Merge branch 'upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/linville...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv4 / tcp_output.c
blob743016baa04867473a022008367aa05a61bac284
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Changes: Pedro Roque : Retransmit queue handled by TCP.
25 * : Fragmentation on mtu decrease
26 * : Segment collapse on retransmit
27 * : AF independence
29 * Linus Torvalds : send_delayed_ack
30 * David S. Miller : Charge memory using the right skb
31 * during syn/ack processing.
32 * David S. Miller : Output engine completely rewritten.
33 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
34 * Cacophonix Gaul : draft-minshall-nagle-01
35 * J Hadi Salim : ECN support
39 #include <net/tcp.h>
41 #include <linux/compiler.h>
42 #include <linux/module.h>
43 #include <linux/smp_lock.h>
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse = 1;
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
51 int sysctl_tcp_workaround_signed_windows = 0;
53 /* This limits the percentage of the congestion window which we
54 * will allow a single TSO frame to consume. Building TSO frames
55 * which are too large can cause TCP streams to be bursty.
57 int sysctl_tcp_tso_win_divisor = 3;
59 int sysctl_tcp_mtu_probing = 0;
60 int sysctl_tcp_base_mss = 512;
62 static void update_send_head(struct sock *sk, struct tcp_sock *tp,
63 struct sk_buff *skb)
65 sk->sk_send_head = skb->next;
66 if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue)
67 sk->sk_send_head = NULL;
68 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
69 tcp_packets_out_inc(sk, tp, skb);
72 /* SND.NXT, if window was not shrunk.
73 * If window has been shrunk, what should we make? It is not clear at all.
74 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
75 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
76 * invalid. OK, let's make this for now:
78 static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp)
80 if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt))
81 return tp->snd_nxt;
82 else
83 return tp->snd_una+tp->snd_wnd;
86 /* Calculate mss to advertise in SYN segment.
87 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
89 * 1. It is independent of path mtu.
90 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
91 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
92 * attached devices, because some buggy hosts are confused by
93 * large MSS.
94 * 4. We do not make 3, we advertise MSS, calculated from first
95 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
96 * This may be overridden via information stored in routing table.
97 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
98 * probably even Jumbo".
100 static __u16 tcp_advertise_mss(struct sock *sk)
102 struct tcp_sock *tp = tcp_sk(sk);
103 struct dst_entry *dst = __sk_dst_get(sk);
104 int mss = tp->advmss;
106 if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) {
107 mss = dst_metric(dst, RTAX_ADVMSS);
108 tp->advmss = mss;
111 return (__u16)mss;
114 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
115 * This is the first part of cwnd validation mechanism. */
116 static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst)
118 struct tcp_sock *tp = tcp_sk(sk);
119 s32 delta = tcp_time_stamp - tp->lsndtime;
120 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
121 u32 cwnd = tp->snd_cwnd;
123 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
125 tp->snd_ssthresh = tcp_current_ssthresh(sk);
126 restart_cwnd = min(restart_cwnd, cwnd);
128 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
129 cwnd >>= 1;
130 tp->snd_cwnd = max(cwnd, restart_cwnd);
131 tp->snd_cwnd_stamp = tcp_time_stamp;
132 tp->snd_cwnd_used = 0;
135 static void tcp_event_data_sent(struct tcp_sock *tp,
136 struct sk_buff *skb, struct sock *sk)
138 struct inet_connection_sock *icsk = inet_csk(sk);
139 const u32 now = tcp_time_stamp;
141 if (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)
142 tcp_cwnd_restart(sk, __sk_dst_get(sk));
144 tp->lsndtime = now;
146 /* If it is a reply for ato after last received
147 * packet, enter pingpong mode.
149 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
150 icsk->icsk_ack.pingpong = 1;
153 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
155 tcp_dec_quickack_mode(sk, pkts);
156 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
159 /* Determine a window scaling and initial window to offer.
160 * Based on the assumption that the given amount of space
161 * will be offered. Store the results in the tp structure.
162 * NOTE: for smooth operation initial space offering should
163 * be a multiple of mss if possible. We assume here that mss >= 1.
164 * This MUST be enforced by all callers.
166 void tcp_select_initial_window(int __space, __u32 mss,
167 __u32 *rcv_wnd, __u32 *window_clamp,
168 int wscale_ok, __u8 *rcv_wscale)
170 unsigned int space = (__space < 0 ? 0 : __space);
172 /* If no clamp set the clamp to the max possible scaled window */
173 if (*window_clamp == 0)
174 (*window_clamp) = (65535 << 14);
175 space = min(*window_clamp, space);
177 /* Quantize space offering to a multiple of mss if possible. */
178 if (space > mss)
179 space = (space / mss) * mss;
181 /* NOTE: offering an initial window larger than 32767
182 * will break some buggy TCP stacks. If the admin tells us
183 * it is likely we could be speaking with such a buggy stack
184 * we will truncate our initial window offering to 32K-1
185 * unless the remote has sent us a window scaling option,
186 * which we interpret as a sign the remote TCP is not
187 * misinterpreting the window field as a signed quantity.
189 if (sysctl_tcp_workaround_signed_windows)
190 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
191 else
192 (*rcv_wnd) = space;
194 (*rcv_wscale) = 0;
195 if (wscale_ok) {
196 /* Set window scaling on max possible window
197 * See RFC1323 for an explanation of the limit to 14
199 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
200 while (space > 65535 && (*rcv_wscale) < 14) {
201 space >>= 1;
202 (*rcv_wscale)++;
206 /* Set initial window to value enough for senders,
207 * following RFC2414. Senders, not following this RFC,
208 * will be satisfied with 2.
210 if (mss > (1<<*rcv_wscale)) {
211 int init_cwnd = 4;
212 if (mss > 1460*3)
213 init_cwnd = 2;
214 else if (mss > 1460)
215 init_cwnd = 3;
216 if (*rcv_wnd > init_cwnd*mss)
217 *rcv_wnd = init_cwnd*mss;
220 /* Set the clamp no higher than max representable value */
221 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
224 /* Chose a new window to advertise, update state in tcp_sock for the
225 * socket, and return result with RFC1323 scaling applied. The return
226 * value can be stuffed directly into th->window for an outgoing
227 * frame.
229 static u16 tcp_select_window(struct sock *sk)
231 struct tcp_sock *tp = tcp_sk(sk);
232 u32 cur_win = tcp_receive_window(tp);
233 u32 new_win = __tcp_select_window(sk);
235 /* Never shrink the offered window */
236 if(new_win < cur_win) {
237 /* Danger Will Robinson!
238 * Don't update rcv_wup/rcv_wnd here or else
239 * we will not be able to advertise a zero
240 * window in time. --DaveM
242 * Relax Will Robinson.
244 new_win = cur_win;
246 tp->rcv_wnd = new_win;
247 tp->rcv_wup = tp->rcv_nxt;
249 /* Make sure we do not exceed the maximum possible
250 * scaled window.
252 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
253 new_win = min(new_win, MAX_TCP_WINDOW);
254 else
255 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
257 /* RFC1323 scaling applied */
258 new_win >>= tp->rx_opt.rcv_wscale;
260 /* If we advertise zero window, disable fast path. */
261 if (new_win == 0)
262 tp->pred_flags = 0;
264 return new_win;
267 static void tcp_build_and_update_options(__u32 *ptr, struct tcp_sock *tp,
268 __u32 tstamp)
270 if (tp->rx_opt.tstamp_ok) {
271 *ptr++ = __constant_htonl((TCPOPT_NOP << 24) |
272 (TCPOPT_NOP << 16) |
273 (TCPOPT_TIMESTAMP << 8) |
274 TCPOLEN_TIMESTAMP);
275 *ptr++ = htonl(tstamp);
276 *ptr++ = htonl(tp->rx_opt.ts_recent);
278 if (tp->rx_opt.eff_sacks) {
279 struct tcp_sack_block *sp = tp->rx_opt.dsack ? tp->duplicate_sack : tp->selective_acks;
280 int this_sack;
282 *ptr++ = htonl((TCPOPT_NOP << 24) |
283 (TCPOPT_NOP << 16) |
284 (TCPOPT_SACK << 8) |
285 (TCPOLEN_SACK_BASE + (tp->rx_opt.eff_sacks *
286 TCPOLEN_SACK_PERBLOCK)));
287 for(this_sack = 0; this_sack < tp->rx_opt.eff_sacks; this_sack++) {
288 *ptr++ = htonl(sp[this_sack].start_seq);
289 *ptr++ = htonl(sp[this_sack].end_seq);
291 if (tp->rx_opt.dsack) {
292 tp->rx_opt.dsack = 0;
293 tp->rx_opt.eff_sacks--;
298 /* Construct a tcp options header for a SYN or SYN_ACK packet.
299 * If this is every changed make sure to change the definition of
300 * MAX_SYN_SIZE to match the new maximum number of options that you
301 * can generate.
303 static void tcp_syn_build_options(__u32 *ptr, int mss, int ts, int sack,
304 int offer_wscale, int wscale, __u32 tstamp,
305 __u32 ts_recent)
307 /* We always get an MSS option.
308 * The option bytes which will be seen in normal data
309 * packets should timestamps be used, must be in the MSS
310 * advertised. But we subtract them from tp->mss_cache so
311 * that calculations in tcp_sendmsg are simpler etc.
312 * So account for this fact here if necessary. If we
313 * don't do this correctly, as a receiver we won't
314 * recognize data packets as being full sized when we
315 * should, and thus we won't abide by the delayed ACK
316 * rules correctly.
317 * SACKs don't matter, we never delay an ACK when we
318 * have any of those going out.
320 *ptr++ = htonl((TCPOPT_MSS << 24) | (TCPOLEN_MSS << 16) | mss);
321 if (ts) {
322 if(sack)
323 *ptr++ = __constant_htonl((TCPOPT_SACK_PERM << 24) | (TCPOLEN_SACK_PERM << 16) |
324 (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP);
325 else
326 *ptr++ = __constant_htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
327 (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP);
328 *ptr++ = htonl(tstamp); /* TSVAL */
329 *ptr++ = htonl(ts_recent); /* TSECR */
330 } else if(sack)
331 *ptr++ = __constant_htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
332 (TCPOPT_SACK_PERM << 8) | TCPOLEN_SACK_PERM);
333 if (offer_wscale)
334 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_WINDOW << 16) | (TCPOLEN_WINDOW << 8) | (wscale));
337 /* This routine actually transmits TCP packets queued in by
338 * tcp_do_sendmsg(). This is used by both the initial
339 * transmission and possible later retransmissions.
340 * All SKB's seen here are completely headerless. It is our
341 * job to build the TCP header, and pass the packet down to
342 * IP so it can do the same plus pass the packet off to the
343 * device.
345 * We are working here with either a clone of the original
346 * SKB, or a fresh unique copy made by the retransmit engine.
348 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, gfp_t gfp_mask)
350 const struct inet_connection_sock *icsk = inet_csk(sk);
351 struct inet_sock *inet;
352 struct tcp_sock *tp;
353 struct tcp_skb_cb *tcb;
354 int tcp_header_size;
355 struct tcphdr *th;
356 int sysctl_flags;
357 int err;
359 BUG_ON(!skb || !tcp_skb_pcount(skb));
361 /* If congestion control is doing timestamping, we must
362 * take such a timestamp before we potentially clone/copy.
364 if (icsk->icsk_ca_ops->rtt_sample)
365 __net_timestamp(skb);
367 if (likely(clone_it)) {
368 if (unlikely(skb_cloned(skb)))
369 skb = pskb_copy(skb, gfp_mask);
370 else
371 skb = skb_clone(skb, gfp_mask);
372 if (unlikely(!skb))
373 return -ENOBUFS;
376 inet = inet_sk(sk);
377 tp = tcp_sk(sk);
378 tcb = TCP_SKB_CB(skb);
379 tcp_header_size = tp->tcp_header_len;
381 #define SYSCTL_FLAG_TSTAMPS 0x1
382 #define SYSCTL_FLAG_WSCALE 0x2
383 #define SYSCTL_FLAG_SACK 0x4
385 sysctl_flags = 0;
386 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) {
387 tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS;
388 if(sysctl_tcp_timestamps) {
389 tcp_header_size += TCPOLEN_TSTAMP_ALIGNED;
390 sysctl_flags |= SYSCTL_FLAG_TSTAMPS;
392 if (sysctl_tcp_window_scaling) {
393 tcp_header_size += TCPOLEN_WSCALE_ALIGNED;
394 sysctl_flags |= SYSCTL_FLAG_WSCALE;
396 if (sysctl_tcp_sack) {
397 sysctl_flags |= SYSCTL_FLAG_SACK;
398 if (!(sysctl_flags & SYSCTL_FLAG_TSTAMPS))
399 tcp_header_size += TCPOLEN_SACKPERM_ALIGNED;
401 } else if (unlikely(tp->rx_opt.eff_sacks)) {
402 /* A SACK is 2 pad bytes, a 2 byte header, plus
403 * 2 32-bit sequence numbers for each SACK block.
405 tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED +
406 (tp->rx_opt.eff_sacks *
407 TCPOLEN_SACK_PERBLOCK));
410 if (tcp_packets_in_flight(tp) == 0)
411 tcp_ca_event(sk, CA_EVENT_TX_START);
413 th = (struct tcphdr *) skb_push(skb, tcp_header_size);
414 skb->h.th = th;
415 skb_set_owner_w(skb, sk);
417 /* Build TCP header and checksum it. */
418 th->source = inet->sport;
419 th->dest = inet->dport;
420 th->seq = htonl(tcb->seq);
421 th->ack_seq = htonl(tp->rcv_nxt);
422 *(((__u16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
423 tcb->flags);
425 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) {
426 /* RFC1323: The window in SYN & SYN/ACK segments
427 * is never scaled.
429 th->window = htons(tp->rcv_wnd);
430 } else {
431 th->window = htons(tcp_select_window(sk));
433 th->check = 0;
434 th->urg_ptr = 0;
436 if (unlikely(tp->urg_mode &&
437 between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF))) {
438 th->urg_ptr = htons(tp->snd_up-tcb->seq);
439 th->urg = 1;
442 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) {
443 tcp_syn_build_options((__u32 *)(th + 1),
444 tcp_advertise_mss(sk),
445 (sysctl_flags & SYSCTL_FLAG_TSTAMPS),
446 (sysctl_flags & SYSCTL_FLAG_SACK),
447 (sysctl_flags & SYSCTL_FLAG_WSCALE),
448 tp->rx_opt.rcv_wscale,
449 tcb->when,
450 tp->rx_opt.ts_recent);
451 } else {
452 tcp_build_and_update_options((__u32 *)(th + 1),
453 tp, tcb->when);
454 TCP_ECN_send(sk, tp, skb, tcp_header_size);
457 icsk->icsk_af_ops->send_check(sk, skb->len, skb);
459 if (likely(tcb->flags & TCPCB_FLAG_ACK))
460 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
462 if (skb->len != tcp_header_size)
463 tcp_event_data_sent(tp, skb, sk);
465 TCP_INC_STATS(TCP_MIB_OUTSEGS);
467 err = icsk->icsk_af_ops->queue_xmit(skb, 0);
468 if (likely(err <= 0))
469 return err;
471 tcp_enter_cwr(sk);
473 /* NET_XMIT_CN is special. It does not guarantee,
474 * that this packet is lost. It tells that device
475 * is about to start to drop packets or already
476 * drops some packets of the same priority and
477 * invokes us to send less aggressively.
479 return err == NET_XMIT_CN ? 0 : err;
481 #undef SYSCTL_FLAG_TSTAMPS
482 #undef SYSCTL_FLAG_WSCALE
483 #undef SYSCTL_FLAG_SACK
487 /* This routine just queue's the buffer
489 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
490 * otherwise socket can stall.
492 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
494 struct tcp_sock *tp = tcp_sk(sk);
496 /* Advance write_seq and place onto the write_queue. */
497 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
498 skb_header_release(skb);
499 __skb_queue_tail(&sk->sk_write_queue, skb);
500 sk_charge_skb(sk, skb);
502 /* Queue it, remembering where we must start sending. */
503 if (sk->sk_send_head == NULL)
504 sk->sk_send_head = skb;
507 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now)
509 if (skb->len <= mss_now ||
510 !(sk->sk_route_caps & NETIF_F_TSO)) {
511 /* Avoid the costly divide in the normal
512 * non-TSO case.
514 skb_shinfo(skb)->tso_segs = 1;
515 skb_shinfo(skb)->tso_size = 0;
516 } else {
517 unsigned int factor;
519 factor = skb->len + (mss_now - 1);
520 factor /= mss_now;
521 skb_shinfo(skb)->tso_segs = factor;
522 skb_shinfo(skb)->tso_size = mss_now;
526 /* Function to create two new TCP segments. Shrinks the given segment
527 * to the specified size and appends a new segment with the rest of the
528 * packet to the list. This won't be called frequently, I hope.
529 * Remember, these are still headerless SKBs at this point.
531 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, unsigned int mss_now)
533 struct tcp_sock *tp = tcp_sk(sk);
534 struct sk_buff *buff;
535 int nsize, old_factor;
536 int nlen;
537 u16 flags;
539 BUG_ON(len > skb->len);
541 clear_all_retrans_hints(tp);
542 nsize = skb_headlen(skb) - len;
543 if (nsize < 0)
544 nsize = 0;
546 if (skb_cloned(skb) &&
547 skb_is_nonlinear(skb) &&
548 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
549 return -ENOMEM;
551 /* Get a new skb... force flag on. */
552 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
553 if (buff == NULL)
554 return -ENOMEM; /* We'll just try again later. */
556 sk_charge_skb(sk, buff);
557 nlen = skb->len - len - nsize;
558 buff->truesize += nlen;
559 skb->truesize -= nlen;
561 /* Correct the sequence numbers. */
562 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
563 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
564 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
566 /* PSH and FIN should only be set in the second packet. */
567 flags = TCP_SKB_CB(skb)->flags;
568 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
569 TCP_SKB_CB(buff)->flags = flags;
570 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
571 TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL;
573 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) {
574 /* Copy and checksum data tail into the new buffer. */
575 buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize),
576 nsize, 0);
578 skb_trim(skb, len);
580 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
581 } else {
582 skb->ip_summed = CHECKSUM_HW;
583 skb_split(skb, buff, len);
586 buff->ip_summed = skb->ip_summed;
588 /* Looks stupid, but our code really uses when of
589 * skbs, which it never sent before. --ANK
591 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
592 buff->tstamp = skb->tstamp;
594 old_factor = tcp_skb_pcount(skb);
596 /* Fix up tso_factor for both original and new SKB. */
597 tcp_set_skb_tso_segs(sk, skb, mss_now);
598 tcp_set_skb_tso_segs(sk, buff, mss_now);
600 /* If this packet has been sent out already, we must
601 * adjust the various packet counters.
603 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
604 int diff = old_factor - tcp_skb_pcount(skb) -
605 tcp_skb_pcount(buff);
607 tp->packets_out -= diff;
609 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
610 tp->sacked_out -= diff;
611 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
612 tp->retrans_out -= diff;
614 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
615 tp->lost_out -= diff;
616 tp->left_out -= diff;
619 if (diff > 0) {
620 /* Adjust Reno SACK estimate. */
621 if (!tp->rx_opt.sack_ok) {
622 tp->sacked_out -= diff;
623 if ((int)tp->sacked_out < 0)
624 tp->sacked_out = 0;
625 tcp_sync_left_out(tp);
628 tp->fackets_out -= diff;
629 if ((int)tp->fackets_out < 0)
630 tp->fackets_out = 0;
634 /* Link BUFF into the send queue. */
635 skb_header_release(buff);
636 __skb_append(skb, buff, &sk->sk_write_queue);
638 return 0;
641 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
642 * eventually). The difference is that pulled data not copied, but
643 * immediately discarded.
645 static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len)
647 int i, k, eat;
649 eat = len;
650 k = 0;
651 for (i=0; i<skb_shinfo(skb)->nr_frags; i++) {
652 if (skb_shinfo(skb)->frags[i].size <= eat) {
653 put_page(skb_shinfo(skb)->frags[i].page);
654 eat -= skb_shinfo(skb)->frags[i].size;
655 } else {
656 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
657 if (eat) {
658 skb_shinfo(skb)->frags[k].page_offset += eat;
659 skb_shinfo(skb)->frags[k].size -= eat;
660 eat = 0;
662 k++;
665 skb_shinfo(skb)->nr_frags = k;
667 skb->tail = skb->data;
668 skb->data_len -= len;
669 skb->len = skb->data_len;
670 return skb->tail;
673 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
675 if (skb_cloned(skb) &&
676 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
677 return -ENOMEM;
679 if (len <= skb_headlen(skb)) {
680 __skb_pull(skb, len);
681 } else {
682 if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL)
683 return -ENOMEM;
686 TCP_SKB_CB(skb)->seq += len;
687 skb->ip_summed = CHECKSUM_HW;
689 skb->truesize -= len;
690 sk->sk_wmem_queued -= len;
691 sk->sk_forward_alloc += len;
692 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
694 /* Any change of skb->len requires recalculation of tso
695 * factor and mss.
697 if (tcp_skb_pcount(skb) > 1)
698 tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk, 1));
700 return 0;
703 /* Not accounting for SACKs here. */
704 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
706 struct tcp_sock *tp = tcp_sk(sk);
707 struct inet_connection_sock *icsk = inet_csk(sk);
708 int mss_now;
710 /* Calculate base mss without TCP options:
711 It is MMS_S - sizeof(tcphdr) of rfc1122
713 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
715 /* Clamp it (mss_clamp does not include tcp options) */
716 if (mss_now > tp->rx_opt.mss_clamp)
717 mss_now = tp->rx_opt.mss_clamp;
719 /* Now subtract optional transport overhead */
720 mss_now -= icsk->icsk_ext_hdr_len;
722 /* Then reserve room for full set of TCP options and 8 bytes of data */
723 if (mss_now < 48)
724 mss_now = 48;
726 /* Now subtract TCP options size, not including SACKs */
727 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
729 return mss_now;
732 /* Inverse of above */
733 int tcp_mss_to_mtu(struct sock *sk, int mss)
735 struct tcp_sock *tp = tcp_sk(sk);
736 struct inet_connection_sock *icsk = inet_csk(sk);
737 int mtu;
739 mtu = mss +
740 tp->tcp_header_len +
741 icsk->icsk_ext_hdr_len +
742 icsk->icsk_af_ops->net_header_len;
744 return mtu;
747 void tcp_mtup_init(struct sock *sk)
749 struct tcp_sock *tp = tcp_sk(sk);
750 struct inet_connection_sock *icsk = inet_csk(sk);
752 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
753 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
754 icsk->icsk_af_ops->net_header_len;
755 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
756 icsk->icsk_mtup.probe_size = 0;
759 /* This function synchronize snd mss to current pmtu/exthdr set.
761 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
762 for TCP options, but includes only bare TCP header.
764 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
765 It is minimum of user_mss and mss received with SYN.
766 It also does not include TCP options.
768 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
770 tp->mss_cache is current effective sending mss, including
771 all tcp options except for SACKs. It is evaluated,
772 taking into account current pmtu, but never exceeds
773 tp->rx_opt.mss_clamp.
775 NOTE1. rfc1122 clearly states that advertised MSS
776 DOES NOT include either tcp or ip options.
778 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
779 are READ ONLY outside this function. --ANK (980731)
782 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
784 struct tcp_sock *tp = tcp_sk(sk);
785 struct inet_connection_sock *icsk = inet_csk(sk);
786 int mss_now;
788 if (icsk->icsk_mtup.search_high > pmtu)
789 icsk->icsk_mtup.search_high = pmtu;
791 mss_now = tcp_mtu_to_mss(sk, pmtu);
793 /* Bound mss with half of window */
794 if (tp->max_window && mss_now > (tp->max_window>>1))
795 mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len);
797 /* And store cached results */
798 icsk->icsk_pmtu_cookie = pmtu;
799 if (icsk->icsk_mtup.enabled)
800 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
801 tp->mss_cache = mss_now;
803 return mss_now;
806 /* Compute the current effective MSS, taking SACKs and IP options,
807 * and even PMTU discovery events into account.
809 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up
810 * cannot be large. However, taking into account rare use of URG, this
811 * is not a big flaw.
813 unsigned int tcp_current_mss(struct sock *sk, int large_allowed)
815 struct tcp_sock *tp = tcp_sk(sk);
816 struct dst_entry *dst = __sk_dst_get(sk);
817 u32 mss_now;
818 u16 xmit_size_goal;
819 int doing_tso = 0;
821 mss_now = tp->mss_cache;
823 if (large_allowed &&
824 (sk->sk_route_caps & NETIF_F_TSO) &&
825 !tp->urg_mode)
826 doing_tso = 1;
828 if (dst) {
829 u32 mtu = dst_mtu(dst);
830 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
831 mss_now = tcp_sync_mss(sk, mtu);
834 if (tp->rx_opt.eff_sacks)
835 mss_now -= (TCPOLEN_SACK_BASE_ALIGNED +
836 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
838 xmit_size_goal = mss_now;
840 if (doing_tso) {
841 xmit_size_goal = (65535 -
842 inet_csk(sk)->icsk_af_ops->net_header_len -
843 inet_csk(sk)->icsk_ext_hdr_len -
844 tp->tcp_header_len);
846 if (tp->max_window &&
847 (xmit_size_goal > (tp->max_window >> 1)))
848 xmit_size_goal = max((tp->max_window >> 1),
849 68U - tp->tcp_header_len);
851 xmit_size_goal -= (xmit_size_goal % mss_now);
853 tp->xmit_size_goal = xmit_size_goal;
855 return mss_now;
858 /* Congestion window validation. (RFC2861) */
860 static void tcp_cwnd_validate(struct sock *sk, struct tcp_sock *tp)
862 __u32 packets_out = tp->packets_out;
864 if (packets_out >= tp->snd_cwnd) {
865 /* Network is feed fully. */
866 tp->snd_cwnd_used = 0;
867 tp->snd_cwnd_stamp = tcp_time_stamp;
868 } else {
869 /* Network starves. */
870 if (tp->packets_out > tp->snd_cwnd_used)
871 tp->snd_cwnd_used = tp->packets_out;
873 if ((s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
874 tcp_cwnd_application_limited(sk);
878 static unsigned int tcp_window_allows(struct tcp_sock *tp, struct sk_buff *skb, unsigned int mss_now, unsigned int cwnd)
880 u32 window, cwnd_len;
882 window = (tp->snd_una + tp->snd_wnd - TCP_SKB_CB(skb)->seq);
883 cwnd_len = mss_now * cwnd;
884 return min(window, cwnd_len);
887 /* Can at least one segment of SKB be sent right now, according to the
888 * congestion window rules? If so, return how many segments are allowed.
890 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp, struct sk_buff *skb)
892 u32 in_flight, cwnd;
894 /* Don't be strict about the congestion window for the final FIN. */
895 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
896 return 1;
898 in_flight = tcp_packets_in_flight(tp);
899 cwnd = tp->snd_cwnd;
900 if (in_flight < cwnd)
901 return (cwnd - in_flight);
903 return 0;
906 /* This must be invoked the first time we consider transmitting
907 * SKB onto the wire.
909 static int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now)
911 int tso_segs = tcp_skb_pcount(skb);
913 if (!tso_segs ||
914 (tso_segs > 1 &&
915 skb_shinfo(skb)->tso_size != mss_now)) {
916 tcp_set_skb_tso_segs(sk, skb, mss_now);
917 tso_segs = tcp_skb_pcount(skb);
919 return tso_segs;
922 static inline int tcp_minshall_check(const struct tcp_sock *tp)
924 return after(tp->snd_sml,tp->snd_una) &&
925 !after(tp->snd_sml, tp->snd_nxt);
928 /* Return 0, if packet can be sent now without violation Nagle's rules:
929 * 1. It is full sized.
930 * 2. Or it contains FIN. (already checked by caller)
931 * 3. Or TCP_NODELAY was set.
932 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
933 * With Minshall's modification: all sent small packets are ACKed.
936 static inline int tcp_nagle_check(const struct tcp_sock *tp,
937 const struct sk_buff *skb,
938 unsigned mss_now, int nonagle)
940 return (skb->len < mss_now &&
941 ((nonagle&TCP_NAGLE_CORK) ||
942 (!nonagle &&
943 tp->packets_out &&
944 tcp_minshall_check(tp))));
947 /* Return non-zero if the Nagle test allows this packet to be
948 * sent now.
950 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb,
951 unsigned int cur_mss, int nonagle)
953 /* Nagle rule does not apply to frames, which sit in the middle of the
954 * write_queue (they have no chances to get new data).
956 * This is implemented in the callers, where they modify the 'nonagle'
957 * argument based upon the location of SKB in the send queue.
959 if (nonagle & TCP_NAGLE_PUSH)
960 return 1;
962 /* Don't use the nagle rule for urgent data (or for the final FIN). */
963 if (tp->urg_mode ||
964 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN))
965 return 1;
967 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
968 return 1;
970 return 0;
973 /* Does at least the first segment of SKB fit into the send window? */
974 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb, unsigned int cur_mss)
976 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
978 if (skb->len > cur_mss)
979 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
981 return !after(end_seq, tp->snd_una + tp->snd_wnd);
984 /* This checks if the data bearing packet SKB (usually sk->sk_send_head)
985 * should be put on the wire right now. If so, it returns the number of
986 * packets allowed by the congestion window.
988 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb,
989 unsigned int cur_mss, int nonagle)
991 struct tcp_sock *tp = tcp_sk(sk);
992 unsigned int cwnd_quota;
994 tcp_init_tso_segs(sk, skb, cur_mss);
996 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
997 return 0;
999 cwnd_quota = tcp_cwnd_test(tp, skb);
1000 if (cwnd_quota &&
1001 !tcp_snd_wnd_test(tp, skb, cur_mss))
1002 cwnd_quota = 0;
1004 return cwnd_quota;
1007 static inline int tcp_skb_is_last(const struct sock *sk,
1008 const struct sk_buff *skb)
1010 return skb->next == (struct sk_buff *)&sk->sk_write_queue;
1013 int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp)
1015 struct sk_buff *skb = sk->sk_send_head;
1017 return (skb &&
1018 tcp_snd_test(sk, skb, tcp_current_mss(sk, 1),
1019 (tcp_skb_is_last(sk, skb) ?
1020 TCP_NAGLE_PUSH :
1021 tp->nonagle)));
1024 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1025 * which is put after SKB on the list. It is very much like
1026 * tcp_fragment() except that it may make several kinds of assumptions
1027 * in order to speed up the splitting operation. In particular, we
1028 * know that all the data is in scatter-gather pages, and that the
1029 * packet has never been sent out before (and thus is not cloned).
1031 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, unsigned int mss_now)
1033 struct sk_buff *buff;
1034 int nlen = skb->len - len;
1035 u16 flags;
1037 /* All of a TSO frame must be composed of paged data. */
1038 if (skb->len != skb->data_len)
1039 return tcp_fragment(sk, skb, len, mss_now);
1041 buff = sk_stream_alloc_pskb(sk, 0, 0, GFP_ATOMIC);
1042 if (unlikely(buff == NULL))
1043 return -ENOMEM;
1045 sk_charge_skb(sk, buff);
1046 buff->truesize += nlen;
1047 skb->truesize -= nlen;
1049 /* Correct the sequence numbers. */
1050 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1051 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1052 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1054 /* PSH and FIN should only be set in the second packet. */
1055 flags = TCP_SKB_CB(skb)->flags;
1056 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
1057 TCP_SKB_CB(buff)->flags = flags;
1059 /* This packet was never sent out yet, so no SACK bits. */
1060 TCP_SKB_CB(buff)->sacked = 0;
1062 buff->ip_summed = skb->ip_summed = CHECKSUM_HW;
1063 skb_split(skb, buff, len);
1065 /* Fix up tso_factor for both original and new SKB. */
1066 tcp_set_skb_tso_segs(sk, skb, mss_now);
1067 tcp_set_skb_tso_segs(sk, buff, mss_now);
1069 /* Link BUFF into the send queue. */
1070 skb_header_release(buff);
1071 __skb_append(skb, buff, &sk->sk_write_queue);
1073 return 0;
1076 /* Try to defer sending, if possible, in order to minimize the amount
1077 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1079 * This algorithm is from John Heffner.
1081 static int tcp_tso_should_defer(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
1083 const struct inet_connection_sock *icsk = inet_csk(sk);
1084 u32 send_win, cong_win, limit, in_flight;
1086 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
1087 return 0;
1089 if (icsk->icsk_ca_state != TCP_CA_Open)
1090 return 0;
1092 in_flight = tcp_packets_in_flight(tp);
1094 BUG_ON(tcp_skb_pcount(skb) <= 1 ||
1095 (tp->snd_cwnd <= in_flight));
1097 send_win = (tp->snd_una + tp->snd_wnd) - TCP_SKB_CB(skb)->seq;
1099 /* From in_flight test above, we know that cwnd > in_flight. */
1100 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1102 limit = min(send_win, cong_win);
1104 /* If a full-sized TSO skb can be sent, do it. */
1105 if (limit >= 65536)
1106 return 0;
1108 if (sysctl_tcp_tso_win_divisor) {
1109 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1111 /* If at least some fraction of a window is available,
1112 * just use it.
1114 chunk /= sysctl_tcp_tso_win_divisor;
1115 if (limit >= chunk)
1116 return 0;
1117 } else {
1118 /* Different approach, try not to defer past a single
1119 * ACK. Receiver should ACK every other full sized
1120 * frame, so if we have space for more than 3 frames
1121 * then send now.
1123 if (limit > tcp_max_burst(tp) * tp->mss_cache)
1124 return 0;
1127 /* Ok, it looks like it is advisable to defer. */
1128 return 1;
1131 /* Create a new MTU probe if we are ready.
1132 * Returns 0 if we should wait to probe (no cwnd available),
1133 * 1 if a probe was sent,
1134 * -1 otherwise */
1135 static int tcp_mtu_probe(struct sock *sk)
1137 struct tcp_sock *tp = tcp_sk(sk);
1138 struct inet_connection_sock *icsk = inet_csk(sk);
1139 struct sk_buff *skb, *nskb, *next;
1140 int len;
1141 int probe_size;
1142 unsigned int pif;
1143 int copy;
1144 int mss_now;
1146 /* Not currently probing/verifying,
1147 * not in recovery,
1148 * have enough cwnd, and
1149 * not SACKing (the variable headers throw things off) */
1150 if (!icsk->icsk_mtup.enabled ||
1151 icsk->icsk_mtup.probe_size ||
1152 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1153 tp->snd_cwnd < 11 ||
1154 tp->rx_opt.eff_sacks)
1155 return -1;
1157 /* Very simple search strategy: just double the MSS. */
1158 mss_now = tcp_current_mss(sk, 0);
1159 probe_size = 2*tp->mss_cache;
1160 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1161 /* TODO: set timer for probe_converge_event */
1162 return -1;
1165 /* Have enough data in the send queue to probe? */
1166 len = 0;
1167 if ((skb = sk->sk_send_head) == NULL)
1168 return -1;
1169 while ((len += skb->len) < probe_size && !tcp_skb_is_last(sk, skb))
1170 skb = skb->next;
1171 if (len < probe_size)
1172 return -1;
1174 /* Receive window check. */
1175 if (after(TCP_SKB_CB(skb)->seq + probe_size, tp->snd_una + tp->snd_wnd)) {
1176 if (tp->snd_wnd < probe_size)
1177 return -1;
1178 else
1179 return 0;
1182 /* Do we need to wait to drain cwnd? */
1183 pif = tcp_packets_in_flight(tp);
1184 if (pif + 2 > tp->snd_cwnd) {
1185 /* With no packets in flight, don't stall. */
1186 if (pif == 0)
1187 return -1;
1188 else
1189 return 0;
1192 /* We're allowed to probe. Build it now. */
1193 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1194 return -1;
1195 sk_charge_skb(sk, nskb);
1197 skb = sk->sk_send_head;
1198 __skb_insert(nskb, skb->prev, skb, &sk->sk_write_queue);
1199 sk->sk_send_head = nskb;
1201 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1202 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1203 TCP_SKB_CB(nskb)->flags = TCPCB_FLAG_ACK;
1204 TCP_SKB_CB(nskb)->sacked = 0;
1205 nskb->csum = 0;
1206 if (skb->ip_summed == CHECKSUM_HW)
1207 nskb->ip_summed = CHECKSUM_HW;
1209 len = 0;
1210 while (len < probe_size) {
1211 next = skb->next;
1213 copy = min_t(int, skb->len, probe_size - len);
1214 if (nskb->ip_summed)
1215 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1216 else
1217 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1218 skb_put(nskb, copy), copy, nskb->csum);
1220 if (skb->len <= copy) {
1221 /* We've eaten all the data from this skb.
1222 * Throw it away. */
1223 TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags;
1224 __skb_unlink(skb, &sk->sk_write_queue);
1225 sk_stream_free_skb(sk, skb);
1226 } else {
1227 TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags &
1228 ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
1229 if (!skb_shinfo(skb)->nr_frags) {
1230 skb_pull(skb, copy);
1231 if (skb->ip_summed != CHECKSUM_HW)
1232 skb->csum = csum_partial(skb->data, skb->len, 0);
1233 } else {
1234 __pskb_trim_head(skb, copy);
1235 tcp_set_skb_tso_segs(sk, skb, mss_now);
1237 TCP_SKB_CB(skb)->seq += copy;
1240 len += copy;
1241 skb = next;
1243 tcp_init_tso_segs(sk, nskb, nskb->len);
1245 /* We're ready to send. If this fails, the probe will
1246 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1247 TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1248 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1249 /* Decrement cwnd here because we are sending
1250 * effectively two packets. */
1251 tp->snd_cwnd--;
1252 update_send_head(sk, tp, nskb);
1254 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1255 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1256 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1258 return 1;
1261 return -1;
1265 /* This routine writes packets to the network. It advances the
1266 * send_head. This happens as incoming acks open up the remote
1267 * window for us.
1269 * Returns 1, if no segments are in flight and we have queued segments, but
1270 * cannot send anything now because of SWS or another problem.
1272 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle)
1274 struct tcp_sock *tp = tcp_sk(sk);
1275 struct sk_buff *skb;
1276 unsigned int tso_segs, sent_pkts;
1277 int cwnd_quota;
1278 int result;
1280 /* If we are closed, the bytes will have to remain here.
1281 * In time closedown will finish, we empty the write queue and all
1282 * will be happy.
1284 if (unlikely(sk->sk_state == TCP_CLOSE))
1285 return 0;
1287 sent_pkts = 0;
1289 /* Do MTU probing. */
1290 if ((result = tcp_mtu_probe(sk)) == 0) {
1291 return 0;
1292 } else if (result > 0) {
1293 sent_pkts = 1;
1296 while ((skb = sk->sk_send_head)) {
1297 unsigned int limit;
1299 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1300 BUG_ON(!tso_segs);
1302 cwnd_quota = tcp_cwnd_test(tp, skb);
1303 if (!cwnd_quota)
1304 break;
1306 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1307 break;
1309 if (tso_segs == 1) {
1310 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1311 (tcp_skb_is_last(sk, skb) ?
1312 nonagle : TCP_NAGLE_PUSH))))
1313 break;
1314 } else {
1315 if (tcp_tso_should_defer(sk, tp, skb))
1316 break;
1319 limit = mss_now;
1320 if (tso_segs > 1) {
1321 limit = tcp_window_allows(tp, skb,
1322 mss_now, cwnd_quota);
1324 if (skb->len < limit) {
1325 unsigned int trim = skb->len % mss_now;
1327 if (trim)
1328 limit = skb->len - trim;
1332 if (skb->len > limit &&
1333 unlikely(tso_fragment(sk, skb, limit, mss_now)))
1334 break;
1336 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1338 if (unlikely(tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC)))
1339 break;
1341 /* Advance the send_head. This one is sent out.
1342 * This call will increment packets_out.
1344 update_send_head(sk, tp, skb);
1346 tcp_minshall_update(tp, mss_now, skb);
1347 sent_pkts++;
1350 if (likely(sent_pkts)) {
1351 tcp_cwnd_validate(sk, tp);
1352 return 0;
1354 return !tp->packets_out && sk->sk_send_head;
1357 /* Push out any pending frames which were held back due to
1358 * TCP_CORK or attempt at coalescing tiny packets.
1359 * The socket must be locked by the caller.
1361 void __tcp_push_pending_frames(struct sock *sk, struct tcp_sock *tp,
1362 unsigned int cur_mss, int nonagle)
1364 struct sk_buff *skb = sk->sk_send_head;
1366 if (skb) {
1367 if (tcp_write_xmit(sk, cur_mss, nonagle))
1368 tcp_check_probe_timer(sk, tp);
1372 /* Send _single_ skb sitting at the send head. This function requires
1373 * true push pending frames to setup probe timer etc.
1375 void tcp_push_one(struct sock *sk, unsigned int mss_now)
1377 struct tcp_sock *tp = tcp_sk(sk);
1378 struct sk_buff *skb = sk->sk_send_head;
1379 unsigned int tso_segs, cwnd_quota;
1381 BUG_ON(!skb || skb->len < mss_now);
1383 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1384 cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH);
1386 if (likely(cwnd_quota)) {
1387 unsigned int limit;
1389 BUG_ON(!tso_segs);
1391 limit = mss_now;
1392 if (tso_segs > 1) {
1393 limit = tcp_window_allows(tp, skb,
1394 mss_now, cwnd_quota);
1396 if (skb->len < limit) {
1397 unsigned int trim = skb->len % mss_now;
1399 if (trim)
1400 limit = skb->len - trim;
1404 if (skb->len > limit &&
1405 unlikely(tso_fragment(sk, skb, limit, mss_now)))
1406 return;
1408 /* Send it out now. */
1409 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1411 if (likely(!tcp_transmit_skb(sk, skb, 1, sk->sk_allocation))) {
1412 update_send_head(sk, tp, skb);
1413 tcp_cwnd_validate(sk, tp);
1414 return;
1419 /* This function returns the amount that we can raise the
1420 * usable window based on the following constraints
1422 * 1. The window can never be shrunk once it is offered (RFC 793)
1423 * 2. We limit memory per socket
1425 * RFC 1122:
1426 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
1427 * RECV.NEXT + RCV.WIN fixed until:
1428 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
1430 * i.e. don't raise the right edge of the window until you can raise
1431 * it at least MSS bytes.
1433 * Unfortunately, the recommended algorithm breaks header prediction,
1434 * since header prediction assumes th->window stays fixed.
1436 * Strictly speaking, keeping th->window fixed violates the receiver
1437 * side SWS prevention criteria. The problem is that under this rule
1438 * a stream of single byte packets will cause the right side of the
1439 * window to always advance by a single byte.
1441 * Of course, if the sender implements sender side SWS prevention
1442 * then this will not be a problem.
1444 * BSD seems to make the following compromise:
1446 * If the free space is less than the 1/4 of the maximum
1447 * space available and the free space is less than 1/2 mss,
1448 * then set the window to 0.
1449 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
1450 * Otherwise, just prevent the window from shrinking
1451 * and from being larger than the largest representable value.
1453 * This prevents incremental opening of the window in the regime
1454 * where TCP is limited by the speed of the reader side taking
1455 * data out of the TCP receive queue. It does nothing about
1456 * those cases where the window is constrained on the sender side
1457 * because the pipeline is full.
1459 * BSD also seems to "accidentally" limit itself to windows that are a
1460 * multiple of MSS, at least until the free space gets quite small.
1461 * This would appear to be a side effect of the mbuf implementation.
1462 * Combining these two algorithms results in the observed behavior
1463 * of having a fixed window size at almost all times.
1465 * Below we obtain similar behavior by forcing the offered window to
1466 * a multiple of the mss when it is feasible to do so.
1468 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1469 * Regular options like TIMESTAMP are taken into account.
1471 u32 __tcp_select_window(struct sock *sk)
1473 struct inet_connection_sock *icsk = inet_csk(sk);
1474 struct tcp_sock *tp = tcp_sk(sk);
1475 /* MSS for the peer's data. Previous versions used mss_clamp
1476 * here. I don't know if the value based on our guesses
1477 * of peer's MSS is better for the performance. It's more correct
1478 * but may be worse for the performance because of rcv_mss
1479 * fluctuations. --SAW 1998/11/1
1481 int mss = icsk->icsk_ack.rcv_mss;
1482 int free_space = tcp_space(sk);
1483 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
1484 int window;
1486 if (mss > full_space)
1487 mss = full_space;
1489 if (free_space < full_space/2) {
1490 icsk->icsk_ack.quick = 0;
1492 if (tcp_memory_pressure)
1493 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss);
1495 if (free_space < mss)
1496 return 0;
1499 if (free_space > tp->rcv_ssthresh)
1500 free_space = tp->rcv_ssthresh;
1502 /* Don't do rounding if we are using window scaling, since the
1503 * scaled window will not line up with the MSS boundary anyway.
1505 window = tp->rcv_wnd;
1506 if (tp->rx_opt.rcv_wscale) {
1507 window = free_space;
1509 /* Advertise enough space so that it won't get scaled away.
1510 * Import case: prevent zero window announcement if
1511 * 1<<rcv_wscale > mss.
1513 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
1514 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
1515 << tp->rx_opt.rcv_wscale);
1516 } else {
1517 /* Get the largest window that is a nice multiple of mss.
1518 * Window clamp already applied above.
1519 * If our current window offering is within 1 mss of the
1520 * free space we just keep it. This prevents the divide
1521 * and multiply from happening most of the time.
1522 * We also don't do any window rounding when the free space
1523 * is too small.
1525 if (window <= free_space - mss || window > free_space)
1526 window = (free_space/mss)*mss;
1529 return window;
1532 /* Attempt to collapse two adjacent SKB's during retransmission. */
1533 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now)
1535 struct tcp_sock *tp = tcp_sk(sk);
1536 struct sk_buff *next_skb = skb->next;
1538 /* The first test we must make is that neither of these two
1539 * SKB's are still referenced by someone else.
1541 if (!skb_cloned(skb) && !skb_cloned(next_skb)) {
1542 int skb_size = skb->len, next_skb_size = next_skb->len;
1543 u16 flags = TCP_SKB_CB(skb)->flags;
1545 /* Also punt if next skb has been SACK'd. */
1546 if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED)
1547 return;
1549 /* Next skb is out of window. */
1550 if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd))
1551 return;
1553 /* Punt if not enough space exists in the first SKB for
1554 * the data in the second, or the total combined payload
1555 * would exceed the MSS.
1557 if ((next_skb_size > skb_tailroom(skb)) ||
1558 ((skb_size + next_skb_size) > mss_now))
1559 return;
1561 BUG_ON(tcp_skb_pcount(skb) != 1 ||
1562 tcp_skb_pcount(next_skb) != 1);
1564 /* changing transmit queue under us so clear hints */
1565 clear_all_retrans_hints(tp);
1567 /* Ok. We will be able to collapse the packet. */
1568 __skb_unlink(next_skb, &sk->sk_write_queue);
1570 memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size);
1572 if (next_skb->ip_summed == CHECKSUM_HW)
1573 skb->ip_summed = CHECKSUM_HW;
1575 if (skb->ip_summed != CHECKSUM_HW)
1576 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
1578 /* Update sequence range on original skb. */
1579 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
1581 /* Merge over control information. */
1582 flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */
1583 TCP_SKB_CB(skb)->flags = flags;
1585 /* All done, get rid of second SKB and account for it so
1586 * packet counting does not break.
1588 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL);
1589 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS)
1590 tp->retrans_out -= tcp_skb_pcount(next_skb);
1591 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) {
1592 tp->lost_out -= tcp_skb_pcount(next_skb);
1593 tp->left_out -= tcp_skb_pcount(next_skb);
1595 /* Reno case is special. Sigh... */
1596 if (!tp->rx_opt.sack_ok && tp->sacked_out) {
1597 tcp_dec_pcount_approx(&tp->sacked_out, next_skb);
1598 tp->left_out -= tcp_skb_pcount(next_skb);
1601 /* Not quite right: it can be > snd.fack, but
1602 * it is better to underestimate fackets.
1604 tcp_dec_pcount_approx(&tp->fackets_out, next_skb);
1605 tcp_packets_out_dec(tp, next_skb);
1606 sk_stream_free_skb(sk, next_skb);
1610 /* Do a simple retransmit without using the backoff mechanisms in
1611 * tcp_timer. This is used for path mtu discovery.
1612 * The socket is already locked here.
1614 void tcp_simple_retransmit(struct sock *sk)
1616 const struct inet_connection_sock *icsk = inet_csk(sk);
1617 struct tcp_sock *tp = tcp_sk(sk);
1618 struct sk_buff *skb;
1619 unsigned int mss = tcp_current_mss(sk, 0);
1620 int lost = 0;
1622 sk_stream_for_retrans_queue(skb, sk) {
1623 if (skb->len > mss &&
1624 !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1625 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1626 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1627 tp->retrans_out -= tcp_skb_pcount(skb);
1629 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) {
1630 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1631 tp->lost_out += tcp_skb_pcount(skb);
1632 lost = 1;
1637 clear_all_retrans_hints(tp);
1639 if (!lost)
1640 return;
1642 tcp_sync_left_out(tp);
1644 /* Don't muck with the congestion window here.
1645 * Reason is that we do not increase amount of _data_
1646 * in network, but units changed and effective
1647 * cwnd/ssthresh really reduced now.
1649 if (icsk->icsk_ca_state != TCP_CA_Loss) {
1650 tp->high_seq = tp->snd_nxt;
1651 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1652 tp->prior_ssthresh = 0;
1653 tp->undo_marker = 0;
1654 tcp_set_ca_state(sk, TCP_CA_Loss);
1656 tcp_xmit_retransmit_queue(sk);
1659 /* This retransmits one SKB. Policy decisions and retransmit queue
1660 * state updates are done by the caller. Returns non-zero if an
1661 * error occurred which prevented the send.
1663 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
1665 struct tcp_sock *tp = tcp_sk(sk);
1666 struct inet_connection_sock *icsk = inet_csk(sk);
1667 unsigned int cur_mss = tcp_current_mss(sk, 0);
1668 int err;
1670 /* Inconslusive MTU probe */
1671 if (icsk->icsk_mtup.probe_size) {
1672 icsk->icsk_mtup.probe_size = 0;
1675 /* Do not sent more than we queued. 1/4 is reserved for possible
1676 * copying overhead: fragmentation, tunneling, mangling etc.
1678 if (atomic_read(&sk->sk_wmem_alloc) >
1679 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
1680 return -EAGAIN;
1682 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
1683 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1684 BUG();
1685 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1686 return -ENOMEM;
1689 /* If receiver has shrunk his window, and skb is out of
1690 * new window, do not retransmit it. The exception is the
1691 * case, when window is shrunk to zero. In this case
1692 * our retransmit serves as a zero window probe.
1694 if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)
1695 && TCP_SKB_CB(skb)->seq != tp->snd_una)
1696 return -EAGAIN;
1698 if (skb->len > cur_mss) {
1699 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
1700 return -ENOMEM; /* We'll try again later. */
1703 /* Collapse two adjacent packets if worthwhile and we can. */
1704 if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) &&
1705 (skb->len < (cur_mss >> 1)) &&
1706 (skb->next != sk->sk_send_head) &&
1707 (skb->next != (struct sk_buff *)&sk->sk_write_queue) &&
1708 (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) &&
1709 (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) &&
1710 (sysctl_tcp_retrans_collapse != 0))
1711 tcp_retrans_try_collapse(sk, skb, cur_mss);
1713 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
1714 return -EHOSTUNREACH; /* Routing failure or similar. */
1716 /* Some Solaris stacks overoptimize and ignore the FIN on a
1717 * retransmit when old data is attached. So strip it off
1718 * since it is cheap to do so and saves bytes on the network.
1720 if(skb->len > 0 &&
1721 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1722 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
1723 if (!pskb_trim(skb, 0)) {
1724 TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1;
1725 skb_shinfo(skb)->tso_segs = 1;
1726 skb_shinfo(skb)->tso_size = 0;
1727 skb->ip_summed = CHECKSUM_NONE;
1728 skb->csum = 0;
1732 /* Make a copy, if the first transmission SKB clone we made
1733 * is still in somebody's hands, else make a clone.
1735 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1737 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
1739 if (err == 0) {
1740 /* Update global TCP statistics. */
1741 TCP_INC_STATS(TCP_MIB_RETRANSSEGS);
1743 tp->total_retrans++;
1745 #if FASTRETRANS_DEBUG > 0
1746 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1747 if (net_ratelimit())
1748 printk(KERN_DEBUG "retrans_out leaked.\n");
1750 #endif
1751 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
1752 tp->retrans_out += tcp_skb_pcount(skb);
1754 /* Save stamp of the first retransmit. */
1755 if (!tp->retrans_stamp)
1756 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
1758 tp->undo_retrans++;
1760 /* snd_nxt is stored to detect loss of retransmitted segment,
1761 * see tcp_input.c tcp_sacktag_write_queue().
1763 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
1765 return err;
1768 /* This gets called after a retransmit timeout, and the initially
1769 * retransmitted data is acknowledged. It tries to continue
1770 * resending the rest of the retransmit queue, until either
1771 * we've sent it all or the congestion window limit is reached.
1772 * If doing SACK, the first ACK which comes back for a timeout
1773 * based retransmit packet might feed us FACK information again.
1774 * If so, we use it to avoid unnecessarily retransmissions.
1776 void tcp_xmit_retransmit_queue(struct sock *sk)
1778 const struct inet_connection_sock *icsk = inet_csk(sk);
1779 struct tcp_sock *tp = tcp_sk(sk);
1780 struct sk_buff *skb;
1781 int packet_cnt;
1783 if (tp->retransmit_skb_hint) {
1784 skb = tp->retransmit_skb_hint;
1785 packet_cnt = tp->retransmit_cnt_hint;
1786 }else{
1787 skb = sk->sk_write_queue.next;
1788 packet_cnt = 0;
1791 /* First pass: retransmit lost packets. */
1792 if (tp->lost_out) {
1793 sk_stream_for_retrans_queue_from(skb, sk) {
1794 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1796 /* we could do better than to assign each time */
1797 tp->retransmit_skb_hint = skb;
1798 tp->retransmit_cnt_hint = packet_cnt;
1800 /* Assume this retransmit will generate
1801 * only one packet for congestion window
1802 * calculation purposes. This works because
1803 * tcp_retransmit_skb() will chop up the
1804 * packet to be MSS sized and all the
1805 * packet counting works out.
1807 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1808 return;
1810 if (sacked & TCPCB_LOST) {
1811 if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) {
1812 if (tcp_retransmit_skb(sk, skb)) {
1813 tp->retransmit_skb_hint = NULL;
1814 return;
1816 if (icsk->icsk_ca_state != TCP_CA_Loss)
1817 NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS);
1818 else
1819 NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS);
1821 if (skb ==
1822 skb_peek(&sk->sk_write_queue))
1823 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1824 inet_csk(sk)->icsk_rto,
1825 TCP_RTO_MAX);
1828 packet_cnt += tcp_skb_pcount(skb);
1829 if (packet_cnt >= tp->lost_out)
1830 break;
1835 /* OK, demanded retransmission is finished. */
1837 /* Forward retransmissions are possible only during Recovery. */
1838 if (icsk->icsk_ca_state != TCP_CA_Recovery)
1839 return;
1841 /* No forward retransmissions in Reno are possible. */
1842 if (!tp->rx_opt.sack_ok)
1843 return;
1845 /* Yeah, we have to make difficult choice between forward transmission
1846 * and retransmission... Both ways have their merits...
1848 * For now we do not retransmit anything, while we have some new
1849 * segments to send.
1852 if (tcp_may_send_now(sk, tp))
1853 return;
1855 if (tp->forward_skb_hint) {
1856 skb = tp->forward_skb_hint;
1857 packet_cnt = tp->forward_cnt_hint;
1858 } else{
1859 skb = sk->sk_write_queue.next;
1860 packet_cnt = 0;
1863 sk_stream_for_retrans_queue_from(skb, sk) {
1864 tp->forward_cnt_hint = packet_cnt;
1865 tp->forward_skb_hint = skb;
1867 /* Similar to the retransmit loop above we
1868 * can pretend that the retransmitted SKB
1869 * we send out here will be composed of one
1870 * real MSS sized packet because tcp_retransmit_skb()
1871 * will fragment it if necessary.
1873 if (++packet_cnt > tp->fackets_out)
1874 break;
1876 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1877 break;
1879 if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS)
1880 continue;
1882 /* Ok, retransmit it. */
1883 if (tcp_retransmit_skb(sk, skb)) {
1884 tp->forward_skb_hint = NULL;
1885 break;
1888 if (skb == skb_peek(&sk->sk_write_queue))
1889 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1890 inet_csk(sk)->icsk_rto,
1891 TCP_RTO_MAX);
1893 NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS);
1898 /* Send a fin. The caller locks the socket for us. This cannot be
1899 * allowed to fail queueing a FIN frame under any circumstances.
1901 void tcp_send_fin(struct sock *sk)
1903 struct tcp_sock *tp = tcp_sk(sk);
1904 struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue);
1905 int mss_now;
1907 /* Optimization, tack on the FIN if we have a queue of
1908 * unsent frames. But be careful about outgoing SACKS
1909 * and IP options.
1911 mss_now = tcp_current_mss(sk, 1);
1913 if (sk->sk_send_head != NULL) {
1914 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN;
1915 TCP_SKB_CB(skb)->end_seq++;
1916 tp->write_seq++;
1917 } else {
1918 /* Socket is locked, keep trying until memory is available. */
1919 for (;;) {
1920 skb = alloc_skb_fclone(MAX_TCP_HEADER, GFP_KERNEL);
1921 if (skb)
1922 break;
1923 yield();
1926 /* Reserve space for headers and prepare control bits. */
1927 skb_reserve(skb, MAX_TCP_HEADER);
1928 skb->csum = 0;
1929 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
1930 TCP_SKB_CB(skb)->sacked = 0;
1931 skb_shinfo(skb)->tso_segs = 1;
1932 skb_shinfo(skb)->tso_size = 0;
1934 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
1935 TCP_SKB_CB(skb)->seq = tp->write_seq;
1936 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1937 tcp_queue_skb(sk, skb);
1939 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF);
1942 /* We get here when a process closes a file descriptor (either due to
1943 * an explicit close() or as a byproduct of exit()'ing) and there
1944 * was unread data in the receive queue. This behavior is recommended
1945 * by draft-ietf-tcpimpl-prob-03.txt section 3.10. -DaveM
1947 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
1949 struct tcp_sock *tp = tcp_sk(sk);
1950 struct sk_buff *skb;
1952 /* NOTE: No TCP options attached and we never retransmit this. */
1953 skb = alloc_skb(MAX_TCP_HEADER, priority);
1954 if (!skb) {
1955 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1956 return;
1959 /* Reserve space for headers and prepare control bits. */
1960 skb_reserve(skb, MAX_TCP_HEADER);
1961 skb->csum = 0;
1962 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST);
1963 TCP_SKB_CB(skb)->sacked = 0;
1964 skb_shinfo(skb)->tso_segs = 1;
1965 skb_shinfo(skb)->tso_size = 0;
1967 /* Send it off. */
1968 TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp);
1969 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1970 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1971 if (tcp_transmit_skb(sk, skb, 0, priority))
1972 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1975 /* WARNING: This routine must only be called when we have already sent
1976 * a SYN packet that crossed the incoming SYN that caused this routine
1977 * to get called. If this assumption fails then the initial rcv_wnd
1978 * and rcv_wscale values will not be correct.
1980 int tcp_send_synack(struct sock *sk)
1982 struct sk_buff* skb;
1984 skb = skb_peek(&sk->sk_write_queue);
1985 if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) {
1986 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
1987 return -EFAULT;
1989 if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) {
1990 if (skb_cloned(skb)) {
1991 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
1992 if (nskb == NULL)
1993 return -ENOMEM;
1994 __skb_unlink(skb, &sk->sk_write_queue);
1995 skb_header_release(nskb);
1996 __skb_queue_head(&sk->sk_write_queue, nskb);
1997 sk_stream_free_skb(sk, skb);
1998 sk_charge_skb(sk, nskb);
1999 skb = nskb;
2002 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK;
2003 TCP_ECN_send_synack(tcp_sk(sk), skb);
2005 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2006 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2010 * Prepare a SYN-ACK.
2012 struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2013 struct request_sock *req)
2015 struct inet_request_sock *ireq = inet_rsk(req);
2016 struct tcp_sock *tp = tcp_sk(sk);
2017 struct tcphdr *th;
2018 int tcp_header_size;
2019 struct sk_buff *skb;
2021 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
2022 if (skb == NULL)
2023 return NULL;
2025 /* Reserve space for headers. */
2026 skb_reserve(skb, MAX_TCP_HEADER);
2028 skb->dst = dst_clone(dst);
2030 tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS +
2031 (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) +
2032 (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) +
2033 /* SACK_PERM is in the place of NOP NOP of TS */
2034 ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0));
2035 skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size);
2037 memset(th, 0, sizeof(struct tcphdr));
2038 th->syn = 1;
2039 th->ack = 1;
2040 if (dst->dev->features&NETIF_F_TSO)
2041 ireq->ecn_ok = 0;
2042 TCP_ECN_make_synack(req, th);
2043 th->source = inet_sk(sk)->sport;
2044 th->dest = ireq->rmt_port;
2045 TCP_SKB_CB(skb)->seq = tcp_rsk(req)->snt_isn;
2046 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
2047 TCP_SKB_CB(skb)->sacked = 0;
2048 skb_shinfo(skb)->tso_segs = 1;
2049 skb_shinfo(skb)->tso_size = 0;
2050 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2051 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
2052 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2053 __u8 rcv_wscale;
2054 /* Set this up on the first call only */
2055 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2056 /* tcp_full_space because it is guaranteed to be the first packet */
2057 tcp_select_initial_window(tcp_full_space(sk),
2058 dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2059 &req->rcv_wnd,
2060 &req->window_clamp,
2061 ireq->wscale_ok,
2062 &rcv_wscale);
2063 ireq->rcv_wscale = rcv_wscale;
2066 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2067 th->window = htons(req->rcv_wnd);
2069 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2070 tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok,
2071 ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale,
2072 TCP_SKB_CB(skb)->when,
2073 req->ts_recent);
2075 skb->csum = 0;
2076 th->doff = (tcp_header_size >> 2);
2077 TCP_INC_STATS(TCP_MIB_OUTSEGS);
2078 return skb;
2082 * Do all connect socket setups that can be done AF independent.
2084 static void tcp_connect_init(struct sock *sk)
2086 struct dst_entry *dst = __sk_dst_get(sk);
2087 struct tcp_sock *tp = tcp_sk(sk);
2088 __u8 rcv_wscale;
2090 /* We'll fix this up when we get a response from the other end.
2091 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2093 tp->tcp_header_len = sizeof(struct tcphdr) +
2094 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2096 /* If user gave his TCP_MAXSEG, record it to clamp */
2097 if (tp->rx_opt.user_mss)
2098 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2099 tp->max_window = 0;
2100 tcp_mtup_init(sk);
2101 tcp_sync_mss(sk, dst_mtu(dst));
2103 if (!tp->window_clamp)
2104 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2105 tp->advmss = dst_metric(dst, RTAX_ADVMSS);
2106 tcp_initialize_rcv_mss(sk);
2108 tcp_select_initial_window(tcp_full_space(sk),
2109 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2110 &tp->rcv_wnd,
2111 &tp->window_clamp,
2112 sysctl_tcp_window_scaling,
2113 &rcv_wscale);
2115 tp->rx_opt.rcv_wscale = rcv_wscale;
2116 tp->rcv_ssthresh = tp->rcv_wnd;
2118 sk->sk_err = 0;
2119 sock_reset_flag(sk, SOCK_DONE);
2120 tp->snd_wnd = 0;
2121 tcp_init_wl(tp, tp->write_seq, 0);
2122 tp->snd_una = tp->write_seq;
2123 tp->snd_sml = tp->write_seq;
2124 tp->rcv_nxt = 0;
2125 tp->rcv_wup = 0;
2126 tp->copied_seq = 0;
2128 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2129 inet_csk(sk)->icsk_retransmits = 0;
2130 tcp_clear_retrans(tp);
2134 * Build a SYN and send it off.
2136 int tcp_connect(struct sock *sk)
2138 struct tcp_sock *tp = tcp_sk(sk);
2139 struct sk_buff *buff;
2141 tcp_connect_init(sk);
2143 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2144 if (unlikely(buff == NULL))
2145 return -ENOBUFS;
2147 /* Reserve space for headers. */
2148 skb_reserve(buff, MAX_TCP_HEADER);
2150 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN;
2151 TCP_ECN_send_syn(sk, tp, buff);
2152 TCP_SKB_CB(buff)->sacked = 0;
2153 skb_shinfo(buff)->tso_segs = 1;
2154 skb_shinfo(buff)->tso_size = 0;
2155 buff->csum = 0;
2156 TCP_SKB_CB(buff)->seq = tp->write_seq++;
2157 TCP_SKB_CB(buff)->end_seq = tp->write_seq;
2158 tp->snd_nxt = tp->write_seq;
2159 tp->pushed_seq = tp->write_seq;
2161 /* Send it off. */
2162 TCP_SKB_CB(buff)->when = tcp_time_stamp;
2163 tp->retrans_stamp = TCP_SKB_CB(buff)->when;
2164 skb_header_release(buff);
2165 __skb_queue_tail(&sk->sk_write_queue, buff);
2166 sk_charge_skb(sk, buff);
2167 tp->packets_out += tcp_skb_pcount(buff);
2168 tcp_transmit_skb(sk, buff, 1, GFP_KERNEL);
2169 TCP_INC_STATS(TCP_MIB_ACTIVEOPENS);
2171 /* Timer for repeating the SYN until an answer. */
2172 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2173 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2174 return 0;
2177 /* Send out a delayed ack, the caller does the policy checking
2178 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
2179 * for details.
2181 void tcp_send_delayed_ack(struct sock *sk)
2183 struct inet_connection_sock *icsk = inet_csk(sk);
2184 int ato = icsk->icsk_ack.ato;
2185 unsigned long timeout;
2187 if (ato > TCP_DELACK_MIN) {
2188 const struct tcp_sock *tp = tcp_sk(sk);
2189 int max_ato = HZ/2;
2191 if (icsk->icsk_ack.pingpong || (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
2192 max_ato = TCP_DELACK_MAX;
2194 /* Slow path, intersegment interval is "high". */
2196 /* If some rtt estimate is known, use it to bound delayed ack.
2197 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
2198 * directly.
2200 if (tp->srtt) {
2201 int rtt = max(tp->srtt>>3, TCP_DELACK_MIN);
2203 if (rtt < max_ato)
2204 max_ato = rtt;
2207 ato = min(ato, max_ato);
2210 /* Stay within the limit we were given */
2211 timeout = jiffies + ato;
2213 /* Use new timeout only if there wasn't a older one earlier. */
2214 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
2215 /* If delack timer was blocked or is about to expire,
2216 * send ACK now.
2218 if (icsk->icsk_ack.blocked ||
2219 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
2220 tcp_send_ack(sk);
2221 return;
2224 if (!time_before(timeout, icsk->icsk_ack.timeout))
2225 timeout = icsk->icsk_ack.timeout;
2227 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
2228 icsk->icsk_ack.timeout = timeout;
2229 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
2232 /* This routine sends an ack and also updates the window. */
2233 void tcp_send_ack(struct sock *sk)
2235 /* If we have been reset, we may not send again. */
2236 if (sk->sk_state != TCP_CLOSE) {
2237 struct tcp_sock *tp = tcp_sk(sk);
2238 struct sk_buff *buff;
2240 /* We are not putting this on the write queue, so
2241 * tcp_transmit_skb() will set the ownership to this
2242 * sock.
2244 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2245 if (buff == NULL) {
2246 inet_csk_schedule_ack(sk);
2247 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
2248 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
2249 TCP_DELACK_MAX, TCP_RTO_MAX);
2250 return;
2253 /* Reserve space for headers and prepare control bits. */
2254 skb_reserve(buff, MAX_TCP_HEADER);
2255 buff->csum = 0;
2256 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK;
2257 TCP_SKB_CB(buff)->sacked = 0;
2258 skb_shinfo(buff)->tso_segs = 1;
2259 skb_shinfo(buff)->tso_size = 0;
2261 /* Send it off, this clears delayed acks for us. */
2262 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp);
2263 TCP_SKB_CB(buff)->when = tcp_time_stamp;
2264 tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC);
2268 /* This routine sends a packet with an out of date sequence
2269 * number. It assumes the other end will try to ack it.
2271 * Question: what should we make while urgent mode?
2272 * 4.4BSD forces sending single byte of data. We cannot send
2273 * out of window data, because we have SND.NXT==SND.MAX...
2275 * Current solution: to send TWO zero-length segments in urgent mode:
2276 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
2277 * out-of-date with SND.UNA-1 to probe window.
2279 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
2281 struct tcp_sock *tp = tcp_sk(sk);
2282 struct sk_buff *skb;
2284 /* We don't queue it, tcp_transmit_skb() sets ownership. */
2285 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2286 if (skb == NULL)
2287 return -1;
2289 /* Reserve space for headers and set control bits. */
2290 skb_reserve(skb, MAX_TCP_HEADER);
2291 skb->csum = 0;
2292 TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK;
2293 TCP_SKB_CB(skb)->sacked = urgent;
2294 skb_shinfo(skb)->tso_segs = 1;
2295 skb_shinfo(skb)->tso_size = 0;
2297 /* Use a previous sequence. This should cause the other
2298 * end to send an ack. Don't queue or clone SKB, just
2299 * send it.
2301 TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1;
2302 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
2303 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2304 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
2307 int tcp_write_wakeup(struct sock *sk)
2309 if (sk->sk_state != TCP_CLOSE) {
2310 struct tcp_sock *tp = tcp_sk(sk);
2311 struct sk_buff *skb;
2313 if ((skb = sk->sk_send_head) != NULL &&
2314 before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) {
2315 int err;
2316 unsigned int mss = tcp_current_mss(sk, 0);
2317 unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq;
2319 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
2320 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
2322 /* We are probing the opening of a window
2323 * but the window size is != 0
2324 * must have been a result SWS avoidance ( sender )
2326 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
2327 skb->len > mss) {
2328 seg_size = min(seg_size, mss);
2329 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2330 if (tcp_fragment(sk, skb, seg_size, mss))
2331 return -1;
2332 } else if (!tcp_skb_pcount(skb))
2333 tcp_set_skb_tso_segs(sk, skb, mss);
2335 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2336 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2337 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2338 if (!err) {
2339 update_send_head(sk, tp, skb);
2341 return err;
2342 } else {
2343 if (tp->urg_mode &&
2344 between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF))
2345 tcp_xmit_probe_skb(sk, TCPCB_URG);
2346 return tcp_xmit_probe_skb(sk, 0);
2349 return -1;
2352 /* A window probe timeout has occurred. If window is not closed send
2353 * a partial packet else a zero probe.
2355 void tcp_send_probe0(struct sock *sk)
2357 struct inet_connection_sock *icsk = inet_csk(sk);
2358 struct tcp_sock *tp = tcp_sk(sk);
2359 int err;
2361 err = tcp_write_wakeup(sk);
2363 if (tp->packets_out || !sk->sk_send_head) {
2364 /* Cancel probe timer, if it is not required. */
2365 icsk->icsk_probes_out = 0;
2366 icsk->icsk_backoff = 0;
2367 return;
2370 if (err <= 0) {
2371 if (icsk->icsk_backoff < sysctl_tcp_retries2)
2372 icsk->icsk_backoff++;
2373 icsk->icsk_probes_out++;
2374 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2375 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2376 TCP_RTO_MAX);
2377 } else {
2378 /* If packet was not sent due to local congestion,
2379 * do not backoff and do not remember icsk_probes_out.
2380 * Let local senders to fight for local resources.
2382 * Use accumulated backoff yet.
2384 if (!icsk->icsk_probes_out)
2385 icsk->icsk_probes_out = 1;
2386 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2387 min(icsk->icsk_rto << icsk->icsk_backoff,
2388 TCP_RESOURCE_PROBE_INTERVAL),
2389 TCP_RTO_MAX);
2393 EXPORT_SYMBOL(tcp_connect);
2394 EXPORT_SYMBOL(tcp_make_synack);
2395 EXPORT_SYMBOL(tcp_simple_retransmit);
2396 EXPORT_SYMBOL(tcp_sync_mss);
2397 EXPORT_SYMBOL(sysctl_tcp_tso_win_divisor);
2398 EXPORT_SYMBOL(tcp_mtup_init);