, inode
, blk
, 1, &err
);
4751 err
= ext4_journal_get_write_access(handle
, bh
);
4757 memcpy(bh
->b_data
+offset
, data
, len
);
4758 flush_dcache_page(bh
->b_page
);
4760 err
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
4764 mutex_unlock(&inode
->i_mutex
);
4767 if (inode
->i_size
< off
+ len
) {
4768 i_size_write(inode
, off
+ len
);
4769 EXT4_I(inode
)->i_disksize
= inode
->i_size
;
4770 ext4_mark_inode_dirty(handle
, inode
);
4772 mutex_unlock(&inode
->i_mutex
);
4778 static struct dentry
*ext4_mount(struct file_system_type
*fs_type
, int flags
,
4779 const char *dev_name
, void *data
)
4781 return mount_bdev(fs_type
, flags
, dev_name
, data
, ext4_fill_super
);
4784 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4785 static inline void register_as_ext2(void)
4787 int err
= register_filesystem(&ext2_fs_type
);
4790 "EXT4-fs: Unable to register as ext2 (%d)\n", err
);
4793 static inline void unregister_as_ext2(void)
4795 unregister_filesystem(&ext2_fs_type
);
4798 static inline int ext2_feature_set_ok(struct super_block
*sb
)
4800 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, ~EXT2_FEATURE_INCOMPAT_SUPP
))
4802 if (sb
->s_flags
& MS_RDONLY
)
4804 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
, ~EXT2_FEATURE_RO_COMPAT_SUPP
))
4808 MODULE_ALIAS("ext2");
4810 static inline void register_as_ext2(void) { }
4811 static inline void unregister_as_ext2(void) { }
4812 static inline int ext2_feature_set_ok(struct super_block
*sb
) { return 0; }
4815 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4816 static inline void register_as_ext3(void)
4818 int err
= register_filesystem(&ext3_fs_type
);
4821 "EXT4-fs: Unable to register as ext3 (%d)\n", err
);
4824 static inline void unregister_as_ext3(void)
4826 unregister_filesystem(&ext3_fs_type
);
4829 static inline int ext3_feature_set_ok(struct super_block
*sb
)
4831 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, ~EXT3_FEATURE_INCOMPAT_SUPP
))
4833 if (!EXT4_HAS_COMPAT_FEATURE(sb
, EXT4_FEATURE_COMPAT_HAS_JOURNAL
))
4835 if (sb
->s_flags
& MS_RDONLY
)
4837 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
, ~EXT3_FEATURE_RO_COMPAT_SUPP
))
4841 MODULE_ALIAS("ext3");
4843 static inline void register_as_ext3(void) { }
4844 static inline void unregister_as_ext3(void) { }
4845 static inline int ext3_feature_set_ok(struct super_block
*sb
) { return 0; }
4848 static struct file_system_type ext4_fs_type
= {
4849 .owner
= THIS_MODULE
,
4851 .mount
= ext4_mount
,
4852 .kill_sb
= kill_block_super
,
4853 .fs_flags
= FS_REQUIRES_DEV
,
4856 static int __init
ext4_init_feat_adverts(void)
4858 struct ext4_features
*ef
;
4861 ef
= kzalloc(sizeof(struct ext4_features
), GFP_KERNEL
);
4865 ef
->f_kobj
.kset
= ext4_kset
;
4866 init_completion(&ef
->f_kobj_unregister
);
4867 ret
= kobject_init_and_add(&ef
->f_kobj
, &ext4_feat_ktype
, NULL
,
4880 static void ext4_exit_feat_adverts(void)
4882 kobject_put(&ext4_feat
->f_kobj
);
4883 wait_for_completion(&ext4_feat
->f_kobj_unregister
);
4887 /* Shared across all ext4 file systems */
4888 wait_queue_head_t ext4__ioend_wq
[EXT4_WQ_HASH_SZ
];
4889 struct mutex ext4__aio_mutex
[EXT4_WQ_HASH_SZ
];
4891 static int __init
ext4_init_fs(void)
4895 ext4_li_info
= NULL
;
4896 mutex_init(&ext4_li_mtx
);
4898 ext4_check_flag_values();
4900 for (i
= 0; i
< EXT4_WQ_HASH_SZ
; i
++) {
4901 mutex_init(&ext4__aio_mutex
[i
]);
4902 init_waitqueue_head(&ext4__ioend_wq
[i
]);
4905 err
= ext4_init_pageio();
4908 err
= ext4_init_system_zone();
4911 ext4_kset
= kset_create_and_add("ext4", NULL
, fs_kobj
);
4914 ext4_proc_root
= proc_mkdir("fs/ext4", NULL
);
4916 err
= ext4_init_feat_adverts();
4920 err
= ext4_init_mballoc();
4924 err
= ext4_init_xattr();
4927 err
= init_inodecache();
4932 err
= register_filesystem(&ext4_fs_type
);
4938 unregister_as_ext2();
4939 unregister_as_ext3();
4940 destroy_inodecache();
4944 ext4_exit_mballoc();
4946 ext4_exit_feat_adverts();
4949 remove_proc_entry("fs/ext4", NULL
);
4950 kset_unregister(ext4_kset
);
4952 ext4_exit_system_zone();
4958 static void __exit
ext4_exit_fs(void)
4960 ext4_destroy_lazyinit_thread();
4961 unregister_as_ext2();
4962 unregister_as_ext3();
4963 unregister_filesystem(&ext4_fs_type
);
4964 destroy_inodecache();
4966 ext4_exit_mballoc();
4967 ext4_exit_feat_adverts();
4968 remove_proc_entry("fs/ext4", NULL
);
4969 kset_unregister(ext4_kset
);
4970 ext4_exit_system_zone();
4974 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
4975 MODULE_DESCRIPTION("Fourth Extended Filesystem");
4976 MODULE_LICENSE("GPL");
4977 module_init(ext4_init_fs
)
4978 module_exit(ext4_exit_fs
)