moxa: first pass at termios reporting
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / shmem.c
blob85bed948fafc8aecb22daf1f68023b91080a30f4
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * This file is released under the GPL.
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
32 #include <linux/mm.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
53 #include <asm/uaccess.h>
54 #include <asm/div64.h>
55 #include <asm/pgtable.h>
57 /* This magic number is used in glibc for posix shared memory */
58 #define TMPFS_MAGIC 0x01021994
60 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
64 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
67 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
69 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70 #define SHMEM_PAGEIN VM_READ
71 #define SHMEM_TRUNCATE VM_WRITE
73 /* Definition to limit shmem_truncate's steps between cond_rescheds */
74 #define LATENCY_LIMIT 64
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
79 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80 enum sgp_type {
81 SGP_READ, /* don't exceed i_size, don't allocate page */
82 SGP_CACHE, /* don't exceed i_size, may allocate page */
83 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
84 SGP_WRITE, /* may exceed i_size, may allocate page */
87 static int shmem_getpage(struct inode *inode, unsigned long idx,
88 struct page **pagep, enum sgp_type sgp, int *type);
90 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
93 * The above definition of ENTRIES_PER_PAGE, and the use of
94 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
95 * might be reconsidered if it ever diverges from PAGE_SIZE.
97 * Mobility flags are masked out as swap vectors cannot move
99 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
100 PAGE_CACHE_SHIFT-PAGE_SHIFT);
103 static inline void shmem_dir_free(struct page *page)
105 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
108 static struct page **shmem_dir_map(struct page *page)
110 return (struct page **)kmap_atomic(page, KM_USER0);
113 static inline void shmem_dir_unmap(struct page **dir)
115 kunmap_atomic(dir, KM_USER0);
118 static swp_entry_t *shmem_swp_map(struct page *page)
120 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
123 static inline void shmem_swp_balance_unmap(void)
126 * When passing a pointer to an i_direct entry, to code which
127 * also handles indirect entries and so will shmem_swp_unmap,
128 * we must arrange for the preempt count to remain in balance.
129 * What kmap_atomic of a lowmem page does depends on config
130 * and architecture, so pretend to kmap_atomic some lowmem page.
132 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
135 static inline void shmem_swp_unmap(swp_entry_t *entry)
137 kunmap_atomic(entry, KM_USER1);
140 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
142 return sb->s_fs_info;
146 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
147 * for shared memory and for shared anonymous (/dev/zero) mappings
148 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
149 * consistent with the pre-accounting of private mappings ...
151 static inline int shmem_acct_size(unsigned long flags, loff_t size)
153 return (flags & VM_ACCOUNT)?
154 security_vm_enough_memory(VM_ACCT(size)): 0;
157 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
159 if (flags & VM_ACCOUNT)
160 vm_unacct_memory(VM_ACCT(size));
164 * ... whereas tmpfs objects are accounted incrementally as
165 * pages are allocated, in order to allow huge sparse files.
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
169 static inline int shmem_acct_block(unsigned long flags)
171 return (flags & VM_ACCOUNT)?
172 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
175 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
177 if (!(flags & VM_ACCOUNT))
178 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
181 static const struct super_operations shmem_ops;
182 static const struct address_space_operations shmem_aops;
183 static const struct file_operations shmem_file_operations;
184 static const struct inode_operations shmem_inode_operations;
185 static const struct inode_operations shmem_dir_inode_operations;
186 static const struct inode_operations shmem_special_inode_operations;
187 static struct vm_operations_struct shmem_vm_ops;
189 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
190 .ra_pages = 0, /* No readahead */
191 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
192 .unplug_io_fn = default_unplug_io_fn,
195 static LIST_HEAD(shmem_swaplist);
196 static DEFINE_MUTEX(shmem_swaplist_mutex);
198 static void shmem_free_blocks(struct inode *inode, long pages)
200 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
201 if (sbinfo->max_blocks) {
202 spin_lock(&sbinfo->stat_lock);
203 sbinfo->free_blocks += pages;
204 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
205 spin_unlock(&sbinfo->stat_lock);
209 static int shmem_reserve_inode(struct super_block *sb)
211 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
212 if (sbinfo->max_inodes) {
213 spin_lock(&sbinfo->stat_lock);
214 if (!sbinfo->free_inodes) {
215 spin_unlock(&sbinfo->stat_lock);
216 return -ENOSPC;
218 sbinfo->free_inodes--;
219 spin_unlock(&sbinfo->stat_lock);
221 return 0;
224 static void shmem_free_inode(struct super_block *sb)
226 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
227 if (sbinfo->max_inodes) {
228 spin_lock(&sbinfo->stat_lock);
229 sbinfo->free_inodes++;
230 spin_unlock(&sbinfo->stat_lock);
235 * shmem_recalc_inode - recalculate the size of an inode
237 * @inode: inode to recalc
239 * We have to calculate the free blocks since the mm can drop
240 * undirtied hole pages behind our back.
242 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
243 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
245 * It has to be called with the spinlock held.
247 static void shmem_recalc_inode(struct inode *inode)
249 struct shmem_inode_info *info = SHMEM_I(inode);
250 long freed;
252 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
253 if (freed > 0) {
254 info->alloced -= freed;
255 shmem_unacct_blocks(info->flags, freed);
256 shmem_free_blocks(inode, freed);
261 * shmem_swp_entry - find the swap vector position in the info structure
263 * @info: info structure for the inode
264 * @index: index of the page to find
265 * @page: optional page to add to the structure. Has to be preset to
266 * all zeros
268 * If there is no space allocated yet it will return NULL when
269 * page is NULL, else it will use the page for the needed block,
270 * setting it to NULL on return to indicate that it has been used.
272 * The swap vector is organized the following way:
274 * There are SHMEM_NR_DIRECT entries directly stored in the
275 * shmem_inode_info structure. So small files do not need an addional
276 * allocation.
278 * For pages with index > SHMEM_NR_DIRECT there is the pointer
279 * i_indirect which points to a page which holds in the first half
280 * doubly indirect blocks, in the second half triple indirect blocks:
282 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
283 * following layout (for SHMEM_NR_DIRECT == 16):
285 * i_indirect -> dir --> 16-19
286 * | +-> 20-23
288 * +-->dir2 --> 24-27
289 * | +-> 28-31
290 * | +-> 32-35
291 * | +-> 36-39
293 * +-->dir3 --> 40-43
294 * +-> 44-47
295 * +-> 48-51
296 * +-> 52-55
298 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
300 unsigned long offset;
301 struct page **dir;
302 struct page *subdir;
304 if (index < SHMEM_NR_DIRECT) {
305 shmem_swp_balance_unmap();
306 return info->i_direct+index;
308 if (!info->i_indirect) {
309 if (page) {
310 info->i_indirect = *page;
311 *page = NULL;
313 return NULL; /* need another page */
316 index -= SHMEM_NR_DIRECT;
317 offset = index % ENTRIES_PER_PAGE;
318 index /= ENTRIES_PER_PAGE;
319 dir = shmem_dir_map(info->i_indirect);
321 if (index >= ENTRIES_PER_PAGE/2) {
322 index -= ENTRIES_PER_PAGE/2;
323 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
324 index %= ENTRIES_PER_PAGE;
325 subdir = *dir;
326 if (!subdir) {
327 if (page) {
328 *dir = *page;
329 *page = NULL;
331 shmem_dir_unmap(dir);
332 return NULL; /* need another page */
334 shmem_dir_unmap(dir);
335 dir = shmem_dir_map(subdir);
338 dir += index;
339 subdir = *dir;
340 if (!subdir) {
341 if (!page || !(subdir = *page)) {
342 shmem_dir_unmap(dir);
343 return NULL; /* need a page */
345 *dir = subdir;
346 *page = NULL;
348 shmem_dir_unmap(dir);
349 return shmem_swp_map(subdir) + offset;
352 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
354 long incdec = value? 1: -1;
356 entry->val = value;
357 info->swapped += incdec;
358 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
359 struct page *page = kmap_atomic_to_page(entry);
360 set_page_private(page, page_private(page) + incdec);
365 * shmem_swp_alloc - get the position of the swap entry for the page.
366 * If it does not exist allocate the entry.
368 * @info: info structure for the inode
369 * @index: index of the page to find
370 * @sgp: check and recheck i_size? skip allocation?
372 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
374 struct inode *inode = &info->vfs_inode;
375 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
376 struct page *page = NULL;
377 swp_entry_t *entry;
379 if (sgp != SGP_WRITE &&
380 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
381 return ERR_PTR(-EINVAL);
383 while (!(entry = shmem_swp_entry(info, index, &page))) {
384 if (sgp == SGP_READ)
385 return shmem_swp_map(ZERO_PAGE(0));
387 * Test free_blocks against 1 not 0, since we have 1 data
388 * page (and perhaps indirect index pages) yet to allocate:
389 * a waste to allocate index if we cannot allocate data.
391 if (sbinfo->max_blocks) {
392 spin_lock(&sbinfo->stat_lock);
393 if (sbinfo->free_blocks <= 1) {
394 spin_unlock(&sbinfo->stat_lock);
395 return ERR_PTR(-ENOSPC);
397 sbinfo->free_blocks--;
398 inode->i_blocks += BLOCKS_PER_PAGE;
399 spin_unlock(&sbinfo->stat_lock);
402 spin_unlock(&info->lock);
403 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
404 if (page)
405 set_page_private(page, 0);
406 spin_lock(&info->lock);
408 if (!page) {
409 shmem_free_blocks(inode, 1);
410 return ERR_PTR(-ENOMEM);
412 if (sgp != SGP_WRITE &&
413 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
414 entry = ERR_PTR(-EINVAL);
415 break;
417 if (info->next_index <= index)
418 info->next_index = index + 1;
420 if (page) {
421 /* another task gave its page, or truncated the file */
422 shmem_free_blocks(inode, 1);
423 shmem_dir_free(page);
425 if (info->next_index <= index && !IS_ERR(entry))
426 info->next_index = index + 1;
427 return entry;
431 * shmem_free_swp - free some swap entries in a directory
433 * @dir: pointer to the directory
434 * @edir: pointer after last entry of the directory
435 * @punch_lock: pointer to spinlock when needed for the holepunch case
437 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
438 spinlock_t *punch_lock)
440 spinlock_t *punch_unlock = NULL;
441 swp_entry_t *ptr;
442 int freed = 0;
444 for (ptr = dir; ptr < edir; ptr++) {
445 if (ptr->val) {
446 if (unlikely(punch_lock)) {
447 punch_unlock = punch_lock;
448 punch_lock = NULL;
449 spin_lock(punch_unlock);
450 if (!ptr->val)
451 continue;
453 free_swap_and_cache(*ptr);
454 *ptr = (swp_entry_t){0};
455 freed++;
458 if (punch_unlock)
459 spin_unlock(punch_unlock);
460 return freed;
463 static int shmem_map_and_free_swp(struct page *subdir, int offset,
464 int limit, struct page ***dir, spinlock_t *punch_lock)
466 swp_entry_t *ptr;
467 int freed = 0;
469 ptr = shmem_swp_map(subdir);
470 for (; offset < limit; offset += LATENCY_LIMIT) {
471 int size = limit - offset;
472 if (size > LATENCY_LIMIT)
473 size = LATENCY_LIMIT;
474 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
475 punch_lock);
476 if (need_resched()) {
477 shmem_swp_unmap(ptr);
478 if (*dir) {
479 shmem_dir_unmap(*dir);
480 *dir = NULL;
482 cond_resched();
483 ptr = shmem_swp_map(subdir);
486 shmem_swp_unmap(ptr);
487 return freed;
490 static void shmem_free_pages(struct list_head *next)
492 struct page *page;
493 int freed = 0;
495 do {
496 page = container_of(next, struct page, lru);
497 next = next->next;
498 shmem_dir_free(page);
499 freed++;
500 if (freed >= LATENCY_LIMIT) {
501 cond_resched();
502 freed = 0;
504 } while (next);
507 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
509 struct shmem_inode_info *info = SHMEM_I(inode);
510 unsigned long idx;
511 unsigned long size;
512 unsigned long limit;
513 unsigned long stage;
514 unsigned long diroff;
515 struct page **dir;
516 struct page *topdir;
517 struct page *middir;
518 struct page *subdir;
519 swp_entry_t *ptr;
520 LIST_HEAD(pages_to_free);
521 long nr_pages_to_free = 0;
522 long nr_swaps_freed = 0;
523 int offset;
524 int freed;
525 int punch_hole;
526 spinlock_t *needs_lock;
527 spinlock_t *punch_lock;
528 unsigned long upper_limit;
530 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
531 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
532 if (idx >= info->next_index)
533 return;
535 spin_lock(&info->lock);
536 info->flags |= SHMEM_TRUNCATE;
537 if (likely(end == (loff_t) -1)) {
538 limit = info->next_index;
539 upper_limit = SHMEM_MAX_INDEX;
540 info->next_index = idx;
541 needs_lock = NULL;
542 punch_hole = 0;
543 } else {
544 if (end + 1 >= inode->i_size) { /* we may free a little more */
545 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
546 PAGE_CACHE_SHIFT;
547 upper_limit = SHMEM_MAX_INDEX;
548 } else {
549 limit = (end + 1) >> PAGE_CACHE_SHIFT;
550 upper_limit = limit;
552 needs_lock = &info->lock;
553 punch_hole = 1;
556 topdir = info->i_indirect;
557 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
558 info->i_indirect = NULL;
559 nr_pages_to_free++;
560 list_add(&topdir->lru, &pages_to_free);
562 spin_unlock(&info->lock);
564 if (info->swapped && idx < SHMEM_NR_DIRECT) {
565 ptr = info->i_direct;
566 size = limit;
567 if (size > SHMEM_NR_DIRECT)
568 size = SHMEM_NR_DIRECT;
569 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
573 * If there are no indirect blocks or we are punching a hole
574 * below indirect blocks, nothing to be done.
576 if (!topdir || limit <= SHMEM_NR_DIRECT)
577 goto done2;
580 * The truncation case has already dropped info->lock, and we're safe
581 * because i_size and next_index have already been lowered, preventing
582 * access beyond. But in the punch_hole case, we still need to take
583 * the lock when updating the swap directory, because there might be
584 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
585 * shmem_writepage. However, whenever we find we can remove a whole
586 * directory page (not at the misaligned start or end of the range),
587 * we first NULLify its pointer in the level above, and then have no
588 * need to take the lock when updating its contents: needs_lock and
589 * punch_lock (either pointing to info->lock or NULL) manage this.
592 upper_limit -= SHMEM_NR_DIRECT;
593 limit -= SHMEM_NR_DIRECT;
594 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
595 offset = idx % ENTRIES_PER_PAGE;
596 idx -= offset;
598 dir = shmem_dir_map(topdir);
599 stage = ENTRIES_PER_PAGEPAGE/2;
600 if (idx < ENTRIES_PER_PAGEPAGE/2) {
601 middir = topdir;
602 diroff = idx/ENTRIES_PER_PAGE;
603 } else {
604 dir += ENTRIES_PER_PAGE/2;
605 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
606 while (stage <= idx)
607 stage += ENTRIES_PER_PAGEPAGE;
608 middir = *dir;
609 if (*dir) {
610 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
611 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
612 if (!diroff && !offset && upper_limit >= stage) {
613 if (needs_lock) {
614 spin_lock(needs_lock);
615 *dir = NULL;
616 spin_unlock(needs_lock);
617 needs_lock = NULL;
618 } else
619 *dir = NULL;
620 nr_pages_to_free++;
621 list_add(&middir->lru, &pages_to_free);
623 shmem_dir_unmap(dir);
624 dir = shmem_dir_map(middir);
625 } else {
626 diroff = 0;
627 offset = 0;
628 idx = stage;
632 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
633 if (unlikely(idx == stage)) {
634 shmem_dir_unmap(dir);
635 dir = shmem_dir_map(topdir) +
636 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
637 while (!*dir) {
638 dir++;
639 idx += ENTRIES_PER_PAGEPAGE;
640 if (idx >= limit)
641 goto done1;
643 stage = idx + ENTRIES_PER_PAGEPAGE;
644 middir = *dir;
645 if (punch_hole)
646 needs_lock = &info->lock;
647 if (upper_limit >= stage) {
648 if (needs_lock) {
649 spin_lock(needs_lock);
650 *dir = NULL;
651 spin_unlock(needs_lock);
652 needs_lock = NULL;
653 } else
654 *dir = NULL;
655 nr_pages_to_free++;
656 list_add(&middir->lru, &pages_to_free);
658 shmem_dir_unmap(dir);
659 cond_resched();
660 dir = shmem_dir_map(middir);
661 diroff = 0;
663 punch_lock = needs_lock;
664 subdir = dir[diroff];
665 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
666 if (needs_lock) {
667 spin_lock(needs_lock);
668 dir[diroff] = NULL;
669 spin_unlock(needs_lock);
670 punch_lock = NULL;
671 } else
672 dir[diroff] = NULL;
673 nr_pages_to_free++;
674 list_add(&subdir->lru, &pages_to_free);
676 if (subdir && page_private(subdir) /* has swap entries */) {
677 size = limit - idx;
678 if (size > ENTRIES_PER_PAGE)
679 size = ENTRIES_PER_PAGE;
680 freed = shmem_map_and_free_swp(subdir,
681 offset, size, &dir, punch_lock);
682 if (!dir)
683 dir = shmem_dir_map(middir);
684 nr_swaps_freed += freed;
685 if (offset || punch_lock) {
686 spin_lock(&info->lock);
687 set_page_private(subdir,
688 page_private(subdir) - freed);
689 spin_unlock(&info->lock);
690 } else
691 BUG_ON(page_private(subdir) != freed);
693 offset = 0;
695 done1:
696 shmem_dir_unmap(dir);
697 done2:
698 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
700 * Call truncate_inode_pages again: racing shmem_unuse_inode
701 * may have swizzled a page in from swap since vmtruncate or
702 * generic_delete_inode did it, before we lowered next_index.
703 * Also, though shmem_getpage checks i_size before adding to
704 * cache, no recheck after: so fix the narrow window there too.
706 * Recalling truncate_inode_pages_range and unmap_mapping_range
707 * every time for punch_hole (which never got a chance to clear
708 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
709 * yet hardly ever necessary: try to optimize them out later.
711 truncate_inode_pages_range(inode->i_mapping, start, end);
712 if (punch_hole)
713 unmap_mapping_range(inode->i_mapping, start,
714 end - start, 1);
717 spin_lock(&info->lock);
718 info->flags &= ~SHMEM_TRUNCATE;
719 info->swapped -= nr_swaps_freed;
720 if (nr_pages_to_free)
721 shmem_free_blocks(inode, nr_pages_to_free);
722 shmem_recalc_inode(inode);
723 spin_unlock(&info->lock);
726 * Empty swap vector directory pages to be freed?
728 if (!list_empty(&pages_to_free)) {
729 pages_to_free.prev->next = NULL;
730 shmem_free_pages(pages_to_free.next);
734 static void shmem_truncate(struct inode *inode)
736 shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
739 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
741 struct inode *inode = dentry->d_inode;
742 struct page *page = NULL;
743 int error;
745 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
746 if (attr->ia_size < inode->i_size) {
748 * If truncating down to a partial page, then
749 * if that page is already allocated, hold it
750 * in memory until the truncation is over, so
751 * truncate_partial_page cannnot miss it were
752 * it assigned to swap.
754 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
755 (void) shmem_getpage(inode,
756 attr->ia_size>>PAGE_CACHE_SHIFT,
757 &page, SGP_READ, NULL);
758 if (page)
759 unlock_page(page);
762 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
763 * detect if any pages might have been added to cache
764 * after truncate_inode_pages. But we needn't bother
765 * if it's being fully truncated to zero-length: the
766 * nrpages check is efficient enough in that case.
768 if (attr->ia_size) {
769 struct shmem_inode_info *info = SHMEM_I(inode);
770 spin_lock(&info->lock);
771 info->flags &= ~SHMEM_PAGEIN;
772 spin_unlock(&info->lock);
777 error = inode_change_ok(inode, attr);
778 if (!error)
779 error = inode_setattr(inode, attr);
780 #ifdef CONFIG_TMPFS_POSIX_ACL
781 if (!error && (attr->ia_valid & ATTR_MODE))
782 error = generic_acl_chmod(inode, &shmem_acl_ops);
783 #endif
784 if (page)
785 page_cache_release(page);
786 return error;
789 static void shmem_delete_inode(struct inode *inode)
791 struct shmem_inode_info *info = SHMEM_I(inode);
793 if (inode->i_op->truncate == shmem_truncate) {
794 truncate_inode_pages(inode->i_mapping, 0);
795 shmem_unacct_size(info->flags, inode->i_size);
796 inode->i_size = 0;
797 shmem_truncate(inode);
798 if (!list_empty(&info->swaplist)) {
799 mutex_lock(&shmem_swaplist_mutex);
800 list_del_init(&info->swaplist);
801 mutex_unlock(&shmem_swaplist_mutex);
804 BUG_ON(inode->i_blocks);
805 shmem_free_inode(inode->i_sb);
806 clear_inode(inode);
809 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
811 swp_entry_t *ptr;
813 for (ptr = dir; ptr < edir; ptr++) {
814 if (ptr->val == entry.val)
815 return ptr - dir;
817 return -1;
820 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
822 struct inode *inode;
823 unsigned long idx;
824 unsigned long size;
825 unsigned long limit;
826 unsigned long stage;
827 struct page **dir;
828 struct page *subdir;
829 swp_entry_t *ptr;
830 int offset;
831 int error;
833 idx = 0;
834 ptr = info->i_direct;
835 spin_lock(&info->lock);
836 if (!info->swapped) {
837 list_del_init(&info->swaplist);
838 goto lost2;
840 limit = info->next_index;
841 size = limit;
842 if (size > SHMEM_NR_DIRECT)
843 size = SHMEM_NR_DIRECT;
844 offset = shmem_find_swp(entry, ptr, ptr+size);
845 if (offset >= 0)
846 goto found;
847 if (!info->i_indirect)
848 goto lost2;
850 dir = shmem_dir_map(info->i_indirect);
851 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
853 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
854 if (unlikely(idx == stage)) {
855 shmem_dir_unmap(dir-1);
856 if (cond_resched_lock(&info->lock)) {
857 /* check it has not been truncated */
858 if (limit > info->next_index) {
859 limit = info->next_index;
860 if (idx >= limit)
861 goto lost2;
864 dir = shmem_dir_map(info->i_indirect) +
865 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
866 while (!*dir) {
867 dir++;
868 idx += ENTRIES_PER_PAGEPAGE;
869 if (idx >= limit)
870 goto lost1;
872 stage = idx + ENTRIES_PER_PAGEPAGE;
873 subdir = *dir;
874 shmem_dir_unmap(dir);
875 dir = shmem_dir_map(subdir);
877 subdir = *dir;
878 if (subdir && page_private(subdir)) {
879 ptr = shmem_swp_map(subdir);
880 size = limit - idx;
881 if (size > ENTRIES_PER_PAGE)
882 size = ENTRIES_PER_PAGE;
883 offset = shmem_find_swp(entry, ptr, ptr+size);
884 shmem_swp_unmap(ptr);
885 if (offset >= 0) {
886 shmem_dir_unmap(dir);
887 goto found;
891 lost1:
892 shmem_dir_unmap(dir-1);
893 lost2:
894 spin_unlock(&info->lock);
895 return 0;
896 found:
897 idx += offset;
898 inode = igrab(&info->vfs_inode);
899 spin_unlock(&info->lock);
902 * Move _head_ to start search for next from here.
903 * But be careful: shmem_delete_inode checks list_empty without taking
904 * mutex, and there's an instant in list_move_tail when info->swaplist
905 * would appear empty, if it were the only one on shmem_swaplist. We
906 * could avoid doing it if inode NULL; or use this minor optimization.
908 if (shmem_swaplist.next != &info->swaplist)
909 list_move_tail(&shmem_swaplist, &info->swaplist);
910 mutex_unlock(&shmem_swaplist_mutex);
912 error = 1;
913 if (!inode)
914 goto out;
915 /* Precharge page while we can wait, compensate afterwards */
916 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
917 if (error)
918 goto out;
919 error = radix_tree_preload(GFP_KERNEL);
920 if (error)
921 goto uncharge;
922 error = 1;
924 spin_lock(&info->lock);
925 ptr = shmem_swp_entry(info, idx, NULL);
926 if (ptr && ptr->val == entry.val)
927 error = add_to_page_cache(page, inode->i_mapping,
928 idx, GFP_NOWAIT);
929 if (error == -EEXIST) {
930 struct page *filepage = find_get_page(inode->i_mapping, idx);
931 error = 1;
932 if (filepage) {
934 * There might be a more uptodate page coming down
935 * from a stacked writepage: forget our swappage if so.
937 if (PageUptodate(filepage))
938 error = 0;
939 page_cache_release(filepage);
942 if (!error) {
943 delete_from_swap_cache(page);
944 set_page_dirty(page);
945 info->flags |= SHMEM_PAGEIN;
946 shmem_swp_set(info, ptr, 0);
947 swap_free(entry);
948 error = 1; /* not an error, but entry was found */
950 if (ptr)
951 shmem_swp_unmap(ptr);
952 spin_unlock(&info->lock);
953 radix_tree_preload_end();
954 uncharge:
955 mem_cgroup_uncharge_page(page);
956 out:
957 unlock_page(page);
958 page_cache_release(page);
959 iput(inode); /* allows for NULL */
960 return error;
964 * shmem_unuse() search for an eventually swapped out shmem page.
966 int shmem_unuse(swp_entry_t entry, struct page *page)
968 struct list_head *p, *next;
969 struct shmem_inode_info *info;
970 int found = 0;
972 mutex_lock(&shmem_swaplist_mutex);
973 list_for_each_safe(p, next, &shmem_swaplist) {
974 info = list_entry(p, struct shmem_inode_info, swaplist);
975 found = shmem_unuse_inode(info, entry, page);
976 cond_resched();
977 if (found)
978 goto out;
980 mutex_unlock(&shmem_swaplist_mutex);
981 out: return found; /* 0 or 1 or -ENOMEM */
985 * Move the page from the page cache to the swap cache.
987 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
989 struct shmem_inode_info *info;
990 swp_entry_t *entry, swap;
991 struct address_space *mapping;
992 unsigned long index;
993 struct inode *inode;
995 BUG_ON(!PageLocked(page));
996 mapping = page->mapping;
997 index = page->index;
998 inode = mapping->host;
999 info = SHMEM_I(inode);
1000 if (info->flags & VM_LOCKED)
1001 goto redirty;
1002 if (!total_swap_pages)
1003 goto redirty;
1006 * shmem_backing_dev_info's capabilities prevent regular writeback or
1007 * sync from ever calling shmem_writepage; but a stacking filesystem
1008 * may use the ->writepage of its underlying filesystem, in which case
1009 * tmpfs should write out to swap only in response to memory pressure,
1010 * and not for pdflush or sync. However, in those cases, we do still
1011 * want to check if there's a redundant swappage to be discarded.
1013 if (wbc->for_reclaim)
1014 swap = get_swap_page();
1015 else
1016 swap.val = 0;
1018 spin_lock(&info->lock);
1019 if (index >= info->next_index) {
1020 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1021 goto unlock;
1023 entry = shmem_swp_entry(info, index, NULL);
1024 if (entry->val) {
1026 * The more uptodate page coming down from a stacked
1027 * writepage should replace our old swappage.
1029 free_swap_and_cache(*entry);
1030 shmem_swp_set(info, entry, 0);
1032 shmem_recalc_inode(inode);
1034 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1035 remove_from_page_cache(page);
1036 shmem_swp_set(info, entry, swap.val);
1037 shmem_swp_unmap(entry);
1038 if (list_empty(&info->swaplist))
1039 inode = igrab(inode);
1040 else
1041 inode = NULL;
1042 spin_unlock(&info->lock);
1043 swap_duplicate(swap);
1044 BUG_ON(page_mapped(page));
1045 page_cache_release(page); /* pagecache ref */
1046 set_page_dirty(page);
1047 unlock_page(page);
1048 if (inode) {
1049 mutex_lock(&shmem_swaplist_mutex);
1050 /* move instead of add in case we're racing */
1051 list_move_tail(&info->swaplist, &shmem_swaplist);
1052 mutex_unlock(&shmem_swaplist_mutex);
1053 iput(inode);
1055 return 0;
1058 shmem_swp_unmap(entry);
1059 unlock:
1060 spin_unlock(&info->lock);
1061 swap_free(swap);
1062 redirty:
1063 set_page_dirty(page);
1064 if (wbc->for_reclaim)
1065 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1066 unlock_page(page);
1067 return 0;
1070 #ifdef CONFIG_NUMA
1071 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
1073 char *nodelist = strchr(value, ':');
1074 int err = 1;
1076 if (nodelist) {
1077 /* NUL-terminate policy string */
1078 *nodelist++ = '\0';
1079 if (nodelist_parse(nodelist, *policy_nodes))
1080 goto out;
1081 if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
1082 goto out;
1084 if (!strcmp(value, "default")) {
1085 *policy = MPOL_DEFAULT;
1086 /* Don't allow a nodelist */
1087 if (!nodelist)
1088 err = 0;
1089 } else if (!strcmp(value, "prefer")) {
1090 *policy = MPOL_PREFERRED;
1091 /* Insist on a nodelist of one node only */
1092 if (nodelist) {
1093 char *rest = nodelist;
1094 while (isdigit(*rest))
1095 rest++;
1096 if (!*rest)
1097 err = 0;
1099 } else if (!strcmp(value, "bind")) {
1100 *policy = MPOL_BIND;
1101 /* Insist on a nodelist */
1102 if (nodelist)
1103 err = 0;
1104 } else if (!strcmp(value, "interleave")) {
1105 *policy = MPOL_INTERLEAVE;
1107 * Default to online nodes with memory if no nodelist
1109 if (!nodelist)
1110 *policy_nodes = node_states[N_HIGH_MEMORY];
1111 err = 0;
1113 out:
1114 /* Restore string for error message */
1115 if (nodelist)
1116 *--nodelist = ':';
1117 return err;
1120 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1121 struct shmem_inode_info *info, unsigned long idx)
1123 struct vm_area_struct pvma;
1124 struct page *page;
1126 /* Create a pseudo vma that just contains the policy */
1127 pvma.vm_start = 0;
1128 pvma.vm_pgoff = idx;
1129 pvma.vm_ops = NULL;
1130 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1131 page = swapin_readahead(entry, gfp, &pvma, 0);
1132 mpol_free(pvma.vm_policy);
1133 return page;
1136 static struct page *shmem_alloc_page(gfp_t gfp,
1137 struct shmem_inode_info *info, unsigned long idx)
1139 struct vm_area_struct pvma;
1140 struct page *page;
1142 /* Create a pseudo vma that just contains the policy */
1143 pvma.vm_start = 0;
1144 pvma.vm_pgoff = idx;
1145 pvma.vm_ops = NULL;
1146 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1147 page = alloc_page_vma(gfp, &pvma, 0);
1148 mpol_free(pvma.vm_policy);
1149 return page;
1151 #else
1152 static inline int shmem_parse_mpol(char *value, int *policy,
1153 nodemask_t *policy_nodes)
1155 return 1;
1158 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1159 struct shmem_inode_info *info, unsigned long idx)
1161 return swapin_readahead(entry, gfp, NULL, 0);
1164 static inline struct page *shmem_alloc_page(gfp_t gfp,
1165 struct shmem_inode_info *info, unsigned long idx)
1167 return alloc_page(gfp);
1169 #endif
1172 * shmem_getpage - either get the page from swap or allocate a new one
1174 * If we allocate a new one we do not mark it dirty. That's up to the
1175 * vm. If we swap it in we mark it dirty since we also free the swap
1176 * entry since a page cannot live in both the swap and page cache
1178 static int shmem_getpage(struct inode *inode, unsigned long idx,
1179 struct page **pagep, enum sgp_type sgp, int *type)
1181 struct address_space *mapping = inode->i_mapping;
1182 struct shmem_inode_info *info = SHMEM_I(inode);
1183 struct shmem_sb_info *sbinfo;
1184 struct page *filepage = *pagep;
1185 struct page *swappage;
1186 swp_entry_t *entry;
1187 swp_entry_t swap;
1188 gfp_t gfp;
1189 int error;
1191 if (idx >= SHMEM_MAX_INDEX)
1192 return -EFBIG;
1194 if (type)
1195 *type = 0;
1198 * Normally, filepage is NULL on entry, and either found
1199 * uptodate immediately, or allocated and zeroed, or read
1200 * in under swappage, which is then assigned to filepage.
1201 * But shmem_readpage (required for splice) passes in a locked
1202 * filepage, which may be found not uptodate by other callers
1203 * too, and may need to be copied from the swappage read in.
1205 repeat:
1206 if (!filepage)
1207 filepage = find_lock_page(mapping, idx);
1208 if (filepage && PageUptodate(filepage))
1209 goto done;
1210 error = 0;
1211 gfp = mapping_gfp_mask(mapping);
1212 if (!filepage) {
1214 * Try to preload while we can wait, to not make a habit of
1215 * draining atomic reserves; but don't latch on to this cpu.
1217 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1218 if (error)
1219 goto failed;
1220 radix_tree_preload_end();
1223 spin_lock(&info->lock);
1224 shmem_recalc_inode(inode);
1225 entry = shmem_swp_alloc(info, idx, sgp);
1226 if (IS_ERR(entry)) {
1227 spin_unlock(&info->lock);
1228 error = PTR_ERR(entry);
1229 goto failed;
1231 swap = *entry;
1233 if (swap.val) {
1234 /* Look it up and read it in.. */
1235 swappage = lookup_swap_cache(swap);
1236 if (!swappage) {
1237 shmem_swp_unmap(entry);
1238 /* here we actually do the io */
1239 if (type && !(*type & VM_FAULT_MAJOR)) {
1240 __count_vm_event(PGMAJFAULT);
1241 *type |= VM_FAULT_MAJOR;
1243 spin_unlock(&info->lock);
1244 swappage = shmem_swapin(swap, gfp, info, idx);
1245 if (!swappage) {
1246 spin_lock(&info->lock);
1247 entry = shmem_swp_alloc(info, idx, sgp);
1248 if (IS_ERR(entry))
1249 error = PTR_ERR(entry);
1250 else {
1251 if (entry->val == swap.val)
1252 error = -ENOMEM;
1253 shmem_swp_unmap(entry);
1255 spin_unlock(&info->lock);
1256 if (error)
1257 goto failed;
1258 goto repeat;
1260 wait_on_page_locked(swappage);
1261 page_cache_release(swappage);
1262 goto repeat;
1265 /* We have to do this with page locked to prevent races */
1266 if (TestSetPageLocked(swappage)) {
1267 shmem_swp_unmap(entry);
1268 spin_unlock(&info->lock);
1269 wait_on_page_locked(swappage);
1270 page_cache_release(swappage);
1271 goto repeat;
1273 if (PageWriteback(swappage)) {
1274 shmem_swp_unmap(entry);
1275 spin_unlock(&info->lock);
1276 wait_on_page_writeback(swappage);
1277 unlock_page(swappage);
1278 page_cache_release(swappage);
1279 goto repeat;
1281 if (!PageUptodate(swappage)) {
1282 shmem_swp_unmap(entry);
1283 spin_unlock(&info->lock);
1284 unlock_page(swappage);
1285 page_cache_release(swappage);
1286 error = -EIO;
1287 goto failed;
1290 if (filepage) {
1291 shmem_swp_set(info, entry, 0);
1292 shmem_swp_unmap(entry);
1293 delete_from_swap_cache(swappage);
1294 spin_unlock(&info->lock);
1295 copy_highpage(filepage, swappage);
1296 unlock_page(swappage);
1297 page_cache_release(swappage);
1298 flush_dcache_page(filepage);
1299 SetPageUptodate(filepage);
1300 set_page_dirty(filepage);
1301 swap_free(swap);
1302 } else if (!(error = add_to_page_cache(
1303 swappage, mapping, idx, GFP_NOWAIT))) {
1304 info->flags |= SHMEM_PAGEIN;
1305 shmem_swp_set(info, entry, 0);
1306 shmem_swp_unmap(entry);
1307 delete_from_swap_cache(swappage);
1308 spin_unlock(&info->lock);
1309 filepage = swappage;
1310 set_page_dirty(filepage);
1311 swap_free(swap);
1312 } else {
1313 shmem_swp_unmap(entry);
1314 spin_unlock(&info->lock);
1315 unlock_page(swappage);
1316 page_cache_release(swappage);
1317 if (error == -ENOMEM) {
1318 /* allow reclaim from this memory cgroup */
1319 error = mem_cgroup_cache_charge(NULL,
1320 current->mm, gfp & ~__GFP_HIGHMEM);
1321 if (error)
1322 goto failed;
1324 goto repeat;
1326 } else if (sgp == SGP_READ && !filepage) {
1327 shmem_swp_unmap(entry);
1328 filepage = find_get_page(mapping, idx);
1329 if (filepage &&
1330 (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1331 spin_unlock(&info->lock);
1332 wait_on_page_locked(filepage);
1333 page_cache_release(filepage);
1334 filepage = NULL;
1335 goto repeat;
1337 spin_unlock(&info->lock);
1338 } else {
1339 shmem_swp_unmap(entry);
1340 sbinfo = SHMEM_SB(inode->i_sb);
1341 if (sbinfo->max_blocks) {
1342 spin_lock(&sbinfo->stat_lock);
1343 if (sbinfo->free_blocks == 0 ||
1344 shmem_acct_block(info->flags)) {
1345 spin_unlock(&sbinfo->stat_lock);
1346 spin_unlock(&info->lock);
1347 error = -ENOSPC;
1348 goto failed;
1350 sbinfo->free_blocks--;
1351 inode->i_blocks += BLOCKS_PER_PAGE;
1352 spin_unlock(&sbinfo->stat_lock);
1353 } else if (shmem_acct_block(info->flags)) {
1354 spin_unlock(&info->lock);
1355 error = -ENOSPC;
1356 goto failed;
1359 if (!filepage) {
1360 spin_unlock(&info->lock);
1361 filepage = shmem_alloc_page(gfp, info, idx);
1362 if (!filepage) {
1363 shmem_unacct_blocks(info->flags, 1);
1364 shmem_free_blocks(inode, 1);
1365 error = -ENOMEM;
1366 goto failed;
1369 /* Precharge page while we can wait, compensate after */
1370 error = mem_cgroup_cache_charge(filepage, current->mm,
1371 gfp & ~__GFP_HIGHMEM);
1372 if (error) {
1373 page_cache_release(filepage);
1374 shmem_unacct_blocks(info->flags, 1);
1375 shmem_free_blocks(inode, 1);
1376 filepage = NULL;
1377 goto failed;
1380 spin_lock(&info->lock);
1381 entry = shmem_swp_alloc(info, idx, sgp);
1382 if (IS_ERR(entry))
1383 error = PTR_ERR(entry);
1384 else {
1385 swap = *entry;
1386 shmem_swp_unmap(entry);
1388 if (error || swap.val || 0 != add_to_page_cache_lru(
1389 filepage, mapping, idx, GFP_NOWAIT)) {
1390 spin_unlock(&info->lock);
1391 mem_cgroup_uncharge_page(filepage);
1392 page_cache_release(filepage);
1393 shmem_unacct_blocks(info->flags, 1);
1394 shmem_free_blocks(inode, 1);
1395 filepage = NULL;
1396 if (error)
1397 goto failed;
1398 goto repeat;
1400 mem_cgroup_uncharge_page(filepage);
1401 info->flags |= SHMEM_PAGEIN;
1404 info->alloced++;
1405 spin_unlock(&info->lock);
1406 clear_highpage(filepage);
1407 flush_dcache_page(filepage);
1408 SetPageUptodate(filepage);
1409 if (sgp == SGP_DIRTY)
1410 set_page_dirty(filepage);
1412 done:
1413 *pagep = filepage;
1414 return 0;
1416 failed:
1417 if (*pagep != filepage) {
1418 unlock_page(filepage);
1419 page_cache_release(filepage);
1421 return error;
1424 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1426 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1427 int error;
1428 int ret;
1430 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1431 return VM_FAULT_SIGBUS;
1433 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1434 if (error)
1435 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1437 mark_page_accessed(vmf->page);
1438 return ret | VM_FAULT_LOCKED;
1441 #ifdef CONFIG_NUMA
1442 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1444 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1445 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1448 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1449 unsigned long addr)
1451 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1452 unsigned long idx;
1454 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1455 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1457 #endif
1459 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1461 struct inode *inode = file->f_path.dentry->d_inode;
1462 struct shmem_inode_info *info = SHMEM_I(inode);
1463 int retval = -ENOMEM;
1465 spin_lock(&info->lock);
1466 if (lock && !(info->flags & VM_LOCKED)) {
1467 if (!user_shm_lock(inode->i_size, user))
1468 goto out_nomem;
1469 info->flags |= VM_LOCKED;
1471 if (!lock && (info->flags & VM_LOCKED) && user) {
1472 user_shm_unlock(inode->i_size, user);
1473 info->flags &= ~VM_LOCKED;
1475 retval = 0;
1476 out_nomem:
1477 spin_unlock(&info->lock);
1478 return retval;
1481 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1483 file_accessed(file);
1484 vma->vm_ops = &shmem_vm_ops;
1485 vma->vm_flags |= VM_CAN_NONLINEAR;
1486 return 0;
1489 static struct inode *
1490 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1492 struct inode *inode;
1493 struct shmem_inode_info *info;
1494 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1496 if (shmem_reserve_inode(sb))
1497 return NULL;
1499 inode = new_inode(sb);
1500 if (inode) {
1501 inode->i_mode = mode;
1502 inode->i_uid = current->fsuid;
1503 inode->i_gid = current->fsgid;
1504 inode->i_blocks = 0;
1505 inode->i_mapping->a_ops = &shmem_aops;
1506 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1507 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1508 inode->i_generation = get_seconds();
1509 info = SHMEM_I(inode);
1510 memset(info, 0, (char *)inode - (char *)info);
1511 spin_lock_init(&info->lock);
1512 INIT_LIST_HEAD(&info->swaplist);
1514 switch (mode & S_IFMT) {
1515 default:
1516 inode->i_op = &shmem_special_inode_operations;
1517 init_special_inode(inode, mode, dev);
1518 break;
1519 case S_IFREG:
1520 inode->i_op = &shmem_inode_operations;
1521 inode->i_fop = &shmem_file_operations;
1522 mpol_shared_policy_init(&info->policy, sbinfo->policy,
1523 &sbinfo->policy_nodes);
1524 break;
1525 case S_IFDIR:
1526 inc_nlink(inode);
1527 /* Some things misbehave if size == 0 on a directory */
1528 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1529 inode->i_op = &shmem_dir_inode_operations;
1530 inode->i_fop = &simple_dir_operations;
1531 break;
1532 case S_IFLNK:
1534 * Must not load anything in the rbtree,
1535 * mpol_free_shared_policy will not be called.
1537 mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1538 NULL);
1539 break;
1541 } else
1542 shmem_free_inode(sb);
1543 return inode;
1546 #ifdef CONFIG_TMPFS
1547 static const struct inode_operations shmem_symlink_inode_operations;
1548 static const struct inode_operations shmem_symlink_inline_operations;
1551 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1552 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1553 * below the loop driver, in the generic fashion that many filesystems support.
1555 static int shmem_readpage(struct file *file, struct page *page)
1557 struct inode *inode = page->mapping->host;
1558 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1559 unlock_page(page);
1560 return error;
1563 static int
1564 shmem_write_begin(struct file *file, struct address_space *mapping,
1565 loff_t pos, unsigned len, unsigned flags,
1566 struct page **pagep, void **fsdata)
1568 struct inode *inode = mapping->host;
1569 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1570 *pagep = NULL;
1571 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1574 static int
1575 shmem_write_end(struct file *file, struct address_space *mapping,
1576 loff_t pos, unsigned len, unsigned copied,
1577 struct page *page, void *fsdata)
1579 struct inode *inode = mapping->host;
1581 if (pos + copied > inode->i_size)
1582 i_size_write(inode, pos + copied);
1584 unlock_page(page);
1585 set_page_dirty(page);
1586 page_cache_release(page);
1588 return copied;
1591 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1593 struct inode *inode = filp->f_path.dentry->d_inode;
1594 struct address_space *mapping = inode->i_mapping;
1595 unsigned long index, offset;
1596 enum sgp_type sgp = SGP_READ;
1599 * Might this read be for a stacking filesystem? Then when reading
1600 * holes of a sparse file, we actually need to allocate those pages,
1601 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1603 if (segment_eq(get_fs(), KERNEL_DS))
1604 sgp = SGP_DIRTY;
1606 index = *ppos >> PAGE_CACHE_SHIFT;
1607 offset = *ppos & ~PAGE_CACHE_MASK;
1609 for (;;) {
1610 struct page *page = NULL;
1611 unsigned long end_index, nr, ret;
1612 loff_t i_size = i_size_read(inode);
1614 end_index = i_size >> PAGE_CACHE_SHIFT;
1615 if (index > end_index)
1616 break;
1617 if (index == end_index) {
1618 nr = i_size & ~PAGE_CACHE_MASK;
1619 if (nr <= offset)
1620 break;
1623 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1624 if (desc->error) {
1625 if (desc->error == -EINVAL)
1626 desc->error = 0;
1627 break;
1629 if (page)
1630 unlock_page(page);
1633 * We must evaluate after, since reads (unlike writes)
1634 * are called without i_mutex protection against truncate
1636 nr = PAGE_CACHE_SIZE;
1637 i_size = i_size_read(inode);
1638 end_index = i_size >> PAGE_CACHE_SHIFT;
1639 if (index == end_index) {
1640 nr = i_size & ~PAGE_CACHE_MASK;
1641 if (nr <= offset) {
1642 if (page)
1643 page_cache_release(page);
1644 break;
1647 nr -= offset;
1649 if (page) {
1651 * If users can be writing to this page using arbitrary
1652 * virtual addresses, take care about potential aliasing
1653 * before reading the page on the kernel side.
1655 if (mapping_writably_mapped(mapping))
1656 flush_dcache_page(page);
1658 * Mark the page accessed if we read the beginning.
1660 if (!offset)
1661 mark_page_accessed(page);
1662 } else {
1663 page = ZERO_PAGE(0);
1664 page_cache_get(page);
1668 * Ok, we have the page, and it's up-to-date, so
1669 * now we can copy it to user space...
1671 * The actor routine returns how many bytes were actually used..
1672 * NOTE! This may not be the same as how much of a user buffer
1673 * we filled up (we may be padding etc), so we can only update
1674 * "pos" here (the actor routine has to update the user buffer
1675 * pointers and the remaining count).
1677 ret = actor(desc, page, offset, nr);
1678 offset += ret;
1679 index += offset >> PAGE_CACHE_SHIFT;
1680 offset &= ~PAGE_CACHE_MASK;
1682 page_cache_release(page);
1683 if (ret != nr || !desc->count)
1684 break;
1686 cond_resched();
1689 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1690 file_accessed(filp);
1693 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1695 read_descriptor_t desc;
1697 if ((ssize_t) count < 0)
1698 return -EINVAL;
1699 if (!access_ok(VERIFY_WRITE, buf, count))
1700 return -EFAULT;
1701 if (!count)
1702 return 0;
1704 desc.written = 0;
1705 desc.count = count;
1706 desc.arg.buf = buf;
1707 desc.error = 0;
1709 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1710 if (desc.written)
1711 return desc.written;
1712 return desc.error;
1715 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1717 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1719 buf->f_type = TMPFS_MAGIC;
1720 buf->f_bsize = PAGE_CACHE_SIZE;
1721 buf->f_namelen = NAME_MAX;
1722 spin_lock(&sbinfo->stat_lock);
1723 if (sbinfo->max_blocks) {
1724 buf->f_blocks = sbinfo->max_blocks;
1725 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1727 if (sbinfo->max_inodes) {
1728 buf->f_files = sbinfo->max_inodes;
1729 buf->f_ffree = sbinfo->free_inodes;
1731 /* else leave those fields 0 like simple_statfs */
1732 spin_unlock(&sbinfo->stat_lock);
1733 return 0;
1737 * File creation. Allocate an inode, and we're done..
1739 static int
1740 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1742 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1743 int error = -ENOSPC;
1745 if (inode) {
1746 error = security_inode_init_security(inode, dir, NULL, NULL,
1747 NULL);
1748 if (error) {
1749 if (error != -EOPNOTSUPP) {
1750 iput(inode);
1751 return error;
1754 error = shmem_acl_init(inode, dir);
1755 if (error) {
1756 iput(inode);
1757 return error;
1759 if (dir->i_mode & S_ISGID) {
1760 inode->i_gid = dir->i_gid;
1761 if (S_ISDIR(mode))
1762 inode->i_mode |= S_ISGID;
1764 dir->i_size += BOGO_DIRENT_SIZE;
1765 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1766 d_instantiate(dentry, inode);
1767 dget(dentry); /* Extra count - pin the dentry in core */
1769 return error;
1772 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1774 int error;
1776 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1777 return error;
1778 inc_nlink(dir);
1779 return 0;
1782 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1783 struct nameidata *nd)
1785 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1789 * Link a file..
1791 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1793 struct inode *inode = old_dentry->d_inode;
1794 int ret;
1797 * No ordinary (disk based) filesystem counts links as inodes;
1798 * but each new link needs a new dentry, pinning lowmem, and
1799 * tmpfs dentries cannot be pruned until they are unlinked.
1801 ret = shmem_reserve_inode(inode->i_sb);
1802 if (ret)
1803 goto out;
1805 dir->i_size += BOGO_DIRENT_SIZE;
1806 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1807 inc_nlink(inode);
1808 atomic_inc(&inode->i_count); /* New dentry reference */
1809 dget(dentry); /* Extra pinning count for the created dentry */
1810 d_instantiate(dentry, inode);
1811 out:
1812 return ret;
1815 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1817 struct inode *inode = dentry->d_inode;
1819 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1820 shmem_free_inode(inode->i_sb);
1822 dir->i_size -= BOGO_DIRENT_SIZE;
1823 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1824 drop_nlink(inode);
1825 dput(dentry); /* Undo the count from "create" - this does all the work */
1826 return 0;
1829 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1831 if (!simple_empty(dentry))
1832 return -ENOTEMPTY;
1834 drop_nlink(dentry->d_inode);
1835 drop_nlink(dir);
1836 return shmem_unlink(dir, dentry);
1840 * The VFS layer already does all the dentry stuff for rename,
1841 * we just have to decrement the usage count for the target if
1842 * it exists so that the VFS layer correctly free's it when it
1843 * gets overwritten.
1845 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1847 struct inode *inode = old_dentry->d_inode;
1848 int they_are_dirs = S_ISDIR(inode->i_mode);
1850 if (!simple_empty(new_dentry))
1851 return -ENOTEMPTY;
1853 if (new_dentry->d_inode) {
1854 (void) shmem_unlink(new_dir, new_dentry);
1855 if (they_are_dirs)
1856 drop_nlink(old_dir);
1857 } else if (they_are_dirs) {
1858 drop_nlink(old_dir);
1859 inc_nlink(new_dir);
1862 old_dir->i_size -= BOGO_DIRENT_SIZE;
1863 new_dir->i_size += BOGO_DIRENT_SIZE;
1864 old_dir->i_ctime = old_dir->i_mtime =
1865 new_dir->i_ctime = new_dir->i_mtime =
1866 inode->i_ctime = CURRENT_TIME;
1867 return 0;
1870 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1872 int error;
1873 int len;
1874 struct inode *inode;
1875 struct page *page = NULL;
1876 char *kaddr;
1877 struct shmem_inode_info *info;
1879 len = strlen(symname) + 1;
1880 if (len > PAGE_CACHE_SIZE)
1881 return -ENAMETOOLONG;
1883 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1884 if (!inode)
1885 return -ENOSPC;
1887 error = security_inode_init_security(inode, dir, NULL, NULL,
1888 NULL);
1889 if (error) {
1890 if (error != -EOPNOTSUPP) {
1891 iput(inode);
1892 return error;
1894 error = 0;
1897 info = SHMEM_I(inode);
1898 inode->i_size = len-1;
1899 if (len <= (char *)inode - (char *)info) {
1900 /* do it inline */
1901 memcpy(info, symname, len);
1902 inode->i_op = &shmem_symlink_inline_operations;
1903 } else {
1904 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1905 if (error) {
1906 iput(inode);
1907 return error;
1909 unlock_page(page);
1910 inode->i_op = &shmem_symlink_inode_operations;
1911 kaddr = kmap_atomic(page, KM_USER0);
1912 memcpy(kaddr, symname, len);
1913 kunmap_atomic(kaddr, KM_USER0);
1914 set_page_dirty(page);
1915 page_cache_release(page);
1917 if (dir->i_mode & S_ISGID)
1918 inode->i_gid = dir->i_gid;
1919 dir->i_size += BOGO_DIRENT_SIZE;
1920 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1921 d_instantiate(dentry, inode);
1922 dget(dentry);
1923 return 0;
1926 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1928 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1929 return NULL;
1932 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1934 struct page *page = NULL;
1935 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1936 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1937 if (page)
1938 unlock_page(page);
1939 return page;
1942 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1944 if (!IS_ERR(nd_get_link(nd))) {
1945 struct page *page = cookie;
1946 kunmap(page);
1947 mark_page_accessed(page);
1948 page_cache_release(page);
1952 static const struct inode_operations shmem_symlink_inline_operations = {
1953 .readlink = generic_readlink,
1954 .follow_link = shmem_follow_link_inline,
1957 static const struct inode_operations shmem_symlink_inode_operations = {
1958 .truncate = shmem_truncate,
1959 .readlink = generic_readlink,
1960 .follow_link = shmem_follow_link,
1961 .put_link = shmem_put_link,
1964 #ifdef CONFIG_TMPFS_POSIX_ACL
1966 * Superblocks without xattr inode operations will get security.* xattr
1967 * support from the VFS "for free". As soon as we have any other xattrs
1968 * like ACLs, we also need to implement the security.* handlers at
1969 * filesystem level, though.
1972 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1973 size_t list_len, const char *name,
1974 size_t name_len)
1976 return security_inode_listsecurity(inode, list, list_len);
1979 static int shmem_xattr_security_get(struct inode *inode, const char *name,
1980 void *buffer, size_t size)
1982 if (strcmp(name, "") == 0)
1983 return -EINVAL;
1984 return xattr_getsecurity(inode, name, buffer, size);
1987 static int shmem_xattr_security_set(struct inode *inode, const char *name,
1988 const void *value, size_t size, int flags)
1990 if (strcmp(name, "") == 0)
1991 return -EINVAL;
1992 return security_inode_setsecurity(inode, name, value, size, flags);
1995 static struct xattr_handler shmem_xattr_security_handler = {
1996 .prefix = XATTR_SECURITY_PREFIX,
1997 .list = shmem_xattr_security_list,
1998 .get = shmem_xattr_security_get,
1999 .set = shmem_xattr_security_set,
2002 static struct xattr_handler *shmem_xattr_handlers[] = {
2003 &shmem_xattr_acl_access_handler,
2004 &shmem_xattr_acl_default_handler,
2005 &shmem_xattr_security_handler,
2006 NULL
2008 #endif
2010 static struct dentry *shmem_get_parent(struct dentry *child)
2012 return ERR_PTR(-ESTALE);
2015 static int shmem_match(struct inode *ino, void *vfh)
2017 __u32 *fh = vfh;
2018 __u64 inum = fh[2];
2019 inum = (inum << 32) | fh[1];
2020 return ino->i_ino == inum && fh[0] == ino->i_generation;
2023 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2024 struct fid *fid, int fh_len, int fh_type)
2026 struct inode *inode;
2027 struct dentry *dentry = NULL;
2028 u64 inum = fid->raw[2];
2029 inum = (inum << 32) | fid->raw[1];
2031 if (fh_len < 3)
2032 return NULL;
2034 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2035 shmem_match, fid->raw);
2036 if (inode) {
2037 dentry = d_find_alias(inode);
2038 iput(inode);
2041 return dentry;
2044 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2045 int connectable)
2047 struct inode *inode = dentry->d_inode;
2049 if (*len < 3)
2050 return 255;
2052 if (hlist_unhashed(&inode->i_hash)) {
2053 /* Unfortunately insert_inode_hash is not idempotent,
2054 * so as we hash inodes here rather than at creation
2055 * time, we need a lock to ensure we only try
2056 * to do it once
2058 static DEFINE_SPINLOCK(lock);
2059 spin_lock(&lock);
2060 if (hlist_unhashed(&inode->i_hash))
2061 __insert_inode_hash(inode,
2062 inode->i_ino + inode->i_generation);
2063 spin_unlock(&lock);
2066 fh[0] = inode->i_generation;
2067 fh[1] = inode->i_ino;
2068 fh[2] = ((__u64)inode->i_ino) >> 32;
2070 *len = 3;
2071 return 1;
2074 static const struct export_operations shmem_export_ops = {
2075 .get_parent = shmem_get_parent,
2076 .encode_fh = shmem_encode_fh,
2077 .fh_to_dentry = shmem_fh_to_dentry,
2080 static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2081 gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2082 int *policy, nodemask_t *policy_nodes)
2084 char *this_char, *value, *rest;
2086 while (options != NULL) {
2087 this_char = options;
2088 for (;;) {
2090 * NUL-terminate this option: unfortunately,
2091 * mount options form a comma-separated list,
2092 * but mpol's nodelist may also contain commas.
2094 options = strchr(options, ',');
2095 if (options == NULL)
2096 break;
2097 options++;
2098 if (!isdigit(*options)) {
2099 options[-1] = '\0';
2100 break;
2103 if (!*this_char)
2104 continue;
2105 if ((value = strchr(this_char,'=')) != NULL) {
2106 *value++ = 0;
2107 } else {
2108 printk(KERN_ERR
2109 "tmpfs: No value for mount option '%s'\n",
2110 this_char);
2111 return 1;
2114 if (!strcmp(this_char,"size")) {
2115 unsigned long long size;
2116 size = memparse(value,&rest);
2117 if (*rest == '%') {
2118 size <<= PAGE_SHIFT;
2119 size *= totalram_pages;
2120 do_div(size, 100);
2121 rest++;
2123 if (*rest)
2124 goto bad_val;
2125 *blocks = DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2126 } else if (!strcmp(this_char,"nr_blocks")) {
2127 *blocks = memparse(value,&rest);
2128 if (*rest)
2129 goto bad_val;
2130 } else if (!strcmp(this_char,"nr_inodes")) {
2131 *inodes = memparse(value,&rest);
2132 if (*rest)
2133 goto bad_val;
2134 } else if (!strcmp(this_char,"mode")) {
2135 if (!mode)
2136 continue;
2137 *mode = simple_strtoul(value,&rest,8);
2138 if (*rest)
2139 goto bad_val;
2140 } else if (!strcmp(this_char,"uid")) {
2141 if (!uid)
2142 continue;
2143 *uid = simple_strtoul(value,&rest,0);
2144 if (*rest)
2145 goto bad_val;
2146 } else if (!strcmp(this_char,"gid")) {
2147 if (!gid)
2148 continue;
2149 *gid = simple_strtoul(value,&rest,0);
2150 if (*rest)
2151 goto bad_val;
2152 } else if (!strcmp(this_char,"mpol")) {
2153 if (shmem_parse_mpol(value,policy,policy_nodes))
2154 goto bad_val;
2155 } else {
2156 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2157 this_char);
2158 return 1;
2161 return 0;
2163 bad_val:
2164 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2165 value, this_char);
2166 return 1;
2170 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2172 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2173 unsigned long max_blocks = sbinfo->max_blocks;
2174 unsigned long max_inodes = sbinfo->max_inodes;
2175 int policy = sbinfo->policy;
2176 nodemask_t policy_nodes = sbinfo->policy_nodes;
2177 unsigned long blocks;
2178 unsigned long inodes;
2179 int error = -EINVAL;
2181 if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2182 &max_inodes, &policy, &policy_nodes))
2183 return error;
2185 spin_lock(&sbinfo->stat_lock);
2186 blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2187 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2188 if (max_blocks < blocks)
2189 goto out;
2190 if (max_inodes < inodes)
2191 goto out;
2193 * Those tests also disallow limited->unlimited while any are in
2194 * use, so i_blocks will always be zero when max_blocks is zero;
2195 * but we must separately disallow unlimited->limited, because
2196 * in that case we have no record of how much is already in use.
2198 if (max_blocks && !sbinfo->max_blocks)
2199 goto out;
2200 if (max_inodes && !sbinfo->max_inodes)
2201 goto out;
2203 error = 0;
2204 sbinfo->max_blocks = max_blocks;
2205 sbinfo->free_blocks = max_blocks - blocks;
2206 sbinfo->max_inodes = max_inodes;
2207 sbinfo->free_inodes = max_inodes - inodes;
2208 sbinfo->policy = policy;
2209 sbinfo->policy_nodes = policy_nodes;
2210 out:
2211 spin_unlock(&sbinfo->stat_lock);
2212 return error;
2214 #endif
2216 static void shmem_put_super(struct super_block *sb)
2218 kfree(sb->s_fs_info);
2219 sb->s_fs_info = NULL;
2222 static int shmem_fill_super(struct super_block *sb,
2223 void *data, int silent)
2225 struct inode *inode;
2226 struct dentry *root;
2227 int mode = S_IRWXUGO | S_ISVTX;
2228 uid_t uid = current->fsuid;
2229 gid_t gid = current->fsgid;
2230 int err = -ENOMEM;
2231 struct shmem_sb_info *sbinfo;
2232 unsigned long blocks = 0;
2233 unsigned long inodes = 0;
2234 int policy = MPOL_DEFAULT;
2235 nodemask_t policy_nodes = node_states[N_HIGH_MEMORY];
2237 #ifdef CONFIG_TMPFS
2239 * Per default we only allow half of the physical ram per
2240 * tmpfs instance, limiting inodes to one per page of lowmem;
2241 * but the internal instance is left unlimited.
2243 if (!(sb->s_flags & MS_NOUSER)) {
2244 blocks = totalram_pages / 2;
2245 inodes = totalram_pages - totalhigh_pages;
2246 if (inodes > blocks)
2247 inodes = blocks;
2248 if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2249 &inodes, &policy, &policy_nodes))
2250 return -EINVAL;
2252 sb->s_export_op = &shmem_export_ops;
2253 #else
2254 sb->s_flags |= MS_NOUSER;
2255 #endif
2257 /* Round up to L1_CACHE_BYTES to resist false sharing */
2258 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2259 L1_CACHE_BYTES), GFP_KERNEL);
2260 if (!sbinfo)
2261 return -ENOMEM;
2263 spin_lock_init(&sbinfo->stat_lock);
2264 sbinfo->max_blocks = blocks;
2265 sbinfo->free_blocks = blocks;
2266 sbinfo->max_inodes = inodes;
2267 sbinfo->free_inodes = inodes;
2268 sbinfo->policy = policy;
2269 sbinfo->policy_nodes = policy_nodes;
2271 sb->s_fs_info = sbinfo;
2272 sb->s_maxbytes = SHMEM_MAX_BYTES;
2273 sb->s_blocksize = PAGE_CACHE_SIZE;
2274 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2275 sb->s_magic = TMPFS_MAGIC;
2276 sb->s_op = &shmem_ops;
2277 sb->s_time_gran = 1;
2278 #ifdef CONFIG_TMPFS_POSIX_ACL
2279 sb->s_xattr = shmem_xattr_handlers;
2280 sb->s_flags |= MS_POSIXACL;
2281 #endif
2283 inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2284 if (!inode)
2285 goto failed;
2286 inode->i_uid = uid;
2287 inode->i_gid = gid;
2288 root = d_alloc_root(inode);
2289 if (!root)
2290 goto failed_iput;
2291 sb->s_root = root;
2292 return 0;
2294 failed_iput:
2295 iput(inode);
2296 failed:
2297 shmem_put_super(sb);
2298 return err;
2301 static struct kmem_cache *shmem_inode_cachep;
2303 static struct inode *shmem_alloc_inode(struct super_block *sb)
2305 struct shmem_inode_info *p;
2306 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2307 if (!p)
2308 return NULL;
2309 return &p->vfs_inode;
2312 static void shmem_destroy_inode(struct inode *inode)
2314 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2315 /* only struct inode is valid if it's an inline symlink */
2316 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2318 shmem_acl_destroy_inode(inode);
2319 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2322 static void init_once(struct kmem_cache *cachep, void *foo)
2324 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2326 inode_init_once(&p->vfs_inode);
2327 #ifdef CONFIG_TMPFS_POSIX_ACL
2328 p->i_acl = NULL;
2329 p->i_default_acl = NULL;
2330 #endif
2333 static int init_inodecache(void)
2335 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2336 sizeof(struct shmem_inode_info),
2337 0, SLAB_PANIC, init_once);
2338 return 0;
2341 static void destroy_inodecache(void)
2343 kmem_cache_destroy(shmem_inode_cachep);
2346 static const struct address_space_operations shmem_aops = {
2347 .writepage = shmem_writepage,
2348 .set_page_dirty = __set_page_dirty_no_writeback,
2349 #ifdef CONFIG_TMPFS
2350 .readpage = shmem_readpage,
2351 .write_begin = shmem_write_begin,
2352 .write_end = shmem_write_end,
2353 #endif
2354 .migratepage = migrate_page,
2357 static const struct file_operations shmem_file_operations = {
2358 .mmap = shmem_mmap,
2359 #ifdef CONFIG_TMPFS
2360 .llseek = generic_file_llseek,
2361 .read = shmem_file_read,
2362 .write = do_sync_write,
2363 .aio_write = generic_file_aio_write,
2364 .fsync = simple_sync_file,
2365 .splice_read = generic_file_splice_read,
2366 .splice_write = generic_file_splice_write,
2367 #endif
2370 static const struct inode_operations shmem_inode_operations = {
2371 .truncate = shmem_truncate,
2372 .setattr = shmem_notify_change,
2373 .truncate_range = shmem_truncate_range,
2374 #ifdef CONFIG_TMPFS_POSIX_ACL
2375 .setxattr = generic_setxattr,
2376 .getxattr = generic_getxattr,
2377 .listxattr = generic_listxattr,
2378 .removexattr = generic_removexattr,
2379 .permission = shmem_permission,
2380 #endif
2384 static const struct inode_operations shmem_dir_inode_operations = {
2385 #ifdef CONFIG_TMPFS
2386 .create = shmem_create,
2387 .lookup = simple_lookup,
2388 .link = shmem_link,
2389 .unlink = shmem_unlink,
2390 .symlink = shmem_symlink,
2391 .mkdir = shmem_mkdir,
2392 .rmdir = shmem_rmdir,
2393 .mknod = shmem_mknod,
2394 .rename = shmem_rename,
2395 #endif
2396 #ifdef CONFIG_TMPFS_POSIX_ACL
2397 .setattr = shmem_notify_change,
2398 .setxattr = generic_setxattr,
2399 .getxattr = generic_getxattr,
2400 .listxattr = generic_listxattr,
2401 .removexattr = generic_removexattr,
2402 .permission = shmem_permission,
2403 #endif
2406 static const struct inode_operations shmem_special_inode_operations = {
2407 #ifdef CONFIG_TMPFS_POSIX_ACL
2408 .setattr = shmem_notify_change,
2409 .setxattr = generic_setxattr,
2410 .getxattr = generic_getxattr,
2411 .listxattr = generic_listxattr,
2412 .removexattr = generic_removexattr,
2413 .permission = shmem_permission,
2414 #endif
2417 static const struct super_operations shmem_ops = {
2418 .alloc_inode = shmem_alloc_inode,
2419 .destroy_inode = shmem_destroy_inode,
2420 #ifdef CONFIG_TMPFS
2421 .statfs = shmem_statfs,
2422 .remount_fs = shmem_remount_fs,
2423 #endif
2424 .delete_inode = shmem_delete_inode,
2425 .drop_inode = generic_delete_inode,
2426 .put_super = shmem_put_super,
2429 static struct vm_operations_struct shmem_vm_ops = {
2430 .fault = shmem_fault,
2431 #ifdef CONFIG_NUMA
2432 .set_policy = shmem_set_policy,
2433 .get_policy = shmem_get_policy,
2434 #endif
2438 static int shmem_get_sb(struct file_system_type *fs_type,
2439 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2441 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2444 static struct file_system_type tmpfs_fs_type = {
2445 .owner = THIS_MODULE,
2446 .name = "tmpfs",
2447 .get_sb = shmem_get_sb,
2448 .kill_sb = kill_litter_super,
2450 static struct vfsmount *shm_mnt;
2452 static int __init init_tmpfs(void)
2454 int error;
2456 error = bdi_init(&shmem_backing_dev_info);
2457 if (error)
2458 goto out4;
2460 error = init_inodecache();
2461 if (error)
2462 goto out3;
2464 error = register_filesystem(&tmpfs_fs_type);
2465 if (error) {
2466 printk(KERN_ERR "Could not register tmpfs\n");
2467 goto out2;
2470 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2471 tmpfs_fs_type.name, NULL);
2472 if (IS_ERR(shm_mnt)) {
2473 error = PTR_ERR(shm_mnt);
2474 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2475 goto out1;
2477 return 0;
2479 out1:
2480 unregister_filesystem(&tmpfs_fs_type);
2481 out2:
2482 destroy_inodecache();
2483 out3:
2484 bdi_destroy(&shmem_backing_dev_info);
2485 out4:
2486 shm_mnt = ERR_PTR(error);
2487 return error;
2489 module_init(init_tmpfs)
2492 * shmem_file_setup - get an unlinked file living in tmpfs
2494 * @name: name for dentry (to be seen in /proc/<pid>/maps
2495 * @size: size to be set for the file
2498 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2500 int error;
2501 struct file *file;
2502 struct inode *inode;
2503 struct dentry *dentry, *root;
2504 struct qstr this;
2506 if (IS_ERR(shm_mnt))
2507 return (void *)shm_mnt;
2509 if (size < 0 || size > SHMEM_MAX_BYTES)
2510 return ERR_PTR(-EINVAL);
2512 if (shmem_acct_size(flags, size))
2513 return ERR_PTR(-ENOMEM);
2515 error = -ENOMEM;
2516 this.name = name;
2517 this.len = strlen(name);
2518 this.hash = 0; /* will go */
2519 root = shm_mnt->mnt_root;
2520 dentry = d_alloc(root, &this);
2521 if (!dentry)
2522 goto put_memory;
2524 error = -ENFILE;
2525 file = get_empty_filp();
2526 if (!file)
2527 goto put_dentry;
2529 error = -ENOSPC;
2530 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2531 if (!inode)
2532 goto close_file;
2534 SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2535 d_instantiate(dentry, inode);
2536 inode->i_size = size;
2537 inode->i_nlink = 0; /* It is unlinked */
2538 init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2539 &shmem_file_operations);
2540 return file;
2542 close_file:
2543 put_filp(file);
2544 put_dentry:
2545 dput(dentry);
2546 put_memory:
2547 shmem_unacct_size(flags, size);
2548 return ERR_PTR(error);
2552 * shmem_zero_setup - setup a shared anonymous mapping
2554 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2556 int shmem_zero_setup(struct vm_area_struct *vma)
2558 struct file *file;
2559 loff_t size = vma->vm_end - vma->vm_start;
2561 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2562 if (IS_ERR(file))
2563 return PTR_ERR(file);
2565 if (vma->vm_file)
2566 fput(vma->vm_file);
2567 vma->vm_file = file;
2568 vma->vm_ops = &shmem_vm_ops;
2569 return 0;