4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/module.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
15 #include <linux/perf_event.h>
16 #include <linux/resource.h>
17 #include <linux/kernel.h>
18 #include <linux/kexec.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/seccomp.h>
34 #include <linux/cpu.h>
35 #include <linux/personality.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 #include <linux/gfp.h>
39 #include <linux/syscore_ops.h>
40 #include <linux/version.h>
41 #include <linux/ctype.h>
43 #include <linux/compat.h>
44 #include <linux/syscalls.h>
45 #include <linux/kprobes.h>
46 #include <linux/user_namespace.h>
48 #include <linux/kmsg_dump.h>
49 /* Move somewhere else to avoid recompiling? */
50 #include <generated/utsrelease.h>
52 #include <asm/uaccess.h>
54 #include <asm/unistd.h>
56 #ifndef SET_UNALIGN_CTL
57 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
59 #ifndef GET_UNALIGN_CTL
60 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
63 # define SET_FPEMU_CTL(a,b) (-EINVAL)
66 # define GET_FPEMU_CTL(a,b) (-EINVAL)
69 # define SET_FPEXC_CTL(a,b) (-EINVAL)
72 # define GET_FPEXC_CTL(a,b) (-EINVAL)
75 # define GET_ENDIAN(a,b) (-EINVAL)
78 # define SET_ENDIAN(a,b) (-EINVAL)
81 # define GET_TSC_CTL(a) (-EINVAL)
84 # define SET_TSC_CTL(a) (-EINVAL)
88 * this is where the system-wide overflow UID and GID are defined, for
89 * architectures that now have 32-bit UID/GID but didn't in the past
92 int overflowuid
= DEFAULT_OVERFLOWUID
;
93 int overflowgid
= DEFAULT_OVERFLOWGID
;
96 EXPORT_SYMBOL(overflowuid
);
97 EXPORT_SYMBOL(overflowgid
);
101 * the same as above, but for filesystems which can only store a 16-bit
102 * UID and GID. as such, this is needed on all architectures
105 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
106 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
108 EXPORT_SYMBOL(fs_overflowuid
);
109 EXPORT_SYMBOL(fs_overflowgid
);
112 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
117 EXPORT_SYMBOL(cad_pid
);
120 * If set, this is used for preparing the system to power off.
123 void (*pm_power_off_prepare
)(void);
126 * Returns true if current's euid is same as p's uid or euid,
127 * or has CAP_SYS_NICE to p's user_ns.
129 * Called with rcu_read_lock, creds are safe
131 static bool set_one_prio_perm(struct task_struct
*p
)
133 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
135 if (pcred
->user
->user_ns
== cred
->user
->user_ns
&&
136 (pcred
->uid
== cred
->euid
||
137 pcred
->euid
== cred
->euid
))
139 if (ns_capable(pcred
->user
->user_ns
, CAP_SYS_NICE
))
145 * set the priority of a task
146 * - the caller must hold the RCU read lock
148 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
152 if (!set_one_prio_perm(p
)) {
156 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
160 no_nice
= security_task_setnice(p
, niceval
);
167 set_user_nice(p
, niceval
);
172 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
174 struct task_struct
*g
, *p
;
175 struct user_struct
*user
;
176 const struct cred
*cred
= current_cred();
180 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
183 /* normalize: avoid signed division (rounding problems) */
191 read_lock(&tasklist_lock
);
195 p
= find_task_by_vpid(who
);
199 error
= set_one_prio(p
, niceval
, error
);
203 pgrp
= find_vpid(who
);
205 pgrp
= task_pgrp(current
);
206 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
207 error
= set_one_prio(p
, niceval
, error
);
208 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
211 user
= (struct user_struct
*) cred
->user
;
214 else if ((who
!= cred
->uid
) &&
215 !(user
= find_user(who
)))
216 goto out_unlock
; /* No processes for this user */
218 do_each_thread(g
, p
) {
219 if (__task_cred(p
)->uid
== who
)
220 error
= set_one_prio(p
, niceval
, error
);
221 } while_each_thread(g
, p
);
222 if (who
!= cred
->uid
)
223 free_uid(user
); /* For find_user() */
227 read_unlock(&tasklist_lock
);
234 * Ugh. To avoid negative return values, "getpriority()" will
235 * not return the normal nice-value, but a negated value that
236 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
237 * to stay compatible.
239 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
241 struct task_struct
*g
, *p
;
242 struct user_struct
*user
;
243 const struct cred
*cred
= current_cred();
244 long niceval
, retval
= -ESRCH
;
247 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
251 read_lock(&tasklist_lock
);
255 p
= find_task_by_vpid(who
);
259 niceval
= 20 - task_nice(p
);
260 if (niceval
> retval
)
266 pgrp
= find_vpid(who
);
268 pgrp
= task_pgrp(current
);
269 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
270 niceval
= 20 - task_nice(p
);
271 if (niceval
> retval
)
273 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
276 user
= (struct user_struct
*) cred
->user
;
279 else if ((who
!= cred
->uid
) &&
280 !(user
= find_user(who
)))
281 goto out_unlock
; /* No processes for this user */
283 do_each_thread(g
, p
) {
284 if (__task_cred(p
)->uid
== who
) {
285 niceval
= 20 - task_nice(p
);
286 if (niceval
> retval
)
289 } while_each_thread(g
, p
);
290 if (who
!= cred
->uid
)
291 free_uid(user
); /* for find_user() */
295 read_unlock(&tasklist_lock
);
302 * emergency_restart - reboot the system
304 * Without shutting down any hardware or taking any locks
305 * reboot the system. This is called when we know we are in
306 * trouble so this is our best effort to reboot. This is
307 * safe to call in interrupt context.
309 void emergency_restart(void)
311 kmsg_dump(KMSG_DUMP_EMERG
);
312 machine_emergency_restart();
314 EXPORT_SYMBOL_GPL(emergency_restart
);
316 void kernel_restart_prepare(char *cmd
)
318 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
319 system_state
= SYSTEM_RESTART
;
320 usermodehelper_disable();
326 * register_reboot_notifier - Register function to be called at reboot time
327 * @nb: Info about notifier function to be called
329 * Registers a function with the list of functions
330 * to be called at reboot time.
332 * Currently always returns zero, as blocking_notifier_chain_register()
333 * always returns zero.
335 int register_reboot_notifier(struct notifier_block
*nb
)
337 return blocking_notifier_chain_register(&reboot_notifier_list
, nb
);
339 EXPORT_SYMBOL(register_reboot_notifier
);
342 * unregister_reboot_notifier - Unregister previously registered reboot notifier
343 * @nb: Hook to be unregistered
345 * Unregisters a previously registered reboot
348 * Returns zero on success, or %-ENOENT on failure.
350 int unregister_reboot_notifier(struct notifier_block
*nb
)
352 return blocking_notifier_chain_unregister(&reboot_notifier_list
, nb
);
354 EXPORT_SYMBOL(unregister_reboot_notifier
);
357 * kernel_restart - reboot the system
358 * @cmd: pointer to buffer containing command to execute for restart
361 * Shutdown everything and perform a clean reboot.
362 * This is not safe to call in interrupt context.
364 void kernel_restart(char *cmd
)
366 kernel_restart_prepare(cmd
);
368 printk(KERN_EMERG
"Restarting system.\n");
370 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
371 kmsg_dump(KMSG_DUMP_RESTART
);
372 machine_restart(cmd
);
374 EXPORT_SYMBOL_GPL(kernel_restart
);
376 static void kernel_shutdown_prepare(enum system_states state
)
378 blocking_notifier_call_chain(&reboot_notifier_list
,
379 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
380 system_state
= state
;
381 usermodehelper_disable();
385 * kernel_halt - halt the system
387 * Shutdown everything and perform a clean system halt.
389 void kernel_halt(void)
391 kernel_shutdown_prepare(SYSTEM_HALT
);
393 printk(KERN_EMERG
"System halted.\n");
394 kmsg_dump(KMSG_DUMP_HALT
);
398 EXPORT_SYMBOL_GPL(kernel_halt
);
401 * kernel_power_off - power_off the system
403 * Shutdown everything and perform a clean system power_off.
405 void kernel_power_off(void)
407 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
408 if (pm_power_off_prepare
)
409 pm_power_off_prepare();
410 disable_nonboot_cpus();
412 printk(KERN_EMERG
"Power down.\n");
413 kmsg_dump(KMSG_DUMP_POWEROFF
);
416 EXPORT_SYMBOL_GPL(kernel_power_off
);
418 static DEFINE_MUTEX(reboot_mutex
);
421 * Reboot system call: for obvious reasons only root may call it,
422 * and even root needs to set up some magic numbers in the registers
423 * so that some mistake won't make this reboot the whole machine.
424 * You can also set the meaning of the ctrl-alt-del-key here.
426 * reboot doesn't sync: do that yourself before calling this.
428 SYSCALL_DEFINE4(reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
434 /* We only trust the superuser with rebooting the system. */
435 if (!capable(CAP_SYS_BOOT
))
438 /* For safety, we require "magic" arguments. */
439 if (magic1
!= LINUX_REBOOT_MAGIC1
||
440 (magic2
!= LINUX_REBOOT_MAGIC2
&&
441 magic2
!= LINUX_REBOOT_MAGIC2A
&&
442 magic2
!= LINUX_REBOOT_MAGIC2B
&&
443 magic2
!= LINUX_REBOOT_MAGIC2C
))
446 /* Instead of trying to make the power_off code look like
447 * halt when pm_power_off is not set do it the easy way.
449 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
450 cmd
= LINUX_REBOOT_CMD_HALT
;
452 mutex_lock(&reboot_mutex
);
454 case LINUX_REBOOT_CMD_RESTART
:
455 kernel_restart(NULL
);
458 case LINUX_REBOOT_CMD_CAD_ON
:
462 case LINUX_REBOOT_CMD_CAD_OFF
:
466 case LINUX_REBOOT_CMD_HALT
:
469 panic("cannot halt");
471 case LINUX_REBOOT_CMD_POWER_OFF
:
476 case LINUX_REBOOT_CMD_RESTART2
:
477 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
481 buffer
[sizeof(buffer
) - 1] = '\0';
483 kernel_restart(buffer
);
487 case LINUX_REBOOT_CMD_KEXEC
:
488 ret
= kernel_kexec();
492 #ifdef CONFIG_HIBERNATION
493 case LINUX_REBOOT_CMD_SW_SUSPEND
:
502 mutex_unlock(&reboot_mutex
);
506 static void deferred_cad(struct work_struct
*dummy
)
508 kernel_restart(NULL
);
512 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
513 * As it's called within an interrupt, it may NOT sync: the only choice
514 * is whether to reboot at once, or just ignore the ctrl-alt-del.
516 void ctrl_alt_del(void)
518 static DECLARE_WORK(cad_work
, deferred_cad
);
521 schedule_work(&cad_work
);
523 kill_cad_pid(SIGINT
, 1);
527 * Unprivileged users may change the real gid to the effective gid
528 * or vice versa. (BSD-style)
530 * If you set the real gid at all, or set the effective gid to a value not
531 * equal to the real gid, then the saved gid is set to the new effective gid.
533 * This makes it possible for a setgid program to completely drop its
534 * privileges, which is often a useful assertion to make when you are doing
535 * a security audit over a program.
537 * The general idea is that a program which uses just setregid() will be
538 * 100% compatible with BSD. A program which uses just setgid() will be
539 * 100% compatible with POSIX with saved IDs.
541 * SMP: There are not races, the GIDs are checked only by filesystem
542 * operations (as far as semantic preservation is concerned).
544 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
546 const struct cred
*old
;
550 new = prepare_creds();
553 old
= current_cred();
556 if (rgid
!= (gid_t
) -1) {
557 if (old
->gid
== rgid
||
559 nsown_capable(CAP_SETGID
))
564 if (egid
!= (gid_t
) -1) {
565 if (old
->gid
== egid
||
568 nsown_capable(CAP_SETGID
))
574 if (rgid
!= (gid_t
) -1 ||
575 (egid
!= (gid_t
) -1 && egid
!= old
->gid
))
576 new->sgid
= new->egid
;
577 new->fsgid
= new->egid
;
579 return commit_creds(new);
587 * setgid() is implemented like SysV w/ SAVED_IDS
589 * SMP: Same implicit races as above.
591 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
593 const struct cred
*old
;
597 new = prepare_creds();
600 old
= current_cred();
603 if (nsown_capable(CAP_SETGID
))
604 new->gid
= new->egid
= new->sgid
= new->fsgid
= gid
;
605 else if (gid
== old
->gid
|| gid
== old
->sgid
)
606 new->egid
= new->fsgid
= gid
;
610 return commit_creds(new);
618 * change the user struct in a credentials set to match the new UID
620 static int set_user(struct cred
*new)
622 struct user_struct
*new_user
;
624 new_user
= alloc_uid(current_user_ns(), new->uid
);
629 * We don't fail in case of NPROC limit excess here because too many
630 * poorly written programs don't check set*uid() return code, assuming
631 * it never fails if called by root. We may still enforce NPROC limit
632 * for programs doing set*uid()+execve() by harmlessly deferring the
633 * failure to the execve() stage.
635 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
636 new_user
!= INIT_USER
)
637 current
->flags
|= PF_NPROC_EXCEEDED
;
639 current
->flags
&= ~PF_NPROC_EXCEEDED
;
642 new->user
= new_user
;
647 * Unprivileged users may change the real uid to the effective uid
648 * or vice versa. (BSD-style)
650 * If you set the real uid at all, or set the effective uid to a value not
651 * equal to the real uid, then the saved uid is set to the new effective uid.
653 * This makes it possible for a setuid program to completely drop its
654 * privileges, which is often a useful assertion to make when you are doing
655 * a security audit over a program.
657 * The general idea is that a program which uses just setreuid() will be
658 * 100% compatible with BSD. A program which uses just setuid() will be
659 * 100% compatible with POSIX with saved IDs.
661 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
663 const struct cred
*old
;
667 new = prepare_creds();
670 old
= current_cred();
673 if (ruid
!= (uid_t
) -1) {
675 if (old
->uid
!= ruid
&&
677 !nsown_capable(CAP_SETUID
))
681 if (euid
!= (uid_t
) -1) {
683 if (old
->uid
!= euid
&&
686 !nsown_capable(CAP_SETUID
))
690 if (new->uid
!= old
->uid
) {
691 retval
= set_user(new);
695 if (ruid
!= (uid_t
) -1 ||
696 (euid
!= (uid_t
) -1 && euid
!= old
->uid
))
697 new->suid
= new->euid
;
698 new->fsuid
= new->euid
;
700 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
704 return commit_creds(new);
712 * setuid() is implemented like SysV with SAVED_IDS
714 * Note that SAVED_ID's is deficient in that a setuid root program
715 * like sendmail, for example, cannot set its uid to be a normal
716 * user and then switch back, because if you're root, setuid() sets
717 * the saved uid too. If you don't like this, blame the bright people
718 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
719 * will allow a root program to temporarily drop privileges and be able to
720 * regain them by swapping the real and effective uid.
722 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
724 const struct cred
*old
;
728 new = prepare_creds();
731 old
= current_cred();
734 if (nsown_capable(CAP_SETUID
)) {
735 new->suid
= new->uid
= uid
;
736 if (uid
!= old
->uid
) {
737 retval
= set_user(new);
741 } else if (uid
!= old
->uid
&& uid
!= new->suid
) {
745 new->fsuid
= new->euid
= uid
;
747 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
751 return commit_creds(new);
760 * This function implements a generic ability to update ruid, euid,
761 * and suid. This allows you to implement the 4.4 compatible seteuid().
763 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
765 const struct cred
*old
;
769 new = prepare_creds();
773 old
= current_cred();
776 if (!nsown_capable(CAP_SETUID
)) {
777 if (ruid
!= (uid_t
) -1 && ruid
!= old
->uid
&&
778 ruid
!= old
->euid
&& ruid
!= old
->suid
)
780 if (euid
!= (uid_t
) -1 && euid
!= old
->uid
&&
781 euid
!= old
->euid
&& euid
!= old
->suid
)
783 if (suid
!= (uid_t
) -1 && suid
!= old
->uid
&&
784 suid
!= old
->euid
&& suid
!= old
->suid
)
788 if (ruid
!= (uid_t
) -1) {
790 if (ruid
!= old
->uid
) {
791 retval
= set_user(new);
796 if (euid
!= (uid_t
) -1)
798 if (suid
!= (uid_t
) -1)
800 new->fsuid
= new->euid
;
802 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
806 return commit_creds(new);
813 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruid
, uid_t __user
*, euid
, uid_t __user
*, suid
)
815 const struct cred
*cred
= current_cred();
818 if (!(retval
= put_user(cred
->uid
, ruid
)) &&
819 !(retval
= put_user(cred
->euid
, euid
)))
820 retval
= put_user(cred
->suid
, suid
);
826 * Same as above, but for rgid, egid, sgid.
828 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
830 const struct cred
*old
;
834 new = prepare_creds();
837 old
= current_cred();
840 if (!nsown_capable(CAP_SETGID
)) {
841 if (rgid
!= (gid_t
) -1 && rgid
!= old
->gid
&&
842 rgid
!= old
->egid
&& rgid
!= old
->sgid
)
844 if (egid
!= (gid_t
) -1 && egid
!= old
->gid
&&
845 egid
!= old
->egid
&& egid
!= old
->sgid
)
847 if (sgid
!= (gid_t
) -1 && sgid
!= old
->gid
&&
848 sgid
!= old
->egid
&& sgid
!= old
->sgid
)
852 if (rgid
!= (gid_t
) -1)
854 if (egid
!= (gid_t
) -1)
856 if (sgid
!= (gid_t
) -1)
858 new->fsgid
= new->egid
;
860 return commit_creds(new);
867 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgid
, gid_t __user
*, egid
, gid_t __user
*, sgid
)
869 const struct cred
*cred
= current_cred();
872 if (!(retval
= put_user(cred
->gid
, rgid
)) &&
873 !(retval
= put_user(cred
->egid
, egid
)))
874 retval
= put_user(cred
->sgid
, sgid
);
881 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
882 * is used for "access()" and for the NFS daemon (letting nfsd stay at
883 * whatever uid it wants to). It normally shadows "euid", except when
884 * explicitly set by setfsuid() or for access..
886 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
888 const struct cred
*old
;
892 new = prepare_creds();
894 return current_fsuid();
895 old
= current_cred();
896 old_fsuid
= old
->fsuid
;
898 if (uid
== old
->uid
|| uid
== old
->euid
||
899 uid
== old
->suid
|| uid
== old
->fsuid
||
900 nsown_capable(CAP_SETUID
)) {
901 if (uid
!= old_fsuid
) {
903 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
917 * Samma på svenska..
919 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
921 const struct cred
*old
;
925 new = prepare_creds();
927 return current_fsgid();
928 old
= current_cred();
929 old_fsgid
= old
->fsgid
;
931 if (gid
== old
->gid
|| gid
== old
->egid
||
932 gid
== old
->sgid
|| gid
== old
->fsgid
||
933 nsown_capable(CAP_SETGID
)) {
934 if (gid
!= old_fsgid
) {
948 void do_sys_times(struct tms
*tms
)
950 cputime_t tgutime
, tgstime
, cutime
, cstime
;
952 spin_lock_irq(¤t
->sighand
->siglock
);
953 thread_group_times(current
, &tgutime
, &tgstime
);
954 cutime
= current
->signal
->cutime
;
955 cstime
= current
->signal
->cstime
;
956 spin_unlock_irq(¤t
->sighand
->siglock
);
957 tms
->tms_utime
= cputime_to_clock_t(tgutime
);
958 tms
->tms_stime
= cputime_to_clock_t(tgstime
);
959 tms
->tms_cutime
= cputime_to_clock_t(cutime
);
960 tms
->tms_cstime
= cputime_to_clock_t(cstime
);
963 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
969 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
972 force_successful_syscall_return();
973 return (long) jiffies_64_to_clock_t(get_jiffies_64());
977 * This needs some heavy checking ...
978 * I just haven't the stomach for it. I also don't fully
979 * understand sessions/pgrp etc. Let somebody who does explain it.
981 * OK, I think I have the protection semantics right.... this is really
982 * only important on a multi-user system anyway, to make sure one user
983 * can't send a signal to a process owned by another. -TYT, 12/12/91
985 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
988 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
990 struct task_struct
*p
;
991 struct task_struct
*group_leader
= current
->group_leader
;
996 pid
= task_pid_vnr(group_leader
);
1003 /* From this point forward we keep holding onto the tasklist lock
1004 * so that our parent does not change from under us. -DaveM
1006 write_lock_irq(&tasklist_lock
);
1009 p
= find_task_by_vpid(pid
);
1014 if (!thread_group_leader(p
))
1017 if (same_thread_group(p
->real_parent
, group_leader
)) {
1019 if (task_session(p
) != task_session(group_leader
))
1026 if (p
!= group_leader
)
1031 if (p
->signal
->leader
)
1036 struct task_struct
*g
;
1038 pgrp
= find_vpid(pgid
);
1039 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1040 if (!g
|| task_session(g
) != task_session(group_leader
))
1044 err
= security_task_setpgid(p
, pgid
);
1048 if (task_pgrp(p
) != pgrp
)
1049 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1053 /* All paths lead to here, thus we are safe. -DaveM */
1054 write_unlock_irq(&tasklist_lock
);
1059 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1061 struct task_struct
*p
;
1067 grp
= task_pgrp(current
);
1070 p
= find_task_by_vpid(pid
);
1077 retval
= security_task_getpgid(p
);
1081 retval
= pid_vnr(grp
);
1087 #ifdef __ARCH_WANT_SYS_GETPGRP
1089 SYSCALL_DEFINE0(getpgrp
)
1091 return sys_getpgid(0);
1096 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1098 struct task_struct
*p
;
1104 sid
= task_session(current
);
1107 p
= find_task_by_vpid(pid
);
1110 sid
= task_session(p
);
1114 retval
= security_task_getsid(p
);
1118 retval
= pid_vnr(sid
);
1124 SYSCALL_DEFINE0(setsid
)
1126 struct task_struct
*group_leader
= current
->group_leader
;
1127 struct pid
*sid
= task_pid(group_leader
);
1128 pid_t session
= pid_vnr(sid
);
1131 write_lock_irq(&tasklist_lock
);
1132 /* Fail if I am already a session leader */
1133 if (group_leader
->signal
->leader
)
1136 /* Fail if a process group id already exists that equals the
1137 * proposed session id.
1139 if (pid_task(sid
, PIDTYPE_PGID
))
1142 group_leader
->signal
->leader
= 1;
1143 __set_special_pids(sid
);
1145 proc_clear_tty(group_leader
);
1149 write_unlock_irq(&tasklist_lock
);
1151 proc_sid_connector(group_leader
);
1152 sched_autogroup_create_attach(group_leader
);
1157 DECLARE_RWSEM(uts_sem
);
1159 #ifdef COMPAT_UTS_MACHINE
1160 #define override_architecture(name) \
1161 (personality(current->personality) == PER_LINUX32 && \
1162 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1163 sizeof(COMPAT_UTS_MACHINE)))
1165 #define override_architecture(name) 0
1169 * Work around broken programs that cannot handle "Linux 3.0".
1170 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1172 static int override_release(char __user
*release
, int len
)
1177 if (current
->personality
& UNAME26
) {
1178 char *rest
= UTS_RELEASE
;
1183 if (*rest
== '.' && ++ndots
>= 3)
1185 if (!isdigit(*rest
) && *rest
!= '.')
1189 v
= ((LINUX_VERSION_CODE
>> 8) & 0xff) + 40;
1190 snprintf(buf
, len
, "2.6.%u%s", v
, rest
);
1191 ret
= copy_to_user(release
, buf
, len
);
1196 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1200 down_read(&uts_sem
);
1201 if (copy_to_user(name
, utsname(), sizeof *name
))
1205 if (!errno
&& override_release(name
->release
, sizeof(name
->release
)))
1207 if (!errno
&& override_architecture(name
))
1212 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1216 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1223 down_read(&uts_sem
);
1224 if (copy_to_user(name
, utsname(), sizeof(*name
)))
1228 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1230 if (!error
&& override_architecture(name
))
1235 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1241 if (!access_ok(VERIFY_WRITE
, name
, sizeof(struct oldold_utsname
)))
1244 down_read(&uts_sem
);
1245 error
= __copy_to_user(&name
->sysname
, &utsname()->sysname
,
1247 error
|= __put_user(0, name
->sysname
+ __OLD_UTS_LEN
);
1248 error
|= __copy_to_user(&name
->nodename
, &utsname()->nodename
,
1250 error
|= __put_user(0, name
->nodename
+ __OLD_UTS_LEN
);
1251 error
|= __copy_to_user(&name
->release
, &utsname()->release
,
1253 error
|= __put_user(0, name
->release
+ __OLD_UTS_LEN
);
1254 error
|= __copy_to_user(&name
->version
, &utsname()->version
,
1256 error
|= __put_user(0, name
->version
+ __OLD_UTS_LEN
);
1257 error
|= __copy_to_user(&name
->machine
, &utsname()->machine
,
1259 error
|= __put_user(0, name
->machine
+ __OLD_UTS_LEN
);
1262 if (!error
&& override_architecture(name
))
1264 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1266 return error
? -EFAULT
: 0;
1270 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1273 char tmp
[__NEW_UTS_LEN
];
1275 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1278 if (len
< 0 || len
> __NEW_UTS_LEN
)
1280 down_write(&uts_sem
);
1282 if (!copy_from_user(tmp
, name
, len
)) {
1283 struct new_utsname
*u
= utsname();
1285 memcpy(u
->nodename
, tmp
, len
);
1286 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1289 uts_proc_notify(UTS_PROC_HOSTNAME
);
1294 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1296 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1299 struct new_utsname
*u
;
1303 down_read(&uts_sem
);
1305 i
= 1 + strlen(u
->nodename
);
1309 if (copy_to_user(name
, u
->nodename
, i
))
1318 * Only setdomainname; getdomainname can be implemented by calling
1321 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1324 char tmp
[__NEW_UTS_LEN
];
1326 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1328 if (len
< 0 || len
> __NEW_UTS_LEN
)
1331 down_write(&uts_sem
);
1333 if (!copy_from_user(tmp
, name
, len
)) {
1334 struct new_utsname
*u
= utsname();
1336 memcpy(u
->domainname
, tmp
, len
);
1337 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1340 uts_proc_notify(UTS_PROC_DOMAINNAME
);
1345 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1347 struct rlimit value
;
1350 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1352 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1357 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1360 * Back compatibility for getrlimit. Needed for some apps.
1363 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1364 struct rlimit __user
*, rlim
)
1367 if (resource
>= RLIM_NLIMITS
)
1370 task_lock(current
->group_leader
);
1371 x
= current
->signal
->rlim
[resource
];
1372 task_unlock(current
->group_leader
);
1373 if (x
.rlim_cur
> 0x7FFFFFFF)
1374 x
.rlim_cur
= 0x7FFFFFFF;
1375 if (x
.rlim_max
> 0x7FFFFFFF)
1376 x
.rlim_max
= 0x7FFFFFFF;
1377 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1382 static inline bool rlim64_is_infinity(__u64 rlim64
)
1384 #if BITS_PER_LONG < 64
1385 return rlim64
>= ULONG_MAX
;
1387 return rlim64
== RLIM64_INFINITY
;
1391 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1393 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1394 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1396 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1397 if (rlim
->rlim_max
== RLIM_INFINITY
)
1398 rlim64
->rlim_max
= RLIM64_INFINITY
;
1400 rlim64
->rlim_max
= rlim
->rlim_max
;
1403 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1405 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1406 rlim
->rlim_cur
= RLIM_INFINITY
;
1408 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1409 if (rlim64_is_infinity(rlim64
->rlim_max
))
1410 rlim
->rlim_max
= RLIM_INFINITY
;
1412 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1415 /* make sure you are allowed to change @tsk limits before calling this */
1416 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1417 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1419 struct rlimit
*rlim
;
1422 if (resource
>= RLIM_NLIMITS
)
1425 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1427 if (resource
== RLIMIT_NOFILE
&&
1428 new_rlim
->rlim_max
> sysctl_nr_open
)
1432 /* protect tsk->signal and tsk->sighand from disappearing */
1433 read_lock(&tasklist_lock
);
1434 if (!tsk
->sighand
) {
1439 rlim
= tsk
->signal
->rlim
+ resource
;
1440 task_lock(tsk
->group_leader
);
1442 /* Keep the capable check against init_user_ns until
1443 cgroups can contain all limits */
1444 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1445 !capable(CAP_SYS_RESOURCE
))
1448 retval
= security_task_setrlimit(tsk
->group_leader
,
1449 resource
, new_rlim
);
1450 if (resource
== RLIMIT_CPU
&& new_rlim
->rlim_cur
== 0) {
1452 * The caller is asking for an immediate RLIMIT_CPU
1453 * expiry. But we use the zero value to mean "it was
1454 * never set". So let's cheat and make it one second
1457 new_rlim
->rlim_cur
= 1;
1466 task_unlock(tsk
->group_leader
);
1469 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1470 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1471 * very long-standing error, and fixing it now risks breakage of
1472 * applications, so we live with it
1474 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1475 new_rlim
->rlim_cur
!= RLIM_INFINITY
)
1476 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1478 read_unlock(&tasklist_lock
);
1482 /* rcu lock must be held */
1483 static int check_prlimit_permission(struct task_struct
*task
)
1485 const struct cred
*cred
= current_cred(), *tcred
;
1487 if (current
== task
)
1490 tcred
= __task_cred(task
);
1491 if (cred
->user
->user_ns
== tcred
->user
->user_ns
&&
1492 (cred
->uid
== tcred
->euid
&&
1493 cred
->uid
== tcred
->suid
&&
1494 cred
->uid
== tcred
->uid
&&
1495 cred
->gid
== tcred
->egid
&&
1496 cred
->gid
== tcred
->sgid
&&
1497 cred
->gid
== tcred
->gid
))
1499 if (ns_capable(tcred
->user
->user_ns
, CAP_SYS_RESOURCE
))
1505 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1506 const struct rlimit64 __user
*, new_rlim
,
1507 struct rlimit64 __user
*, old_rlim
)
1509 struct rlimit64 old64
, new64
;
1510 struct rlimit old
, new;
1511 struct task_struct
*tsk
;
1515 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1517 rlim64_to_rlim(&new64
, &new);
1521 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1526 ret
= check_prlimit_permission(tsk
);
1531 get_task_struct(tsk
);
1534 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1535 old_rlim
? &old
: NULL
);
1537 if (!ret
&& old_rlim
) {
1538 rlim_to_rlim64(&old
, &old64
);
1539 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1543 put_task_struct(tsk
);
1547 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1549 struct rlimit new_rlim
;
1551 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1553 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1557 * It would make sense to put struct rusage in the task_struct,
1558 * except that would make the task_struct be *really big*. After
1559 * task_struct gets moved into malloc'ed memory, it would
1560 * make sense to do this. It will make moving the rest of the information
1561 * a lot simpler! (Which we're not doing right now because we're not
1562 * measuring them yet).
1564 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1565 * races with threads incrementing their own counters. But since word
1566 * reads are atomic, we either get new values or old values and we don't
1567 * care which for the sums. We always take the siglock to protect reading
1568 * the c* fields from p->signal from races with exit.c updating those
1569 * fields when reaping, so a sample either gets all the additions of a
1570 * given child after it's reaped, or none so this sample is before reaping.
1573 * We need to take the siglock for CHILDEREN, SELF and BOTH
1574 * for the cases current multithreaded, non-current single threaded
1575 * non-current multithreaded. Thread traversal is now safe with
1577 * Strictly speaking, we donot need to take the siglock if we are current and
1578 * single threaded, as no one else can take our signal_struct away, no one
1579 * else can reap the children to update signal->c* counters, and no one else
1580 * can race with the signal-> fields. If we do not take any lock, the
1581 * signal-> fields could be read out of order while another thread was just
1582 * exiting. So we should place a read memory barrier when we avoid the lock.
1583 * On the writer side, write memory barrier is implied in __exit_signal
1584 * as __exit_signal releases the siglock spinlock after updating the signal->
1585 * fields. But we don't do this yet to keep things simple.
1589 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1591 r
->ru_nvcsw
+= t
->nvcsw
;
1592 r
->ru_nivcsw
+= t
->nivcsw
;
1593 r
->ru_minflt
+= t
->min_flt
;
1594 r
->ru_majflt
+= t
->maj_flt
;
1595 r
->ru_inblock
+= task_io_get_inblock(t
);
1596 r
->ru_oublock
+= task_io_get_oublock(t
);
1599 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1601 struct task_struct
*t
;
1602 unsigned long flags
;
1603 cputime_t tgutime
, tgstime
, utime
, stime
;
1604 unsigned long maxrss
= 0;
1606 memset((char *) r
, 0, sizeof *r
);
1607 utime
= stime
= cputime_zero
;
1609 if (who
== RUSAGE_THREAD
) {
1610 task_times(current
, &utime
, &stime
);
1611 accumulate_thread_rusage(p
, r
);
1612 maxrss
= p
->signal
->maxrss
;
1616 if (!lock_task_sighand(p
, &flags
))
1621 case RUSAGE_CHILDREN
:
1622 utime
= p
->signal
->cutime
;
1623 stime
= p
->signal
->cstime
;
1624 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1625 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1626 r
->ru_minflt
= p
->signal
->cmin_flt
;
1627 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1628 r
->ru_inblock
= p
->signal
->cinblock
;
1629 r
->ru_oublock
= p
->signal
->coublock
;
1630 maxrss
= p
->signal
->cmaxrss
;
1632 if (who
== RUSAGE_CHILDREN
)
1636 thread_group_times(p
, &tgutime
, &tgstime
);
1637 utime
= cputime_add(utime
, tgutime
);
1638 stime
= cputime_add(stime
, tgstime
);
1639 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1640 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1641 r
->ru_minflt
+= p
->signal
->min_flt
;
1642 r
->ru_majflt
+= p
->signal
->maj_flt
;
1643 r
->ru_inblock
+= p
->signal
->inblock
;
1644 r
->ru_oublock
+= p
->signal
->oublock
;
1645 if (maxrss
< p
->signal
->maxrss
)
1646 maxrss
= p
->signal
->maxrss
;
1649 accumulate_thread_rusage(t
, r
);
1657 unlock_task_sighand(p
, &flags
);
1660 cputime_to_timeval(utime
, &r
->ru_utime
);
1661 cputime_to_timeval(stime
, &r
->ru_stime
);
1663 if (who
!= RUSAGE_CHILDREN
) {
1664 struct mm_struct
*mm
= get_task_mm(p
);
1666 setmax_mm_hiwater_rss(&maxrss
, mm
);
1670 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1673 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1676 k_getrusage(p
, who
, &r
);
1677 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1680 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1682 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1683 who
!= RUSAGE_THREAD
)
1685 return getrusage(current
, who
, ru
);
1688 SYSCALL_DEFINE1(umask
, int, mask
)
1690 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1694 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
1695 unsigned long, arg4
, unsigned long, arg5
)
1697 struct task_struct
*me
= current
;
1698 unsigned char comm
[sizeof(me
->comm
)];
1701 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1702 if (error
!= -ENOSYS
)
1707 case PR_SET_PDEATHSIG
:
1708 if (!valid_signal(arg2
)) {
1712 me
->pdeath_signal
= arg2
;
1715 case PR_GET_PDEATHSIG
:
1716 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
1718 case PR_GET_DUMPABLE
:
1719 error
= get_dumpable(me
->mm
);
1721 case PR_SET_DUMPABLE
:
1722 if (arg2
< 0 || arg2
> 1) {
1726 set_dumpable(me
->mm
, arg2
);
1730 case PR_SET_UNALIGN
:
1731 error
= SET_UNALIGN_CTL(me
, arg2
);
1733 case PR_GET_UNALIGN
:
1734 error
= GET_UNALIGN_CTL(me
, arg2
);
1737 error
= SET_FPEMU_CTL(me
, arg2
);
1740 error
= GET_FPEMU_CTL(me
, arg2
);
1743 error
= SET_FPEXC_CTL(me
, arg2
);
1746 error
= GET_FPEXC_CTL(me
, arg2
);
1749 error
= PR_TIMING_STATISTICAL
;
1752 if (arg2
!= PR_TIMING_STATISTICAL
)
1759 comm
[sizeof(me
->comm
)-1] = 0;
1760 if (strncpy_from_user(comm
, (char __user
*)arg2
,
1761 sizeof(me
->comm
) - 1) < 0)
1763 set_task_comm(me
, comm
);
1764 proc_comm_connector(me
);
1767 get_task_comm(comm
, me
);
1768 if (copy_to_user((char __user
*)arg2
, comm
,
1773 error
= GET_ENDIAN(me
, arg2
);
1776 error
= SET_ENDIAN(me
, arg2
);
1779 case PR_GET_SECCOMP
:
1780 error
= prctl_get_seccomp();
1782 case PR_SET_SECCOMP
:
1783 error
= prctl_set_seccomp(arg2
);
1786 error
= GET_TSC_CTL(arg2
);
1789 error
= SET_TSC_CTL(arg2
);
1791 case PR_TASK_PERF_EVENTS_DISABLE
:
1792 error
= perf_event_task_disable();
1794 case PR_TASK_PERF_EVENTS_ENABLE
:
1795 error
= perf_event_task_enable();
1797 case PR_GET_TIMERSLACK
:
1798 error
= current
->timer_slack_ns
;
1800 case PR_SET_TIMERSLACK
:
1802 current
->timer_slack_ns
=
1803 current
->default_timer_slack_ns
;
1805 current
->timer_slack_ns
= arg2
;
1812 case PR_MCE_KILL_CLEAR
:
1815 current
->flags
&= ~PF_MCE_PROCESS
;
1817 case PR_MCE_KILL_SET
:
1818 current
->flags
|= PF_MCE_PROCESS
;
1819 if (arg3
== PR_MCE_KILL_EARLY
)
1820 current
->flags
|= PF_MCE_EARLY
;
1821 else if (arg3
== PR_MCE_KILL_LATE
)
1822 current
->flags
&= ~PF_MCE_EARLY
;
1823 else if (arg3
== PR_MCE_KILL_DEFAULT
)
1825 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
1834 case PR_MCE_KILL_GET
:
1835 if (arg2
| arg3
| arg4
| arg5
)
1837 if (current
->flags
& PF_MCE_PROCESS
)
1838 error
= (current
->flags
& PF_MCE_EARLY
) ?
1839 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
1841 error
= PR_MCE_KILL_DEFAULT
;
1850 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
1851 struct getcpu_cache __user
*, unused
)
1854 int cpu
= raw_smp_processor_id();
1856 err
|= put_user(cpu
, cpup
);
1858 err
|= put_user(cpu_to_node(cpu
), nodep
);
1859 return err
? -EFAULT
: 0;
1862 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
1864 static void argv_cleanup(struct subprocess_info
*info
)
1866 argv_free(info
->argv
);
1870 * orderly_poweroff - Trigger an orderly system poweroff
1871 * @force: force poweroff if command execution fails
1873 * This may be called from any context to trigger a system shutdown.
1874 * If the orderly shutdown fails, it will force an immediate shutdown.
1876 int orderly_poweroff(bool force
)
1879 char **argv
= argv_split(GFP_ATOMIC
, poweroff_cmd
, &argc
);
1880 static char *envp
[] = {
1882 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1886 struct subprocess_info
*info
;
1889 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
1890 __func__
, poweroff_cmd
);
1894 info
= call_usermodehelper_setup(argv
[0], argv
, envp
, GFP_ATOMIC
);
1900 call_usermodehelper_setfns(info
, NULL
, argv_cleanup
, NULL
);
1902 ret
= call_usermodehelper_exec(info
, UMH_NO_WAIT
);
1906 printk(KERN_WARNING
"Failed to start orderly shutdown: "
1907 "forcing the issue\n");
1909 /* I guess this should try to kick off some daemon to
1910 sync and poweroff asap. Or not even bother syncing
1911 if we're doing an emergency shutdown? */
1918 EXPORT_SYMBOL_GPL(orderly_poweroff
);