thinkpad-acpi: hotkey poll fixes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / oom_kill.c
bloba7b2460e922b779252ebcc225cecaf6060b0e964
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
8 * The routines in this file are used to kill a process when
9 * we're seriously out of memory. This gets called from __alloc_pages()
10 * in mm/page_alloc.c when we really run out of memory.
12 * Since we won't call these routines often (on a well-configured
13 * machine) this file will double as a 'coding guide' and a signpost
14 * for newbie kernel hackers. It features several pointers to major
15 * kernel subsystems and hints as to where to find out what things do.
18 #include <linux/oom.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/sched.h>
22 #include <linux/swap.h>
23 #include <linux/timex.h>
24 #include <linux/jiffies.h>
25 #include <linux/cpuset.h>
26 #include <linux/module.h>
27 #include <linux/notifier.h>
28 #include <linux/memcontrol.h>
29 #include <linux/security.h>
31 int sysctl_panic_on_oom;
32 int sysctl_oom_kill_allocating_task;
33 int sysctl_oom_dump_tasks;
34 static DEFINE_SPINLOCK(zone_scan_lock);
35 /* #define DEBUG */
37 /**
38 * badness - calculate a numeric value for how bad this task has been
39 * @p: task struct of which task we should calculate
40 * @uptime: current uptime in seconds
42 * The formula used is relatively simple and documented inline in the
43 * function. The main rationale is that we want to select a good task
44 * to kill when we run out of memory.
46 * Good in this context means that:
47 * 1) we lose the minimum amount of work done
48 * 2) we recover a large amount of memory
49 * 3) we don't kill anything innocent of eating tons of memory
50 * 4) we want to kill the minimum amount of processes (one)
51 * 5) we try to kill the process the user expects us to kill, this
52 * algorithm has been meticulously tuned to meet the principle
53 * of least surprise ... (be careful when you change it)
56 unsigned long badness(struct task_struct *p, unsigned long uptime)
58 unsigned long points, cpu_time, run_time;
59 struct mm_struct *mm;
60 struct task_struct *child;
62 task_lock(p);
63 mm = p->mm;
64 if (!mm) {
65 task_unlock(p);
66 return 0;
70 * The memory size of the process is the basis for the badness.
72 points = mm->total_vm;
75 * After this unlock we can no longer dereference local variable `mm'
77 task_unlock(p);
80 * swapoff can easily use up all memory, so kill those first.
82 if (p->flags & PF_SWAPOFF)
83 return ULONG_MAX;
86 * Processes which fork a lot of child processes are likely
87 * a good choice. We add half the vmsize of the children if they
88 * have an own mm. This prevents forking servers to flood the
89 * machine with an endless amount of children. In case a single
90 * child is eating the vast majority of memory, adding only half
91 * to the parents will make the child our kill candidate of choice.
93 list_for_each_entry(child, &p->children, sibling) {
94 task_lock(child);
95 if (child->mm != mm && child->mm)
96 points += child->mm->total_vm/2 + 1;
97 task_unlock(child);
101 * CPU time is in tens of seconds and run time is in thousands
102 * of seconds. There is no particular reason for this other than
103 * that it turned out to work very well in practice.
105 cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
106 >> (SHIFT_HZ + 3);
108 if (uptime >= p->start_time.tv_sec)
109 run_time = (uptime - p->start_time.tv_sec) >> 10;
110 else
111 run_time = 0;
113 if (cpu_time)
114 points /= int_sqrt(cpu_time);
115 if (run_time)
116 points /= int_sqrt(int_sqrt(run_time));
119 * Niced processes are most likely less important, so double
120 * their badness points.
122 if (task_nice(p) > 0)
123 points *= 2;
126 * Superuser processes are usually more important, so we make it
127 * less likely that we kill those.
129 if (has_capability_noaudit(p, CAP_SYS_ADMIN) ||
130 has_capability_noaudit(p, CAP_SYS_RESOURCE))
131 points /= 4;
134 * We don't want to kill a process with direct hardware access.
135 * Not only could that mess up the hardware, but usually users
136 * tend to only have this flag set on applications they think
137 * of as important.
139 if (has_capability_noaudit(p, CAP_SYS_RAWIO))
140 points /= 4;
143 * If p's nodes don't overlap ours, it may still help to kill p
144 * because p may have allocated or otherwise mapped memory on
145 * this node before. However it will be less likely.
147 if (!cpuset_mems_allowed_intersects(current, p))
148 points /= 8;
151 * Adjust the score by oomkilladj.
153 if (p->oomkilladj) {
154 if (p->oomkilladj > 0) {
155 if (!points)
156 points = 1;
157 points <<= p->oomkilladj;
158 } else
159 points >>= -(p->oomkilladj);
162 #ifdef DEBUG
163 printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
164 p->pid, p->comm, points);
165 #endif
166 return points;
170 * Determine the type of allocation constraint.
172 static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist,
173 gfp_t gfp_mask)
175 #ifdef CONFIG_NUMA
176 struct zone *zone;
177 struct zoneref *z;
178 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
179 nodemask_t nodes = node_states[N_HIGH_MEMORY];
181 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
182 if (cpuset_zone_allowed_softwall(zone, gfp_mask))
183 node_clear(zone_to_nid(zone), nodes);
184 else
185 return CONSTRAINT_CPUSET;
187 if (!nodes_empty(nodes))
188 return CONSTRAINT_MEMORY_POLICY;
189 #endif
191 return CONSTRAINT_NONE;
195 * Simple selection loop. We chose the process with the highest
196 * number of 'points'. We expect the caller will lock the tasklist.
198 * (not docbooked, we don't want this one cluttering up the manual)
200 static struct task_struct *select_bad_process(unsigned long *ppoints,
201 struct mem_cgroup *mem)
203 struct task_struct *g, *p;
204 struct task_struct *chosen = NULL;
205 struct timespec uptime;
206 *ppoints = 0;
208 do_posix_clock_monotonic_gettime(&uptime);
209 do_each_thread(g, p) {
210 unsigned long points;
213 * skip kernel threads and tasks which have already released
214 * their mm.
216 if (!p->mm)
217 continue;
218 /* skip the init task */
219 if (is_global_init(p))
220 continue;
221 if (mem && !task_in_mem_cgroup(p, mem))
222 continue;
225 * This task already has access to memory reserves and is
226 * being killed. Don't allow any other task access to the
227 * memory reserve.
229 * Note: this may have a chance of deadlock if it gets
230 * blocked waiting for another task which itself is waiting
231 * for memory. Is there a better alternative?
233 if (test_tsk_thread_flag(p, TIF_MEMDIE))
234 return ERR_PTR(-1UL);
237 * This is in the process of releasing memory so wait for it
238 * to finish before killing some other task by mistake.
240 * However, if p is the current task, we allow the 'kill' to
241 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
242 * which will allow it to gain access to memory reserves in
243 * the process of exiting and releasing its resources.
244 * Otherwise we could get an easy OOM deadlock.
246 if (p->flags & PF_EXITING) {
247 if (p != current)
248 return ERR_PTR(-1UL);
250 chosen = p;
251 *ppoints = ULONG_MAX;
254 if (p->oomkilladj == OOM_DISABLE)
255 continue;
257 points = badness(p, uptime.tv_sec);
258 if (points > *ppoints || !chosen) {
259 chosen = p;
260 *ppoints = points;
262 } while_each_thread(g, p);
264 return chosen;
268 * dump_tasks - dump current memory state of all system tasks
269 * @mem: target memory controller
271 * Dumps the current memory state of all system tasks, excluding kernel threads.
272 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
273 * score, and name.
275 * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
276 * shown.
278 * Call with tasklist_lock read-locked.
280 static void dump_tasks(const struct mem_cgroup *mem)
282 struct task_struct *g, *p;
284 printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj "
285 "name\n");
286 do_each_thread(g, p) {
287 struct mm_struct *mm;
289 if (mem && !task_in_mem_cgroup(p, mem))
290 continue;
291 if (!thread_group_leader(p))
292 continue;
294 task_lock(p);
295 mm = p->mm;
296 if (!mm) {
298 * total_vm and rss sizes do not exist for tasks with no
299 * mm so there's no need to report them; they can't be
300 * oom killed anyway.
302 task_unlock(p);
303 continue;
305 printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n",
306 p->pid, __task_cred(p)->uid, p->tgid, mm->total_vm,
307 get_mm_rss(mm), (int)task_cpu(p), p->oomkilladj,
308 p->comm);
309 task_unlock(p);
310 } while_each_thread(g, p);
314 * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO
315 * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO
316 * set.
318 static void __oom_kill_task(struct task_struct *p, int verbose)
320 if (is_global_init(p)) {
321 WARN_ON(1);
322 printk(KERN_WARNING "tried to kill init!\n");
323 return;
326 if (!p->mm) {
327 WARN_ON(1);
328 printk(KERN_WARNING "tried to kill an mm-less task!\n");
329 return;
332 if (verbose)
333 printk(KERN_ERR "Killed process %d (%s)\n",
334 task_pid_nr(p), p->comm);
337 * We give our sacrificial lamb high priority and access to
338 * all the memory it needs. That way it should be able to
339 * exit() and clear out its resources quickly...
341 p->rt.time_slice = HZ;
342 set_tsk_thread_flag(p, TIF_MEMDIE);
344 force_sig(SIGKILL, p);
347 static int oom_kill_task(struct task_struct *p)
349 struct mm_struct *mm;
350 struct task_struct *g, *q;
352 mm = p->mm;
354 /* WARNING: mm may not be dereferenced since we did not obtain its
355 * value from get_task_mm(p). This is OK since all we need to do is
356 * compare mm to q->mm below.
358 * Furthermore, even if mm contains a non-NULL value, p->mm may
359 * change to NULL at any time since we do not hold task_lock(p).
360 * However, this is of no concern to us.
363 if (mm == NULL)
364 return 1;
367 * Don't kill the process if any threads are set to OOM_DISABLE
369 do_each_thread(g, q) {
370 if (q->mm == mm && q->oomkilladj == OOM_DISABLE)
371 return 1;
372 } while_each_thread(g, q);
374 __oom_kill_task(p, 1);
377 * kill all processes that share the ->mm (i.e. all threads),
378 * but are in a different thread group. Don't let them have access
379 * to memory reserves though, otherwise we might deplete all memory.
381 do_each_thread(g, q) {
382 if (q->mm == mm && !same_thread_group(q, p))
383 force_sig(SIGKILL, q);
384 } while_each_thread(g, q);
386 return 0;
389 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
390 unsigned long points, struct mem_cgroup *mem,
391 const char *message)
393 struct task_struct *c;
395 if (printk_ratelimit()) {
396 printk(KERN_WARNING "%s invoked oom-killer: "
397 "gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
398 current->comm, gfp_mask, order, current->oomkilladj);
399 task_lock(current);
400 cpuset_print_task_mems_allowed(current);
401 task_unlock(current);
402 dump_stack();
403 mem_cgroup_print_oom_info(mem, current);
404 show_mem();
405 if (sysctl_oom_dump_tasks)
406 dump_tasks(mem);
410 * If the task is already exiting, don't alarm the sysadmin or kill
411 * its children or threads, just set TIF_MEMDIE so it can die quickly
413 if (p->flags & PF_EXITING) {
414 __oom_kill_task(p, 0);
415 return 0;
418 printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
419 message, task_pid_nr(p), p->comm, points);
421 /* Try to kill a child first */
422 list_for_each_entry(c, &p->children, sibling) {
423 if (c->mm == p->mm)
424 continue;
425 if (!oom_kill_task(c))
426 return 0;
428 return oom_kill_task(p);
431 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
432 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
434 unsigned long points = 0;
435 struct task_struct *p;
437 read_lock(&tasklist_lock);
438 retry:
439 p = select_bad_process(&points, mem);
440 if (PTR_ERR(p) == -1UL)
441 goto out;
443 if (!p)
444 p = current;
446 if (oom_kill_process(p, gfp_mask, 0, points, mem,
447 "Memory cgroup out of memory"))
448 goto retry;
449 out:
450 read_unlock(&tasklist_lock);
452 #endif
454 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
456 int register_oom_notifier(struct notifier_block *nb)
458 return blocking_notifier_chain_register(&oom_notify_list, nb);
460 EXPORT_SYMBOL_GPL(register_oom_notifier);
462 int unregister_oom_notifier(struct notifier_block *nb)
464 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
466 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
469 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
470 * if a parallel OOM killing is already taking place that includes a zone in
471 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
473 int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask)
475 struct zoneref *z;
476 struct zone *zone;
477 int ret = 1;
479 spin_lock(&zone_scan_lock);
480 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
481 if (zone_is_oom_locked(zone)) {
482 ret = 0;
483 goto out;
487 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
489 * Lock each zone in the zonelist under zone_scan_lock so a
490 * parallel invocation of try_set_zone_oom() doesn't succeed
491 * when it shouldn't.
493 zone_set_flag(zone, ZONE_OOM_LOCKED);
496 out:
497 spin_unlock(&zone_scan_lock);
498 return ret;
502 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
503 * allocation attempts with zonelists containing them may now recall the OOM
504 * killer, if necessary.
506 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
508 struct zoneref *z;
509 struct zone *zone;
511 spin_lock(&zone_scan_lock);
512 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
513 zone_clear_flag(zone, ZONE_OOM_LOCKED);
515 spin_unlock(&zone_scan_lock);
519 * Must be called with tasklist_lock held for read.
521 static void __out_of_memory(gfp_t gfp_mask, int order)
523 struct task_struct *p;
524 unsigned long points;
526 if (sysctl_oom_kill_allocating_task)
527 if (!oom_kill_process(current, gfp_mask, order, 0, NULL,
528 "Out of memory (oom_kill_allocating_task)"))
529 return;
530 retry:
532 * Rambo mode: Shoot down a process and hope it solves whatever
533 * issues we may have.
535 p = select_bad_process(&points, NULL);
537 if (PTR_ERR(p) == -1UL)
538 return;
540 /* Found nothing?!?! Either we hang forever, or we panic. */
541 if (!p) {
542 read_unlock(&tasklist_lock);
543 panic("Out of memory and no killable processes...\n");
546 if (oom_kill_process(p, gfp_mask, order, points, NULL,
547 "Out of memory"))
548 goto retry;
552 * pagefault handler calls into here because it is out of memory but
553 * doesn't know exactly how or why.
555 void pagefault_out_of_memory(void)
557 unsigned long freed = 0;
559 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
560 if (freed > 0)
561 /* Got some memory back in the last second. */
562 return;
565 * If this is from memcg, oom-killer is already invoked.
566 * and not worth to go system-wide-oom.
568 if (mem_cgroup_oom_called(current))
569 goto rest_and_return;
571 if (sysctl_panic_on_oom)
572 panic("out of memory from page fault. panic_on_oom is selected.\n");
574 read_lock(&tasklist_lock);
575 __out_of_memory(0, 0); /* unknown gfp_mask and order */
576 read_unlock(&tasklist_lock);
579 * Give "p" a good chance of killing itself before we
580 * retry to allocate memory.
582 rest_and_return:
583 if (!test_thread_flag(TIF_MEMDIE))
584 schedule_timeout_uninterruptible(1);
588 * out_of_memory - kill the "best" process when we run out of memory
589 * @zonelist: zonelist pointer
590 * @gfp_mask: memory allocation flags
591 * @order: amount of memory being requested as a power of 2
593 * If we run out of memory, we have the choice between either
594 * killing a random task (bad), letting the system crash (worse)
595 * OR try to be smart about which process to kill. Note that we
596 * don't have to be perfect here, we just have to be good.
598 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
600 unsigned long freed = 0;
601 enum oom_constraint constraint;
603 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
604 if (freed > 0)
605 /* Got some memory back in the last second. */
606 return;
608 if (sysctl_panic_on_oom == 2)
609 panic("out of memory. Compulsory panic_on_oom is selected.\n");
612 * Check if there were limitations on the allocation (only relevant for
613 * NUMA) that may require different handling.
615 constraint = constrained_alloc(zonelist, gfp_mask);
616 read_lock(&tasklist_lock);
618 switch (constraint) {
619 case CONSTRAINT_MEMORY_POLICY:
620 oom_kill_process(current, gfp_mask, order, 0, NULL,
621 "No available memory (MPOL_BIND)");
622 break;
624 case CONSTRAINT_NONE:
625 if (sysctl_panic_on_oom)
626 panic("out of memory. panic_on_oom is selected\n");
627 /* Fall-through */
628 case CONSTRAINT_CPUSET:
629 __out_of_memory(gfp_mask, order);
630 break;
633 read_unlock(&tasklist_lock);
636 * Give "p" a good chance of killing itself before we
637 * retry to allocate memory unless "p" is current
639 if (!test_thread_flag(TIF_MEMDIE))
640 schedule_timeout_uninterruptible(1);