2 * spidev.c -- simple synchronous userspace interface to SPI devices
4 * Copyright (C) 2006 SWAPP
5 * Andrea Paterniani <a.paterniani@swapp-eng.it>
6 * Copyright (C) 2007 David Brownell (simplification, cleanup)
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ioctl.h>
27 #include <linux/device.h>
28 #include <linux/err.h>
29 #include <linux/list.h>
30 #include <linux/errno.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
33 #include <linux/smp_lock.h>
35 #include <linux/spi/spi.h>
36 #include <linux/spi/spidev.h>
38 #include <asm/uaccess.h>
42 * This supports acccess to SPI devices using normal userspace I/O calls.
43 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
44 * and often mask message boundaries, full SPI support requires full duplex
45 * transfers. There are several kinds of of internal message boundaries to
46 * handle chipselect management and other protocol options.
48 * SPI has a character major number assigned. We allocate minor numbers
49 * dynamically using a bitmask. You must use hotplug tools, such as udev
50 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
51 * nodes, since there is no fixed association of minor numbers with any
52 * particular SPI bus or device.
54 #define SPIDEV_MAJOR 153 /* assigned */
55 #define N_SPI_MINORS 32 /* ... up to 256 */
57 static unsigned long minors
[N_SPI_MINORS
/ BITS_PER_LONG
];
60 /* Bit masks for spi_device.mode management. Note that incorrect
61 * settings for some settings can cause *lots* of trouble for other
62 * devices on a shared bus:
64 * - CS_HIGH ... this device will be active when it shouldn't be
65 * - 3WIRE ... when active, it won't behave as it should
66 * - NO_CS ... there will be no explicit message boundaries; this
67 * is completely incompatible with the shared bus model
68 * - READY ... transfers may proceed when they shouldn't.
70 * REVISIT should changing those flags be privileged?
72 #define SPI_MODE_MASK (SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
73 | SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
74 | SPI_NO_CS | SPI_READY)
79 struct spi_device
*spi
;
80 struct list_head device_entry
;
82 /* buffer is NULL unless this device is open (users > 0) */
83 struct mutex buf_lock
;
88 static LIST_HEAD(device_list
);
89 static DEFINE_MUTEX(device_list_lock
);
91 static unsigned bufsiz
= 4096;
92 module_param(bufsiz
, uint
, S_IRUGO
);
93 MODULE_PARM_DESC(bufsiz
, "data bytes in biggest supported SPI message");
95 /*-------------------------------------------------------------------------*/
98 * We can't use the standard synchronous wrappers for file I/O; we
99 * need to protect against async removal of the underlying spi_device.
101 static void spidev_complete(void *arg
)
107 spidev_sync(struct spidev_data
*spidev
, struct spi_message
*message
)
109 DECLARE_COMPLETION_ONSTACK(done
);
112 message
->complete
= spidev_complete
;
113 message
->context
= &done
;
115 spin_lock_irq(&spidev
->spi_lock
);
116 if (spidev
->spi
== NULL
)
119 status
= spi_async(spidev
->spi
, message
);
120 spin_unlock_irq(&spidev
->spi_lock
);
123 wait_for_completion(&done
);
124 status
= message
->status
;
126 status
= message
->actual_length
;
131 static inline ssize_t
132 spidev_sync_write(struct spidev_data
*spidev
, size_t len
)
134 struct spi_transfer t
= {
135 .tx_buf
= spidev
->buffer
,
138 struct spi_message m
;
140 spi_message_init(&m
);
141 spi_message_add_tail(&t
, &m
);
142 return spidev_sync(spidev
, &m
);
145 static inline ssize_t
146 spidev_sync_read(struct spidev_data
*spidev
, size_t len
)
148 struct spi_transfer t
= {
149 .rx_buf
= spidev
->buffer
,
152 struct spi_message m
;
154 spi_message_init(&m
);
155 spi_message_add_tail(&t
, &m
);
156 return spidev_sync(spidev
, &m
);
159 /*-------------------------------------------------------------------------*/
161 /* Read-only message with current device setup */
163 spidev_read(struct file
*filp
, char __user
*buf
, size_t count
, loff_t
*f_pos
)
165 struct spidev_data
*spidev
;
168 /* chipselect only toggles at start or end of operation */
172 spidev
= filp
->private_data
;
174 mutex_lock(&spidev
->buf_lock
);
175 status
= spidev_sync_read(spidev
, count
);
177 unsigned long missing
;
179 missing
= copy_to_user(buf
, spidev
->buffer
, status
);
180 if (missing
== status
)
183 status
= status
- missing
;
185 mutex_unlock(&spidev
->buf_lock
);
190 /* Write-only message with current device setup */
192 spidev_write(struct file
*filp
, const char __user
*buf
,
193 size_t count
, loff_t
*f_pos
)
195 struct spidev_data
*spidev
;
197 unsigned long missing
;
199 /* chipselect only toggles at start or end of operation */
203 spidev
= filp
->private_data
;
205 mutex_lock(&spidev
->buf_lock
);
206 missing
= copy_from_user(spidev
->buffer
, buf
, count
);
208 status
= spidev_sync_write(spidev
, count
);
211 mutex_unlock(&spidev
->buf_lock
);
216 static int spidev_message(struct spidev_data
*spidev
,
217 struct spi_ioc_transfer
*u_xfers
, unsigned n_xfers
)
219 struct spi_message msg
;
220 struct spi_transfer
*k_xfers
;
221 struct spi_transfer
*k_tmp
;
222 struct spi_ioc_transfer
*u_tmp
;
225 int status
= -EFAULT
;
227 spi_message_init(&msg
);
228 k_xfers
= kcalloc(n_xfers
, sizeof(*k_tmp
), GFP_KERNEL
);
232 /* Construct spi_message, copying any tx data to bounce buffer.
233 * We walk the array of user-provided transfers, using each one
234 * to initialize a kernel version of the same transfer.
236 buf
= spidev
->buffer
;
238 for (n
= n_xfers
, k_tmp
= k_xfers
, u_tmp
= u_xfers
;
240 n
--, k_tmp
++, u_tmp
++) {
241 k_tmp
->len
= u_tmp
->len
;
244 if (total
> bufsiz
) {
251 if (!access_ok(VERIFY_WRITE
, (u8 __user
*)
252 (uintptr_t) u_tmp
->rx_buf
,
258 if (copy_from_user(buf
, (const u8 __user
*)
259 (uintptr_t) u_tmp
->tx_buf
,
265 k_tmp
->cs_change
= !!u_tmp
->cs_change
;
266 k_tmp
->bits_per_word
= u_tmp
->bits_per_word
;
267 k_tmp
->delay_usecs
= u_tmp
->delay_usecs
;
268 k_tmp
->speed_hz
= u_tmp
->speed_hz
;
271 " xfer len %zd %s%s%s%dbits %u usec %uHz\n",
273 u_tmp
->rx_buf
? "rx " : "",
274 u_tmp
->tx_buf
? "tx " : "",
275 u_tmp
->cs_change
? "cs " : "",
276 u_tmp
->bits_per_word
? : spi
->bits_per_word
,
278 u_tmp
->speed_hz
? : spi
->max_speed_hz
);
280 spi_message_add_tail(k_tmp
, &msg
);
283 status
= spidev_sync(spidev
, &msg
);
287 /* copy any rx data out of bounce buffer */
288 buf
= spidev
->buffer
;
289 for (n
= n_xfers
, u_tmp
= u_xfers
; n
; n
--, u_tmp
++) {
291 if (__copy_to_user((u8 __user
*)
292 (uintptr_t) u_tmp
->rx_buf
, buf
,
308 spidev_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
312 struct spidev_data
*spidev
;
313 struct spi_device
*spi
;
316 struct spi_ioc_transfer
*ioc
;
318 /* Check type and command number */
319 if (_IOC_TYPE(cmd
) != SPI_IOC_MAGIC
)
322 /* Check access direction once here; don't repeat below.
323 * IOC_DIR is from the user perspective, while access_ok is
324 * from the kernel perspective; so they look reversed.
326 if (_IOC_DIR(cmd
) & _IOC_READ
)
327 err
= !access_ok(VERIFY_WRITE
,
328 (void __user
*)arg
, _IOC_SIZE(cmd
));
329 if (err
== 0 && _IOC_DIR(cmd
) & _IOC_WRITE
)
330 err
= !access_ok(VERIFY_READ
,
331 (void __user
*)arg
, _IOC_SIZE(cmd
));
335 /* guard against device removal before, or while,
336 * we issue this ioctl.
338 spidev
= filp
->private_data
;
339 spin_lock_irq(&spidev
->spi_lock
);
340 spi
= spi_dev_get(spidev
->spi
);
341 spin_unlock_irq(&spidev
->spi_lock
);
346 /* use the buffer lock here for triple duty:
347 * - prevent I/O (from us) so calling spi_setup() is safe;
348 * - prevent concurrent SPI_IOC_WR_* from morphing
349 * data fields while SPI_IOC_RD_* reads them;
350 * - SPI_IOC_MESSAGE needs the buffer locked "normally".
352 mutex_lock(&spidev
->buf_lock
);
356 case SPI_IOC_RD_MODE
:
357 retval
= __put_user(spi
->mode
& SPI_MODE_MASK
,
360 case SPI_IOC_RD_LSB_FIRST
:
361 retval
= __put_user((spi
->mode
& SPI_LSB_FIRST
) ? 1 : 0,
364 case SPI_IOC_RD_BITS_PER_WORD
:
365 retval
= __put_user(spi
->bits_per_word
, (__u8 __user
*)arg
);
367 case SPI_IOC_RD_MAX_SPEED_HZ
:
368 retval
= __put_user(spi
->max_speed_hz
, (__u32 __user
*)arg
);
372 case SPI_IOC_WR_MODE
:
373 retval
= __get_user(tmp
, (u8 __user
*)arg
);
377 if (tmp
& ~SPI_MODE_MASK
) {
382 tmp
|= spi
->mode
& ~SPI_MODE_MASK
;
384 retval
= spi_setup(spi
);
388 dev_dbg(&spi
->dev
, "spi mode %02x\n", tmp
);
391 case SPI_IOC_WR_LSB_FIRST
:
392 retval
= __get_user(tmp
, (__u8 __user
*)arg
);
397 spi
->mode
|= SPI_LSB_FIRST
;
399 spi
->mode
&= ~SPI_LSB_FIRST
;
400 retval
= spi_setup(spi
);
404 dev_dbg(&spi
->dev
, "%csb first\n",
408 case SPI_IOC_WR_BITS_PER_WORD
:
409 retval
= __get_user(tmp
, (__u8 __user
*)arg
);
411 u8 save
= spi
->bits_per_word
;
413 spi
->bits_per_word
= tmp
;
414 retval
= spi_setup(spi
);
416 spi
->bits_per_word
= save
;
418 dev_dbg(&spi
->dev
, "%d bits per word\n", tmp
);
421 case SPI_IOC_WR_MAX_SPEED_HZ
:
422 retval
= __get_user(tmp
, (__u32 __user
*)arg
);
424 u32 save
= spi
->max_speed_hz
;
426 spi
->max_speed_hz
= tmp
;
427 retval
= spi_setup(spi
);
429 spi
->max_speed_hz
= save
;
431 dev_dbg(&spi
->dev
, "%d Hz (max)\n", tmp
);
436 /* segmented and/or full-duplex I/O request */
437 if (_IOC_NR(cmd
) != _IOC_NR(SPI_IOC_MESSAGE(0))
438 || _IOC_DIR(cmd
) != _IOC_WRITE
) {
443 tmp
= _IOC_SIZE(cmd
);
444 if ((tmp
% sizeof(struct spi_ioc_transfer
)) != 0) {
448 n_ioc
= tmp
/ sizeof(struct spi_ioc_transfer
);
452 /* copy into scratch area */
453 ioc
= kmalloc(tmp
, GFP_KERNEL
);
458 if (__copy_from_user(ioc
, (void __user
*)arg
, tmp
)) {
464 /* translate to spi_message, execute */
465 retval
= spidev_message(spidev
, ioc
, n_ioc
);
470 mutex_unlock(&spidev
->buf_lock
);
475 static int spidev_open(struct inode
*inode
, struct file
*filp
)
477 struct spidev_data
*spidev
;
481 mutex_lock(&device_list_lock
);
483 list_for_each_entry(spidev
, &device_list
, device_entry
) {
484 if (spidev
->devt
== inode
->i_rdev
) {
490 if (!spidev
->buffer
) {
491 spidev
->buffer
= kmalloc(bufsiz
, GFP_KERNEL
);
492 if (!spidev
->buffer
) {
493 dev_dbg(&spidev
->spi
->dev
, "open/ENOMEM\n");
499 filp
->private_data
= spidev
;
500 nonseekable_open(inode
, filp
);
503 pr_debug("spidev: nothing for minor %d\n", iminor(inode
));
505 mutex_unlock(&device_list_lock
);
510 static int spidev_release(struct inode
*inode
, struct file
*filp
)
512 struct spidev_data
*spidev
;
515 mutex_lock(&device_list_lock
);
516 spidev
= filp
->private_data
;
517 filp
->private_data
= NULL
;
521 if (!spidev
->users
) {
524 kfree(spidev
->buffer
);
525 spidev
->buffer
= NULL
;
527 /* ... after we unbound from the underlying device? */
528 spin_lock_irq(&spidev
->spi_lock
);
529 dofree
= (spidev
->spi
== NULL
);
530 spin_unlock_irq(&spidev
->spi_lock
);
535 mutex_unlock(&device_list_lock
);
540 static struct file_operations spidev_fops
= {
541 .owner
= THIS_MODULE
,
542 /* REVISIT switch to aio primitives, so that userspace
543 * gets more complete API coverage. It'll simplify things
544 * too, except for the locking.
546 .write
= spidev_write
,
548 .unlocked_ioctl
= spidev_ioctl
,
550 .release
= spidev_release
,
553 /*-------------------------------------------------------------------------*/
555 /* The main reason to have this class is to make mdev/udev create the
556 * /dev/spidevB.C character device nodes exposing our userspace API.
557 * It also simplifies memory management.
560 static struct class *spidev_class
;
562 /*-------------------------------------------------------------------------*/
564 static int spidev_probe(struct spi_device
*spi
)
566 struct spidev_data
*spidev
;
570 /* Allocate driver data */
571 spidev
= kzalloc(sizeof(*spidev
), GFP_KERNEL
);
575 /* Initialize the driver data */
577 spin_lock_init(&spidev
->spi_lock
);
578 mutex_init(&spidev
->buf_lock
);
580 INIT_LIST_HEAD(&spidev
->device_entry
);
582 /* If we can allocate a minor number, hook up this device.
583 * Reusing minors is fine so long as udev or mdev is working.
585 mutex_lock(&device_list_lock
);
586 minor
= find_first_zero_bit(minors
, N_SPI_MINORS
);
587 if (minor
< N_SPI_MINORS
) {
590 spidev
->devt
= MKDEV(SPIDEV_MAJOR
, minor
);
591 dev
= device_create(spidev_class
, &spi
->dev
, spidev
->devt
,
592 spidev
, "spidev%d.%d",
593 spi
->master
->bus_num
, spi
->chip_select
);
594 status
= IS_ERR(dev
) ? PTR_ERR(dev
) : 0;
596 dev_dbg(&spi
->dev
, "no minor number available!\n");
600 set_bit(minor
, minors
);
601 list_add(&spidev
->device_entry
, &device_list
);
603 mutex_unlock(&device_list_lock
);
606 spi_set_drvdata(spi
, spidev
);
613 static int spidev_remove(struct spi_device
*spi
)
615 struct spidev_data
*spidev
= spi_get_drvdata(spi
);
617 /* make sure ops on existing fds can abort cleanly */
618 spin_lock_irq(&spidev
->spi_lock
);
620 spi_set_drvdata(spi
, NULL
);
621 spin_unlock_irq(&spidev
->spi_lock
);
623 /* prevent new opens */
624 mutex_lock(&device_list_lock
);
625 list_del(&spidev
->device_entry
);
626 device_destroy(spidev_class
, spidev
->devt
);
627 clear_bit(MINOR(spidev
->devt
), minors
);
628 if (spidev
->users
== 0)
630 mutex_unlock(&device_list_lock
);
635 static struct spi_driver spidev_spi
= {
638 .owner
= THIS_MODULE
,
640 .probe
= spidev_probe
,
641 .remove
= __devexit_p(spidev_remove
),
643 /* NOTE: suspend/resume methods are not necessary here.
644 * We don't do anything except pass the requests to/from
645 * the underlying controller. The refrigerator handles
646 * most issues; the controller driver handles the rest.
650 /*-------------------------------------------------------------------------*/
652 static int __init
spidev_init(void)
656 /* Claim our 256 reserved device numbers. Then register a class
657 * that will key udev/mdev to add/remove /dev nodes. Last, register
658 * the driver which manages those device numbers.
660 BUILD_BUG_ON(N_SPI_MINORS
> 256);
661 status
= register_chrdev(SPIDEV_MAJOR
, "spi", &spidev_fops
);
665 spidev_class
= class_create(THIS_MODULE
, "spidev");
666 if (IS_ERR(spidev_class
)) {
667 unregister_chrdev(SPIDEV_MAJOR
, spidev_spi
.driver
.name
);
668 return PTR_ERR(spidev_class
);
671 status
= spi_register_driver(&spidev_spi
);
673 class_destroy(spidev_class
);
674 unregister_chrdev(SPIDEV_MAJOR
, spidev_spi
.driver
.name
);
678 module_init(spidev_init
);
680 static void __exit
spidev_exit(void)
682 spi_unregister_driver(&spidev_spi
);
683 class_destroy(spidev_class
);
684 unregister_chrdev(SPIDEV_MAJOR
, spidev_spi
.driver
.name
);
686 module_exit(spidev_exit
);
688 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
689 MODULE_DESCRIPTION("User mode SPI device interface");
690 MODULE_LICENSE("GPL");